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Abstract

Q-exponential distributions play an important role in nonextensive statistics. They appear as the canonical distributions, i.e. the
maximum generalizedq-entropy distributions under mean constraint. Their relevance is also independently justified by their ap-
pearance in the theory of superstatistics introduced by Beck and Cohen. In this paper, we provide a third and independentrationale
for these distributions. We indicate thatq-exponentials are stable by a statistical normalization operation, and that Pickands’ extreme
values theorem plays the role of a CLT-like theorem in this context. This suggests thatq-exponentials can arise in many contexts
if the system at hand or the measurement device introduces some threshold. Moreover we give an asymptotic connection between
excess distributions and maximumq-entropy. We also highlight the role of Generalized Pareto Distributions in many applications
and present several methods for the practical estimation ofq-exponentials parameters.
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1. Introduction

Since the pioneering paper by Tsallis (1988), nonextensivestatistics have received an increasing interest in the statisti-
cal physics community. As a consequence, the canonical distributions that appear in this context have raised many stud-
ies: these distributions are theq−Gaussians under the assumption that the total energy is fixed, and theq−exponentials
[1] when the mean value of the system is fixed.
In several cases and a wide variety of fields, experiments, numerical results and analytical derivations fairly agree
with the formalism and the description byq-Gaussians orq-exponentials. This includes situations characterized by
long-range interactions, long-range memory or space-timemultifractal structure. Applications include fully developed
turbulence, Levy anomalous diffusion, statistics of cosmic rays, econometry, and many others. Furthermore, recent
studies have highlighted their excellent ability to approximate with high accuracy the exact distribution of complex
systems [2].
Let us recall thatq−exponential distributions are defined by

fq,β (x) =
1

Zq,β

eq(−βx) (1)

with
eq(−βx) = (1 − β (1 − q)x)

1

1−q , x ∈ [0, Aq[ (2)
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Figure 1. Infinite supportq−exponential distributions withβ = 1

2−q
andq = 1.01 (solid),1.99 (dash dot) and1.8 (dash)
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Figure 2. Finite supportq−exponential distributions withβ = 1

2−q
andq = 0 (solid),−∞ (dot),−1 (dash) and0.7 (dashdot)

whereAq is the right endpoint,Aq = 1
β(1−q) if q < 1 andAq = +∞ if 1 < q < 2, and whereβ is a positive scale

parameter related to the meanm of fq,β asm =
∫

xfq,β (x) dx = 1
β(3−2q) , for q < 3/2. The partition functionZq,β

is

Zq,β =
1

β (2 − q)
, 0 < q < 2.

We will also denotēFq,β(x) the so-called survival function associated to theq-exponential distribution (1):

F̄q,β(x) =

∫ +∞

x

fq,β(z)dz = 1 − Fq,β(x) (3)

= (1 − β(1 − q)x)
1

1−q
+1 (4)

whereFq,β(x) is the probability distribution function.
Theq-exponential distributionsfq,β (x) are the solutions of the following maximum entropy problem:

max
f

Hq (f) with
∫ +∞

0

xf q (x) dx = θ and
∫ +∞

0

f (x) dx = 1 (5)

where

Hq =
1

1 − q

(
∫ +∞

0

f q (x) dx − 1

)

(6)

is the Tsallis entropy. We note that the same solution is reached if Tsallis entropy is replaced by using Rényi entropy

Sq =
1

1 − q
log

∫ +∞

0

f q (x) dx,

since it is a simple monotone transform of the latter. In the limit caseq = 1, Tsallis entropy coincides with Shannon
entropy and the maximum entropy solution recovers the canonical exponential distribution

f1,β (x) = β exp (−βx) , x ≥ 0. (7)
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The shapes of severalq−exponential distributions are shown in Fig.1 (infinite support case:q > 1 andAq = +∞)
and in Fig.2 (finite support case:q < 1 andAq = 1

β(1−q) ); in all cases, parameterβ was chosen asβ = 1
2−q

so that
fq (0) = 1. These figures indicate the high versatility ofq-exponentials for modeling probability distributions.
An important and alternate characterization of these distributions has been provided by the superstatistics theory as
introduced in [3] (see also [4] for related results). In this approach,q−exponential distributions are recognized as scale
mixtures of exponential distributions: more precisely, the integral representation

fq, 1

q−1

(x) =

∫ +∞

0

gn (β) f1,β (x) dβ

wheregn (β) ∝ β
n
2
−1e−β is aχ2

n distribution withn = 2
q−1−2 degrees of freedom, allows to describe aq−exponential

random variable as a(q=1) exponential variable with random scale parameterβ ∼ χ2
n. We note that this approach, in

a physical setting, recovers similar results by Maguire (1952) [5] and Harris (1968) [6]. This superstatistical approach
has found many applications in fluctuation theory: for example, in a recent paper, Briggs and Beck [7] have highlighted
the relevance of the superstatistical approach in the modeling of train delays.
Hence, in the one hand, there are two constructions, the maximumq-entropy and the superstatistics one, that exhibitq-
exponentials. In the other hand, many observations and experimental results assess the relevance ofq-exponentials and
their ubiquity. We propose in what follows a third and alternate statistical justification ofq-exponential distributions,
based on the theory of excess values.
In section2, we introduce the “Focus on Excesses” operation, which willreveal as the fundamental operation in our
setting. Then, in section3 we present the Pickands-Balkema-de Haan result as a possible rationale for the ubiquity
of q-exponentials in nature. Furthermore, we underline a stability property ofq-exponentials, and show that these re-
sults form a Central Limit Theorem for the “Focus on Excesses” operation. In section3.2, we draw attention to the
Generalized Pareto Distribution (GPD), which is aq-exponential, and underline its applications outside the statistical
physics field. Some examples are worked out in subsection3.3. In section4, we address the link between the max-
imum q-entropy and the distributions of excesses. We draw a possible connection and show that the distribution of
excesses converges asymptotically to a maximumq-entropy distribution. Finally, we present and discuss in section5
the estimation procedures for the parameters ofq-exponentials-GPD.

2. The “Focus on Excesses” operation

Let us consider a one-dimensional positive random variableX (ω) that describes the state of a physical system; we
denote as̄FX its survival function

F̄X (x) = 1 − FX(x) = Pr {X > x}
with FX(x) the distribution function. Let us also consider a positive parameteru > 0 and assume that we have access
only to the values ofX that are larger thanu : for example, we may have access to the system through a measurement
device that, for a bandwidth or quantification reason, does not “see” any valueX < u; or we may want to reject all
valuesX < u because we think that they are physically irrelevant. Sinceparameteru may be large, a wise decision is
to shift all these measured values by a factoru : as a consequence, we will in fact record values of the excesses ofX
over the thresholdu, that is values of theconditionalrandom variableXu defined as

Xu = X − u|X > u.

We denoteXu = Fu(X) the transform ofX into Xu. By Bayes’ theorem, the survival function of these excesses
writes

F̄Xu
(x) = Pr(X > x + u|x > u) =

F̄X (x + u)

F̄X (u)
, x ≥ 0. (8)

If X possesses a probability densityfX , thenXu has itself the density

fXu
(x) =

fX (x + u)

F̄X (u)
, x ≥ 0. (9)

The transformation ofX into Xu is illustrated in Fig.3. The inset depicts the excess distribution, i.e. the normalized
tail fXu

(9) of the original distributionfX given in the main part of the figure. For obvious reasons, we call “Focus on
Excess” (FoE) operation the transformation ofF̄X into F̄Xu

, or equivalently offX into fXu
. With a slight abuse of

notation we also denoteFu this transformation.
This approach is also known as the “Peaks over Threshold” technique and widely used in fields like climatology and
hydrology. A rationale of this method can be found in [8].
Theq−exponential distributionfq,β(x) (1) verifies a remarkablestabilityproperty with respect to this transformation
as described in the following theorem (see [9]).
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Figure 3. Illustration of the FoE transformation

Theorem 1 For anyu < Aq, the FoE ofq-exponential remainsq-exponential and leaves the tail indexq unchanged:

Fu (fq,β(x)) = fq,β′(x)

with β′ = β
1−β(1−q)u .

Proof. By equation (9), we know that

Fu (eq(−βx)) ∝ (1 − β(1 − q)(x + u))
1

1−q ∝ (1 − β′(1 − q)x)
1

1−q , (10)

= eq(−β′x) for 0 ≤ x ≤ Aq − u (11)

where the last term, withβ′ = β/(1 − β(1 − q)u), is obtained by factoring(1 − β(1 − q)u).
This highlights the particular status of theq-exponential in the FoE transformation. We can also remark thatβ′ = β
in the special exponential(q = 1) case: the normalized tail of an exponential distribution isexactly invariant by FoE
transformation.

3. The Limit theorem for q-exponentials

3.1. Pickands’ theorem

An important theorem in probability as well as in statistical physics is the Central Limit theorem; its extension to the
nonextensive context has been the subject of several recentpapers [10]. According to this theorem, if a probability
densityf belongs to the domain of attraction of the Gaussian distribution, and ifXi are centered and independently
chosen distributed according tof, then the distribution of

Zn =
1√
n

n
∑

i=1

Xi (12)

converges withn to the Gaussian distribution. Moreover, the Gaussian distribution appears as a fixed point in this
context since if allXi are independent and Gaussian in (12) thenZn is exactlyGaussian for any value ofn.
Let us denote byTn the transform

Tn : f 7→ fn

wherefn is the distribution ofZn, i.e. the normalizedn−fold convolution off. Consider now a variable submitted to
a serie ofk successive thresholding operations, with thresholdsu1, . . . uk: the resulting excess variable, sayZu, is

Zu = Fuk
◦ Fuk−1

◦ . . .Fu1
(X)

where◦ is the composition of functions andFui
as defined above. Of course, the excess variable can also be viewed

as resulting of a single thresholding operation, withu =
∑k

i=1 ui:

Zu = Fu(X).
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An analogy appears betweenTn and the FoE transformFu which associates the survival functions:

Fu : F̄ 7→ F̄u,

where the real threshold parameteru plays the role of the integer parametern. Thus, an important question at this point
arises: does there exist a limit result, analogous to the CLT, in the context of the FoE transform? Let us first introduce
the Fréchet (or heavy-tailed) family of distributions, that will play in extreme statistics the role of the Gaussian domain
of attraction in the CLT.
Definition 1 A distribution F belongs the Fréchet domain if it is a heavy tail distribution, that is if its survival
distributionF̄ writes

F̄ (x) = x−
1

γ l (x) , ∀x ≥ 0

wherel (x)is a slowly varying function:

lim
x→+∞

l (xt)

l (x)
= 1 ∀t > 0

and parameterγ is called the tail index ofF.
Pickands’ theorem, which can be viewed as the analogue of theCLT in excess statistics, is the following.
Theorem 2 A necessary and sufficient condition forF to belong to the Fréchet domain is

lim
u→Aq

‖F̄Xu
(x) − F̄q,β(u)(x)‖∞ = 0

for some functionβ (u) and with

q =
2γ + 1

γ + 1
. (13)

This result means, roughly speaking, that ifF is in the domain of attraction of the Fréchet distribution, i.e. has heavy
tails with tail indexγ, then its FoE transform converges (in the infinite norm sense) to a limit distribution which
is nothing but aq-exponential withq given by (13). To the accumulation of random variates in the classical CLT,
with n → ∞, corresponds here an increase in the thresholdu in the FoE. In the classical CLT, we know that the
limit distribution (the Gaussian) once reached remains stable by convolution of Gaussian pdf (addition of Gaussian
variables). Accordingly, theorem1 shows thatq-exponentials are stable by the FoE operation. This means that once
the FoE operations have converged to the limit distribution, then it remains stable by further applications of FoE. In
other words,q-exponentials are a fixed point of the FoE operation.

3.2. Generalized Pareto Distributions

In the original Pickands’ formulation [11] (see also the similar work by Balkema and De Haan [12]), the name coined
for the limit distribution of excesses is Generalized Pareto Distribution (GPD). Its survival function is given by

F̄X(x) = P (X > x) =
(

1 +
γ

σ
x
)− 1

γ

+
for x ≥ 0, (14)

wherex+ = max (x, 0). Its pdf is

fX(x) =
1

σ

(

1 +
γ

σ
x
)− 1

γ
−1

+
for x ≥ 0, (15)

whereσ andγ are respectively the scale and shape parameters. A locationparameterµ can also be specified according
to

fX(x) =
1

σ

(

1 +
γ

σ
(x − µ)

)−
1

γ
−1

+
for x ≥ µ.

Obviously, forµ = 0, the GPD coincides with theq-exponential, with

γ = −
(

1 − q

2 − q

)

andσ =
1

β(2 − q)

The interesting point is that the GPD is employed outside thestatistical physics field for modeling heavy tailed distribu-
tions. Examples of applications are numerous, ranging fromreliability theory [13], traffic in networks [14], hydrology
[15,16], climatology [17,18], geophysics [19], materials science [20,21], radar imaging [22] or actuarial sciences [23].
These uses are related to the POT (Peaks over Threshold) method [15,8,24], and the underlying rationale is of course
the fact that the Balkema-de Haan-Pickands theorem assertsthat the distribution of excesses over a threshold often
follows approximately a GPD for large values of the threshold.
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3.3. Some examples

Let us now detail Pickands’ theorem for classical distributions that belong to the Fréchet domain, namely: the alpha-
stable, Student and Cauchy distributions.
– The alpha-stable case

In the case of an alpha-stable distribution with parameter0 < α < 1, we know from [25, Th.1 p. 448] that the
tail behavior of the survival distribution is

F̄Z (z) ∼ 1

Γ (1 − α)
z−α

so that the tail index isγ = 1
α

and

F̄Zu
(z) ∼

(

1 +
z

u

)−α

.

We note that the Cauchy distribution (α = 1) can not be deduced from this result.
– The Student-t case

A Student -t distribution withm = 2ν − 1 degrees of freedom writes

fX (x) = Aν

(

1 + x2
)−ν

, x ∈ R

with Aν = Γ(ν)

Γ( 1

2
)Γ(ν− 1

2
)
. Thus an equivalent of the Student survival distribution is

F̄Z (z) =
Aν

2ν − 1
z−2ν+1,

the tail index isγ = (2ν − 1)−1 and the excess distribution behaves as

F̄Zu
(z) ∼

(

1 +
z

u

)−2ν+1

.

– The Cauchy case
As a special case, the Cauchy distribution corresponds tom = 1 degrees of freedom and

F̄Zu
(z) ∼

(

1 +
z

u

)−1

. (16)

In nonextensive statistics, the Student-t distributions described above are well known under the name ofq−Gaussian
distributions (q > 1). What is shown here is that the excess distribution of aq−Gaussian distribution with nonexten-
sivity parameterq converges to aq−exponential distribution with nonextensivity parameter

q′ =
1 + q

2
.

We remark that in limit case whereq → 1, theq−Gaussian distribution converges to the classical Gaussiandistribution.
In this case we also obtain thatq′ → 1, which means that the excess distribution of a Gaussian converges to the
exponential distribution. Indeed, Pickands’ theorem extends to the Gumbel family of distributions characterized by
an exponential tail: the associated excess pdf is simply thedistribution given by (7), which is the limit case of the
q−exponential (1) for q → 1.

3.4. Numerical Illustration

As a numerical illustration, we present the Cauchy case

fX (x) =
2

π (1 + x2)
, x ≥ 0.

The survival function of the excess variableXu is

F̄Xu
(x) =

F̄X(x + u)

F̄X(u)
=

1 − 2
π

arctan (x + u)

1 − 2
π

arctan (u)
.

Using the fact thatarctan(t) ≈ π/2 − 1/t, for t ≫ 1, we have

F̄Xu
(x) ≈ 1

u + x
/
1

u
=

(

1 +
x

u

)−1

which is (16) again. It is the survival function of aq-exponential with entropic indexq = 3/2.
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Figure 4. Illustration of Pickands’ theorem in the Cauchy case. The figure presents the normalized excess pdfsgu(x), for several values of the
thresholdu. It shows that the normalized pdf quickly converges, asu increases, to the limit distribution1/(1 + x)2.
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Figure 5. Rate of convergence to the limit distribution. Therate of convergence is illustrated by the quadratic and infinite norms of the approximation
errorgu − g∞, as a function of the thresholdu.

The excess density can be explicited as

fXu
(x) (x) =

2

π

1
(

1 − 2
π

arctan(u)
)

(

1 + (x + u)
2
)

The convergence of the survival distribution to a Generalized Pareto Distribution withγ = 1 as in (16) is illustrated in
Fig. 4. In this figure, we have plotted the normalized pdfsx 7→ ufXu

(ux) = gu (x), corresponding to the normalized
random variableYu = Xu/u, for several values of the thresholdu. The figure shows the convergence to the GPD
limit g∞ (x) = 1

(1+x)2
. We note that Pickands’ theorem only ensures convergence ofthe distribution functions, but

the Cauchy case is smooth enough to observe a convergence of the normalized pdf as well. We remark on Fig.4 that
small values of parameteru (typically u = 3) ensure an already accurate approximation offX∞

. Rate of convergence
to the limit distribution are examined in Fig.5, where we report the quadratic and infinite norms of the approximation
error, as a function ofu:

‖gu − g∞‖∞ and‖gu − g∞‖2
2

Note that the rate of convergence of the GPD approximation inPickands’ theorem is rigorously quantified in [26].

4. A connection with Maximum q-entropy

Since there exists an entropic proof of the classical central limit theorem, it is appealing to look for relationships
between Pickands’ result and the maximum entropy principle. We show here that a distribution of the excesses over a
threshold converges, as this threshold goes to infinity, to amaximumq-entropy solution. Details of similar derivations
are given in [27].
Proposition3 gives a simplified form of aq-exponential distribution function as the solution of a maximum q-norm
problem. Then, we state in theorem4 that the1-norm,q-norm, andq-expectation of a suitably normalized version of
the excess variable (in the Fréchet domain) converges asymptotically to constant values. Finally, with an appropriate
choice ofq, this shows that the distribution of excesses is necessarily, asymptotically, theq-exponential solution of the
maximumq-norm problem (or equivalently of Tsallis’q-entropy maximization).
Proposition 3 With

√
2 > q > 1, consider the class of functions

F =

{

G : R
+ → R;

∫ +∞

0

zG (z) dz < ∞
}

.
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The function

G∗ (z) = (1 + z)
1

1−q
+1 (17)

is the unique solution of the following maximum norm problem:

max
G∈F

‖G‖q
q = max

G∈F

∫ +∞

0

G (z)
q
dz

such that
∫ +∞

0

zG (z)
q
dz =

(q − 1)
2

(q2 − q − 1)(q2 − 2)
and

∫ +∞

0

G (z)dz =
1 − q

2q − 3
.

(18)

Moreover, the corresponding maximum norm is

‖G∗‖q
q =

∫ +∞

0

G∗ (z)q dz =
1 − q

q2 − q − 1
.

Let us now consider a random variableX that belongs to the Fréchet domain with tail indexγ < 1
2 , and a normalized

versionYu = Xu/g (u) of its excesses, where functiong (u) ∼ u, asu → +∞. Then, we have the following results.
Theorem 4 Withγ < q < 1, asu → +∞, the following asymptotics hold

‖F̄Yu
‖q

q ∼ 1
q
γ
− 1

with asymptoticalq-expectation
∫ +∞

0

zF̄Yu
(z)

q
dz ∼ 1

(

1 − q
γ

) (

2 − q
γ

)

and asymptotical1−norm
∫ +∞

0

F̄Yu
(z) dz =

1
1
γ
− 1

.

As a consequence, with the choice of

q =
1 + 2γ

1 + γ
or γ =

1 − q

q − 2

we obtain that the excess distribution of any suitably normalized random variableY = X/g (u), whereX belongs to
the Fréchet domain andg (u) ∼ u, has asymptotically same1−norm,q−norm andq-expectation as theq-exponential
distribution (17). Since the maximum norm problem (18) has a unique solution, we deduce that the maximumq-norm
distributionG∗ and the distribution of excessesF coincide asymptotically asu → +∞. The physical significance
behind this result is that it enables to connect the distribution of the excesses over a threshold and a maximumq-
entropy construction, and thus add a new motivation to the use of Tsallis entropy:q-exponentials, as the Tsallis
entropy maximizers, can arise in many contexts in which the system at hand or the measurement device introduces
some threshold.
Moreover, functionG∗ (17) can now be identified as the survival function associated totheq-exponential density

g∗(x) ∝ (1 + x)
1

1−q ,

which is itself the solution of a maximumq-norm problem (5) similar to (18). Hence, the asymptotic density of
excesses (if it exists) is aq-exponential density. The addition of a scale parameterβ(q − 1) simply enables to adjust
the mean or variance of the distribution.

5. Parameters estimation

The statistical analysis of heavy-tailed data requires some caution [28]. A recent reference for this topic is [29].
An important issue for applications ofq-exponential-GPD and the assessment of their role in real situations is the
estimation of their parameters. As far as the tail exponentα = 1/γ is concerned, several methods exist. The corre-
sponding, and relevant problem, in the nonextensive framework is the estimation of parameterq.

The Hill estimator - The Hill estimator [30] is given by

γ̂ (k) =
1

k

k
∑

i=1

(

log X(n−i+1) − log X(n−k)

)

8



whereX(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics of the sample of sizen, andk is a smoothing parameter.
This estimator, which can be derived by several rationale (including maximum likelihood) is valid forγ > 0, i.e.q > 1.

Pickands’ estimator - Another, more general estimator, is the Pickands’ estimator, which is valid for allγ and given
by

γ̂ (k) =
1

log 2
log

X(n−k+1) − X(n−2k+1)

X(n−2k+1) − X(n−4k+1)

Both Hill and Pickands estimators are consistent and asymptotically normal [31,29].

Maximum Likelihood - The log-likelihood for a set ofn independent and identically distributed observationsXi,
distributed according to a GPD(γ, σ) given by (15), is:

log pn(X1, X2, . . . , Xn) = −n logσ −
(

1

γ
+ 1

) n
∑

i=1

log
(

1 +
γ

σ
Xi

)

.

Then, the Maximum Likelihood procedure gives two equationsfor the unknown parameters. These relations are im-
plicit but can be solved numerically. We obtain

σ =
1 + γ

n

n
∑

i=1

Xi

1 + γ
σ
Xi

and

γ =
1

n

n
∑

i=1

log
(

1 +
γ

σ
Xi

)

More details on Maximum Likelihood estimation of GPD parameters can be found in [32,33]. The Maximum Like-
lihood for q-exponentials has also be discussed recently in [34]. It shall be mentioned that the ML does not exist for
γ < −1, which corresponds to the caseq > 2, whereeq(x) is not normalizable.

Method of moments - When both the meanmX and variances2
X exist, that is forγ < 0.5 (q > 0.5), one can apply

amethod of moments(MOM) since there is a simple relationship between these moments and the parametersγ andσ,
namely

σ = 0.5mX

(

1 + (mX/sX)2
)

(19)
and

γ = 0.5
(

1 − (mX/sX)2
)

(20)
Then it suffices to use some estimates of the mean and standarddeviation in (19,20) to obtain a (rough) estimate of the
GPD parameters.

Conditional mean exceedance -Variations on the method of moments include the so-called “conditional mean ex-
ceedance method” which relies on the analysis of the plot of the mean of excesses overu, which is linear according
to

E[X − u|X > u] =
σ + γu

1 − γ
,

with slopeγ/(1 − γ) and interceptσ/(1 − γ). For several values of the thresholdu, and therefore estimates of the
mean of excesses, a least-squares procedure can be used in order to identify the parameters of the linear model.

Probability Weighted Moments - An alternative method to the MOM, known as “Probability Weighted Moments”
(PWM) was introduced by [9,35]. The paper [9] also provides and interesting comparison of ML, MOM and PWM
estimates. This procedure relies on the definition of a “weighted moment”:

mp = E
[

XF̄X(X)p
]

whereF̄X is the survival function of the GPD given in (14). Forγ < 1 (q > 0), we readily obtain that

mp =
σ

(p + 1)(p + 1 − γ)
.

Then, two weighted moments are sufficient to exhibit the values of the parametersγ andσ; e.g. withm1 andm0, one
has

γ =
4m1 − m0

2m1 − m0
and β =

2m1m0

m0 − 2m1

With more moments, estimated classically, one can look for aleast-squares solution. PWM is reported to compete
with Maximum Likelihood.
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Synthesis and Software - Another method is the Elemental Percentile Method, discussed in [36]. A synthesis of
estimation methods of GPD parameters can be found in [33, chapter 20, pages 614-620] and in [37].

It shall be mentioned that statistical softwares include estimation methods for GPD-q-exponentials parameters. An
example is the “Vector Generalized Additive Models” package [38,39]. Another example is the statistical toolbox of
the highly employed MatlabTMsoftware, which includes fitting tools for the GPD since its 5.1 version (2006).

6. Conclusion

In this paper, we have proposed a possible rationale for understanding the ubiquity ofq-exponential distributions in
nature. The point is that, given an heavy-tailed distributed system,q-exponentials can occur as soon as the measurement
device, or the system at hand, involves some threshold. Thisis the essence of Pickands’ result.
Furthermore, theq-exponentials are stable by thresholding. This shows thatq-exponentials are the limit distributions in
a Central Limit like theorem, where the underlying operation is the “Focus on Excesses” operation we have introduced.
We have also underlined thatq-exponentials can also be recognized as Generalized ParetoDistributions which are of
importance in many applications outside the statistical physics field.
We have drawn a connection between excess distributions andthe maximumq-entropy, by showing that a distribution
of excesses converges to a maximumq-entropy solution.
Finally, we have presented some procedures for the crucial problem of estimation ofq-exponential parameters. We
have also provided a large number of bibliographic entries on these different topics.
In our view, the rationale proposed here is complementary tothe classical maximumq-entropy approach, and to the
Superstatistics approach. We hope that it will prompt some new viewpoints in physical applications.
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