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Abstract

Q-exponential distributions play an important role in naleesive statistics. They appear as the canonical disimitgiti.e. the
maximum generalizeg-entropy distributions under mean constraint. Their @hee is also independently justified by their ap-
pearance in the theory of superstatistics introduced bk Bad Cohen. In this paper, we provide a third and independ¢ionale
for these distributions. We indicate thaexponentials are stable by a statistical normalizati@raton, and that Pickands’ extreme
values theorem plays the role of a CLT-like theorem in thistegt. This suggests thatexponentials can arise in many contexts
if the system at hand or the measurement device introducae gweshold. Moreover we give an asymptotic connectiowdsen
excess distributions and maximugrentropy. We also highlight the role of Generalized Pareigiributions in many applications
and present several methods for the practical estimatigreaponentials parameters.
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1. Introduction

Since the pioneering paper by Tsallis (1988), nonexterssatéstics have received an increasing interest in thisstat
cal physics community. As a consequence, the canonicaludigons that appear in this context have raised many stud-
ies: these distributions are the Gaussians under the assumption that the total energy is firedhe;—exponentials
[1] when the mean value of the system is fixed.
In several cases and a wide variety of fields, experimentsenigal results and analytical derivations fairly agree
with the formalism and the description lgyGaussians og-exponentials. This includes situations characterized by
long-range interactions, long-range memory or space-timiifractal structure. Applications include fully dewegled
turbulence, Levy anomalous diffusion, statistics of casnays, econometry, and many others. Furthermore, recent
studies have highlighted their excellent ability to appneate with high accuracy the exact distribution of complex
systems?].
Let us recall that;—exponential distributions are defined by
o (2) = —eq(~ ) ®
a3

with )

eg(—=Pa) =(1-=pBA—-q)a)™ ,x €0, A4 )
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Figure 1. Infinite supporg—exponential distributions witp = ﬁ andq = 1.01 (solid), 1.99 (dash dot) and .8 (dash)
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Figure 2. Finite suppor—exponential distributions wity = ﬁ andq = 0 (solid), —oo (dot), —1 (dash) and).7 (dashdot)

where4, is the right endpointd, = ﬁ if ¢ <land4, = +o0if 1 < ¢ < 2, and where3 is a positive scale

parameter related to the meanof f, s asm = [z f, 5 (z)dx = 6(3;—211)’ for ¢ < 3/2. The partition functiornZ, s
is

1
Zopg=———, 0<qg<2.
NI
We will also denote, 5(z) the so-called survival function associated to ghexponential distributionl):
— oo
Fun@)= [ fusle)dz =1~ Foola) @
= (1= B - )" (@)

whereFy, s(x) is the probability distribution function.
The g-exponential distributiong, s () are the solutions of the following maximum entropy problem:

00

00
Hl?XHq (f) with /0 xf? (x)dzz@ﬁﬂd/o fx)de =1 (5)
where e
qu%q</o fq(z)dxl) (6)

is the Tsallis entropy. We note that the same solution ishe@d Tsallis entropy is replaced by using Rényi entropy

1 oo
Sy = 10/ f4(z)dx,
q 1—qg0 (z)

since it is a simple monotone transform of the latter. In tivéticaseq = 1, Tsallis entropy coincides with Shannon
entropy and the maximum entropy solution recovers the aaabexponential distribution

frp(x) = Bexp (=pz), > 0. ()



The shapes of several-exponential distributions are shown in Hidinfinite support casey > 1 andA4, = +0o0)

and in Fig2 (finite support case; < 1 andA4, = m); in all cases, parametgrwas chosen a8 = Q—iq so that
fq(0) = 1. These figures indicate the high versatilitygeéxponentials for modeling probability distributions.

An important and alternate characterization of theseildigions has been provided by the superstatistics theory as
introduced in B] (see also4] for related results). In this approach; exponential distributions are recognized as scale

mixtures of exponential distributions: more precisely ihtegral representation

+oo
fugs @ = [ 0.0 iy @) 3

whereg,, (3) «x 3% ~le~Pisax? distribution withn = qT21 —2 degrees of freedom, allows to describg-sexponential
random variable as @=1) exponential variable with random scale paramgter x2. We note that this approach, in
a physical setting, recovers similar results by Maguirées@)95] and Harris (1968)§]. This superstatistical approach
has found many applications in fluctuation theory: for exkayip a recent paper, Briggs and Be@kfiave highlighted
the relevance of the superstatistical approach in the riraglef train delays.

Hence, in the one hand, there are two constructions, themmuai;-entropy and the superstatistics one, that exlibit
exponentials. In the other hand, many observations andiexpetal results assess the relevancg-ekponentials and
their ubiquity. We propose in what follows a third and altenstatistical justification of-exponential distributions,
based on the theory of excess values.

In section2, we introduce the “Focus on Excesses” operation, whichneileal as the fundamental operation in our
setting. Then, in sectio we present the Pickands-Balkema-de Haan result as a posatidnale for the ubiquity
of g-exponentials in nature. Furthermore, we underline a liaproperty of g-exponentials, and show that these re-
sults form a Central Limit Theorem for the “Focus on Excessggration. In sectior8.2, we draw attention to the
Generalized Pareto Distribution (GPD), which ig-axponential, and underline its applications outside tagstical
physics field. Some examples are worked out in subseéti@rin section4, we address the link between the max-
imum g-entropy and the distributions of excesses. We draw a pessimnection and show that the distribution of
excesses converges asymptotically to a maximeentropy distribution. Finally, we present and discussaction5
the estimation procedures for the parametergefponentials-GPD.

2. The “Focus on Excesses” operation

Let us consider a one-dimensional positive random variable) that describes the state of a physical system; we
denote ag'y its survival function

Fx (x) =1— Fx(z) = Pr{X >z}
with F'x () the distribution function. Let us also consider a positiaegmeter: > 0 and assume that we have access
only to the values oX that are larger than : for example, we may have access to the system through a nreeasoir
device that, for a bandwidth or quantification reason, da¢ssee” any valueX < w; or we may want to reject all
valuesX < u because we think that they are physically irrelevant. Sparameter, may be large, a wise decision is
to shift all these measured values by a faetoras a consequence, we will in fact record values of the exsedse
over the threshold, that is values of theonditionalrandom variableX,, defined as

Xy =X —ulX >u.

We denoteX,, = F,(X) the transform ofX into X,. By Bayes’ theorem, the survival function of these excesses
writes

_ F
FXU(m):Pr(X>m+u|m>u):M, x> 0. (8)
Fx (u)
If X possesses a probability densjty, thenX,, has itself the density
fx (x4 u)
== >0. 9

The transformation o into X, is illustrated in Fig3. The inset depicts the excess distribution, i.e. the naz@al
tail fx, (9) of the original distributionfx given in the main part of the figure. For obvious reasons, Wéacus on
Excess” (FOE) operation the transformation/of into Fx,, or equivalently offy into fx,. With a slight abuse of
notation we also denotg,, this transformation.

This approach is also known as the “Peaks over Thresholtihiqoue and widely used in fields like climatology and
hydrology. A rationale of this method can be found&h [

The g—exponential distributiorf, g(x) (1) verifies a remarkablstability property with respect to this transformation
as described in the following theorem (séB [
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Figure 3. lllustration of the FOE transformation
Theorem 1 For anyu < A,, the FOE ofg-exponential remaing-exponential and leaves the tail indgxinchanged:

Fu (fqﬁ(z)) = fq-ﬂ/(x)

Proof. By equation 9), we know that
Fuleq(=B) o< (1= B(1L = q)(@ +u) ™ o (1= #'(1 - )) ™7, (10)

=ey(—pz)for0 <z <A, —u (11)

where the last term, with’ = 5/(1 — 8(1 — q)u), is obtained by factoringl — 3(1 — ¢)u). m

This highlights the particular status of theexponential in the FoE transformation. We can also renmaak® =
in the special exponentigy = 1) case: the normalized tail of an exponential distributioexactly invariant by FoE
transformation.

3. The Limit theorem for g-exponentials
3.1. Pickands’ theorem

An important theorem in probability as well as in statistichysics is the Central Limit theorem; its extension to the
nonextensive context has been the subject of several rpapets 10]. According to this theorem, if a probability
density f belongs to the domain of attraction of the Gaussian didiohyand if X; are centered and independently
chosen distributed according fothen the distribution of

1 n
z \/ﬁ;X (12)

converges withn to the Gaussian distribution. Moreover, the Gaussianibigton appears as a fixed point in this
context since if allX; are independent and Gaussianig)(thenZ,, is exactlyGaussian for any value of.
Let us denote by, the transform

To: fr fan
wheref, is the distribution of7,,, i.e. the normalize@ —fold convolution of f. Consider now a variable submitted to
a serie oft successive thresholding operations, with thresholds. . u;: the resulting excess variable, sdy, is

Zu:Fuk OJ:uk,1 O...ful (X)

whereo is the composition of functions ar8,, as defined above. Of course, the excess variable can alsewed/i
as resulting of a single thresholding operation, witk: Zle Ui

Zy = Fu(X).

4



An analogy appears betwe&p and the FoE transfori#,, which associates the survival functions:
Fu:F— F,,

where the real threshold parametaplays the role of the integer parametefThus, an important question at this point
arises: does there exist a limit result, analogous to the @Lfhe context of the FOE transform? Let us first introduce
the Fréchet (or heavy-tailed) family of distributions, tthll play in extreme statistics the role of the Gaussian dom

of attraction in the CLT.

Definition 1 A distribution F' belongs the Fréchet domain if it is a heavy tail distributidhat is if its survival
distribution F writes

1

F(x)=2"71(x), V2 >0
wherel (z)is a slowly varying function:
lim Lxt)
e=toe T (z)
and parametery is called the tail index of".

Pickands’ theorem, which can be viewed as the analogue @ltfién excess statistics, is the following.
Theorem 2 A necessary and sufficient condition f6rto belong to the Fréchet domain is

=1Vt>0

Jim 1P, () = Pyt ()] =0

for some functio (v) and with
2y +1

L (13)
This result means, roughly speaking, thakifs in the domain of attraction of the Fréchet distributioa, has heavy
tails with tail index~, then its FOE transform converges (in the infinite norm setse limit distribution which
is nothing but ag-exponential withg given by (L3). To the accumulation of random variates in the classical,CL
with n — oo, corresponds here an increase in the threshdld the FoOE. In the classical CLT, we know that the
limit distribution (the Gaussian) once reached remainislstay convolution of Gaussian pdf (addition of Gaussian
variables). Accordingly, theorefhshows thay-exponentials are stable by the FOE operation. This meatotite
the FOE operations have converged to the limit distribytiban it remains stable by further applications of FoE. In
other wordsg-exponentials are a fixed point of the FOE operation.

3.2. Generalized Pareto Distributions

In the original Pickands’ formulatiorifl] (see also the similar work by Balkema and De Hab#)| the name coined
for the limit distribution of excesses is Generalized Rakistribution (GPD). Its survival function is given by

Fx(z)=P(X >x) = (1+1x)_; forz > 0, (14)
o+
wherez = max (z,0). Its pdfis
N —
fx(x) = 1 (1 + lx) T foraz >0, (15)
o o /4

whereo and-~y are respectively the scale and shape parameters. A logatifametey; can also be specified according
to

1 —1-1

fX(JC):;(1—1—%(36—,11))+7 forx > p.

Obviously, fory = 0, the GPD coincides with the-exponential, with

__(1-4 __
7(2—61) ando = 55—y

The interesting point is that the GPD is employed outsidsthtistical physics field for modeling heavy tailed digtrib
tions. Examples of applications are numerous, ranging fieiability theory [L3], traffic in networks [L4], hydrology
[15,1€], climatology [L7,18], geophysics19], materials science?D,21], radar imaging22] or actuarial sciencef].
These uses are related to the POT (Peaks over Thresholdaréf8,24], and the underlying rationale is of course
the fact that the Balkema-de Haan-Pickands theorem agbattthe distribution of excesses over a threshold often
follows approximately a GPD for large values of the thredhol
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3.3. Some examples

Let us now detail Pickands’ theorem for classical distiims that belong to the Fréchet domain, namely: the alpha-
stable, Student and Cauchy distributions.
— The alpha-stable case
In the case of an alpha-stable distribution with parameter o < 1, we know from p5, Th.1 p. 448] that the
tail behavior of the survival distribution is
_ 1

FZ (Z) ~ mz—a

so that the tail index is = < and
— A —
Fz, (Z)N(1+E) .
We note that the Cauchy distribution & 1) can not be deduced from this result.

— The Student-t case
A Student -t distribution withn = 2v — 1 degrees of freedom writes

fX(CC):Au(l—i—l’Q)fy, reR

with A4, = % Thus an equivalent of the Student survival distribution is

—1
2

_ A
FZ(Z):2V712 ? +1a

the tail index isy = (2v — 1)~ " and the excess distribution behaves as
_ z —2v+1
Fy (2) ~ (1 n —) :
u
— The Cauchy case
As a special case, the Cauchy distribution correspongisto 1 degrees of freedom and

Fr ()~ (1+ 2)_1 . (16)

In nonextensive statistics, the Student-t distributioesatdibed above are well known under the name-eGaussian
distributions ¢ > 1). What is shown here is that the excess distribution @f&aussian distribution with nonexten-
sivity parameter; converges to g—exponential distribution with nonextensivity parameter

r_1+ta
=
We remark that in limit case whege— 1, theq—Gaussian distribution converges to the classical Gaudgaibution.
In this case we also obtain thgt — 1, which means that the excess distribution of a Gaussianetgas to the
exponential distribution. Indeed, Pickands’ theorem meeto the Gumbel family of distributions characterized by
an exponential tail: the associated excess pdf is simpldigteibution given by 7), which is the limit case of the
g—exponential {) for ¢ — 1.

3.4. Numerical lllustration

As a numerical illustration, we present the Cauchy case

fx (@)= —2 >0

(14 a?)’
The survival function of the excess variablg is
_ _Fx(m+u)_1—%arctan(z+u)

Fx.(@) Fx(u) — 1- 2 arctan (u)

Using the fact thasrctan(t) =~ /2 — 1/t, fort > 1, we have

_ 1 1 x\ 1
FXu(x)qu’_w/E: (14’5)

which is (L6) again. It is the survival function of @exponential with entropic index= 3/2.

6
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Figure 4. lllustration of Pickands’ theorem in the Cauchgecalhe figure presents the normalized excess gglf$), for several values of the
thresholdu. It shows that the normalized pdf quickly convergesyascreases, to the limit distribution/ (1 + z)2.
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Figure 5. Rate of convergence to the limit distribution. Téte of convergence is illustrated by the quadratic anditefirorms of the approximation
errorg,, — goo, as a function of the threshotd

The excess density can be explicited as
2 1

o (1 — 2 arctan(u)) (1 +(z+ U)Q)

The convergence of the survival distribution to a GeneealiRareto Distribution with = 1 as in (L6) is illustrated in
Fig. 4. In this figure, we have plotted the normalized pdfs- ufx, (uz) = g, (z), corresponding to the normalized
random variabl&’, = X, /u, for several values of the threshald The figure shows the convergence to the GPD
limit goo () = ﬁ We note that Pickands’ theorem only ensures convergentteedfistribution functions, but
the Cauchy case is smooth enough to observe a convergereemdtmalized pdf as well. We remark on Figthat
small values of parameter(typically « = 3) ensure an already accurate approximatiofief . Rate of convergence
to the limit distribution are examined in Fig, where we report the quadratic and infinite norms of the agpration
error, as a function of:

ng - gooHOO and ||gu - goo“g
Note that the rate of convergence of the GPD approximatiétidkands’ theorem is rigorously quantified 26].

4. A connection with Maximum g-entropy

Since there exists an entropic proof of the classical ckehitné theorem, it is appealing to look for relationships
between Pickands’ result and the maximum entropy princifpke show here that a distribution of the excesses over a
threshold converges, as this threshold goes to infinity@aimumg-entropy solution. Details of similar derivations
are given in 7.

Proposition3 gives a simplified form of @-exponential distribution function as the solution of a mnaxm ¢-norm
problem. Then, we state in theorehthat thel-norm,¢-norm, and;-expectation of a suitably normalized version of
the excess variable (in the Fréchet domain) converges detioglly to constant values. Finally, with an appropriate
choice ofq, this shows that the distribution of excesses is necegsasymptotically, theg-exponential solution of the
maximumg-norm problem (or equivalently of Tsallig-~entropy maximization).

Proposition 3 With /2 > ¢ > 1, consider the class of functions

+oo
fz{G:R+—>R;/ zG(z)dz<oo}.
0

7



The function
G, (2) = (14277t (17)
is the unique solution of the following maximum norm problem

+oo
max |G| = rclllea%/o G (2)"dz

GerF
such that (18)
= (4-17 e 1-q
2G(2)dz = g and/ G(z)dz = .
[ eere= g e oe=55

Moreover, the corresponding maximum norm is

+oo . 1— q
G|l = G dz = ——.
Gl = [ e (et as =
Let us now consider a random variab¥ethat belongs to the Fréchet domain with tail index: 1, and a normalized
versionY,, = X, /g (u) of its excesses, where functigriu) ~ u, asu — +o00. Then, we have the following results.
Theorem 4 With~ < ¢ < 1, asu — +o0, the following asymptotics hold

_ 1
| Fy, I3 ~ 71

~

+oo 1
/ 2Fy, (2)%dz ~
0

with asymptoticay-expectation

and asymptotical —norm

As a consequence, with the choice of
1+ 2y 1—g¢q

T 1y T2
we obtain that the excess distribution of any suitably ndized random variabl®” = X /g (u), whereX belongs to
the Fréchet domain angd(u) ~ u, has asymptotically samie-norm,g—norm andg-expectation as the-exponential
distribution (L7). Since the maximum norm problerhd) has a unique solution, we deduce that the maximemorm
distribution G, and the distribution of excesséscoincide asymptotically a8 — +oo. The physical significance
behind this result is that it enables to connect the didtidbuof the excesses over a threshold and a maximum
entropy construction, and thus add a new motivation to thee afsTsallis entropyg-exponentials, as the Tsallis
entropy maximizers, can arise in many contexts in which tlstesn at hand or the measurement device introduces
some threshold.
Moreover, functiorG, (17) can now be identified as the survival function associatetlég-exponential density

ge(@) o (1 +2)77

which is itself the solution of a maximumnorm problem %) similar to (18). Hence, the asymptotic density of
excesses (if it exists) is @exponential density. The addition of a scale paraméter— 1) simply enables to adjust
the mean or variance of the distribution.

5. Parameters estimation

The statistical analysis of heavy-tailed data requiresescaution R8]. A recent reference for this topic i29).

An important issue for applications gfexponential-GPD and the assessment of their role in raat&ns is the
estimation of their parameters. As far as the tail exponent 1/~ is concerned, several methods exist. The corre-
sponding, and relevant problem, in the nonextensive fraomeis the estimation of parametgr

The Hill estimator - The Hill estimator B(] is given by

k

v (k) = Z (log X(n—it+1) — log X(—p))
=1

x| =

8



where X(;) < Xy < --- < X(,,) are the order statistics of the sample of sizeandk is a smoothing parameter.
This estimator, which can be derived by several rationaldding maximum likelihood) is valid foy > 0,i.e.q > 1.

Pickands’ estimator - Another, more general estimator, is the Pickands’ estimatoich is valid for ally and given
by

1 Xn— — X(no
4 (k) = log ~(n=k+1) (n—2k+1)
log2 7 Xokt1) — X(n—akt1)
Both Hill and Pickands estimators are consistent and asyimptly normal B1,29].

Maximum Likelihood - The log-likelihood for a set of. independent and identically distributed observatidns
distributed according to a GPB(c) given by (L5), is:

1 n
log pn(X1, X2, ..., Xn) = —nlogo — (— + 1> > log (1 + ZXi).
v =1 g

Then, the Maximum Likelihood procedure gives two equatimmghe unknown parameters. These relations are im-
plicit but can be solved numerically. We obtain

I+7y& X
7= n ;1—{-%)(1

and
1 & ¥
AN (1 —XQ

More details on Maximum Likelihood estimation Bf GPD paraeng can be found in3R,33]. The Maximum Like-
lihood for g-exponentials has also be discussed recentl@4h |t shall be mentioned that the ML does not exist for
~ < —1, which corresponds to the cage> 2, wheree,(x) is not normalizable.

Method of moments - When both the meam x and variance? exist, that is fory < 0.5 (¢ > 0.5), one can apply
amethod of momen{81OM) since there is a simple relationship between these emisrand the parameterando,
namely

oc=05mx (1+(mx/SX)2) (19)
and

7 =05(1—(mx/sx)?) (20)

Then it suffices to use some estimates of the mean and stagheldadion in (L9,20) to obtain a (rough) estimate of the
GPD parameters.

Conditional mean exceedance Variations on the method of moments include the so-callehédional mean ex-
ceedance method” which relies on the analysis of the pldi@itean of excesses owerwhich is linear according
to S

1—+v"

with slope~y/(1 — «) and intercept/(1 — ). For several values of the threshaldand therefore estimates of the
mean of excesses, a least-squares procedure can be usddritoddentify the parameters of the linear model.

EX —ulX >u]=

Probability Weighted Moments - An alternative method to the MOM, known as “Probability Weaigd Moments”
(PWM) was introduced by9,35]. The paper 9] also provides and interesting comparison of ML, MOM and PWM
estimates. This procedure relies on the definition of a “iwe&id moment”:

my = B [X Fy (X)7]

whereFy is the survival function of the GPD given in4). Fory < 1 (¢ > 0), we readily obtain that
g

(p+)p+1-7)

Then, two weighted moments are sufficient to exhibit the eslof the parametersando; e.g. withm; andmg, one
has

mpz

4 —
V:7m1 7o and f = ————
2m1 — myo mo — 2m1
With more moments, estimated classically, one can look flzaat-squares solution. PWM is reported to compete

with Maximum Likelihood.

2m1m0



Synthesis and Software - Another method is the Elemental Percentile Method, disligs [36]. A synthesis of
estimation methods of GPD parameters can be foun83ndhapter 20, pages 614-620] and &7].

It shall be mentioned that statistical softwares includéregion methods for GP@Q-exponentials parameters. An
example is the “Vector Generalized Additive Models” pack#®g,39]. Another example is the statistical toolbox of
the highly employed Matlay' software, which includes fitting tools for the GPD since it %ersion (2006).

6. Conclusion

In this paper, we have proposed a possible rationale forrstateling the ubiquity of-exponential distributions in
nature. The pointis that, given an heavy-tailed distridsigstemg-exponentials can occur as soon as the measurement
device, or the system at hand, involves some threshold.iJ thie essence of Pickands’ result.

Furthermore, the-exponentials are stable by thresholding. This showstleaiponentials are the limit distributions in

a Central Limit like theorem, where the underlying openatfthe “Focus on Excesses” operation we have introduced.
We have also underlined thgtexponentials can also be recognized as Generalized Raisttidbutions which are of
importance in many applications outside the statisticgbs field.

We have drawn a connection between excess distributionthandaximumy-entropy, by showing that a distribution

of excesses converges to a maximgiantropy solution.

Finally, we have presented some procedures for the crumélgm of estimation of-exponential parameters. We
have also provided a large number of bibliographic entriethese different topics.

In our view, the rationale proposed here is complementatlgegaclassical maximung-entropy approach, and to the
Superstatistics approach. We hope that it will prompt soave viewpoints in physical applications.
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