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ABSTRACT

Dual-tree wavelet transforms have recently gained popular-

ity [1] since they provide low-redundancy directional anal-

yses of images. In our recent work, dyadic real dual-tree

decompositions have been extended to the M -band case, so

adding much flexibility to this analysis tool. In this work,

we propose to further extend this framework on two fronts by

considering (i) biorthogonal and (ii) complex M -band dual-

tree decompositions. Denoising results are finally provided to

demonstrate the validity of the proposed design rules.

Index Terms— Wavelet transforms, Hilbert transforms,

Image analysis, Image processing, Gaussian noise.

1. INTRODUCTION

Natural images often require a transformed domain process-

ing in order to improve their quality (denoising or restora-

tion tasks) or to be efficiently compressed. Powerful tools al-

lowing improved representations of images have been devel-

oped in the last ten years. They aim at capturing directional

features and often introduce some redundant analysis. They

can be classified into different categories: steerable filters, “-

lets” transforms including bandelets [2], curvelets [3], con-

tourlets [4], ... Meanwhile, the dual-tree wavelet decomposi-

tion has been introduced by N. Kingsbury [5]. This transform

is based on a combination of classical wavelet decomposi-

tions. It has been further investigated by I. Selesnick [6]. The

standard real dual-tree decomposition is 2 times redundant

and is nearly shift-invariant. In the 2-band case, in two di-

mensions, a complex version of this decomposition has been

obtained (then, the redundancy becomes equal to 4) and, more

recently, it has also been extended to biorthogonal represen-

tations [7]. The dual-tree transform is interesting for several

reasons: good directional analysis, low redundancy, improved

shift-invariance property, simplicity of implementation, re-

duced computational cost,... However, a limiting factor lies

in its dyadic structure which introduces some inherent de-

sign constraints. For example, it is well-known that is im-

possible to obtain real, orthogonal, symmetric and compactly

supported dyadic wavelets, except for the Haar one. In one

of our recent works [8], we have extended the real dual-tree

transform to the M -band case, which allowed us to gain more

freedom in the choice of the filters while providing a more

accurate frequency analysis.

In this work, we propose to extend the real 2D dual-tree

M -band wavelet transform to the biorthogonal complex case,

for an arbitrary integer value of the decimation factor M . The

paper is organized as follow: in Section 2 we show how to

design Hilbert pairs of biorthogonal wavelets. Then, Section

3 is devoted to the complex decomposition. Finally, denoising

applications are reported in Section 4.

Throughout the paper, the following notations will be used:

let M be an integer greater than or equal to 2,

NM = {0, . . . , M − 1} and N
⋆
M = {1, . . . , M − 1}. Besides,

â denotes the Fourier transform of a function a, ⌈u⌉ denotes

the upper integer part of a real u, (δm)m∈Z is the Kronecker

sequence (equal to 1 if m = 0 and 0 otherwise).

2. BIORTHOGONAL HILBERT PAIRS OF

WAVELETS

We address in this section the problem of constructing a Hilbert

pair of M -band biorthogonal wavelets in the one dimensional

case. A biorthogonal wavelet basis corresponding to a mul-

tiresolution analysis of L2(R) is associated to an analysis and

a synthesis filter bank and the problem is then equivalent to

the design of 2M filters.

2.1. Problem statement

Let us start from an M -band biorthogonal wavelet decompo-

sition of L2(R). This decomposition is based on the joint use

of two sets of basis functions: (ψm)0≤m<M and (ψ̃m)0≤m<M

which satisfy the following scaling equations expressed in the

frequency domain:

∀m ∈ NM ,
√

Mψ̂m(Mω) = Hm(ω)ψ̂0(ω),
√

M
̂̃
ψm(Mω) = H̃m(ω)

̂̃
ψ0(ω). (1)

Furthermore, the associated M -band filter banks with fre-

quency responses (Hm)0≤m<M and (H̃m)0≤m<M satisfy per-



fect reconstruction properties:

∀(m,m′) ∈ N
2
M ,

M−1∑

p=0

H̃m(ω + p
2π

M
)H∗

m′(ω + p
2π

M
) = Mδm−m′ . (2)

Similarly to the orthogonal case [8], we want to construct

Hilbert pairs of wavelets by defining functions (ψH
m)0≤m<M

and

(ψ̃H
m)0≤m<M such that

∀m ∈ N
⋆
M , ψ̂H

m(ω) = −ı sign(ω)ψ̂m(ω)

̂̃
ψ

H

m(ω) = −ı sign(ω)
̂̃
ψm(ω), (3)

where sign designates the signum function. The filters with

frequency responses (Gm)0≤m<M and (G̃m)0≤m<M associ-

ated with these dual basis functions must also satisfy perfect

reconstruction conditions:

∀(m,m′) ∈ N
2
M ,

M−1∑

p=0

G̃m(ω + p
2π

M
)G∗

m′(ω + p
2π

M
) = Mδm−m′ . (4)

We now study how to design such filters.

2.2. Dual filter construction

The Hilbert conditions (3) imply that:

∀m ∈ N
⋆
M , |ψ̂H

m(ω)| = |ψ̂m(ω)| and |̂̃ψ
H

m(ω)| = |̂̃ψm(ω)|.

In addition, by imposing that |ψ̂H
0 (ω)| = |ψ̂0(ω)|, and |̂̃ψ

H

0 (ω)|
= |̂̃ψ0(ω)|, the scaling equations (1) and their counterparts for

the dual wavelets lead to

∀m ∈ NM , Gm(ω) = e−ıθm(ω)Hm(ω)

G̃m(ω) = e−ıθ̃m(ω)H̃m(ω), (5)

where θm and θ̃m are real-valued 2π-periodic phase func-

tions. Assuming that (2) is satisfied, one can easily check

that the perfect reconstruction conditions (4) for the dual filter

bank are fulfilled if for all (m,m′) ∈ N
2
M , θ̃m = θm (mod 2π)

and θm′ − θ̃m = θm′ − θm is 2π/M -periodic.

Conditions to be satisfied by θm and θ̃m are thus similar to

those obtained in the orthogonal case [8]. It can be deduced

that

∀p ∈
{

0, . . . ,
⌈M

2

⌉
− 1

}
,∀ω ∈

[
p
2π

M
, (p + 1)

2π

M

[
,

θ̃0(ω) = θ0(ω) = (d +
1

2
)(M − 1)ω − pπ,

and

∀m ∈ {1, . . . ,M − 1},

θ̃m(ω) = θm(ω) =





π

2
−

(
d +

1

2

)
ω if ω ∈]0, 2π[,

0 if ω = 0,

where d ∈ Z.

3. COMPLEX 2D DUAL-TREE WAVELET

TRANSFORM

Our objective in this section is to extend the complex dual tree

transform to the M -band case. We will see that an increased

number of directions can be selected and show how to imple-

ment the associated decomposition. Finally, the problem of

finding an optimized reconstruction will be discussed.

3.1. Direction selection

For all m ∈ N
⋆
M and ǫ ∈ {−1, 1}, let us define the following

complex-valued functions from the wavelets (ψm)m∈N⋆

M
used

for the analysis stage:

∀x ∈ R, ψǫ
m(x) = ψm(x) + ıǫψH

m(x).

If ǫ = 1 (resp. ǫ = −1), this corresponds to an analytic

(resp. anti-analytic) wavelet. By considering all the possible

combinations of tensor products of such wavelets, we obtain:

for all (m1,m2) ∈ N
⋆2
M , (ǫ1, ǫ2) ∈ {−1, 1}2 and (x1, x2) ∈

R
2,

ψǫ1
m1

(x1)ψ
ǫ2
m2

(x2) =

ψm1
(x1)ψm2

(x2) − ǫ1ǫ2ψ
H
m1

(x1)ψ
H
m2

(x2)

+ ı
(
ǫ1ψ

H
m1

(x1)ψm2
(x2) + ǫ2ψm1

(x1)ψ
H
m2

(x2)
)

(6)

which reads in the Fourier domain:

ψ̂ǫ1
m1

(ω1)ψ̂
ǫ2
m2

(ω2) =

(1 + ǫ1 sign(ω1))(1 + ǫ2 sign(ω2))ψ̂m1
(ω1)ψ̂m2

(ω2).

The latter expression shows that, depending on the choice of

ǫ1 and ǫ2, it is possible to select each quadrant of the fre-

quency plane as represented in Fig. 1.

Let us consider the real part (RP) and the imaginary part

(IP) of the expression in (6) and consider once again all pos-

sible situations. This leads to the two following cases:

➢ ǫ1 = ǫ2 = 1 or ǫ1 = ǫ2 = −1 :

RP: ψm1
(x1)ψm2

(x2) − ψH
m1

(x1)ψ
H
m2

(x2)

IP: sign(ǫ1)
(
ψH

m1
(x1)ψm2

(x2) + ψH
m2

(x2)ψm1
(x1)

)
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Fig. 1. Direction selection in the 2D frequency plane for M =
4, j = 1 and (m1, m2) = (2, 1). The four crosshatched areas

are separated using tensor products of analytic/anti-analytic

wavelets.

➢ ǫ1 = −ǫ2 = 1 or ǫ1 = −ǫ2 = −1:

RP: ψm1
(x1)ψm2

(x2) + ψH
m1

(x2)ψ
H
m2

(x2)

IP: sign(ǫ1)(ψ
H
m1

(x1)ψm2
(x2) − ψH

m2
(x2)ψm1

(x1)).

In other words, in order to implement the decomposition onto

(ψǫ1
m1

(x1)ψ
ǫ2
m2

(x2))(m1,m2)∈N⋆2

M

, we need four separable 2D

wavelet analyses (see the corresponding filter bank structures

in Fig. 2). The two upper analyses, which are also present in

the real parts, are implemented in the real biorthogonal case.

These four M -band wavelet decompositions generate co-

efficients denoted by c••j,m[k], cHH
j,m[k], cH•

j,m[k] and c•Hj,m[k]
where j ∈ Z denotes the resolution level, m =
(m1,m2) ∈ N

2
M is the frequency band index and k ∈ Z

2 is

the spatial position. Finally, to obtain the desired directional

analysis, we compute the inner product of the image to be

processed with the RP and IP terms of the two-dimensional

wavelets as previously expressed. This is equivalent to per-

form the following linear combinations of the subbands: for

all m ∈ N
⋆2
M ,

d••j,m[k] =
1√
2

(c••j,m[k] + cHH
j,m[k])

dHH
j,m[k] =

1√
2

(c••j,m[k] − cHH
j,m[k])

dH•
j,m[k] =

1√
2

(cH•
j,m[k] + c•Hj,m[k])

d•Hj,m[k] =
1√
2

(cH•
j,m[k] − c•Hj,m[k]).

3.2. Prefiltering stage

In a digital implementation of the dual-tree decomposition,

prefilters must be added to make the transition from the ana-

log formalism to discrete processing [8].
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Fig. 2. Two-dimensional analysis/synthesis filter banks cor-

responding to a biorthogonal complex wavelet transform.

Assume that the digital image (rk1,k2
)(k1,k2) to be analyzed

is related to its analog version r(x1, x2) by the relation:

r(x1, x2) =
∑

(k1,k2)

rk1,k2
χ(x1 − k1, x2 − k2)

where χ is an interpolation function in L2(R2). To perform

the first separable wavelet decomposition, we need to deter-

mine the approximation coefficients: c0,(0,0)[k1, k2] =
〈r(x1, x2), ψ0(x1−k1)ψ0(x2−k2)〉. Similar approximations

have to be computed for the three remaining trees. It is easy

to show that these operations can be performed by applying

four digital prefilters with frequency responses:

F1(ω1, ω2) =

∞∑

p1=−∞

∞∑

p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

ψ̂∗
0(ω1 + 2p1π)ψ̂∗

0(ω2 + 2p2π)

F2(ω1, ω2) =

∞∑

p1=−∞

∞∑

p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

(ψ̂H
0 (ω1 + 2p1π))∗(ψ̂H

0 (ω2 + 2p2π))∗

F3(ω1, ω2) =
∞∑

p1=−∞

∞∑

p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

(ψ̂H
0 (ω1 + 2p1π))∗ψ̂∗

0(ω2 + 2p2π)

F4(ω1, ω2) =
∞∑

p1=−∞

∞∑

p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

ψ̂∗
0(ω1 + 2p1π)(ψ̂H

0 (ω2 + 2p2π))∗.



3.3. Reconstruction

As already mentioned, the complex dual-tree transform has a

redundancy of a factor 4. As a consequence, the reconstruc-

tion is not unique and we have to pay attention to the choice

of the synthesis scheme.

Let r ∈ ℓ2(Z2) be the vector of image values and c••, cHH,

cH•, c•H denote the coefficient vectors generated by the com-

plex dual-tree transform. The linear combination of the sub-

bands is not taken into account as it reduces to a basic isome-

try. The global decomposition operator can be written as

Dc : r 7→




c••

cHH

cH•

c•H


 =




D1r

D2r

D3r

D4r


 (7)

where, for all i ∈ {1, . . . , 4}, Di = UiFi where Fi repre-

sents the i-th prefiltering operation and Ui is the i-th M -band

separable biorthogonal wavelet decomposition.

A robust reconstruction of r is then obtained as the solution

of the minimization problem

inf
r

4∑

i=1

‖ci − Dir‖2
Qi

(8)

where Qi is a positive self-adjoint operator and ‖.‖2
Qi

=
〈.,Qi.〉. The minimizer allows us to defines a generalized

pseudo-inverse of the operator Dc which is expressed as:

Dc
♯ =

( 4∑

i=1

F
†
iU

†
iQiUiFi

)−1

(F†
1U

†
1Q1, . . . ,F

†
4U

†
4Q4).

In practice, iterative approaches are generally necessary to

compute Dc
♯. Notice however that, by choosing Qi =

(UiU
†
i )

−1, the generalized pseudo-inverse takes a simple form,

which can be easily implemented by combining the standard

synthesis filter bank structures with filtering operations.

4. EXPERIMENTAL RESULTS

We apply these different decompositions to image denoising.

More precisely, we aim at restoring the 512 × 512 Barbara

image which is corrupted by an additive zero-mean white

Gaussian noise. Four orthogonal decompositions are tested:

the real dual-tree transform with dyadic (DTT2) and 4-band

(DTT4) filter banks; the complex dual-tree transform with

dyadic (DTT2cx) and 4-band (DTT4cx) filter banks. In this

case, we use symlets of length 8 and 4-band filters of length

22. Moreover, we consider 4 additional biorthogonal trans-

forms: the dual-tree transform with dyadic (DTTbi2) and 4-

band (DTTbi4) filter banks; the complex dual-tree transform

with dyadic (DTTbi2cx) and 4-band (DTTbi4cx) filter banks.

In this case, we use standard biorthogonal 5/3 and 9/7 wave-

lets and the associated 4-band basis functions corresponding

to an equal-subband wavelet packet analysis. Classical es-

timators are applied to the resulting coefficients: Visushrink

(Visu), SUREshrink (SURE) and the bivariate shrinkage (Biv)

[9]. Quantitative results are given in Table 1. Here, the initial

SNR is equal to 5.67dB.

Visu SURE Biv

DTT2 9.47 12.66 13.69

DTT4 10.70 13.23 14.31

DTT2cx 9.72 12.84 13.95

DTT4cx 11.06 13.41 14.32

DTTbi2 8.55 11.65 12.73

5/3 DTTbi4 9.39 12.14 13.45

DTTbi2cx 8.78 11.88 13.44

DTTbi4cx 9.71 12.35 13.82

DTTbi2 9.33 12.40 13.62

9/7 DTTbi4 10.55 12.96 14.25

DTTbi2cx 9.56 12.59 13.97

DTTbi4cx 10.90 13.13 14.34

Table 1. Denoising results in terms of SNR (in dB).

One can observe that, for all estimators, the 4-band struc-

tures always bring significant improvements (at least 0.2dB)

with respect to the dyadic ones. Moreover, the complex de-

compositions outperform the real ones; the differences are

however smaller with the bivariate shrinkage, for 4-band or-

thogonal filter banks. One can also see that the 9/7 biorthog-

onal decompositions provide results close to orthogonal ones.

Nevertheless, biorthogonal decompositions could be more use-

ful in image coding applications where they are known to be

very effective.
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