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Introduction

Syntactic lexicons are rich language resources that may contain useful data for parsers like subcategorisation frames, as they provide, for each lexical entry, information about its syntactic behaviors. Most of the time, these lexicons only deal with verbs. Few, like the Lexicon-Grammar [START_REF] Gross | Constructing Lexicon-grammars[END_REF], deal with other categories like nouns, adjectives or adverbs. Many works on symbolic parsing studied the use of a syntactic lexicon, in particular linguistic formalisms like Lexical-Functional Grammars [LFG] [START_REF] Kaplan | Grammar writer's workbench[END_REF][START_REF] Riezler | Parsing the Wall Street Journal using a lexical-functional grammar and discriminative estimation techniques[END_REF][START_REF] Sagot | Analyse automatique du franc ¸ais: lexiques, formalismes, analyseurs[END_REF] or Tree Adjoining Grammars [TAG] [START_REF] Joshi | An introduction to tree adjoining grammars[END_REF][START_REF] Sagot | Intégrer les tables du Lexique-Grammaire à un analyseur syntaxique robuste à grande échelle[END_REF][START_REF] De | Building factorized TAGs with meta-grammars[END_REF]. For probabilistic parsing, we can cite LFG [START_REF] Cahill | Parsing with Automatically Acquired, Wide-Coverage, Robust, Probabilistic LFG Approximations[END_REF][START_REF] O'donovan | Large-scale induction and evaluation of lexical resources from the Penn-II and Penn-III treebanks[END_REF]Schluter and Genabith, 2008), Head-Driven Phrase Structure Grammar [HPSG] [START_REF] Carroll | The automatic acquisition of verb subcategorisations and their impact on the performance of an HPSG parser[END_REF] and Probabilistic Context-Free Grammars [PCFG] [START_REF] Briscoe | Automatic extraction of subcategorization from corpora[END_REF][START_REF] Deoskar | Re-estimation of lexical parameters for treebank PCFGs[END_REF]. The latter has incorporated valence features to PCFGs and lexicons and observes slight improvements on performances. However, lexical resources that contain valence features were obtained automatically from a corpus. Furthermore, valence features are mainly used on verbs. In this paper, we will show how we can exploit information contained in the Lexicon-Grammar in order to improve probabilistic parsers. We will in particular focus on verbs and verbal nouns1 . In section 2, we describe the probabilistic parsers used in our experiments. Section 3 briefly introduces the Lexicon-Grammar. We detail information contained in this lexicon that can be used for parsing. Then, in section 4, we present methods to integrate this information into parsers and, in section 5, we describe our experiments and discuss the obtained results.

Statistical parsers

In our experiments, we used two types of parsers: a generative parser that generates the n-best parses (n most probable parses) for a sentence according to a PCFG; a reranker that reranks the n-best parses generated from the PCFG parser according to a discriminative probabilistic model.

Non-lexicalized PCFG parser

The PCFG parser, used into our experiments, is the Berkeley Parser (called BKY thereafter) [START_REF] Petrov | Learning accurate, compact, and interpretable tree annotation[END_REF] 2 . This parser is based on a nonlexicalized PCFG model. The main problem of non-lexicalized context-free grammars is that preterminal symbols encode too general information which weakly discriminates syntactic ambiguities. BKY tries to handle the problem by generating a grammar containing complex pre-terminals. It follows the principle of latent annotations introduced by [START_REF] Matsuzaki | Probabilistic cfg with latent annotations[END_REF]. It consists in creating iteratively several grammars, which have a tagset increasingly complex. For each iteration, a symbol of the grammar is splitted in several symbols according to the different syntactic behaviors of the symbol that occur in a treebank. Parameters of the latent grammar are estimated with an algorithm based on Expectation-Maximisation (EM). Within the framework of French, [START_REF] Seddah | Adaptation de parsers statistiques lexicalisés pour le franc ¸ais : Une évaluation complète sur corpus arborés[END_REF] have shown that BKY produces state-ofthe-art performances. They have also shown that several parsers, based on the lexicalized paradigm (phrasal nodes are annotated with their headword), achieved lower scores than BKY.

Reranking parser

We have also experimented the integration of a reranker as a post-process of BKY output. For a given sentence s, a reranker selects the best parse y among the set of candidates Y (s) according to a scoring function V θ :

y ⋆ = argmax y∈Y (s) V θ (y) (1) 
The set of candidates Y (s) is the n-best parses output of the baseline parser (BKY in our case), Y (s) = {y 1 , y 2 , ..., y n }. The n-best parses correspond to the n most probable parses according to the probability model of the parser. The scoring function V θ is defined by the dot product of a weight vector θ and a feature vector f :

V θ (y) = θ.f (y) = m j=1 θ j .f j (y) (2) 
where the feature vector f (y) is a vector of m functions f = (f 1 , f 2 , ..., f m ), and each feature function f j maps a parse y to a real number f j (y).

The first feature f 1 (y) is the probability of the parse given by the n-best parser (cf. [START_REF] Charniak | Coarse-to-fine nbest parsing and MaxEnt discriminative reranking[END_REF]). All remaining features are integer values, and each of them is the number of times that the feature occurs in parse y. Features belong to feature schemas which are abstract schemas from which specific features are instantiated. Feature schemas that we used during our experiments are specified in the table 1. For example, a feature f 10 (y), which is an instance of the feature schema Rule, counts the number of times that a nominal phrase in y is the head of a rule which has a determinant and a noun as children.

The weight vector θ can be estimated by a machine learning algorithm from a treebank corpus which contains the gold parse for each sentence. In our case, we will use the Maximum Entropy estimator, as in [START_REF] Charniak | Coarse-to-fine nbest parsing and MaxEnt discriminative reranking[END_REF]. [START_REF] Collins | Discriminative reranking for natural language parsing[END_REF], and others are from [START_REF] Charniak | Coarse-to-fine nbest parsing and MaxEnt discriminative reranking[END_REF] 3 Lexicon-Grammar

The Lexicon-Grammar [LG] is the richest source of syntactic and lexical information for French3 that focuses not only on verbs but also on verbal nouns, adjectives, adverbs and frozen (or fixed) sentences. Its development started in the 70's by Maurice Gross and his team [START_REF] Gross | Constructing Lexicon-grammars[END_REF]. It is a syntactic lexicon represented in the form of tables. Each table encodes lexical items of a particular category sharing several syntactic properties (e.g. subcategorization information). A lexical item is a lemmatized form that can be present in one or more tables depending on its meaning and its syntactic properties. Each table row corresponds to a lexical item and a column corresponds to a property (e.g. syntactic constructions, argument distribution, and so on). A cell encodes whether a lexical item accepts a given property. Figure 1 shows a sample of verb table 12. In this table, we can see that the verb chérir (to cherish) accepts a human subject (pointed out by a + in the property N0 =: Nhum) but this verb cannot be intransitive (pointed out by ain the property N0 V). Recently, these tables have been made con- sistent and explicit [START_REF] Tolone | Analyse syntaxique à l'aide des tables du Lexique-Grammaire du franc ¸ais[END_REF] in order to be exploitable for NLP. They also have been transformed in a XML-structured format [START_REF] Constant | A generic tool to generate a lexicon for NLP from Lexicon-Grammar tables[END_REF] 4 . Each lexical entry is associated with its table identifier, its possible arguments and its syntactic constructions. For the verbs, we manually constructed a hierarchy of the tables on several levels5 . Each level contains classes which group LG tables which may not share all their defining properties but have a relatively similar syntactic behavior. Many experiments about parsing, within the framework of French [START_REF] Crabbé | Expériences d'analyse syntaxique statistique du franc ¸ais[END_REF][START_REF] Seddah | Adaptation de parsers statistiques lexicalisés pour le franc ¸ais : Une évaluation complète sur corpus arborés[END_REF], have shown that refining the tagset of the training corpus improves performances of the parser. We will follow their works by integrating information from the Lexicon-Grammar to part-of-speech tags. In this article, we will only focus on tables of verbs and verbal nouns.

Table identifiers of the lexical entries are important hints about their syntactic behaviors. For example, the table 31R indicates that all verbs belonging to this table are intransitive. The first experiment, called AnnotTable, consists in augmenting the part-of-speech tag with the table identifier(s) associated with the noun or the verb. For example, the verb chérir (to cherish) belongs to the table 12. Therefore, the induced tag is #tag 12, where #tag is the POS tag associated with the verb. For an ambiguous verb like sanctionner (to punish), belonging to two tables 6 and 12, the induced tag is #tag 6 12.

Then, in the case of verbs, we have done variants of the previous experiment by taking the hierarchy of verb tables into account. This hierarchy provides a tagset with a size which varies according to the level in the hierarchy. Identifiers added to tags depend on the verb and the specific level in the hierarchy. For example, the verb sanctionner, belonging to tables 6 and 12, has a tag #tag QTD2 at level 1. In the case of ambiguous verbs, for a given level in the hierarchy, suffixes contain all classes the verb belongs to. This experiment will be called AnnotVerbs thereafter. In the case of verbal nouns, as such a hierarchy of tables does not exist, we experimented two other methods. 

Experimental setup

For our experiments, we used the richest treebank for French, the French Treebank, (later called FTB) [START_REF] Abeillé | Building a treebank for French[END_REF], containing 20,860 sentences and 540,648 words from the newspaper Le Monde (version of 2004). As this corpus is small, we used a cross-validation procedure for the evaluation. This method consists in splitting the corpus into p equal parts, then we compute training on p-1 parts and evaluations on the remaining part. We can iterate this process p times. This allows us to calculate an average score for a sample as large as the initial corpus. In our case, we set the parameter p to 10. We also used the part-of-speech tagset defined in [START_REF] Crabbé | Expériences d'analyse syntaxique statistique du franc ¸ais[END_REF] containing 28 different tags describing some complementary morphological and syntactic features (e.g. verb mood, clitics, ...)8 . Compound words have been merged in order to obtain a single token.

In the following experiments, we will test the impact of modifying the tagset of the training corpus, namely the addition of information from the Lexicon-Grammar described in the section 4. Results on evaluation parts are reported using the standard protocol called PARSEVAL [START_REF] Black | A procedure for quantitatively comparing the syntactic coverage of english grammars[END_REF] for sentences smaller than 40 words. The score f-measure (F1) takes into account the bracketing and categories of nodes (including punctu-ation nodes). For each experiment, we have reported the Baseline results (i.e. the results of BKY trained on the original treebank without annotations from the Lexicon-Grammar). We have also indicated the percentage of distinct annotated verbs and verbal nouns in the entire corpus for each annotation method9 .

Annotation of verb tags

We first conducted experiments on verbs described in section 4, namely AnnotTable and AnnotVerbs. For non-ambiguous verbs, we observe that the experiment AnnotTable highly deteriorates performances. This comes most probably from the grammar which is too fragmented because of the significant size of the part-of-speech tagset (as shown in table 5). However, the effect is reversed as soon as we use levels of the hierarchy of tables (levels 2 and 3 only). The use of the table hierarchy causes the increase of the number of verbs annotated as non-ambiguous and the decrease of the size of the tagset. Considering ambiguous verbs do not improve performances (results are shown only for levels 2 and 3 with maximal ambiguity of 2) because of the large size of the tagset (as for experiment AnnotTable). We can see on Figure 3 absolute gains according to verb annotation methods on evaluation parts.

We have displayed curves for methods AnnotTable and AnnotVerbsX, where X is the level in the hierarchy (without ambiguity). Higher we are in the hierarchy of tables, the more we obtain better performances. Levels 2 and 3 are globally above the baseline for most of their evaluation parts. Therefore, this would mean that table identifiers of verbs and the hierarchy are a real help for parsing and do not produce a random effect. On indicates the average error reduction rate associated with the corresponding average number of error corrected (inside brackets). The NP and PP phrases are those that have the highest number of errors corrected (the low reduction rate can be explained by the fact that these two phrases have the highest number of errors). Furthermore, they are linked to each other because, generally, a PP has a NP kernel. Therefore, if a NP is corrected, the corresponding PP is also corrected (if it is the only error).

Annotation of noun tags

For verbal nouns, we successively conducted several experiments AnnotTable, AnnotNouns and An-notIN, described in section 4. Results are given in table 7. As for verbs, we have reported the results for the experiment AnnotNouns with respect to the parameter Ambiguity (the maximum number of classes being associated with a noun is 3). The various noun annotation methods slightly increase performances of the parser. Unlike verbs, the method AnnotTable does not degrade performances because there are much less nouns in the corpus belonging to the syntactic lexicon (less than 9% as shown in table 8), hence the limited impact of the new tagset. The use of a simple hierarchy of the noun tables, through experiment AnnotNouns, achieves positive gains but, here, insignificant. Moreover, we obtain a slight improvement by annotating some ambiguous nouns. Surprisingly, the method which gives the best result, despite its simplicity, is AnnotIN. We can see in 

Combination of annotations

In Table 9: Results from cross-validation evaluation according to combination of annotations Combination of annotations does not increase the gains obtained with the method AnnotVerbs and we even observe a slight decrease.

Impact on a reranker

We also experimented the integration of a discriminative reranker (cf. section 2). We practically set to 10 the number of parses generated by BKY for each sentence (therefore, the 10 most probable parses). The following experiment consists in evaluating the impact of the modification of the tagset on a reranker. We called Reranker(Baseline) the experiment using the reranker with BKY trained on the original corpus (without annotations from the Lexicon-Grammar). Reranker(AnnotVerbs) is the experiment based on BKY that is trained on the corpus annotated by the best verb annotation method, An-notVerbs (level 3 of hierarchy without ambiguity First, we can see that Reranker(Baseline) improves performances with an absolute gain of +1,46 as compared with the baseline. These results are comparable to scores obtained for English [START_REF] Charniak | Coarse-to-fine nbest parsing and MaxEnt discriminative reranking[END_REF]. Then, we observe that the experiment Reranker(AnnotVerbs) increases the f-measure by +0,2 compared with Reranker(Baseline) (and to a lesser extent, the tagging accuracy by +0,07). The power of the discriminative model of the reranker implies that the gap of performances between the two experiments based on the reranker is less than the one obtained from experiments only based on BKY (+0,2 against +0,34). In addition, the oracle fmeasure is improved (+0,27), which means that analyses generated by BKY are slightly better. We can see on Figure 5 absolute gains given by the reranker on all evaluation parts according to the two methods described above. Globally, the method Reranker(AnnotVerbs) has a curve slightly above the one of Reranker(Baseline). Note that the first one outperforms the latter on 8 of 10 evaluation parts. All these observations confirm that the syntactic lexicon through the experiment An-notVerbs is able to improve performances on both 

Conclusions

The work described in this paper shows that by adding some information from a syntactic lexicon like the Lexicon-Grammar, we are able to improve performances of several probabilistic parsers. These performances are mainly obtained thanks to a hierarchy of verb tables that can limit ambiguity in terms of number of classes associated with a verb. This has the effect of increasing the coverage of verbs annotated according to the level of granularity used. However, once we include some ambiguity, performances drop. Results obtained on verbal nouns with a simple hierarchy of tables are insignificant but suggest a degree of progress with a more complex hierarchy as the one available for verbs. In the near future, we plan to reproduce these experiments by taking into account of word clustering methods introduced by [START_REF] Koo | Simple semi-supervised dependency parsing[END_REF][START_REF] Candito | Improving generative statistical parsing with semi-supervised word clustering[END_REF][START_REF] Candito | Parsing word clusters[END_REF]. Thanks to a semi-supervized algorithm, these methods can reduce the size of the lexicon of the grammar by grouping words according to their behaviors in a treebank. These methods could be complementary to annotation methods described in this paper. Moreover, we plan to exploit the LFG formalism in order to use a syntactic lexicon more easily than for PCFGs, as many works have reported performance improvements for these models [START_REF] Cahill | Parsing with Automatically Acquired, Wide-Coverage, Robust, Probabilistic LFG Approximations[END_REF][START_REF] Deoskar | Re-estimation of lexical parameters for treebank PCFGs[END_REF].
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 1 Figure 1: Sample of verb table 12

  Figure 2: Sample of the hierarchy of verb tables
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 3 Figure 3: Absolute gains (F1) of verb annotation methods on evaluation parts (baseline is the horizontal line at 0 on y axis)

Figure 4 :

 4 Figure 4: Absolute gains (F1) of noun annotation methods on evaluation parts (baseline is the horizontal line at 0 on y axis) Figure 4 absolute gains according to noun annotation methods on all evaluation parts. Unlike verbs, absolute gains are closer to the baseline. The best method AnnotIN is able to improve significantly 4 of 10 evaluation parts (+0,4 to +0,8).

Figure 5 :

 5 Figure 5: Absolute gains (F1) given by the reranker on evaluation parts (BKY(baseline) is the horizontal line at 0 on y axis)

Table 1 :

 1 Features used in this work. Those with a △ are from

	Feature schemas
	Rule	Edges
	Word	WordEdges
	Heavy	Heads
	HeadTree	WProj
	Bigrams △	NgramTree
	Trigrams △	

Table 2 :

 2 Characteristics of the hierarchy of verb tables

	The hierarchy of tables have the advantage of re-
	ducing the number of classes associated with each
	4 These	resources	are	freely	available	at
	http://infolingu.univ-mlv.fr>Language Resources> Lexi-
	con Grammar>Download				

  The first one, called AnnotIN, consists in adding a suffix IN to the tag of a noun if this noun occurs in the syntactic lexicon, and therefore if it is a verbal noun. The second method, called AnnotNouns, consists in creating a hierarchy of noun tables from the table of classes of verbal nouns. This hierarchy is made accordingly to the maximum number of arguments that a noun of a table can have according to defining properties specified for this table. As a consequence, the hierarchy has a single level. For example, nouns of the table N aa can have at most 2 arguments contrary to those of table N an04 which can have only one. The characteristics of each level are specified in table 3 7 (level 0 represents the set of tables of the Lexicon-Grammar). We can state that there are 8,531 distinct nominal forms for 12,351 resulting entries in tables of nouns.

	Level #classes AVG 1 AVG 2
	0	76	162	1.43
	1	3	3,413	1.2

Table 3 :

 3 Characteristics of the hierarchy of noun tables

  The experimental results are shown in the table 4. In the case of the method AnnotVerbs, we varied two parameters, Lvl (for Level) indicating the level of the hierarchy used and Amb. (for Ambiguity) indicating that a tag of a verb is changed only if this verb belongs to a number of classes less than or equal to the number specified by this parameter.

	Method	Lvl/Amb. F1/Tagging Absolute gains (F1)
	Baseline	-/-	85.05/97.43
	AnnotTable -/1	84.49/97.29
	AnnotVerbs 1/1	85.06/97.46
	AnnotVerbs 2/1	85.35/97.41
	AnnotVerbs 3/1	85.39/97.49
	AnnotVerbs 2/2	84.60/97.35
	AnnotVerbs 3/2	85.20/97.48
			-0.5 0.0	+0.5
	Table 4: Results from cross-validation evaluation
	according to verb annotation methods
	Method	Size of tagset % annotated verbs
	Baseline	28	-
	AnnotTable	228	18,6%
	AnnotVerbs 1/1 89	21,5%
	AnnotVerbs 2/1 76	22,5%
	AnnotVerbs 3/1 47	33,9%
	AnnotVerbs 2/2 246	44,7%
	AnnotVerbs 3/2 75	55,7%

Table 5 :

 5 Size of tagset and percentage of annotated verbs according to verb annotation methods

  table 6, we

	Phrase label Meaning	Error reduction
	Ssub	subordinate clause	5,3% (52)
	Sint	internal clause	3,6% (47)
	PP	prepositional phrase 3,1% (272)
	Srel	relative clause	2,2% (17)
	NP	nominal phrase	2,1% (347)
	VPinf	infinitive phrase	2,1% (34)

Table 6 :

 6 Top most error reductions according to phrase label

can see the top most error reductions according to phrase label, for the best verb annotation method (AnnotVerbs with level 3 of the hierarchy). For each phrase, the column called Error reduction

Table 8 :

 8 Size of tagset and percentage of annotated verbal nouns according to noun annotation methods

Table 10 :

 10 ). Results are shown in table 10. The column named Oracle F1/Tagging indicates oracle scores for fmeasure and tagging accuracy. An oracle score is the best global score that we could obtain whether we choose, for each input sentence, the best parse from the n-best parses. With this score, we can estimate the performance limit of a parser and the global quality of parses generated. AnnotVerbs) 86.71/97.49 91.99/98.08 Results from cross-validation evaluation for reranking process.

	Method	F1/Tagging Oracle F1/Tagging
	BKY(Baseline)	85.05/97.43 -
	BKY(AnnotVerbs)	85.39/97.49 -
	Reranker(Baseline)	86.51/97.42 91,72/98.03
	Reranker(	

Verbal nouns are nouns playing the role of a predicate in the sentence.

The Berkeley parser is freely available at http://code.google.com/p/berkeleyparser/downloads/list

We can also cite lexicons like LVF[START_REF] Dubois | Les verbes franc ¸ais[END_REF], Dicovalence[START_REF] Eynde | La valence: l'approche pronominale et son application au lexique verbal[END_REF] and Lefff[START_REF] Sagot | The lefff, a freely available, accurate and large-coverage lexicon for french[END_REF].

The hierarchy of verb tables is available at : http://igm.univ-mlv.fr/∼sigogne/arbre-tables.xlsx

We can also state that 3,121 verb forms(3,195 entries) are unambiguous. This means that all their entries occur in a single table.verb of the tables. We will see that this ambiguity reduction is crucial in our experiments.4 Exploitation of the Lexicon-Grammar data

The number of non-ambiguous nouns is 6126 for 6175 entries.

There are 6 distinct tags for verbs and 2 distinct tags for nouns.

The corpus contains 3058 distinct verbal forms and 17003 distinct nominal forms.