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Diffusive shock acceleration in supernova

remnants: on the validity of the Bohm limit

A. Shalchi

Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik,

Ruhr-Universität Bochum, Germany

Abstract

A lot of theoretical effort has been achieved in cosmic ray scattering theory during
the previous years. On the other hand several authors employed the so-called Bohm
limit to replace cosmic ray diffusion coefficients in the diffusive transport equation
for describing particle acceleration in supernove remnants and in other environ-
ments. In this article it is shown how the Bohm limit can be derived from cosmic
ray diffusion theory by assuming a strong turbulent magnetic field component. Also
a test-particle code is employed to explore the regimes for which the Bohm limit is
valid and for which not. These results are important to distinguish between the pa-
rameter regimes for which the Bohm limit is valid and for which traditional diffusion
theories have to be applied.

Key words: Interplanetary shocks, Supernova remnants, Cosmic rays
PACS: 96.50.Fm, 98.38.Mz, 98.70.Sa

1 Introduction

Shocks are common in diverse astrophysical environments on scales ranging
from cometary bow shocks and interplanetary shocks to supernova remnants
and AGN’s (active galactic nuclei). The mechanism which is responsible for the
observed power-law spectra of charged particles (cosmic rays) is diffusive shock
acceleration (Axford et al. 1977, Bell 1978a, Bell 1978b, Blandford & Ostriker
1978, Krymsky 1977). Observed cosmic rays having energies until about 109eV
can be explained by assuming acceleration in interplanetary shocks (Zank
et al. 2000, Li et al. 2003, Li et al. 2005, Zank et al. 2006) and particles
having energies until about 1015eV get their high energy due to acceleration
in supernova remnants (Völk et al. 1988, Lucek & Bell 2000, Berezhko &
Ellison 1999, Berezhko & Völk 2000, Berezhko & Völk 2007). More recently
it has been shown that such acceleration processes in AGN’s can also lead to
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particle energies above 1020eV (Honda & Honda 2004). Therefore, the detailed
understanding of diffusive shock acceleration is important for solving one of
the most important puzzles of astroparticle physics, namely the origin of high
energetic cosmic rays. Recently the Pierre Auger experiment found evidence
that ultra high energetic particles (∼ 1018eV ) originate from AGN’s (The
Pierre Auger Collaboration 2007) indicating that the process of diffusive shock
acceleration is one of the most important processes in nature.

One part of the puzzle which has to be solved in diffusive shock acceleration
is the interaction between charged particles and stochastic magnetic fields de-
scribed by the diffusion tensor κij . The theoretical determination of this tensor
is a fundamental problem of astrophysics and astroparticle physics since this
tensor controlls cosmic ray propagation in the solar system (see, e.g., Shalchi et
al. 2006), in the interstellar medium (see, e.g., Shalchi & Schlickeiser 2005) and
most probably also in other environments such as the solar corona (Fletcher
1997, Gkioulidou et al. 2007). However, the knowledge of the diffusion tensor
is also essential for understanding the acceleration of charged cosmic rays in
shock waves such as interplanetary shocks (see, e.g., Zank et al. 2006). Honda
& Honda (2004) have shown that the form of the diffusion coefficient controlls
the maximum energy which a particle can get due to shock acceleration in
AGN’s. Most probably the knowledge of the diffusion coefficient is also im-
portant for improving the understanding of particle acceleration at supernova
shock waves.

The transport equation which has to be solved for obtaining the cosmic ray
spectra emitted by supernova remnants has the form

∂f

∂t
=

∂

∂xi
κij

∂

∂xj
f − wi

∂

∂xi
f +

1

3

∂wi

∂xi
p

(

∂f

∂p

)

+
1

p2

∂

∂p

(

p3

τs
f

)

(1)

where the terms on the right hand side describe diffusion, convection due to the
mean gas speed wi, adiabatic expansion/compression, and synchrotron losses,
respectively. In Eq. (1) we have used the particle distribution function f , the
time t, the particle position ~x, and the particle momentum p. The solution
of this equation is determined by the diffusion coefficients κij , the mean gas
speed wi, and the (momentum dependent) synchrotron loss time τs = τs(p).

One part of the puzzle which has to be investigated theoretically is the inter-
action between charged particles and stochastic (or turbulent) magnetic fields
which are responsible for the acceleration prozess. These interaction processes
are described by the diffusion coefficients κij in the diffusion term in Eq. (1).
In most previous articles about diffusive shock acceleration (see, e.g., Duffy
1992, Berezhko & Völk 2007) the so-called Bohm limit was employed to re-
place the diffusion coefficient in the transport equation. In the Bohm limit
it is assumed that the spatial diffusion coefficients in all directions (isotropic
scattering is also part of the assumption) are given by (see, e.g., Berezhko &

2



 

 

 

ACCEPTED MANUSCRIPT 

 

Völk 2007, Section 2)

κBohm =
vpc

3 |q|B (2)

where we used the particle velocity v, the particle momentum p, the speed of
light c, the particle charge q, and the magnetic field strength B.

In Section 2 of the current article we present a detailed description of the cos-
mic ray diffusion theory. In Section 3 we assume a strong turbulent magnetic
field to derive analytically the Bohm limit as a special limit. In Section 4 we
employ a test particle code to test the different results which we found the-
oretically to explore their validity. Furthermore, we try to find out for which
parameter regimes Bohm diffusion is valid and for which classical diffusion
theory has to be applied. In Section 5 we summerize and discuss our findings.

2 Cosmic ray diffusion theory

2.1 General equations

In cosmic ray diffusion theory we investigate the interaction between charged
particles (cosmic rays) and a magnetic field configuration. The total magnetic

field is assumed to be the superposition of a mean field ~B0 and fluctuations
δ ~B(~x). The mean field is usually approximated by a constant field aligned

parallel to the z−axis ( ~B0 = B0~ez), the turbulent contribution has to be
replaced by models.

The starting point for the investigation of cosmic ray scattering is the Newton-
Lorentz equation whose component parallel to the mean magnetic field is

µ̇ =
Ω

v

(

vx
δBy

B0
− vy

δBx

B0

)

. (3)

Here we have used the pitch-angle cosine µ = v‖/v and we have neglected
electric fields since they are less important for spatial diffusion except for
low energetic particles. Furthermore, we used the particle velocity v and the
unperturbed 1 gyrofrequency

Ω =
| q | B0

γmc
(4)

1 Unperturbed here means that the turbulent field is assumed to be zero (δB = 0).
In this case the particle motion is a helical motion in the direction perpendicular
to the mean magnetic field B0 and a motion with constant velocity in the parallel
direction.
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with the Lorentzfactor γ = (1 − v2/c2)−1/2. First, we calculate the so-called
pitch-angle Fokker-Planck coefficient Dµµ which describes pitch-angle scat-
tering. This coefficient can be calculated by employing the well-established
Taylor-Green-Kubo-formulation (Taylor 1922, Green 1952, Kubo 1957)

Dµµ =
∫ ∞

0
dt 〈µ̇(t)µ̇∗(0)〉 (5)

where the operator < · · · > denots the ensemble average. The parallel spatial
diffusion coefficient κ‖ and the parallel mean free path λ‖ are related to the
pitch-angle Fokker-Planck coefficient Dµµ by (see, e.g., Earl 1974)

λ‖ =
3

v
κ‖ =

3v

8

∫ +1

−1
dµ

(1 − µ2)2

Dµµ
. (6)

In the following paragraphs we compute the parameter Dµµ by employing two
different approaches.

2.2 General form of the pitch-angle Fokker-Planck coefficient

By combining Eqs. (3) and (5) we can see that the ensemble average operator
acts on the particle velocity components vi as well as on the turbulent fields
δBi. First we investigate the particle velocity components. We can write the
velocities in the perpendicular direction as a superposition of a gyromotion
vGR

i and a (diffusive) guiding center motion vGC
i . The latter effect is described

by the equation of motion of the guiding centers which can easily be derived
from the field line equation (here we assume that perpendicular scattering is
predominantly caused by field line wandering), and thus,

dxi =
δBi

Bz
dz ⇒ vGC

i =
δBi

Bz
vz. (7)

By combining Eqs. (3) and (7), and by assuming the form vi = vGR
i + vGC

i , we
find

µ̇=
Ω

v

(

vGR
x

δBy

B0
+ vz

δBxδBy

B0Bz
− vGR

y

δBx

B0
− vz

δBxδBy

B0Bz

)

=
Ω

v

(

vGR
x

δBy

B0

− vGR
y

δBx

B0

)

. (8)

Note, Eq. (8) no longer depends on the parallel component of the
stochastic field δBz and is still valid for arbitrary turbulence. The
gyrorotation can be expressed by
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vGR
x (t)= v

√

1 − µ2 cos [Φ0 − sgn(q)Ωt]

vGR
y (t)= v

√

1 − µ2 sin [Φ0 − sgn(q)Ωt] (9)

with the initial gyrophase Φ0. The function sgn(q) used here is the signum
function which is used to allow the motion of positively as well
as negatively charged particles. To proceed we combine Eqs. (8)
and (9) and assume axisymmetric turbulence corresponding to <
δBx(~x(t))δBx(~x(0)) >= 〈δBy(~x(t))δBy(~x(0))〉 and < δBx(~x(t))δBy(~x(0)) >=
〈δBy(~x(t))δBx(~x(0))〉 = 0. By employing the relation cos(x) cos(y) +
sin(x) sin(y) = cos(x − y) we derive

Dµµ =
Ω2(1 − µ2)

B2
0

∫ ∞

0
dt cos (Ωt) 〈δBy(~x(t))δBy(~x(0))〉 . (10)

To proceed we rewrite the magnetic correlation function as

〈δBy(~x(t))δBy(~x(0))〉 ≈
∫

d3k Pyy(~k)
〈

ei~k·~x
〉

. (11)

Here we have employed a random phase approximation and we have assumed
homogenous turbulence. The last step in evaluating this expression is the

investigation of the characteristic function < ei~k·~x >. This function is defined
as

Γ(~k, t) :=
〈

ei~k·~x
〉

=
∫

d3x f(~x, t)ei~k·~x (12)

with the particle distribution function f(~x, t). Consequently the pitch-angle
Fokker-Planck coefficient becomes

Dµµ =
Ω2(1 − µ2)

2B2
0

∫

d3k Pyy(~k)
[

R−(~k) + R+(~k)
]

(13)

with the resonance function

R±(~k) =
∫ ∞

0
dt Γ(~k, t)e±iΩt. (14)

We can compute the resonance function and therewith the pitch-angle Fokker-
Planck coefficient by determining the characteristic function Γ(~k, t).

2.3 Example: weak turbulence and quasilinear approximation for slab turbu-
lence

To evaluate the formulas derived in the previous paragraph we have to specify
the particle distribution function f(~x, t). In this paragraph we discuss the
quasilinear approximation used previously. In the next section we employ a
new, strong turbulence approach.
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By considering a very weak turbulent magnetic field component (δBi ≪ B0)
we can assume unperturbed orbits for the charged particles corresponding to
the application of a first order perturbation theory. In the current article we
employ the so-called slab model 2 for magnetic turbulence which is defined as

Pij(~k) = g(k‖)
δ(k⊥)

k⊥

δij for i, j = x, y (15)

with the wave spectrum g(k‖). In the parallel direction, an unperturbed motion
corresponds to a motion with constant velocity, and, thus, z = vµt in Eq. (14).
With Eq. (15) for the slab model one obtains

Dµµ = π
Ω2(1 − µ2)

B2
0

∫ +∞

−∞
dk‖ g(k‖)

[

RQLT
−1 (k‖) + RQLT

+1 (k‖)
]

(16)

with the resonance function of quasilinear theory (QLT)

RQLT
± (k‖) =

∫ ∞

0
ei(vµk‖±Ω)t = πδ

(

vµk‖ ± Ω
)

. (17)

By employing the quasilinear resonance function and a symmetric wave spec-
trum (g(k‖) = g(−k‖)) we find for the pitch-angle Fokker-Planck coefficient

Dµµ = 2π2Ω2(1 − µ2)

B2
0v | µ | g

(

k‖ =
Ω

v | µ |

)

(18)

corresponding to a gyroresonant interaction. Within this approach there is
only interaction between charged particles and turbulence if µRL = k‖. This
approach, however, is only valid for weak turbulence. Even then, quasilin-
ear theory is questionable due to its inability for describing scattering at 90o

(corresponding to µ = 0). Therefore several theories have been developed for
improving the description of cosmic ray propagation. Some of these theories
were developed and presented in the seventies of the last century (see, e.g.,
Völk 1973, Jones et al. 1973, Owens 1974, Völk 1975, Goldstein 1976, Jones
et al. 1978) some of them in more recent years (see, e.g., Shalchi 2005a).
In the next paragraph we replace the quasilinear approximation by a strong
turbulence approach to derive the Bohm limit.

2 In the slab model it is assumed that the stochastic magnetic field depends only
on the coordinate parallel to the mean magnetic field δBi(~x) = δBi(z). Altough
this model is not very realistic, it is often applied due to mathematical tractability.
In section 3 is it shown that the Bohm limit can be derived without specifying
the turbulence geometry. Note, Eq. (13) and the calculations presented in
section 3 are valid for arbitrary turbulence. The only assumptions which
have been used are the assumption of axisymmetry and homogeneity. The
slab model is only applied to perform quasilinear calculations and the test-particle
simulations.
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3 Analytical derivation of the Bohm limit for strong turbulence

The correct equation for calculating the particle distribution function f(~x, t)

and the characteristic function Γ(~k, t) in the phase-space is the Fokker-Planck
equation which has (in the two-dimensional phase-space) the form

∂f

∂t
+ vµ

∂f

∂z
=

∂

∂µ

(

Dµµ
∂f

∂µ

)

. (19)

This formula can be multiplied by exp (ik‖z) and can then be integrated over
z to obtain

∂Γ

∂t
− ik‖vµΓ =

∂

∂µ

(

Dµµ
∂Γ

∂µ

)

. (20)

The solution of this equation, which yields the characteristic function, for
general Dµµ is difficult. A simple approximative approach is discussed in the
next paragraph.

3.1 The Fokker-Planck coefficient in the strong turbulence limit

In the previous paragraph we have argued that for strong turbulence the
solution of Eq. (20) is the correct replacement for the characteristic function
in Eq. (14). However, the general solution is very difficult to derive. Therefore,
we employ a further simplification by assuming that pitch-angel scattering
becomes isotropic for strong turbulence resulting in the form

Dµµ(µ) ≈ D · (1 − µ2) (21)

where we have used the pitch-angle Fokker-Planck coefficient D at 90o. In this
case we only have to solve Eq. (20) for µ = 0. In this limit Eq. (20) becomes

∂Γ

∂t
=

∂

∂µ

(

Dµµ
∂Γ

∂µ

)

. (22)

For the form of Eq. (21), Eq. (22) becomes

∂Γ

∂t
=D

∂

∂µ

[

(1 − µ2)
∂Γ

∂µ

]

=D

[

∂2Γ

∂µ2
− 2µ

∂Γ

∂µ

]

. (23)
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The differential equation can be solved as shown in Appendix A. As demon-
strated there we find for the characteristic function

Γ(t) = 1 +
∞
∑

l=1

(2l + 1)P 2
l (0)e−l(l+1)Dt (24)

where we have used Legendre Polynoms Pn(x). With this form the resonance
function for strong turbulence (ST) is

RST
± =

∫ ∞

0
dt e±iΩt

+
∞
∑

l=1

(2l + 1)P 2
l (0)

∫ ∞

0
dt e−[l(l+1)D±iΩ]t

= πδ(±Ω) +
∞
∑

l=1

P 2
l (0)

2l + 1

l(l + 1)D ± iΩ
. (25)

To obtain Eq. (25) we have combined Eq. (24) with Eq. (14). Since the pa-
rameter Ω cannot be zero, we have δ(±Ω) = 0 and, thus,

RST
± =

∞
∑

l=1

(2l + 1)P 2
l (0)

l(l + 1)D ∓ iΩ

[l(l + 1)D]2 + Ω2
. (26)

With this resonance function the Fokker-Planck coefficient at 90o becomes (see
Eq. (13))

D =
Ω2

2B2
0

∫

d3k Pyy(~k)

× 2
∞
∑

l=1

(2l + 1)P 2
l (0)

l(l + 1)D

[l(l + 1)D]2 + Ω2
. (27)

By employing
∫

d3k Pyy(~k) = δB2
y =

1

2
δB2 (28)

we can derive

D =
1

2
Ω2 δB2

B2
0

∞
∑

l=1

(2l + 1)P 2
l (0)

l(l + 1)D

[l(l + 1)D]2 + Ω2
. (29)

For strong turbulence (δB ≫ B0) we expect that the Fokker-Planck coefficient
D is much larger than the Gyrofrequency of the charged particle D ≫ Ω and,
thus, we can achieve a further simplification

D2 =
ξ2

4
Ω2 δB2

B2
0

(30)
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with the constant

ξ2 = 2
∞
∑

l=1

2l + 1

l(l + 1)
P 2

l (0). (31)

Finally we find for the pitch-angle Fokker-Planck coefficient

Dµµ(µ) =
ξ

2
Ω

δB

B0
(1 − µ2) (32)

in the strong turbulence limit. We have evaluated Eq. (31) numerically to find
that ξ2 = 0.77 and therefore ξ = 0.88.

3.2 The parallel mean free path

In this paragraph we compute the parallel mean free path by combining Eqs.
(6) and (32)

λ‖ =
3v

4ξΩ

B0

δB

∫ +1

−1
dµ (1 − µ2) =

v

ξΩ

B0

δB
. (33)

With ξ−1 = 1.14 ≈ 1 we find 3

λ‖ ≈
v

Ω

B0

δB
. (34)

With Eq. (4) one gets

κ‖ =
v

3
λ‖ =

pvc

3qδB
. (35)

By comparing with Eq. (2) we find for strong turbulence (B = B0 +δB ≈ δB)
indeed Bohm diffusion.

4 Different transport regimes: quasilinear versus Bohm diffusion

As demonstrated we can derive the Bohm limit by using methods of cosmic
ray diffusion theory. In this section we employ a test-particle code to test our
theoretical result and to explore the parameter regimes for which we indeed
find Bohm diffusion of charged cosmic rays. We also compare these results
with the traditional gyroresonance picture of cosmic ray transport obtained
by employing quasilinear theory. The quasilinear result for the parallel mean

3 The unperturbed Larmor radius of the charged particle is defined as RL = v/Ω
and Eq. (33) becomes λ‖ = RLB0/δB. In the case that the particle motion is still
a helical motion with the Larmor radius rL we have for the gyrofrequency ω =| q |
δB/(mcγ). In this case the Larmor radius rL can be related to the unperturbed
Larmor radius RL via rL = v/ω = vB0/(ΩδB) = RLB0/δB and, therefore, λ‖ = rL

for Bohm diffusion.
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Fig. 1. Running diffusion coefficient in the parallel (solid line) as well as in the
perpendicular direction (dotted line). Shown is the mean free path devided by the
bendover scale λ/lb as a function of the dimensionless time τ = vt/lb.

free path is derived in Appendix B for the same turbulence model used in the
test particle simulations.

In the following we employ a test particle code to explore the weak as well
as the strong turbulence regime to find out whether we can also find Bohm
diffusion in test-particle simulations. We performed the simulations for a Kol-
mogorov turbulence spectrum (ν = 5/6 in the formula shown in Appendix B).
We computed the ratio λ‖/lb as a function of the two independent variables
R = RL/lb and B = δB/B0 (lb is a characteristic length scale of the tur-
bulence, see Appendix B). In the test-particle simulations we have simulated
the mean magnetic field B0 as well as the stochastic fields δBi by employing
the slab model. Then we have solved the (exact) Newton-Lorentz equation for
1000 charged particles numerically. From the resulting particle trajectories it
is a simple matter to compute the mean square deviation 〈(∆x)2〉 and the
(running) diffusion coefficient κ(t) = 〈(∆x)2〉 /(2t) as a function of time in
the different directions with respect to the mean magnetic field. Detailes of
the code can be found in Qin et al. (2002a) and Qin et al. (2002b). In Fig.
1 we have shown running diffusion coefficients in the direction parallel and
perpendicular with respect to the mean magnetic field obtained by employing
computer simulations. From such figures it is a simple matter to obtained the
diffusion coefficients. In Figs. 2 and 3 the diffusion coefficients obtained by
employing a test-particle code are compared with quasilinear coefficients and
Bohm diffusion. In Fig. 2 we have shown the results for R = RL/lb = 1.0 for
different values of the ratio δB/B0. In Fig. 3 another case is shown namely
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Fig. 2. Numerical test particle simulations (dots) in comparison with quasilinear
results (dotted line) and the Bohm limit (solid line). The results shown here are for
a Kolmogorov (1941) spectrum and intermediate particle energy R = RL/lb = 1.0.
Clearly we find that quasilinear theory agrees very well with the simulations for
weak and intermediate turbulence (δB ≤ B0). The Bohm limit agrees with the
simulations for δB > B0.

R = 0.1 corresponding to lower particle energies. In this case quasilinear the-
ory does also not agree with the simulations for strong turbulent magnetic
fields. It seems that also in this case the simulations approach asymptotically
the Bohm-limit.

5 Summary and conclusion

In this article we have investigated charged particle scattering in the direc-
tion parallel to a mean magnetic field in the limit of strong turbulence. By
employing the method of the nonlinear scattering theory (see Section 2) we
derived the Bohm limit analytically (see Section 3). In previous articles about
diffusive shock acceleration (e.g., Berezhko & Völk 2007) this limit has been
used without being justified. In the current article it is shown that the Bohm
limit is indeed the correct limit for strong turbulence (δB ≫ B0) confirming
the previous assumption of bohmian diffusion in the strong turbulence regime.

We also have employed a test particle code to demonstrate that the theoretical
results of the current article are correct. It is shown that for weak turbulence
(δB ≪ B0) quasilinear theory is correct whereas for strong turbulence (δB ≫

11



 

 

 

ACCEPTED MANUSCRIPT 

 

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

δ B / B
0

λ || / 
l b

Fig. 3. Numerical test particle simulations (dots) in comparison with quasilinear
results (dotted line) and the Bohm limit (solid line). The results shown here are for
a Kolmogorov (1941) spectrum and low particle energy R = RL/lb = 0.1. Clearly
we find that quasilinear theory agrees very well with the simulations for weak and
intermediate turbulence (δB ≤ B0). The Bohm limit agrees with the simulations
for δB > B0.

B0) we obtain bohmian diffusion. We have also presented a parameter study
to find out for which parameter regimes the Bohm limit is valid and for which
not. These results could be very important for future studies of diffusive shock
acceleration since the choice of the diffusion coefficient (especially the rigidity
dependence) determines the acceleration rate as well as the scale of the shock
precursor in the upstream region of the shock (see, e.g., Duffy 1992). Honda
& Honda (2004) have shown that the form of the diffusion coefficient controlls
the maximal energy which a particle can get due to acceleration in AGN’s.
Zank et al. (2006) have shown the the form of the diffusion coefficient is
also important for describing particle acceleration at interplanetary shocks.
Most probably the knowledge of the diffusion coefficient is also important
for improving the understanding of particle acceleration at supernova shock
waves.
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A Characteristic function for strong turbulence

In Shalchi (2006) the solution of Eq. (23) is discussed. It is demonstrated
there that the solution can be expressed by Legendre polynoms (see Eq. (33)
in Shalchi 2006)

Γ(t) = 1 +
∞
∑

l=1

αlPl(µ)e−l(l+1)Dt. (A.1)

The parameters αl can be determined from the initial conditions (see Eq. (34)
in Shalchi 2006)

αl =
2l + 1

2

∫ +1

−1
dµ Γ(t = 0)Pl(µ). (A.2)

By using the definition of the characteristic function we have

Γ(~k, µ, t = 0) =
∫

d3x f(~x, µ, t = 0)ei~k·~x. (A.3)

By assuming sharp initial conditions we can use

f(~x, µ, t = 0) = 2δ3 (~x − ~x0) δ(µ − µ0) (A.4)

and, therefore,

Γ(~k, µ, t = 0) = 2δ(µ − µ0)e
i~k·~x0. (A.5)

For the initial conditions we can choose ~x0 = 0 due to the assumption of
homogenous turbulence. Furthermore, we are only interested in 90o scattering
and, thus, we can set µ0 = 0. As a consequence Eq. (A.5) becomes

Γ(~k, µ, t = 0) = 2δ(µ). (A.6)

Therefore, Eq. (A.2) becomes

αl = (2l + 1)
∫ +1

−1
dµ δ(µ)Pl(µ) = (2l + 1)Pl(0) (A.7)

and we find for the characteristic function at 90o

Γ(t) = 1 +
∞
∑

l=1

(2l + 1)P 2
l (0)e−l(l+1)Dt. (A.8)

In the main part of this article Eq. (A.8) is combined with Eq. (14) to de-
termine the resonance function and therewith the Fokker-Planck coefficient in
the strong turbulence limit.
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B Quasilinear transport coefficients

In the weak turbulence limit the form of the turbulence wave spectrum g(k‖) is
very important (see, e.g., Eq. (18)). In this part of the appendix we recapitulate
the quasilinear calculations presented in Shalchi et al. (2004). In the current
article we use the same spectrum as used in Shalchi (2005b), namely a kappa-
distribution of the form

g(k‖) =
C(ν)

2π
lbδB

2(1 + k2
‖l

2
b )

−ν . (B.1)

Here we have used the inertial range spectral index 2ν, the bendover length
scale lb denoting the frequency break between the inertial range and the energy
range of the spectrum, the energy of the magnetic fluctuations δB2, and the
normalization constant

C(ν) =
1

2
√

π

Γ(ν)

Γ(ν − 1/2)
. (B.2)

For this model spectrum and within quasilinear theory we find for the pitch-
angle Fokker-Planck coefficient (see, e.g., Appendix in Shalchi et al. 2004)

Dµµ =
πC(ν)v

lb

δB2

B2
0

(1 − µ2)µ2ν−1R2ν−2(1 + µ2R2)−ν , (B.3)

and for the parallel mean free path

λ‖ =
3lb

8πC(ν)

(

B0

δB

)2

R2−2ν
[

1

1 − ν
2F1

(

1 − ν,−ν, 2 − ν,−R2
)

− 1

2 − ν
2F1

(

2 − ν,−ν, 3 − ν,−R2
)

]

(B.4)

with the hypergeometric function 2F1(a, b; c; z). In Eqs. (B.3) and (B.4) we
used the dimensionless cosmic ray rigidity R = RL/lb. We expect that these
formulas are correct for weak turbulence and for cases for which the 90o scat-
tering problem does not occure. In the current article Eq. (B.4) is only used
for a comparison with test particle simulations and the Bohm limit.
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