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Spin squeezing in Bose-Einstein condensates: Limits imposed by decoherence and

non-zero temperature

Alice Sinatra, Jean-Christophe Dornstetter, and Yvan Castin
Laboratoire Kastler Brossel, Ecole Normale Supérieure, UPMC and CNRS, Paris, France

(Dated: September 9, 2011)

We consider dynamically generated spin squeezing in interacting bimodal condensates. We show
that particle losses and non-zero temperature effects in a multimode theory completely change
the scaling of the best squeezing for large atom numbers. We present the new scalings and we give
approximate analytical expressions for the squeezing in the thermodynamic limit. Besides reviewing
our recent theoretical results, we give here a simple physical picture of how decoherence acts to limit
the squeezing. We show in particular that under certain conditions the decoherence due to losses
and non-zero temperature acts as a simple dephasing.

PACS numbers: 03.75.Gg, 42.50.Dv, 03.75.Mn.
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I. INTRODUCTION

Spin squeezing is about creating quantum correlations
in a many-body system that can be useful for metrol-

ogy. An example is that of atomic clocks, where the
ultimate signal to noise ratio, once all the technical noise
has been eliminated, can be improved by manipulating
and controlling the system at the level of its quantum
fluctuations.

A. Spin squeezing and atomic clocks

The aim of an atomic clock is to measure precisely the
energy difference between two atomic states a and b that
are for example two hyperfine states of an alkali atom.
To explain how the clock works and to introduce spin
squeezing, we shall describe the ensemble of N atoms
used in the clock using the picture of a “collective spin”
that evolves on the so-called Bloch sphere. The collective
spin is simply the sum of the effective spins 1/2 that
describe the internal degrees of freedom of each atom. In
the second quantized formalism the three hermitian spin
components Sx, Sy and Sz are defined by:

Sx + iSy = a†b , Sz =
a†a− b†b

2
, (1)

where a† and b† are creation operators of particles in the
internal states a and b. The spin operators are dimension-
less and obey the commutation relations [Sx, Sy] = iSz

and cyclic permutations. For the moment we do not care
about the external degrees of freedom of the atoms. The
component Sz of the collective spin is half the popula-
tion difference between states a and b, while Sx and Sy

describe the coherence between these states. If the N
atoms are prepared in a coherent superposition of states
a and b with relative phase 2φ:

|φ〉N =
1√
N !

(

eiφa† + e−iφb†√
2

)N

|0〉 , (2)

where |0〉 is the vacuum, the collective spin lies on the
equatorial plane of the Bloch sphere, pointing at an an-
gle −2φ with respect to the x axis. For non-interacting
atoms, the further evolution is ruled by the Hamiltonian

H0 = ~ωabSz (3)
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FIG. 1: (Color online) Uncorrelated state and squeezed state
represented on the Bloch sphere.

and the spin precesses around the z axis with the Larmor
frequency ωab. The atomic clock measures the phase ac-
cumulated by the collective spin during a long precession
time τ . From this phase the frequency ωab is deduced.
Atomic clocks are nowadays so precise that they are sen-
sitive to the quantum noise of the collective spin. If for
example the spin is initially prepared along the x axis (in
an eigenstate of Sx), it has necessarily fluctuations in the
transverse components Sy and Sz such that:

〈Sx〉 =
N

2
, ∆Sy∆Sz ≥ 1

2
|〈Sx〉| . (4)

In particular fluctuations of Sy introduce a statistical
variance on the accumulated phase during the precession
time and on the measured frequency ωab. In the uncorre-
lated state (2) with φ = 0, root mean square fluctuations

of Sy and Sz are equal: ∆Sy = ∆Sz =
√
N/2. In a Ram-

sey measurement with interrogation time τ , these quan-
tum fluctuations introduce the root mean square fluctu-
ations of the measured frequency equal to [1]:

∆ωunc
ab =

1√
Nτ

. (5)

This noise coming from quantum fluctuations, intrinsic to
the initial state where each atom is in a superposition of
a and b, is known in clocks as the “partition noise”. The
idea of spin squeezing [2] is that the Heisenberg relation
(4) allows to reduce ∆Sy provided that ∆Sz is increased.
This idea is illustrated in Fig.1. To quantify the spin
squeezing we use the parameter ξ2 introduced in [1]:

ξ2 =
N∆S2

⊥,min

|〈S〉|2 (6)

where N is the total atom number, ∆S2
⊥,min is the min-

imal variance of the spin orthogonally to its mean value
〈S〉. The state is squeezed if and only if ξ2 < 1. As
explained in [1], ξ directly gives the reduction of the sta-
tistical fluctuations of the measured frequency ωab with
respect to uncorrelated atoms, for the same atom number
N and the same Ramsey time τ :

∆ωsq
ab = ξ∆ωunc

ab =
ξ√
Nτ

. (7)

The parameter ξ in Eq.(6) is in fact the properly nor-
malized ratio between the “noise” ∆S⊥,min and the “sig-
nal” |〈S〉|. In experiments ∆S⊥,min is directly measured
by measuring Sz after an appropriate state rotation and
|〈S〉| is separately deduced from the Ramsey fringes con-
trast.

B. State of the art

On one hand the most precise atomic clocks using mi-
crowave transitions in cold alkali atoms have already
reached the quantum partition noise limit with atom
numbers up to N = 6 × 105 [3]. On the other hand,
very recently a significant amount of spin squeezing, up
to −8 dB (ξ2 = 10−0.8) [4] was measured in dedicated,
proof-of-principle experiments. In [5] squeezing was cre-
ated in a large sample of N = 5 × 104 atoms with a
feedback mechanism in a resonant optical cavity, while
in [4] and in [6] the squeezing was created in smaller
samples, of order N = 103, using atomic interactions in
bimodal condensates. The ultimate limits of the different
paths to spin squeezing are still an open question. Here
we concentrate on a dynamical scheme using interactions
in bimodal condensates [4, 6–8] and analyze in particu-
lar the influence of dephasing, decoherence and non-zero
temperature on this squeezing scheme.

C. Two-mode scalings without decoherence

We consider for simplicity a bimodal condensate with
identical interactions in the components a and b with
coupling constants gaa = gbb = g and no crossed a-b in-
teractions [23]. We assume that the initial state is the
factorized state (2) with φ = 0 and a fixed total num-
ber of atoms N . In a two-mode picture, interactions
introduce a Hamiltonian that is non-linear in the spin
operator:

Hnl = ~χS2
z . (8)

The quadratic form (8) is obtained expanding the system
Hamiltonian to second order around the average num-
bers of particles in components a and b, N̄a and N̄b,
both equal to N/2 for the initial state (2) [9, 10]. ~χ
is thus the derivative of the chemical potential with re-
spect to the particle number in each component ~χ =
dµa/dNa = dµb/dNb evaluated in Na = N̄a, Nb = N̄b.
The general expression of the expanded Hamiltonian in-
cluding drift terms for non-symmetric interactions, non-
symmetric splitting or fluctuations in the total particle
number can be found in [10, 11]. We are interested in
the best squeezing that can be obtained in the thermo-
dynamic limit for a spatially homogeneous system:

N → ∞ , ρ =
N

V
= constant, (9)
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FIG. 2: (Color online) Left: Deformation of quantum fluc-
tuations due to the non-linear Hamiltonian (8). Right: Best
squeezing time.

we therefore explicitly write χ in terms of the interaction
constant g and the volume V of the system:

µa =
gNa

V
, µb =

gNb

V
, χ =

g

~V
. (10)

We can consider the non-linear Hamiltonian (8) as a
Hamiltonian of the form (3) with a Larmor frequency
ωab that depends itself on Sz . As explained in [2] and
shown in Fig.2 (left), Hnl “twists” the transverse spin
fluctuations and generates spin squeezing. However, in
order to minimize ξ2, the evolution should not go to far.
E.g. when the fluctuations become too much distorted
and start to wrap around the Bloch sphere, the “signal”
|〈S〉| in the denominator of ξ2 decreases and the squeezing
parameter increases again. A sketch of the time depen-
dence of ξ2 when the state (2) evolves under the influ-
ence of Hnl (8) is given in Fig.2 (right). We name “best
squeezing time” tmin the time that minimizes ξ2(t) and
“best squeezing” ξ2min the corresponding squeezing. The
analytical expression for the squeezing as a function of
time is given in [2]. Introducing an appropriate rescal-
ing of the time variable as in [12], this gives the following
scalings of the best squeezing and the best squeezing time
for N ≫ 1 and ρ,g constants:

(ξ2min)Hnl
≃ 32/3

2

1

N2/3
;

(

ρgtmin

~

)

Hnl

≃ 31/6N1/3 .

(11)
This differs from the original prediction in [2] by numer-
ical factors. Subsequent studies [7, 13] gave indications
that the achievement of large squeezing in condensates
should be possible even in presence of decoherence, but
were not able to confirm or disprove the scalings (11).

D. New scalings in presence of decoherence

We will show in sections III and IV that the scalings
(11) are disproved when decoherence coming from par-
ticle losses or non-zero temperature is included in the
description. To summarize, instead of tending to zero
when N → ∞ in the thermodynamic limit, ξ2min tends to
a positive constant

ξ2min
lim.therm.→ constant > 0 . (12)

Concerning the best squeezing time tmin we distinguish
two cases. In the case of particle losses tmin is finite in
the thermodynamic limit and scales as

ρgtmin

~
∝ 1
√

ξ2min

. (13)

In the case of finite temperature tmin cannot be calculated
within our analytical treatment that neglects interactions
among Bogoliubov modes. Nevertheless, we introduce
a “close-to-best” squeezing time tη defined in equation
(37), at which ξ2 approaches ξ2min with a finite precision
η, that scales as

ρgtη
~

∝ 1
√

ηξ2min

(14)

provided that tη remains smaller than the typical collision
time among Bogoliubov modes.

We will show that these new scalings in presence of
decoherence are quite general and that the physics of how
decoherence acts is caught by a very simple dephasing
model that we shall solve exactly and study in detail in
the next section.

II. DEPHASING MODEL

In this section we consider a dephasing Hamiltonian
model of the form

H = ~χ(S2
z +DSz) (15)

whereD is a Gaussian real random variable of zero mean.
We assume here that D is time independent, but it varies
randomly from one experimental realization to the other
mimicking a stationary random dephasing environment.
We also assume that D has a variance of the order of N
for N large [24]:

〈D2〉
N

→ ǫnoise , N → ∞. (16)

Finally ǫnoise, finite in the thermodynamic limit, is a
small parameter of the theory and we limit ourselves in
general to first order in this quantity. An exception is
made in subsection II B where expressions to all orders
in ǫnoise are given.

Starting with the initial state (2) with φ = 0, we will
show that this minimal model reproduces the scalings
(12) and (14). In the subsequent sections III and IV we
will detail an analogy between the dephasing model and
microscopic models accounting for the effect of particle
losses or of non-zero temperature on squeezing. The pa-
rameter ǫnoise introduced here (16) will then be related
to the lost fraction of particles or the populations of ther-
mally excited modes, respectively.
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A. Squeezing in the thermodynamic limit

For the symmetric case we consider, the mean spin is
always aligned along x. The minimum transverse spin
variance is

∆S2
⊥,min =

1

2

[

〈S2
y〉+ 〈S2

z 〉−
√

(〈S2
y〉 − 〈S2

z 〉)2 + 〈{Sz, Sy}〉2
]

, (17)

where the expectation values 〈. . .〉 represent the average
over the quantum state and over the random variable D.
The notation {, } stands for the anticommutator. Intro-
ducing quantities A and B,

A = 〈S2
y〉 −

N

4
(18)

B = 〈{Sz, Sy}〉 (19)

∆S2
⊥,min =

1

2

[

N

2
+A−

√

A2 +B2

]

. (20)

To derive the scalings (12) and (14), and to have a phys-
ical insight, it is convenient to reason in terms of the
phases of the operators a and b:

a = eiθa
√

Na , [Na, θa] = i (21)

b = eiθb
√

Nb , [Nb, θb] = i , (22)

where Na = a†a and Nb = b†b. This is a legitimate
representation as long as the condensate modes have a
negligible probability of being empty [14]. By neglect-
ing the fluctuations of their modulus, the collective spin
components Sx, Sy are simply given by

Sx ≃ Re
N

2
e−i(θa−θb) , (23)

Sy ≃ Im
N

2
e−i(θa−θb) . (24)

At t = 0, the phase difference (θa − θb) has zero mean

and root mean square fluctuations that scale as 1/
√
N .

Both Sy and Sz scale as
√
N . As a consequence, for N

large we can expand the exponentials in (23)-(24). To
lowest order we then have

Sx ≃ N

2
, Sy ≃ −N

2
(θa − θb) , Sz =

Na −Nb

2
. (25)

Sy and Sz are then simply proportional to the position
operator Q and the momentum operator P of a fictitious
free particle. As we will see, the expansions (25) remain

valid for times (ρgt/~) ≪
√
N . The squeezing occurs be-

cause in a given realization of the experiment Sy becomes
an enlarged copy of Sz. Indeed after the pulse, for t > 0,
from the Heisenberg equations of motions for the phase
operators, with χ = g/(~V ), one has

(θa − θb)(t) = (θa − θb)(0
+)− gt

~V
[2Sz +D] . (26)

As the squeezing dynamics goes on, Sy that was initially
of the same order as Sz, grows linearly in time while
Sz stays constant. Correspondingly A ∝ t2 and B ∝ t.
Since 〈{Sy(0), Sz}〉 = 0, one actually has at all times:

Sy = Sy(0) + Slead
y t ; (27)

A

N
= αt2 ; (28)

B

N
= βt , (29)

where we have introduced the time independent operator
and coefficients

Slead
y =

ρg

2~
[2Sz +D] (30)

α =
〈(Slead

y )2〉
N

=
(ρg

2~

)2

(1 + ǫnoise) (31)

β =
〈{Slead

y , Sz}〉
N

=
ρg

2~
. (32)

Using the fact that from (25) Sx ≃ N/2 for (ρgt/~) ≪√
N , and expanding the expression (20) for t ≫ ~/(ρg),

we have in the thermodynamic limit

ξ2(t) =
t→∞

1− β2

α
+

β4

4α3

1

t2
+O(t−4) . (33)

Using equations (30)-(32), with ǫnoise ≪ 1, we finally
obtain in the long time limit

ξ2(t) = ǫnoise +

(

~

ρgt

)2

[1 +O (ǫnoise)] +O

(

~
4

(ρgt)4

)

.

(34)

1. Best squeezing and close-to-best time

According to (34), the best squeezing in the thermo-
dynamic limit to leading order in ǫnoise is

ξ2min = ǫnoise = limN→∞
〈D2〉
N

. (35)

Remarkably, the best squeezing (35) only involves the
part of the phase difference D that is not proportional to
Sz. To understand physically this result we rewrite

ξ2min = 1− β2

α
=

〈(Slead
y )2〉〈S2

z 〉 − 〈{Slead
y , Sz}/2〉2

〈(Slead
y )2〉〈S2

z 〉
.

(36)
Due to interactions, through the phase difference (26),
Slead
y is proportional to (2Sz +D). In the absence of the

term D this allows a perfect cancellation between the
correlation 〈Slead

y Sz〉2 and the product 〈(Slead
y )2〉〈S2

z 〉 in

(36) leading to ξ2min = 0 in the limit N → ∞. In presence
of D, this is not possible and ξ2min has a non-zero limit.
Considering the next to leading order in the time ex-

pansion of the squeezing parameter Eq.(34), the best
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squeezing is reached in an infinite time (in the thermo-
dynamic limit). However as we will see ξ2(t) is quite
flat around its minimum, and it suffices to determine a
“close-to-best” squeezing time tη defined as

ξ2(tη) = (1 + η)ξ2min , η > 0 . (37)

Then, according to (34), tη is given by

ρg

~
tη =

1
√

ηξ2min

. (38)

The close-to-best squeezing time tη is thus very simply
related to the best squeezing ξ2min. The important point
is that tη is finite (non-infinite and non-zero) in the ther-
modynamic limit.

2. Geometrical interpretation

We give here a geometrical and pictorial interpretation
to the squeezing process in the thermodynamic limit. Let
us introduce the rescaled transverse spin components

Y =
Sy

√

〈S2
y〉
, Z =

Sz
√

〈S2
z 〉

(39)

that verify 〈Y 〉 = 〈Z〉 = 0 and 〈Y 2〉 = 〈Z2〉 = 1. At short
times, the Wigner function representing the probability
distribution of Y and Z is approximately Gaussian

W (y, z) ∝ exp

[

−1

2
(y, z)M−1

(

y
z

)]

(40)

where M is the covariance matrix

M =

(

〈Y 2〉 1
2 〈{Y, Z}〉

1
2 〈{Y, Z}〉 〈Z2〉

)

. (41)

We can represent graphically the fluctuations of Y and
Z by drawing isocontours of W (y, z). Let us introduce
the eigenvalues of M

λ1,2 = 1± 1

2
〈{Y, Z}〉 . (42)

and a rotated coordinate system y′ − z′ aligned with the
eigenvectors of M :

y′ = (z + y)/
√
2 ; z′ = (z − y)/

√
2 . (43)

The points in the y′z′ plane such that

y′2

λ1
+
z′2

λ2
= 1 (44)

form an ellipse whose semi-axis gives the mean square
fluctuations of Y ′ and Z ′ that are time dependent linear
combinations of Sy and Sz. The ellipse surface Sellipse =

π(λ1λ2)
1/2 divided by π is equal to the square root of the

0 0.025 0.05 0.075 0.1
t [s]

10
-3

10
-2

10
-1

10
0
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ξ2

det M

-1 -0.5 0 0.5 1
y

-1

-0.5

0

0.5

1

z

t=0
t=2 x 10

-3

t=2.5 x 10
-2

FIG. 3: (Color online) Left: Squeezing parameter ξ2 as a
function of time for ǫnoise = 0.05 (full line) and ǫnoise = 0
(dotted line). Determinant of the covariance matrix M as a
function of time (dashed line). Simulation with 104 realiza-
tions. N = 4 × 104, χ = 0.022577s−1 . Right: Isocontours of
W (y, z) for t = 0, t = 2× 10−3s and t = 2.5× 10−2s.

determinant of M and is thus asymptotically equivalent
to ξmin according to (36):

ξmin =
Sellipse

π
for t≫ ~

ρg
. (45)

In Fig.3 (left) we show the time dependence of the squeez-
ing parameter ξ2 in presence and in absence of decoher-
ence. On the same plot we show the determinant of M
that asymptotically gives the value of ξ2min (36). In Fig.3
(right) we show the isocontours ofW (y, z) defined by (44)
at different times for the case with decoherence. As the
dynamics goes on, Y and Z become more and more corre-
lated and the ellipse shrinks. In the absence of dephasing
and in the thermodynamic limit the ellipse would collapse
into a segment in the y = z direction. In the presence
of decoherence the process is “blocked” and the ellipse
keeps a finite width with a limit area Sellipse = πǫnoise.

B. Exact solution of the dephasing model

The dephasing model (15) is exactly solvable. One
first writes the Heisenberg equations of motion for a and
b, e.g.

i ȧ =
χ

2

(

2Sz +D +
1

2

)

a . (46)

Then one uses the fact that Sz is a constant of motion
to integrate the equations [10, 15]. One obtains (see also
[16]):

ξ2(t) =
N
2

[

N
2 +A−

√
A2 +B2

]

C2
(47)

with

A =
N(N − 1)

8

[

1− e−2(χt)2〈D2〉(cos 2χt)N−2
]

(48)

B =
N(N − 1)

2
sinχt e−

1

2
(χt)2〈D2〉 (cosχt)

N−2
(49)

C = 〈Sx〉 =
N

2
e−

1

2
(χt)2〈D2〉 (cosχt)N−1 . (50)
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A first application of the exact solution (47)-(50) is to
determine the best squeezing ξ2min in the thermodynamic
limit, to all orders in the dephasing parameter ǫnoise. To
this aim we take the limit N → ∞ in (47)-(50) at fixed
time t, density ρ and noise parameter ǫnoise = 〈D2〉/N .
We find that A/N , B/N and C/N have a finite limit and
that

ξ2(t)
lim.therm.→ 1−





1

2
(1 + ǫnoise) +

√

1

4
(1 + ǫnoise)

2
+

(

~

ρgt

)2




−1

. (51)

From this solution one gets the best squeezing and the
close-to-best squeezing time tη (for η ǫnoise < 1):

ξ2min
lim.therm.→ ǫnoise

1 + ǫnoise
(52)

ρg

~
tη

lim.therm.→ 1− η ǫnoise
(1 + ǫnoise)

√
η ǫnoise

. (53)

Note that one can obtain (35) and (38) from (52) and
(53) by linearizing for small ǫnoise.
In Fig.4 we show ξ2(t) as a function of time for a large

atom number. The curve is indeed quite flat around the
best squeezing time tmin. There are two solutions to
equation (37): tη < tmin and t′η > tmin. When N → ∞,
tη is finite and given by (53). On the other hand, as

we show in Appendix A, tmin diverges as N1/4 and t′η
diverges as N1/2. Knowing the asymptotic behavior of
tmin, by introducing appropriate rescalings of the time
variable as in [12], it is also possible to obtain the first
finite size correction to ξ2min. This is given in equation
(A4) of Appendix A.

C. Squeezing in the weak dephasing limit

We can use the exact solution of the dephasing model
(47)-(50) to investigate the weak dephasing limit that we
define as the limit where the noise D remains bounded
for N → ∞ (see the footnote before equation (16)):

〈D2〉 → constant N → ∞. (54)

In this case the scaling of the best squeezing time with N
is still given by ρgtmin/~ ∝ N1/3 as in the case without
decoherence (11) and, using the same rescaling of time
as in [12], one has

ξ2min =
32/3

2

1

N2/3
+

3
2 + 〈D2〉

N
+ o

(

1

N

)

, (55)

ρgtmin

~
= 31/6N1/3 −

√
3

4
+ o(1) . (56)

10
-1

10
0

10
1

10
2

10
3

10
4

ρgt//h

0.1

1

ξ2 (t
)

tη t
min

t’η

ξ
min

2

(1+η)ξ
min

2

FIG. 4: Squeezing as a function of time for the dephasing
model (15) as given by the exact solution (47). N = 109,
〈D2〉/N = 0.02. Horizontal dashed lines: ξ2min given by (A4)
and (1 + η)ξ2min with η = 0.1. Vertical dashed lines from left
to right: Close-to-best squeezing time tη (53), best squeezing
time tmin (A3) and t′η deduced from (A5).

III. PARTICLE LOSSES

In this section we consider particle losses that are an in-
trinsic source of decoherence in condensed gases. Among
those, one-body losses are due to collisions of condensate
atoms with residual hot atoms due to imperfect vacuum.
More fundamental in dense samples are three-body losses
where, after a three-body collision, two atoms form a
molecule and the third atom takes away the energy to
fulfill energy and momentum conservation. After such
a collision event the three atoms are lost. Three-body
losses are present due to the metastable nature of ul-
tra cold gases, whose real ground state at such low tem-
peratures would be a solid and whose gaseous phase is
maintained because the sample is very dilute. Finally
two-body losses can also be present, caused by two-body
collisions that change the internal state of the atoms. For
a trapped gas, we have shown theoretically [12] that the
best achievable squeezing within a two-mode model at
zero temperature in presence of one, two and three-body
losses can in principle be very large (squeezing parame-
ter ξ2 of the order of 10−4) provided that the harmonic
trapping potential is optimized and a careful choice of
the internal state of the atoms is made. To realize such
conditions that minimize losses remains however an ex-
perimental challenge.

In this section we recall the main results of [12] con-
cerning the squeezing in presence of particle losses, and
we use these results to show an analogy between the effect
of the losses and the effect of the dephasing Hamiltonian
(15) in the thermodynamic limit.
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A. Monte Carlo wave functions

We consider two spatially separated, symmetric con-
densates. For a more general treatment, please refer to
[11]. Initially the system is in the eigenstate of Sx with
maximal eigenvalue N/2. Besides the non-linear Hamil-
tonian for the two bosonic modes a and b given by

Hnl = ~χS2
z with χ = (∂Na

µa)N̄a
/~ , (57)

we include one, two and three-body losses. Due to the
losses, the system is “open” and we shall describe it with
a density operator that obeys a Master Equation of the
Lindblad form [10]. In the interaction picture with re-
spect to Hnl:

dρ̃

dt
=

3
∑

m=1

∑

ǫ=a,b

γ(m)

[

cmǫ ρ̃c
†m
ǫ − 1

2
{c†mǫ cmǫ , ρ̃}

]

(58)

where cǫ = ã, b̃ for ǫ = a, b and:

ã = e
i
~
Hnlt a e−

i
~
Hnlt ; b̃ = e

i
~
Hnlt b e−

i
~
Hnlt . (59)

Here the operators a and b are in the Schrödinger picture.
The m-body loss rates γ(m) are defined in terms of the
so-called rate constants Km as

γ(m) =
Km

m

∫

d3r|φ(r)|2m (60)

where φ(r) is the condensate wave function in mode a or
b for the initial atom number (weak loss approximation),
so that for example:

d

dt
〈Na〉 = −

〈[

K1 +K2Na

∫

d3r|φ(r)|4+

K3N
2
a

∫

d3r|φ(r)|6
]

Na

〉

. (61)

It is convenient to rephrase the Master Equation (58) in
terms of Monte Carlo wave functions [17]. In this picture
pure states evolve deterministically under the influence
of an effective Hamiltonian Heff acting during time inter-
vals τi = ti − ti−1 separated by random quantum jumps
(described by the jump operators Sǫ) occurring at times
ti as illustrated in Fig.5:

Heff = −
∑

ǫ=a,b

i~

2
γ(m)c†mǫ cmǫ , Sǫ =

√

γ(m)cmǫ . (62)

More precisely the evolution of the non-normalized state
vector |ψ(t)〉 in between quantum jumps is given by

i~
d

dt
|ψ(t)〉 = Heff(t)|ψ(t)〉 (63)

and the effect of a quantum jump in the component ǫi at
time ti is

|ψ(t+i )〉 = Sǫi(ti)|ψ(t−i )〉 . (64)

0 t
1

t
2

t
k-1

t
k t

τ
1

τ
2

... τ
k

t-t
k

...

FIG. 5: Time sequence of deterministic evolution periods and
quantum jumps for a single Monte Carlo wave function |ψ〉.

Quantum averages of any atomic observables O are
obtained by summing over all the possible trajectories of
the non-normalized state vector [12]:

〈Ô〉 =
∑

k

∫

0<t1<t2<···tk<t

dt1dt2 · · · dtk
∑

{ǫj}

〈ψ(t)|Ô|ψ(t)〉 . (65)

B. Losses randomly kick the relative phase

Let us consider the action of a quantum jump over a
phase state (2) with N atoms, for example the loss of one
particle in state a or b at time t:

ca(t)|φ〉N =

√

N

2
e−iχ

4
teiφ|φ− χt/2〉N−1 (66)

cb(t)|φ〉N =

√

N

2
e−iχ

4
te−iφ|φ+ χt/2〉N−1 . (67)

Under the action of a jump a phase state remains a phase
state. On the other hand, the relative phase is shifted
by a random amount that depends on the time of the
jump and has a random sign depending on whether the
jump was in a or b. This behavior is illustrated in Fig.6
taken from [10] where we plot the modulus squared of a
relative phase distribution amplitude c(φ, t) at t = 0 and
t = 2π/χ for three single Monte Carlo realizations. At
this particular time (second revival time) the coherent
evolution due to Hnl has no effect and we can isolate the
action of the losses. In the case of Fig.6, as χt is of the
order of unity, the shift in the relative phase due a single
jump is large. In the case of squeezing with N ≫ 1,
χt ≪ 1, the shifts due to single quantum jumps are on
the contrary very small. These shifts nevertheless limit
the maximum squeezing achievable as we shall see.

C. Spin squeezing limit and the lost fraction

Let us consider the case of one-body losses only with
a loss rate constant γ equal in states a and b. In this
case the effective Hamiltonian does not depend on time;
referring to the time sequence in Fig.5, we have explicitly

|ψ(t)〉 = e−iHeff (t−tk)/~Sǫk(tk)e
−iHeffτk/~Sǫk−1

(tk−1) . . .

. . . Sǫ1(t1)e
−iHeffτ1/~|ψ(0)〉 , (68)

and there is an explicit analytical solution for the gener-
ated spin squeezing as a function of time [11, 12]. Here
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FIG. 6: Relative phase probability distribution at time t = 0
and at time t = 2π/χ in three single realizations Monte Carlo
realization. From upper left to lower right the wave function
has experienced 0, 3, 1 and 0 quantum jumps respectively.
Three-body losses corresponding to N = 301 87Rb atoms in
F = 1,mf = −1 state in separated identical harmonic traps
with ω = 500Hz. Figure taken from [10].

we use this solution to find the best squeezing in pres-
ence of losses in the thermodynamic limit with N → ∞,
ρ and γ constant. For simplicity we also assume that the
fraction of lost particles at the relevant time t remains
small in the thermodynamic limit:

γt ≡ ǫloss . (69)

We proceed similarly as we did to derive Eq.(51), taking
the thermodynamic limit in the exact solution in presence
of losses. Restricting for simplicity to the leading order
in γt and to the case ρgt/~ ≫ 1, we obtain

A

Ne−γt
≃
(

ρgt

2~

)2(

1− 5

3
γt

)

(70)

B

Ne−γt
≃ ρgt

2~
(1− γt) (71)

ξ2(t) ≃ γt

3
+

(

~

ρgt

)2

[1 +O(γt)] , (72)

where A and B are defined in (18)-(19). Equation (72)
shows that for long times, the squeezing parameter is
asymptotically equivalent to one third of the lost fraction
of atoms. Minimizing (72) with respect to time we obtain

ξ2min =
3

4

(

4

3

~γ

ρg

)2/3

(73)

ρg

~
tmin =

(

3

4

ρg

~γ

)1/3

. (74)

In Fig.7 we show the squeezing in presence of losses and
we compare the exact solution [12] with the approximate
expression (72) valid at long times and in thermodynamic
limit.

10 20 30 40
ρgt//h

10
-2

10
-1

10
0

ξ2

FIG. 7: (Color online) Spin squeezing as a function of time
in presence of one-body losses: γ = 0.005ρg/~, N = 106.
Solid black line: Exact analytical solution. Dashed red line:
Approximate solution (72). Horizontal and vertical dashed
lines: predictions (73) and (74) respectively.

D. Analogy between dephasing and losses

Our goal here is to make an analogy between the de-
phasing model of section II and the present model with
losses. Indeed the relative phase is perturbed by the
losses. In presence of one-body losses, a non normalized
Monte Carlo wave function after k jumps has the form:

|ψ(t)〉 = N 1/2eiφ̃|φ+
χt

2
D〉N−k , (75)

N =

(

k
∏

i=1

e−γti

)

e−γ(N−k)tγk

×N(N − 1) . . . (N − k + 1)

2k
, (76)

D =
1

t

k
∑

l=1

tl (δǫl,b − δǫl,a) . (77)

The factor N given by (76) is the norm squared of the
wave function that is needed to calculate quantum aver-
ages, the first line in (76) is due to the effective Hamilto-

nian evolution, φ̃ is an irrelevant phase and D given by
(77) is a random perturbation of the relative phase 2φ
that plays the role of the quantity D in Eq.(26) of the
dephasing model of section II, as appears from the fact
that exp(−iχtDSz)|φ〉N = |φ − χtD/2〉N . Contrarily to
D, D given by (77) is time dependent. As detailed in
Appendix B, using (65) we can calculate 〈D2〉. To first
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order in γt we obtain:

〈D2〉
N

≃ γt

3
. (78)

We have thus shown that ξ2(t) is asymptotically equiv-
alent to 〈D2〉/N as it the case in the dephasing model.
We can then establish an analogy between the model with
losses and the dephasing model as summarized in the first
two columns of the Table I. In Fig.8 we show a compari-
son of 〈D2〉/N obtained from a Monte Carlo simulation,
from the exact expression (B7), and from the approxi-
mate expression (78) valid to first order in ǫloss = γt.

0 10 20 30 4010
-2

10
-1

10
0

ξ2

0 10 20 30 40
ρgt//h

0

0.02

0.04

0.06

<
 D

2 >
 / 

N

FIG. 8: (Color online) Main plot: 〈D2〉/N given by (77) as a
function of time for γ = 0.005ρg/~, N = 106. Black circles:
Numerical simulation with 5× 105 realizations. Dashed blue
line: Approximate expression (78). Solid blue line: Exact
expression (B7). Inset: Squeezing as a function of time. Solid
red line: Exact analytical solution. Black circles: Numerical
simulation with 5× 105 realizations.

E. Optimum squeezing in a harmonic trap

A similar analysis can be performed for a trapped sys-
tem, where we now consider the two components a and
b in identical and spatially separated harmonic traps. In
particular equation (19) of [12] is very similar to (72)
except that in (19) of [12] we have Nχ instead of ρg in
(72). Another difference is that the more general equa-
tion (19) in [12] that includes two and three-body losses
besides one-body losses, is derived performing an approx-
imation on the effective Hamiltonian: the constant loss
rate approximation [25]

Heff = −
∑

ǫ=a,b

i~

2
γ(m)c†mǫ cmǫ ≃ −

∑

ǫ=a,b

i~

2
γ(m)N̄m

ǫ . (79)

By using (19) of [12] and the Thomas-Fermi profiles
of the condensate wave functions, one can optimize the
squeezing with respect to time, trap frequency and atom

number. This optimum squeezing in a trap in presence of
one, two and three-body losses has a simple expression as
a function of the s-wave scattering length aaa = abb = a
and the rate constants Km, m = 1, 2, 3:

ξ2opt =

(

5
√
3

28π

M

~a

)2/3[√

7

2
(K1K3) +K2

]2/3

. (80)

In Fig.9 we show the spin squeezing minimized over time
ξ2min as a function of N in presence of one, two and three-
body losses. The trap frequency is optimized for each
value of N [12]:

ωopt =
219/1275/12π5/6

151/3
~

m

a1/2

N1/3

(

K1

K3

)5/12

. (81)

We note that the minimum squeezing, instead of going
to zero as in two-mode model without decoherence (red
line) tends to a finite non-zero value for N → ∞ given
by (80).

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

N

ξ m
in

 
2 with losses 

without losses 

ξ min 
2  ∝  N−2/3

opt ξ 2

FIG. 9: (Color online) Blue line: Best squeezing ξ2min as
a function of N in presence of one, two and three-body
losses, obtained in [12] in the constant loss rate approxi-
mation. The trap frequency is optimized for each value of
N according to (81). Dashed blue line: Optimum squeez-
ing for large N given by the analytical prediction (80). Red
line: Best squeezing without losses for comparison. Param-
eters: a = 5.32nm, K(1) = 0.1s−1, K(2) = 2 × 10−21m3s−1,
K(3) = 18× 10−42m6s−1. This figure is taken from [18].

IV. FINITE TEMPERATURE

The multimode nature of the atomic field and the
population in the excited modes at non-zero tempera-
ture have important consequences on the squeezing and
change the scaling laws with respect to the two-mode
case (11). In [19] we use a powerful formulation of the
Bogoliubov theory in terms of the time dependent con-
densate phase operator [20, 21] to perform a multimode
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treatment of the squeezing generation in a condensed gas
in the homogeneous case. We show that the best squeez-
ing ξmin has a finite non-zero value in the thermodynamic
limit and we calculate this value analytically.

A. Multimode description

We consider a discretized model on a lattice with unit
cell of volume dV , within a volume V with periodic
boundary conditions [21]. The Hamiltonian after the
pulse for component a (and similarly for b) reads:

Ha =
∑

k

~
2k2

2m
a†
k
ak +

g

2
dV
∑

r

ψ†
a(r)ψ

†
a(r)ψa(r)ψa(r) .

(82)
The fields have commutators

[ψµ(r), ψ
†
ν (r

′)] =
δrr′δµν
dV

(83)

with µ, ν = a or b, and ak(bk) is the amplitude of ψa,b

over the plane wave of momentum k. We assume identi-
cal interactions in states a and b with a coupling constant
g = 4π~2a/m where a is the s-wave scattering length
while states a and b do not interact (gab = 0). Note that
the coupling constant in Ha,b should actually be a bare

coupling constant g0 different from the effective coupling
constant g, but this difference can be made small in the
present weakly interacting regime (ρa3)1/2 ≪ 1 by choos-
ing a lattice spacing much larger than a but still much
smaller than the healing length ∝ 1/

√
ρa [22].

In terms of the fields, the collective spin components
are

Sx + iSy = dV
∑

r
ψ†
a(r )ψb(r ), Sz =

Na −Nb

2
(84)

with Nν = dV
∑

r
ψ†
ν(r)ψν(r), ν = a, b.

For low or high values of kBT/ρg we find the asymp-
totic behaviors

kBT ≪ ρg :
ξ2min
√

ρa3
≃ ξ

2 (T=0)
min
√

ρa3
= 0.0234 . . . (85)

kBT ≫ ρg : ξ2min ≃ 〈Nnc〉
N

. (86)

B. Best squeezing and close-to-best time

Performing a double expansion for large N and small
non-condensed fraction ǫBog,

ǫBog ≡ 〈Nnc〉
N

≪ 1 (87)

we find that to first order the system effectively behaves
as in the dephasing model presented in section II. Indeed
the component Sy of the spin develops a term that is

10
-1

10
0

10
1

10
2

k
B
T/ρg

10
-2

10
0

10
2

10
4

ξ2 m
in

/(
ρa

3 )1/
2

ξ2

min

<N
nc

>/N (ρa
3
)
1/2

FIG. 10: (Color online) ξ2min (solid line) and before-pulse non-
condensed fraction 〈Nnc〉/N (dashed line), both divided by
√

ρa3, as functions of kBT/ρg. Both quantities are obtained
analytically within a Bogoliubov framework, see (92) for ξ2min.

proportional to the condensate relative phase θa − θb,
and the relative phase evolves as

θa − θb = (θa − θb)(0
+)− gt

~V
[(Na −Nb) +Dth] . (88)

The dephasing parameter Dth in (88) is related to the
population in the excited modes:

Dth =
∑

k 6=0

(Uk + Vk)
2
(nak − nbk) , (89)

where nak = c†akcak and nbk = c†bkcbk are the occupation
number operators of the Bogoliubov modes. Note that
these modes are in a non-equilibrium state since the zero
relative phase state between the condensates in a and b
is prepared at t = 0+ by applying a sudden π/2 pulse to
the gas (that was initially at thermal equilibrium in state
a). Uk and Vk are the usual Bogoliubov functions

Uk + Vk =

(

Ek

Ek + ρg

)1/4

; Ek =
~
2k2

2m
, (90)

ρ/2 = N/2V being the spatial density in each single com-
ponent a or b after the pulse. Dth fluctuates from one
realization to the other because nak and nbk depend (in
Heisenberg picture) on the creation and annihilation op-
erators of the Bogoliubov modes before the pulse, and
the initial state of the gas has thermal fluctuations.
To first order in N and in ǫBog, the best squeezing

parameter and the close-to-best squeezing time are given
by [19]

ξ2min =
〈D2

th〉
N

;
ρgtη
~

=
1√
ηξmin

. (91)

An explicit calculation [19] gives:

ξ2min=

∫

d3k

(2π)3
s4k
2ρ

[

(

n
(0)
k +

1

2

)

(

(s
(0)
k )2

s4k
+

s4k

(s
(0)
k )2

)

− 1

]

,

(92)
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Particle Losses Dephasing model Multimode T 6= 0

|ψ(t)〉 = N 1/2eiφ̃|φ+ χt
2
D〉 (θa − θb)(t) = (θa − θb)(0

+)− χt [2Sz +D] (θa − θb)(t) = (θa − θb)(0
+)− χt [2Sz +Dth]

D from quantum jumps (77) D from a dephasing Hamiltonian (15) Dth from excited modes population (89)

ξ2(t) ≃
ρgt/~>1

〈D2〉

N
ξ2(t) ≃

ρgt/~>1

〈D2〉

N
ξ2(t) ≃

ρgt/~>1

〈D2
th〉

N

〈D2〉

N
=
γt

3
=
ǫloss
3

〈D2〉

N
= ǫnoise

〈D2
th〉

N
=

√

ρa2F (kBT/ρg) ∼
kBT>ρg

ǫBog

TABLE I: Correspondence table among the different physical models. The results are valid in the thermodynamic limit and to
first order in the small parameters ǫloss (69), ǫnoise (16) and ǫBog (87).

where now n
(0)
k are Bose mean occupation numbers of

Bogoliubov modes in state a before the pulse

n
(0)
k =

1

eǫk/kBT − 1
, ǫk =

√

Ek(Ek + 2ρg) . (93)

sk = Uk +Vk and s
(0)
k = U

(0)
k +V

(0)
k where U

(0)
k and V

(0)
k

are the Bogoliubov functions in internal state a before
the pulse

U
(0)
k + V

(0)
k =

(

Ek

Ek + 2ρg

)1/4

; Ek =
~
2k2

2m
. (94)

A consequence of (92) is that the squeezing divided by
√

ρa3 is an universal function of kBT/ρg.

C. Spin squeezing and non-condensed fraction

Within our treatment, valid for large N and T ≪ Tc,
we find that the best squeezing ξ2min (92) is always lower
than the before-pulse non-condensed fraction. This is
shown in Fig.10.
Finally in Table IVA we can complete the correspon-

dence table between dephasing noise, losses and non-zero
temperature effects.

V. A FEW WORDS ABOUT EXPERIMENTS

Two recent experiments demonstrated spin squeez-
ing in Bose-condensed bimodal condensates of rubidium
atoms in internal states |a〉 = |F = 1,mF = ∓1〉 and
|b〉 = |F = 2,mF = ±1〉 [4, 6]. Due to the fact that the
three scattering lengths characterizing the interactions
between atoms are very close

gaa ≃ gab ≃ gbb (95)

the effective two-mode nonlinearity χ in Hnl (8) is very
small when the condensates a and b overlap spatially.
This gives the possibility to tune the non-linearity [11]
by either controlling the spatial overlap between the two
species as done [6] or by using a Feshbach resonance
changing the inter-species coupling constant gab as done
in [4]. A fundamental source of decoherence in these
experiments is two-body losses in the state F = 2. A
theoretical analysis [11] shows that in typical experimen-
tal conditions these losses limit the squeezing to about
ξ2min ≃ 6× 10−2. For cold samples this limit is above the
limit imposed by non-zero temperature. In the case of [6]
we could explain in detail the squeezing results using a
zero-temperature model including spatial dynamics and
including particle losses and technical noise (dephasing
noise) as sources of decoherence, the latter being domi-
nant [6, 18].

The perspective of studying experimentally the scaling
of squeezing in a controlled decoherence environment, e.g.
preparing the sample at different temperatures, is fasci-
nating and challenging.

VI. CONCLUSIONS

We have considered a scheme to create spin squeez-
ing using interactions in Bose-condensed gas with two
internal states [2, 7, 8]. The squeezing is created dynam-
ically after a π/2 pulse applied on the system initially
at equilibrium in one internal state. We have reviewed
the ultimate limits of this squeezing scheme imposed by
particle losses and non-zero temperature based on our re-
cent works [12] and [19] and we have extracted a simple
physical picture of how decoherence acts in the system.
An important result is that contrarily to the case without
decoherence [2] the squeezing parameter minimized over
time ξ2min has a finite non-zero value in the thermody-
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namic limit, that we determine analytically. Finally we
have shown that the physics of spin squeezing in presence
of losses or at non-zero temperature can be caught by a
simple dephasing model (also considered in [16]) that we
have solved exactly and studied in details.

Appendix A: Times tmin and t′η in the dephasing

model

The exact solution (47)-(50) allows to determine how
the best squeezing time tmin diverges in the thermody-
namic limit. We first found numerically that it diverges
as N1/4. We then introduce the rescaled time θ such that

ρg

~
t = θN1/4 . (A1)

Expanding the functions cosN−2(2χt) and
exp[−2(χt)2〈D2〉] up to terms O(1/N) included in
A; linearizing sin(χt) and expanding cosN−2(χt) and
exp[−(χt)2〈D2〉/2] up to terms O(1/N1/2) included in
B; and expanding cosN−1(χt) and exp[−(χt)2〈D2〉/2]
up to terms O(1/N1/2) included in C, we obtain

ξ2(t) =
ǫnoise

1 + ǫnoise
+

1

N1/2

[

ǫnoiseθ
2 +

1

θ2(1 + ǫnoise)3

]

+O

(

1

N

)

. (A2)

By minimizing (A2) over θ one obtains

ρg

~
tmin

lim.therm.∼
[

N

ǫnoise(1 + ǫnoise)3

]1/4

, (A3)

ξ2min
lim.therm.

=
ǫnoise

1 + ǫnoise
+

2

N1/2

ǫ
1/2
noise

(1 + ǫnoise)
3/2

+O

(

1

N

)

(A4)

With a similar technique we can determine the diver-
gence of t′η that is the second solution of equation (37)

t′η > tmin. When N → ∞, t′η diverge as N1/2. To cal-
culate the prefactor we introduce again a rescaled time
ρgt/~ = θ′[N/(1 + ǫnoise)]

1/2 and take the large N limit
in (47) to obtain

ξ2(t) = eθ
′2

[

1− 1

1 + ǫnoise

θ′2

sinh θ′2

]

+O

(

1

N

)

. (A5)

Solving the transcendental equation (1+η)ξ2 = ξ2min one
finds the large N approximation to t′η. For η ≪ 1 and no
constraint on the ratio η/ǫnoise, we obtain

θ′2η ≃ 2η

1 +
√

1 + 2η
3ǫnoise

. (A6)

Appendix B: Calculation of 〈D2〉 in the lossy model

From the definition of D (77) and the expression of
a quantum average (65) in the Monte Carlo wavefunc-
tion method, using the expression of the norm squared
of |ψ(t)〉 of (76), we obtain

〈D2〉(t) = e−γNt
N
∑

k=1

(

N

k

)

γkekγt
∫ t

0

dt1 . . .

∫ t

0

dtk

1

2k

∑

η1,...,ηk=±1

(

1

t

k
∑

i=1

ηiti

)2( k
∏

i=1

e−γti

)

. (B1)

We have introduced the random variables ηi = +1 for
ǫi = b and ηi = −1 for ǫi = a, and we have used the
fact that the integrand is a symmetric function of the
jump times ti to extend time integration from the ordered
domain 0 < t1 < . . . < tk to the hypercube [0, t]k (also

dividing by k!). The notation
(

N
k

)

represents the usual
binomial coefficient N !/[k!(N − k)!]. We first sum over
the variables ηi:

1

2k

∑

η1,...,ηk=±1

(

k
∑

i=1

ηiti

)2

=

k
∑

i=1

t2i (B2)

then we perform the temporal integration to obtain

〈D2〉 = e−γNt
N
∑

k=1

(

N

k

)

kuk
I2
I0
, (B3)

I0 =

∫ t

0

dt1 e
−γt1 =

1− e−γt

γ
, (B4)

I2 =

∫ t

0

dt1 t
2
1e

−γt1

=
1

γ3
{

2− e−γt
[

2 + 2γt+ (γt)2
]}

, (B5)

u = γeγtI0 = eγt − 1 . (B6)

Taking the derivative with respect to u of the binomial

identity
∑k

i=0

(

N
k

)

uk = (1+u)N , we get the final expres-
sion

〈D2〉
N

=
γI2
t2
. (B7)

Expanding I2 for small γt gives as expected

〈D2〉
N

≃ 1

3
γt . (B8)
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