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Homogenization at different linear scales,

bounded martingales and the Two-Scale

Shuffle limit

Kévin Santugini∗

September 26, 2012

Abstract

In this paper, we consider two-scale limits obtained with increas-

ing homogenization periods, each period being an entire multiple of

the previous one. We establish that, up to a measure preserving rear-

rangement, these two-scale limits form a martingale which is bounded:

the rearranged two-scale limits themselves converge both strongly in

L2 and almost everywhere when the period tends to +∞. This limit,

called the Two-Scale Shuffle limit, contains all the information present

in all the two-scale limits in the sequence.

1 Introduction

Homogenization is used to study the solutions to equations when there are
multiple scales of interest, usually a microscopic one and a macroscopic one.
In particular, one may consider the solutions uε to a partial differential equa-
tion with locally ε-periodic coefficients and study their behavior as the small
period ε tends to 0. Two-scale convergence, introduced by G. Nguetseng [10]
and G. Allaire [1], is suited to study this particular subset of homogenization
problems called periodic homogenization. It was later extended to the case
of periodic surfaces by M. Neuss Radu [8, 9] and G. Allaire, A. Damlamian
and U. Hornung [2]. It can also be used in the presence of periodic holes in
the geometry, see [5, 6] or to homogenize multilayers [12, 13].
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Intuitively, two-scale convergence introduces the concept of two-scale
limit u0 which is a function of both a macroscopic variable x —also called
slow variable— and a microscopic p-periodic variable y —also called fast
variable— such that, in some “meaning”, x 7→ u0(x,x/ε) is a good approxi-
mation of uε.

As indicated by its name, two-scale convergence captures the behavior at
two scales: the macroscopic one and the pε-periodic one. However, two-scale
convergence does not capture all phenomena that happens at a scale linear
in ε but only those whose length scale is pε/m where m is an integer. The
two-scale limit of a sequence depends not only on the asymptotic scale, but
also on the precise value of the chosen period. For example, any phenomena
happening at the length scale of 2ε will not be fully apparent in the two-scale
limit computed with period ε. The two-scale limit computed with period 2ε
will contain no less —and might actually contain more— information than
the two-scale limit computed with period ε. For example, the homogenization
of sin(2πx/ε) + sin(πx/ε) gives a two-scale limit of u0 : (x, y) 7→ sin(2πy)
if computed with the homogenization period ε, i.e., when p = 1, and u0 :
(x, y) 7→ sin(2πy) + sin(πy) if computed with the homogenization period 2ε,
i.e., when p = 2. Furthermore, if we choose p = 1/2, then the two-scale
limit is none other than the null function. Worse, the scale factor p could be
irrational.

The choice of the scale factor p used in the homogenization process is
therefore of utmost importance in two-scale convergence. Using a badly
chosen scale factor p may and will often cause a huge loss of information. At
worst, we recover no more information than the one obtained by the standard
weak L2 limit: if pε is the correct choice of homogenization period, the two-
scale limit computed with period λpε where λ is an irrational number should,
intuitively, carry no information about what happens at scale pε.

Fortunately, there is usually a natural choice of period: the coefficients of
the partial differential equation are often chosen locally ε-periodic. The most
natural choice is to choose p = 1, i.e., to consider the correct microscopic
scale for uε is ε itself. If there are two important periods to consider pε and
p′ε, the intuitive solution is to choose a period that is an entire multiple of
both. However, this can only be done if the ratio p/p′ between the two scale
factors is a rational number.

When the two-scale limit depends on the fast variable, we may consider an
homogenization period of p2ε instead of p1ε where p2/p1 is a positive integer.
The two-scale limit computed with the homogenization period p2ε contains
more information than the two-scale limit computed with the homogenization
period p1ε. It is then natural to study the behavior of the two-scale limit as
the scale factor tends to +∞. G. Allaire and C. Conca studied in [3] a similar
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problem and established, for an elliptic problem, the behavior of the spectra
of the equation satisfied by the two-scale limit as the scale factor p goes to
+∞. G. Ben Arous and H. Owhadi [4] studied the behavior of the Brownian
motion in a periodic potential using multiscale homogenization when the
ratio between two successive scales is bounded from above and below.

In this paper, we consider various two-scale limits, each computed with
a different homogenization period. In particular, we consider a sequence of
periods (pn)n∈N such that for all integers n, pn+1/pn is a positive integer and
we study the two-scale limit of (uε)ε>0 computed with the homogenization
period pnε. This two-scale limit, denoted u0,pn, is pn-periodic in each com-
ponent of its fast variable. Since pn+1 is always an entire multiple of pn, one
can always recover the two-scale limit u0,pn from the two scale limit u0,pn+1

.
If pn+1 = mnpn and in dimension d ≥ 1:

u0,pn(x,y) =
1

md
n

∑

α∈J0,mn−1Kd

u0,pn+1
(x,y + pnα).

The sequence of two-scale limits (u0,pn)n∈N yields increasing information
on the asymptotic behavior of (uε)ε>0. A natural question is whether the
two-scale limits u0,pn themselves converge whenever n tends to +∞. I.E.,
does there exist a function that carry the information of all the pn-two-scale
limits? The goal of our paper is to answer this question. The answer is
positive. We show in this paper that the sequence of two-scale limits is,
after a measure preserving rearrangement, a bounded martingale in L2 and
therefore converges both strongly in L2 and almost everywhere to a function
we call the Two-Scale Shuffle limit.

In §2, we remind the reader of previously known results: two-scale con-
vergence and the convergence properties of bounded martingales. In §3,
we show how the different two-scale limits are related to each other through
martingale-like equalities and explain how to transform these two-scale limits
to get a genuine martingale. This leads to our stating of our main theorem:
Theorem 3.8 in which we show that in a certain meaning the two-scale limits
themselves converge to the Two-Scale Shuffle limit. In addition, we also state
in Corollary 3.9 that all the information present in all the two-scale limits
is contained in the Two-Scale Shuffle limit. In §4, we use this result on the
heat equation in multilayers with transmission conditions between adjacent
layers and establish, for this particular example, the equation satisfied by the
Two-Scale Shuffle limit in Theorem 4.1.
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2 Notations, prerequisites and known results

Throughout this paper, if x is in R, we denote by ⌊x⌋ the integer part of
x. We also denote by Jn1, n2K the set [n1, n2] ∩ N. To make the present
paper as self-contained as possible, we recall in this section known results on
the two main mathematical tools we use to prove our main theorem: two-
scale convergence in §2.1, and classical results on the convergence of bounded
martingales in §2.2.

2.1 The classical notion of two-scale convergence

First, as in [1], we introduce some notations. In this paper, p always refer to
a scale factor. It remains constant while taking the two-scale limit. However,
the goal of this paper is to observe the behavior of the two-scale limits as p
tends to +∞.

By Ω, we denote a bounded open domain of R
d where d ≥ 1. By Yp,

we denote the cube [0, p]d. By L2
#(Yp), we denote the space of measurable

functions defined over R
d, that are p-periodic in each variable and that are

square integrable over Yp. By C#(Yp), we denote the set of continuous func-
tions defined on R

d that are p-periodic in each variable.
We reproduce the now classical definition of two-scale convergence found

in [1, 10]. For convenience, we added the scale factor p.

Definition 2.1 (Two-scale convergence). Let p be a positive real. A sequence
(uε)ε>0 belonging to L2(Ω) is said to p-two-scale converge if there exists u0,p
in L2(Ω× Yp) such that:

lim
ε→0

∫

Ω

uε(x)ψ
(
x,

x

ε

)
dx =

1

pd

∫

Ω

∫

Yp

u0,p(x,y)ψ (x,y) dy dx, (2.1)

for all ψ in L2(Ω; C#(Yp)).

It is a common abuse of notation to also designate by u0,p the unique
extension of u0,p to Ω× R

d that is p-periodic in the last d variables.
G. Allaire, see [1], and G.Nguetseng, see [10], proved that any sequence

of functions bounded in L2 has a subsequence that two-scale converges. Let’s
reproduce this precise compactness result.

Theorem 2.2. Let (uε)ε>0 be a sequence of functions bounded in L2(Ω).
Then, there exist u0,p in L2(Ω×]0, p[d) and a subsequence εk converging to 0
such that

lim
k→∞

∫

Ω

uεk(x)ψ

(
x,

x

εk

)
dx =

1

pd

∫

Ω

∫

Yp

u0,p(x,y)ψ (x,y) dy dx, (2.2)
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for all ψ in L2(Ω; C#(Yp)).

Proof. See G. Allaire [1, Theorem 1.2] and G. Nguetseng [10, Theorem 2].
The presence of the scale factor p has no impact on the proof.

We also have the classical proposition

Proposition 2.3. Let uε p-two-scale converges to u0,p. Then,

1

pd/2
‖u0,p‖L2(Ω×Yp) ≤ lim inf

ε→0
‖uε‖L2(Ω).

Proof. See G. Allaire [1, Proposition 1.6]. The presence of the scale factor p
has no impact on the proof.

The next proposition is easy to derive from Theorem 2.2.

Proposition 2.4. Let (pn)n∈N be an increasing sequence of positive real num-

bers. Let (uε)ε>0 be a sequence of functions bounded in L2(Ω). Then, there

exist a subsequence (εk)k∈N converging to 0, and a sequence of functions u0,pn
in L2(Ω×]0, pn[

d) such that, for any non-negative integer n, the sequence

(uεk)k∈N pn-two-scale converges to u0,pn. I.E., such that for all integers n:

lim
k→∞

∫

Ω

uεk(x)ψ

(
x,

x

εk

)
dx =

1

pdn

∫

Ω

∫

Ypn

u0,pn(x,y)ψ (x,y) dy dx,

for all ψ in L2(Ω; C#(Ypn)).

Proof. Apply Theorem 2.2 multiple times and proceed via diagonal extrac-
tion.

Our goal in this paper is to study the limit of u0,pn as pn tends to +∞.

2.2 Convergence of bounded martingales

In this section, we recall the notions of probability theory needed to prove
our main theorem. In particular, we are interested in using the convergence
properties of bounded martingales. For more details, the reader may con-
sult [7]. We assume the reader to be familiar with the notions of σ-field and
σ-additivity in measure theory.

We use the following common notations:

• If C is a subset of P(X), we denote by σ(C) the smallest σ-field in X
that contains C.
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• If D is a topological space, we denote by B(D) the set of all Borel sets
in D, i.e., the smallest σ-field containing all the open subsets of D.

Definition 2.5 (Measurable space). A pair (X,F) is said to be a measurable
space if F is a σ-field in X.

Definition 2.6 (Measure space). A triplet (X,F , µ) is said to be a measure
space if (X,F) is a measurable space and if µ is a positive σ-additive measure
on (X,F).

A measure space (X,F , µ) is said to be finite if µ(X) < +∞. A mea-
sure space (X,F , µ) is said to be σ-finite if X is the countable union of
F -measurable sets of finite measure. A measure space (X,F ,P) is said to be
a probability space if P(X) = 1.

We start by recalling the definition of conditional expectation, see [7,
ch. 6, Theorem 6.1] for more details. Usually, the conditional expectation
is defined for probability spaces. The definition extends without problem to
finite measure spaces and even, to some extent, to σ-finite measure spaces.

Definition 2.7 (Conditional expectation). Let (X,F , µ) be a measure space
with µ being positive and σ-additive. Let G be a σ-field such that G ⊂ F and
(X,G, µ) is also σ-finite. Let f : X → R be F -measurable and in L1

loc(X, µ).
The conditional expectation of f with respect to the σ-field G is denoted by
E(f |F), and is defined as the unique, up to a modification on a set of null
measure, G-measurable function g such that

∫

B

g(ω) dω =

∫

B

f(ω) dω,

for all B in G.

The existence of the conditional expectation is given by Radon-Nikodym
theorem. The measure µ need not be a probability measure. However, to
apply Radon-Nykodim theorem, (X,G, µ) needs to be σ-finite, hence the
restriction in the definition. A statement and a proof of the Radon-Nikodym
theorem can be found in [11, Theorem 6.10].

It is not enough that (X,F , µ) be σ-finite in Definition 2.7.

Remark 2.8. When G ⊂ F , it does not follow from (X,F , µ) being σ-finite
that (X,G, µ) is also σ-finite. A counter-example is easily obtained by setting
G := {∅, X} whenever µ(X) = +∞.

In our main theorem, we restrict ourselves to the case of finite measures.
However, Remark 2.8 will explain why the martingale approach doesn’t quite
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work for the most natural attempt to define a convergence for two-scale limits,
see §3.1.

In order to define martingales, we remind the reader of the definition of
filtration. We limit ourselves to filtrations indexed by the set N. See [7, ch. 7,
p. 120] for more details.

Definition 2.9 (Filtrations). Let (X,F) be a measurable space. A sequence
(Fn)n∈N of σ-fields, Fn ⊂ F is a filtration if, for all non-negative integers n,
Fn is a subset of Fn+1.

We now recall the definition of martingales.

Definition 2.10 (Martingales). Let (X,F , µ) be a σ-finite measure space.
Let (Fn)n∈N be a filtration on (X,F , µ) such that (X,F0, µ) is σ-finite.

A sequence (fn)n∈N is said to be a (Fn)n∈N-martingale, if for all non-
negative integers n and j,

fn = E(fn+j |Fn).

I.E., if fn is Fn-measurable and if for all F in Fn:
∫

F

fn(ω) dω =

∫

F

fn+j(ω) dω (2.3)

We now reproduce the convergence results of bounded martingales:

Theorem 2.11 (Convergence of bounded martingales). Let (X,F , µ) be a

measure space with finite measure. Let (Fn)n∈N be a filtration on the measur-

able space (X,F). Let q be in ]1,+∞[. Let (fn)n∈N be a (Fn)n∈N-martingale

such that the sequence (fn)n∈N is bounded in Lq(X). Then, the sequence

(fn)n∈N converges both almost everywhere and strongly in Lq(X,P).

Proof. See [7, Corollary 7.22] for the strong Lq convergence. The almost
everywhere convergence is stated in [7, Theorem 7.18] and holds even for
q = 1. While these two results are stated for probability measures, the
finite measures case is easily deduced from the probability measure case by
considering the probability measure µ(·)/µ(X).

The above theorem extends, at least partially, to σ-finite measures:

Remark 2.12. In Theorem 2.11, if the probability space (X,F ,P) is replaced
with σ-finite measure space (X,F , µ) such that (X,F0, µ) is also σ-finite, then
the bounded martingales converge almost everywhere and at least in Lq

loc. It
is unknown to the author if the strong Lq convergence can be generalized to
the σ-finite case.
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3 Two-scale limits and bounded martingales

In this section, we always assume both of the following assumptions are
satisfied:

Assumption 3.1 (Integer scale ratios). We are given a real sequence (pn)n∈N,
such that for all n in N, pn > 0 and pn+1 is an entire multiple of pn. Moreover,
we set for n ≥ 1, mn := pn/pn−1 ∈ N, and for n ≥ 0, Mn := pn/p0 ∈ N.

Assumption 3.2. We are given a sequence of functions (uε)ε>0 bounded in
L2(Ω) and a decreasing sequence of positive (εk)k∈N such that the sequence
(uεk)k∈N pn-two-scale converges for all integers n to a function u0,pn that
belongs to L2(Ω×]0, pn[

d).

This last assumption is justified by Proposition 2.4.
Our goal is to study the convergence of the two-scale limits u0,pn when n

goes to infinity. In this section, we proceed as follows: we begin by estab-
lishing a useful equality that looks like a martingale equality in §3.1, then
we propose a rearrangement of the two-scale limits in §3.2, and finally pro-
pose another rearrangement of the two-scale limits in §3.3, the shuffle, which
transform the sequence of two-scale limits into a bounded martingale.

3.1 An almost martingale equality

We start with a simple but essential proposition.

Proposition 3.3. Suppose both assumptions 3.1 and 3.2 are satisfied. Then,

for all j in N, all n in N, almost all x in Ω and almost all y in Yp:

u0,pn(x,y) =

(
pn
pn+j

)d ∑

α∈J0,pn+j/pn−1Kd

u0,pn+j
(x,y +αpn). (3.1)

Proof. Let φ belong to C∞(Ω × R
d) be pn-periodic in the last d variables.

Since pn+j/pn is an integer, φ is also pn+j-periodic in the last d variables.
We take the limit of

∫
Ω
uε(x)φ(x,x/ε) dx, as ε tends to 0, in the sense of

two-scale convergence for both scale factors pn+j and pn:

1

pdn

∫

Ω

∫

Ypn

u0,pn(x,y)φ(x,y) dy dx =

=
1

pdn+j

∫

Ω

∫

Ypn+j

u0,pn+j
(x,y)φ(x,y) dy dx,=

=
1

pdn+j

∫

Ω

∫

Ypn

( ∑

α∈(J0,pn+j/pn−1Kd

u0,pn+j
(x,y +αp)

)
φ(x,y) dy dx.
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The most natural approach is to consider the u0,pn as functions defined
over Ω × R

d and to study their convergence in some meaning in Ω × R
d.

Such a convergence result would be ideal as the intuitive meaning of the
limit would be easy to grasp. Equality (3.1) is similar to the martingale
defining equality (2.3). Would it be possible to use the classical convergence
properties of martingales, see Theorem 2.11, to prove the existence of a limit
to the u0,pn? Unfortunately, the martingale approach doesn’t work in this
setting but the attempt is, nevertheless, instructive. First, we try to construct
a filtration (Fn)n∈N for the u0,pn. For all positive integer n, the u0,pn are pn-
periodic with respect to the last d variables. Let Fn be the set of all Borel
subsets of Ω × R

d that are invariant by translation of ±pn along any of the
last d directions of Ω × R

d. Clearly, u0,pn is Fn-measurable. However, the
measure space (Ω × R

d,Fn, µ) where µ is the Lebesgue measure is not σ-
finite: any Fn measurable subset of Ω × R

d is either of null measure or of
infinite measure. Therefore, the concept of (Fn)n∈N-martingale is ill-defined,
see Definition 2.10 and Remark 2.8. Should we attempt to verify whether
the martingale defining equality (2.3) hold, we would get either +∞ or 0 on
both sides of the equation.

However, the martingale defining equality (2.3) is satisfied if one replaces
the Lebesgue integral of Rd by the limit of the mean over a ball as its radius
tends to +∞. I.E., we have for all F in Fn

lim
R→+∞

1

|B(0, R)|

∫

Ω

∫

B(0,R)

1{(x,y) ∈ F}u0,pn(x,y) dy dx =

= lim
R→+∞

1

|B(0, R)|

∫

Ω

∫

B(0,R)

1{(x,y) ∈ F}u0,pn+j
(x,y) dy dx,

where B(0, R) is the open ball of R
d centered on 0 and of radius R and

where |A| is the Lebesgue measure of set A. Unfortunately, we were unable
to derive a direct convergence result using this pseudo-martingale equality.
To proceed further, we need to transform the two-scale limits u0,pn in order
to get genuine martingales.

3.2 Rearrangement of the two-scale limits with integers

In the previous section, we established a “martingale-like” equality for the
two-scale limits u0,pn. To get genuine martingales in the sense of Defini-
tion 2.10, we need to rearrange the u0,pn. While we are unable to prove a
convergence for the rearrangement of the two-scale limits presented in this
section, the ideas behind this rearrangement provide insight on the next sec-
tion where we introduce another rearrangement and prove its convergence.
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In this section, we rearrange the u0,pn by introducing a new variable α

that belongs to Z
d. The rearrangement, denoted by vpn , depends on the slow

variable x ∈ Ω, on a fast variable y ∈ [0, p0[
d, and on the new variable α. To

rearrange the u0,pn into the vpn, we subdivide Ω× [0, pn[
d into Md

n = (pn/p0)
d

sets Ω ×
∏d

i=1[αi, αi + p0[. Each of these sets is the product of Ω with an
hypercube indexed by α = (α1, . . . , αd) and we define vpn(·,α, ·) as taking in

Ω× [0, p0[
d the same values u0,pn does in Ω×

∏d
i=1[αi, αi + p0[. The variable

y represents the position of the fast variable inside each hypercube. I.E., we
set:

vpn : Ω× Z
d × Yp0 → R,

(x,α,y) 7→ u0,pn(x,y + p0α).

We have the following proposition

Proposition 3.4. For all n in N, for almost all x in Ω and y in Yp0, the

α-indexed sequence (vpn(x,α,y))α∈Zd is Mn-periodic in each direction of α.

Moreover:

vpn(x,α,y) =

(
Mn

Mn+j

)d ∑

β∈J0,Mn+j/Mn−1Kd

vpn+j
(x,α+Mnβ,y), (3.2)

for all α in Z
d.

Proof. This is a direct consequence of Proposition 3.3.

This in turn should encourage us to look at the following problem.

Problem 3.5. Let’s call “imbricated (Mn)n-periodic d-dimensional sequences”,

sequences that satisfy the following properties (tn,α)n∈N,α∈Zd such that

• for all n in N, the α-indexed sequence (tn,α)α∈Zd is Mn-periodic in each

direction of α, i.e. such that for all n in N, for all α in Z
d, and for all

β in Z
d:

tn,α = tn,α+Mnβ,

• for all n in N, and for all α in Z
d,

tn,α =

(
Mn

Mn+j

)d ∑

β∈J0,Mn+j/Mn−1Kd

tn+j,α+Mnβ.
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Study the convergence of (tn,α)n∈N,α∈Zd as n tends to +∞. Under which

condition does there exist a sequence t∞,α such that for all non-negative

integers n

tn,α = lim
N→+∞

1

Nd

∑

β∈J0,N−1Kd

t∞,α+Mnβ.

or such that

tn,α = lim
N→+∞

1

2dNd

∑

β∈J−N,N−1Kd

t∞,α+Mnβ.

or both?

By Proposition 3.4, for almost all x in Ω and y in Yp0, the α-indexed
sequences (vpn(x,α,y))α∈Zd are imbricated (Mn)n-periodic d-dimensional
sequences. Solving Problem 3.5 would be the first step in having a very
elegant limit to the vpn as a function defined on Ω × Z

d × Yp0. Unfortu-
nately, we do not have an answer for Problem 3.5. While this sequence
is morally a martingale with respect to the filtration made of the σ-fields
{α+MnZ

d,α ∈ J0,Mn − 1Kd}, it technically is not: we have the same prob-
lem we had in the previous section. To conclude with bounded martingales
on the convergence, we would need a measure µ on Z

d such that µ(Zd) = 1,
invariant by translation and such that µ(mZ

d) = 1/m whenever m is an
integer different from 0. Such a measure cannot be σ-additive. If we remove
the σ additivity constraint, then µ exists: just set

µ(A) := lim
N→+∞

#(A ∩ J−N,NKd)

(2N + 1)d
.

It is unknown to the author if bounded martingales converge when they are
defined on a non σ-additive measure. To avoid that problem, we introduce,
in the next section, a different less natural rearrangement for the u0,pn, the
shuffle, for which we finally prove a convergence result.

3.3 Shuffle rearrangement of two-scale limits

In the previous section, we investigated a rearrangement where the set Ω ×
[0, pn[

d was subdivided into Md
n subsets indexed by α ∈ Z

d. In this section,
we finally construct a rearrangement, the shuffle, that results in a bounded
martingale; thus establishing a convergence result for the pn-two-scale limits
as n tends to +∞. To do so, we replace the variable α belonging to Z

d

with the variable y′ that belongs to [0, 1[d. Like the variable α of the previ-
ous section, the variable y′ indicates which hypercube of edge length p0 we
consider. The variable y remains unchanged and continue to represent the
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Figure 1: One step of the measure preserving rearrangement M1 = 2 and
M2 = 6

location inside the hypercube indexed by y′. We set for x in Ω, y in [0, p0]
d

and y′ in [0, 1]d,
wn(x,y,y

′) := vpn(x,α(y′),y),

where α(y′)i = ⌊Mny
′
i⌋ for all integers i in J1, dK. Using Proposition 3.4, we

derive that for almost all x in Ω, y in Yp0, (j, n) in N
2, and α in J0,Mn−1Kd

∫
∏d

i=1
[
αi
Mn

,
αi+1

Mn
[

wn(x,y,y
′) dy′ =

=
∑

β∈J0,
Mn+j

Mn
−1Kd

∫
∏d

i=1
[
Mnβi+αi

Mn+j
,
Mnβi+αi+1

Mn+j
[

wn+j(x,y,y
′) dy′. (3.3)

To transform the wn into martingales, we need to shuffle the hypercubes
as in Figure 1 where, to simplify the drawing, homogenization was only
performed on the last component of Rd, hence the presence of layers instead
of hypercubes. In that figure, we show one step of the rearrangement. As
seen in the drawing, each step of the rearrangement is measure preserving,
therefore the full rearrangement is also measure preserving. We need n − 1
such steps to fully rearrange wn.

To define rigorously this rearrangement, we begin by defining the function

12
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Figure 2: Two steps of the measure preserving rearrangement M1 = 2, M2 =
6 and M3 = 12

that maps the rearranged layer index onto the unrearranged layer index:

RM,m :J0,Mm− 1K → J0,Mm− 1K

i 7→ M · (i mod m) +

⌊
i

m

⌋
.

(3.4a)

The application RM,m maps km+ j to jM + k when k belongs to J0,M − 1K
and j belongs to J0, m−1K. We also have RM,m ◦Rm,M = Rm,M ◦RM,m = Id.

Then, we set the function that maps the rearranged layer onto the unre-
arranged one:

h∗M,m : [0, 1[ → [0, 1[,

y′ 7→
RM,m(⌊Mmy′⌋)

Mm
+

(
y′ −

⌊Mmy′⌋)

Mm

)
.

(3.4b)

This represents only one step of the rearrangement on one component.
For hypercubes, the permutation is the same but is done componentwise: we
set

hM,m: ]0, 1[
d →]0, 1[d,

(y′1, . . . , y
′
n) 7→ (h∗M,m(y

′
1), . . . , h

∗
M,m(y

′
n)).

13



And obtain one step of the rearrangement on all d components. For the
complete rearrangement on one component, see Figure 2, we set

H∗
n := h∗Mn−1,mn

◦ . . . ◦ h∗M1,m2
◦ h∗M0,m1

. (3.4c)

To get the complete rearrangement on all components we set

Hn: [0, 1[
d → [0, 1[d,

(y′1, . . . , y
′
n) 7→ (H∗

n(y
′
1), . . . , H

∗
n(y

′
n)).

(3.4d)

We also have
Hn = hMn−1,mn

◦ . . . ◦ hM1,m2
◦ hM0,m1

.

The function Hn shuffles the hypercubes
∏d

i=1[βi/Mn, (βi+1)/Mn[, hence we
call Hn the shuffle function.

Finally, we define

w̃n(x,y,y
′) := wn(x,y, Hn(y

′)). (3.5)

This measure preserving rearrangement, the shuffle, is purposefully con-
structed so the w̃n form a martingale for the following filtration of σ-fields

Fn = B(Ω)× B([0, p0]
d)× σ

{∏d
i=1

[
βi

Mn
, βi+1

Mn

[
,β ∈ J0,Mn − 1Kd

}
.

Remark 3.6. The above rearrangement of hypercubes is similar to the one
used for computing in place the Discrete Fast Fourier Transform: the bit
reversal. In the special case where Mn = 2n, the rearrangement simply
exchanges layers i, i.e., [i/2n, (i+1)/2n[, and i′, i.e., [i′/2n, (i′+1)/2n[, when
i and i′ are bit reversal permutations of each other. I.E when i =

∑n−1
j=0 bj2

j

and i′ =
∑N−1

j=0 bj2
n−1−j.

Remark 3.7. For general Mn, the rearrangement of hypercubes is also a bit
reversal but for a mixed basis. If ⌊Mny

′⌋ =
∑n

j=1 bjMj−1 with bj in J0, mj−1K,
then

H∗
n

(
1

Mn

n∑

j=1

bj
Mn

Mj
+ (y′ −

⌊Mny
′⌋

Mn
)

)
= y′.

We now state our main result as a self contained theorem.

Theorem 3.8 (Two-Scale Shuffle convergence). Let Ω be a bounded open

domain of R
d with d ≥ 1. Let (uε)ε>0 be a bounded sequence of functions

belonging to L2(Ω). Let (pn)n∈N be an increasing sequence of positive numbers

that satisfy Assumption 3.1. Set for all n ≥ 0 Mn := pn/p0 and for all n ≥ 1
mn := pn/pn−1. Let (εk)k∈N be a decreasing sequence of positive real numbers

14



converging to 0 such that the sequence (uεk)k∈N pn-two-scale converges to u0,pn
for all non-negative integer n.

Set

w̃n : Ω× [0, p0]
d × [0, 1]d → R

(x,y,y′) 7→ u0,pn (x, p0⌊MnHn(y
′)⌋+ y) .

where Hn is defined by Equations (3.4).
Then, the sequence w̃n is a bounded martingale in L2(Ω× [0, p0]

d× [0, 1]d),
in the sense of Definition 2.10, for the filtration

Fn = B(Ω)× B([0, p0]
d)× σ

{
d∏

i=1

[
βi
Mn

,
βi + 1

Mn

[
,β ∈ J0,Mn − 1Kd

}
. (3.6)

And, the sequence w̃n converges both strongly in L2(Ω× [0, p0]
d × [0, 1]d) and

almost everywhere in Ω× [0, p0]
d× [0, 1]d to w̃∞, which we call the Two-Scale

Shuffle limit. Moreover,

∫∫∫

A

w̃n(x,y,y
′) dy′ dy dx =

∫∫∫

A

w̃∞(x,y,y′) dy′ dy dx,

for all sets A in Fn. I.E., by Definition 2.7, w̃n = E(w̃∞|Fn).

Proof. The w̃n were constructed specifically so as to be a martingale for the
filtration (3.6). To prove they are a martingale for the filtration (Fn)n∈N, we
only need to prove that for all non-negative integer n, for almost all x in Ω,
almost all y in [0, p0]

d and for all β in J0,Mn − 1Kd, we have

∫
∏d

i=1[
βi
Mn

,
βi+1

Mn
[

w̃n+1(x,y,y
′) dy′ =

∫
∏d

i=1[
βi
Mn

,
βi+1

Mn
[

w̃n(x,y,y
′) dy′.

I.E., we need to show that
∫
∏d

i=1[
βi
Mn

,
βi+1

Mn
[

wn(x,y, Hn(y
′)) dy′ =

∫
∏d

i=1[
βi
Mn

,
βi+1

Mn
[

wn+1(x,y, HMn,mn+1
◦Hn(y

′)) dy′.

But Hn maps any hypercube
∏d

i=1[βi/Mn, (βi+1)/Mn[ to another hypercube∏d
i=1[β

′
i/Mn, (β

′
i + 1)/Mn[ and Hn is measure preserving. Therefore, we only

need to prove that for almost all x in Ω, almost all y in [0, p0]
d and for all β

in J0,Mn − 1Kd

∫
∏d

i=1[
βi
Mn

,
βi+1

Mn
[

wn(x,y,y
′) dy′ =

∫
∏d

i=1[
βi
Mn

,
βi+1

Mn
[

wn+1(x,y, HMn,mn+1
(y′)) dy′.

15



is satisfied. But this equality is equivalent to

1

Md
n

vpn(x,β,y) =

=
1

Md
n+1

∑

β′∈J0,mn+1−1Kd

vpn+1
(x, RMn,mn+1

(mn+1β + β′),y) =

=
1

Md
n+1

∑

β′∈J0,mn+1−1Kd

vpn+1
(x, (β + β′Mn),y),

which is true by Proposition 3.4. Therefore, the sequence w̃n is a martingale
for the filtration (Fn)n∈N.

By Proposition 2.3, this martingale is bounded in L2. It converges both
strongly in L2(Ω× [0, p0]

d× [0, 1]d) and almost everywhere to a function w̃∞,
see [7, Corollary 7.22].

Corollary 3.9. It is possible to recover u0,pn from the Two-Scale Shuffle limit

w̃∞. First, for all β in J0,Mn− 1Kd, all y′ in
∏d

i=1[βi/Mn, (βi+1)/Mn[, and

almost all (x,y) in Ω× [0, p0]
d, we have

w̃n(x,y,y
′) =Md

n

∫
∏d

i=1
[

βi
Mn

,
βi+1

Mn
[

w̃∞(x,y,y′) dy′

because w̃n = E(w̃∞|Fn). Since the shuffle function Hn is one to one from

[0, 1[d to [0, 1[d, see Remark 3.7, we have wn(x,y,y
′) = w̃n(x,y, H

−1
n (y′)).

Finally, u0,pn(x,y) is equal to the constant value taken by y′ 7→ wn(x,y −
p0⌊y/p0⌋,y

′) when y′ belongs to the hypercube [⌊y/p0⌋/Mn, (⌊y/p0⌋+1)/Mn[.

4 Application: heat equation in multilayers

In this section, we consider the multilayer heat equation with three spatial
dimensions which we homogenize along the vertical space variable, i.e., along
the direction perpendicular to the layers.

In [13], the author established the equations satisfied by the two-scale
limits of the heat equation in multilayers with transmission conditions be-
tween adjacent layers. When the magnitude of the interlayer conductivity
between adjacent layers is weak, see [13, §6.1], the two-scale limit depends on
the number of layers present in the homogenization period, i.e., on the scale
factors pn. For given values of the slow variables (x, t), the two scale limit is
piecewise constant in its scalar fast variable y and takes as many values as
there are layers in a single homogenization cell. Our goal is to establish the
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Figure 3: The multilayer geometry, six layers: N = 6.

equation satisfied by the limit of two-scale limits, i.e., the Two-Scale Shuffle
limit, as defined in Theorem 3.8.

To do so, we first recall previously known results in §4.1, then derive new
results using Two-Scale Shuffle Convergence in §4.2.

4.1 The two-scale limit of the multilayer heat equation

We start by recalling some results we obtained in [13]. To avoid unnecessary
complications, we consider here a simpler problem than the one considered
in [13, System (4.1)]. Let Ω be B×]0, 1[ where B is a convex bounded open
subset of R2 with smooth boundary. Let δ, 0 < δ < 1/2. Let I be the interval
]δ, 1− δ[. For all N , let IN be

⋃N−1
j=0 ](j+ δ)/N, (j+1− δ)/N [. Let ΩN be the

domain B×IN . Let ΓN,+
j = B×{(j+δ)/N} and ΓN,−

j = B×{(j−δ)/N}. Let

ΓN,+ =
⋃N−1

j=1 ΓN,+
j and ΓN,− =

⋃N−1
j=1 ΓN,−

j . Let Γe = ∂B×]0, 1[∪ΓN,+
0 ∪ΓN,−

N .

Let γ be the application on ∂ΩN that maps u in H1(ΩN) to its trace on
∂ΩN . Let γ′ be the trace operator swapped between ΓN,+

j and ΓN,−
j : i.e.,

γ′u(x̂, (j ± δ)/N) = γu(x̂, (j ∓ δ)/N) for all x̂ in B and all j in J1, N − 1K.
See Figure 3 where we schematized the three dimensional domain ΩN by
projecting it onto the two-dimensional plane.

Let A, K and J be positive reals: A represents the heat conductivity
inside ΩN , and J is the magnitude of the surfacic interlayer conductivity.
For all positive integer N , we consider the multilayer heat equation

∂uN
∂t

− A△uN = 0 in ΩN × R
+ (4.1a)
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with the boundary conditions

A
∂uN
∂ν

=

{
0 on Γe × R

+

−K
N
γuN + J

N
(γ′uN − γuN) on (ΓN,+ ∪ ΓN,−)× R

+,
(4.1b)

and the initial condition
uN(·, 0) = u0N . (4.1c)

We also define the energy

EN(v) =
A

2

∫

ΩN

‖∇v(x)‖2 dx+
K

2N

∫

ΓN,+∪ΓN,−

|γv|2 dσ(x)

+
J

2N

N−1∑

j=1

∫

B

∣∣∣∣v(x̂,
j + δ

N
)− v(x̂,

j − δ

N
)

∣∣∣∣
2

dx̂,

for all v in H1(ΩN). We suppose

sup
N
EN(u0N) < +∞,

and denote by u00,M the M-two-scale limit of the initial conditions u0N . We
have the energy equality

EN(uN(·, T )) +

∫ T

0

∫

ΩN

∣∣∣∣
∂uN
∂t

∣∣∣∣
2

dx dt = EN(uN(·, T )),

for all T ≥ 0. Because of the energy bound, for all x in Ω and all j in Z/MZ,
the function y 7→ u00,M(x, y) is constant in the interval ]j + δ, j + 1 − δ[.
Moreover, that function is M-periodic in y. We denote by u00,Mn,j

(x) the
value taken by the function y 7→ u00,M(x, y) in the interval ]j + δ, j + 1− δ[.

Using two-scale convergence [1, 10] and its variant on periodic surfaces [8,
9, 2], the properties of the two-scale limit of (uN)N∈N, solutions to the mul-
tilayer heat system (4.1) with J 6= 0, were established in [13, Theorem 6.1].

Let (Mn)n≥0 be a sequence of positive integers such that M0 = 1 and such
that Mn+1 is always an entire multiple of Mn. For all (x, t) in Ω × R

+, the
Mn-two-scale limit y 7→ u0,Mn

(x, t, y) takes Mn values: it is constant in each
interval ]j + δ, j + 1− δ[. For j in Z/MnZ, we note u0,Mn,j(x, t) the value of
u0,Mn

(x, t, ·) in this interval. We have u0,Mn,j+Mn
(x, t) = u0,Mn,j(x, t). These

functions satisfy, for all j in Z/MnZ, the weak formulation of

∂u0,Mn,j

∂t
− A△T u0,Mn,j +

2K

1− 2δ
u0,Mn,j+

+
J

1− 2δ
(2u0,Mn,j − u0,Mn,j+1 − u0,Mn,j−1) = 0, (4.2a)
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in Ω×R
+, and where △T = ∂2

∂x2
1

+ ∂2

∂x2
2

, ∇T = [ ∂
∂x1
, ∂
∂x2

]T. And with boundary

conditions
∂u0,Mn,j

∂ν
= 0 on (∂B×]0, 1[)× R

+, (4.2b)

and initial condition

u0,Mn,j(·, 0) = u00,Mn,j in B×]0, 1[. (4.2c)

We have recalled previously known results on the properties of the two-
scale limits of the multilayer heat equation. In the next section, we establish
the properties satisfied by the Two-Scale Shuffle limit of the multilayer heat
equation.

4.2 The two-scale shuffle limit of the multilayer heat

equation

We now use Theorem 3.8 to have the two-scale limits themselves converge.
We choose Mn = 2n to avoid complications at first. We establish the follow-
ing:

Theorem 4.1. Let w̃∞ be the Two-Scale Shuffle limit defined from (u0,2n)n∈N
as in Theorem 3.8. For all (x, t) in Ω × R

+, and y′ in [0, 1]. The function

w̃∞(x, t, ·, y′) is constant in the interval ]δ, 1−δ[. If we denote by w̃∞(x, t, y′)
the value of w̃∞(x, t, ·, y′) inside the interval ]δ, 1− δ[, the Two-Scale Shuffle

limit w̃∞ is a weak solution to:

∂w̃∞

∂t
(x, t, y′)−A△T w̃∞(x, t, y′) +

2K

1− 2δ
w̃∞(x, t, y′)

+
J

1− 2δ
(2w̃∞(x, t, y′)− w̃∞(x, t, τ+(y′))− w̃∞(x, t, τ−(y′))) =0,

(4.3a)

in Ω× R
+×]0, 1[, and where, for all non-negative integers j:

τ+(y′) = y′ + 3 · 2−(j+1) − 1 when 1− 2−j ≤ y′ < 1− 2−(j+1),

τ−(y′) = y′ − 3 · 2−(j+1) + 1 when 2−(j+1) ≤ y′ < 2−j .

with boundary conditions

∂w̃∞

∂ν
= 0 on (∂B×]0, 1[)× R

+×]0, 1[, (4.3b)

and initial condition

w̃∞(·, 0, ·) = w̃0
∞.

where w̃0
∞ is the Two-Scale Shuffle Limit of the initial conditions and where,

as an abuse of notations, we denote by w̃0
∞(x, t, y′) the constant value taken

by y 7→ w̃0
∞(x, t, y, y′) in the interval ]δ, 1− δ[.
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Proof. Let n in N and β belongs to J0, 2n − 1K. Let the wn be defined as
in §3.3, and the w̃n be defined from the 2n-two scale limits u0,2n as in The-
orem 3.8. Both the w̃n and the wn are functions defined over (B×]0, 1[) ×
R

+×]0, 1[×]0, 1[. For all (x, t) in (B×]0, 1[)× R
+, and y′ in ]0, 1[, the appli-

cation y 7→ w̃n(x, t, y, y
′) is constant on ]δ, 1 − δ[. As an abuse of notations,

let’s also denote by w̃n(x, t, y
′) the value of w̃n(x, t, y

′, y) when y belongs to
]δ, 1−δ[. We use the same abuse of notations for the wn. Consider a test func-
tion ϕ belonging to C∞(Ω×R

+). Set ψ(x, t, y) = ϕ(x, t)1{y ∈ [ β
2n
, β+1

2n
[}. Let

QT = Ω × R
+. Then, since the u0,2n,j satisfy the weak formulation of (4.2),

we have:
∫∫

QT

∫

[ β

2n
,β+1

2n
[

∂wn

∂t
(x, t, y′) · ϕ(x, t) dy′ dx dt

+A

∫∫

QT

∫

[ β

2n
,β+1

2n
[

∇Twn(x, t, y
′) · ∇Tϕ(x, t) dy

′ dx dt

+
2K

1− 2δ

∫∫

QT

∫

[ β
2n

,β+1

2n
[

wn(x, t, y
′) · ϕ(x, t) dy′ dx dt

+
J

1− 2δ

∫

[ β

2n
,β+1

2n
[

2wn(x, t, y
′) · ϕ(x, t) dy′ dx dt

−
J

1 − 2δ

∫

[ β

2n
,β+1

2n
[

(wn(x, t, y
′ + 2−n) + wn(x, t, y

′ − 2−n)) · ϕ(x, t) dy′ dx dt = 0,

where, to simplify notations, we consider the function wn to be 1-periodic in
y′. Therefore, for all β in J0, 2n − 1K,

∫∫

QT

∫

[ β

2n
,β+1

2n
[

∂w̃n

∂t
(x, t, y′) · ϕ(x, t) dy′ dx dt

+A

∫∫

QT

∫

[ β

2n
,β+1

2n
[

∇Tw̃n(x, t, y
′) · ∇Tϕ(x, t) dy

′ dx dt

+
2K

1− 2δ

∫∫

QT

∫

[ β

2n
,β+1

2n
[

w̃n(x, t, y
′) · ϕ(x, t) dy′ dx dt

+
J

1− 2δ

∫∫

QT

∫

[ β
2n

,β+1

2n
[

2w̃n(x, t, y
′) · ϕ(x, t) dy′ dx dt

−
J

1− 2δ

∫∫

QT

∫

[ β

2n
,β+1

2n
[

w̃n(x, t, H
∗
n
−1(H∗

n(y
′) + 2−n)) · ϕ(x, t) dy′ dx dt

−
J

1 − 2δ

∫∫

QT

∫

[ β

2n
,β+1

2n
[

w̃n(x, t, H
∗
n
−1(H∗

n(y
′)− 2−n)) · ϕ(x, t) dy′ dx dt. = 0

(4.4)
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Here H∗
n is simply the bit reversal of the first n coefficients in the binary

expansion. Thus:

H∗
n
−1(H∗

n(y
′ + 2−n)) =





y′ + 3 · 2−(j+1) − 1 if 1− 2−j ≤ y′ < 1− 2−(j+1),

for 0 ≤ j ≤ n− 1,

y′ − 1 + 2−n if 1− 2−n ≤ y′ < 1.

(4.5)
And

H∗
n
−1(H∗

n(y
′)− 2−n) =





y′ − 3 · 2−(j+1) + 1 if 2−(j+1) ≤ y′ < 2−j,

for 0 ≤ j ≤ n− 1,

y′ + 1− 2−n if 0 ≤ y′ < 2−n.

(4.6)

Since ϕ(x, t)1{y′ ∈ [ β
2n
, β+1

2n
[} is Fn-measurable and w̃n = E(w̃∞|Fn), Equal-

ity (4.4) remains valid after replacing w̃n by w̃∞. Therefore,

∫∫

QT

∫

[ β

2n
,β+1

2n
[

∂w̃∞

∂t
(x, t, y′) · ϕ(x, t) dy′ dx dt

+A

∫∫

QT

∫

[ β

2n
,β+1

2n
[

∇Tw̃∞(x, t, y′) · ∇Tϕ(x, t) dy
′ dx dt

+
2K

1− 2δ

∫∫

QT

∫

[ β

2n
,β+1

2n
[

w̃∞(x, t, y′) · ϕ(x, t) dy′ dx dt

+
J

1− 2δ

∫

[ β
2n

,β+1

2n
[

2w̃∞(x, t, y′) · ϕ(x, t) dy′ dx dt

−
J

1 − 2δ

∫

[ β

2n
,β+1

2n
[

(w̃∞(x, t, τ+(y′))− w̃∞(x, t, τ−(y′))) · ϕ(x, t) dy′ dx dt = 0

for all n in N and β in J1, 2n− 2K. Choose y′ in ]0, 1[, for any positive integer
n, set β = ⌊2ny′⌋ and take the limit in the above equality divided by 2−n as
n tends to +∞.

If instead of setting Mn = 2n, we consider a general sequence (Mn)n∈N,
the same reasonning holds. When Mn is 2n, the shuffling of layers is the
bit reversal of the first n coefficients of the binary representation of y, thus
involutive. This is not the case for general Mn and we must use Remark 3.7.
Therefore, utmost care must be taken to compute the analogues of (4.5)
and (4.6). We provide the limit in the general case without proof. In that
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case, we have

H∗
n
−1(H∗

n(y
′) +

1

Mn
) =





y′ −
∑j

l=1
1
Ml

+ 1
Mj+1

if 1− 1
Mj

≤ y′ < 1− 1
Mj+1

,

for 0 ≤ j ≤ n− 1,

y′ − 1 + 1
Mn

if 1− 1
Mn

≤ y′ < 1.

H∗
n
−1(H∗

n(y
′)−

1

Mn
) =





y′ +
∑j

l=1
1
Ml

− 1
Mj+1

if 1
Mj

≤ y′ < 1
Mj+1

,

for 0 ≤ j ≤ n− 1,

y′ + 1− 1
Mn

if 0 ≤ y′ < 1
Mn
.

and the limit equation (4.3a) remains valid if we set instead

τ+(y′) = y′ −

j∑

l=1

1

Ml

+
1

Mj+1

when 1−
1

Mj

≤ y′ < 1−
1

Mj+1

, (4.7a)

τ−(y′) = y′ +

j∑

l=1

1

Ml

−
1

Mj+1

when
1

Mj+1

≤ y′ <
1

Mj

, (4.7b)

for all non-negative integer j.

5 Conclusion

We have proven in this paper, see Theorem 3.8, that the two-scale limits of
a given sequence of functions, computed for periods that are entire multiple
of the previous ones, form a bounded martingale and thus converge both
strongly in L2 and almost everywhere. From the limit, called the Two-Scale
Shuffle limit, one can recover any element in the sequence of two-scale limits:
this limit contains all the information contained in the whole sequence of
two-scale limits, see Corollary 3.9. For a good choice of increasing periods,
this limits captures everything that happens at any length scale that is an
entire multiple of ε.

Unfortunately, this limit does not capture all phenomena with a period
linear in ε: it cannot capture phenomena with an irrational scale factor.
The construction of the martingale depends on the assumption that pn+1 is
always an entire multiple of pn. If there are two interesting scales whose ratio
is irrational then no choice of periodic scale carry the information for both
scales.

We applied the notion of the Two-Scale Shuffle limit to the heat equation
on multilayers with transmission conditions between adjacent layers. We
then considered the solutions to these equations and established the equation
satisfied by their Two-Scale Shuffle limit.
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To establish the convergence of the two-scale limit, we used the shuffle
of hypercubes described in §3.3. Unfortunately, because of this shuffle, it is
not easy to reach an intuitive understanding of the Two-Scale Shuffle limit.
Results on the existence of the limit in the setting of §3.2 would not have
that drawback. Solving Problem 3.5 would be a first step to obtain a limit
in this setting.
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