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Homogenization at different linear scales,
bounded martingales and the Two-Scale

Shuffle limit

Kévin Santugini-Repiquet∗

September 27, 2011

Abstract

In this short paper, we look at two-scale limits of sequences with
varying homogenization periods, each period being a multiple of the
previous one. We establish that, up to a measure preserving rear-
rangement, these two-scale limits form a martingale which is bounded:
the rearranged two-scale limits themselves converge both strongly in
L2 and almost everywhere when the period tends to +∞. This limit,
called the two-scale shuffle limit, contains all the information present
in all the two-scale limits in the sequence.

1 Introduction
Homogenization is used to study the solutions to equations when there are
multiple scales of interest, usually a microscopic one and a macroscopic one.
In particular, one may consider the solutions uε to a partial differential equa-
tion with quasi ε-periodic coefficient and study their behavior as the small
period ε tend to 0. Two-scale convergence, introduced by G. Nguetseng [9],
and G. Allaire [1] is suited to study this particular subset of homogenization
problems called periodic homogenization. This was later extended to the case
of periodic surfaces by M. Neuss Radu[7, 8] and G.Allaire, A. Damlamian
and U. Hornung[3]. It can also be used in the presence of periodic holes in
the geometry, see [4, 5] or to homogenize multilayers [11, 10].
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Intuitively, two-scale convergence introduces the concept of two-scale
limit u0 which is a function of both a macroscopic variable x and a micro-
scopic p-periodic variable y such that, in some “meaning”, x 7→ u0(x,x/ε) is
a good approximation of uε.

As indicated by its name, two-scale convergence captures the behavior at
two scales: the macroscopic one and the pε-periodic one. However, two-scale
convergence does not capture all phenomena that happens at a scale linear
in ε but only those whose length scale is pε/m where m is an integer. The
two-scale limit of a sequence depends, not only on the asymptotic scale, but
also on the precise value of the chosen period. For example, any phenomena
happening at the length scale of 2ε will not be fully apparent in the two-scale
limit computed with period ε. The two-scale limit computed with period 2ε
will contain no less —and might actually contain more— information than
the two-scale limit computed with period ε. For example, the homogenization
of sin(2πx/ε) + sin(πx/ε) gives a two-scale limit of u0 : (x, y) 7→ sin(2πy)
if computed with the homogenization period ε, i.e. when p = 1, and u0 :
(x, y) 7→ sin(2πy) + sin(πy) if computed with the homogenization period 2ε,
i.e. when p = 2. Furthermore, if we choose p = 1/2, then the two-scale
limit is none other than the null function. Worse, the scale factor p could be
irrational.

The choice of the scale factor p used in the homogenization process is
therefore of utmost importance in two-scale convergence. Using a badly
chosen scale factor p may and will often cause a huge loss of information. At
worst, we recover no more information than the one obtained by the standard
weak L2 limit: if pε is the correct choice of homogenization period, the two-
scale limit computed with period λpε where λ is an irrational number should,
intuitively, carry no information about what happens at scale pε.

Fortunately, there is usually a natural choice of period: the coefficients
of the partial differential equation are often chosen quasi-periodic in ε. The
most natural choice is to choose p = 1, i.e. to consider the correct microscopic
scale for uε is ε itself. If there are two important periods to consider ε1 and
ε2, the intuitive solution is to choose a period that is a multiple of both.
However, this can only be done if the ratio ε1/ε2 is a rational number.

When the two-scale limit depends on the fast variable, we may, to increase
the information obtained by two-scale convergence, consider an homogeniza-
tion period of mε instead of ε where m is a positive integer. The two-scale
limit computed with the homogenization period mε contains more informa-
tion than the two-scale limit computed with the homogenization period ε.
It is then natural to study the behavior of the two-scale limit as m tends to
+∞. G. Allaire and C. Conca studied in [2] a similar problem and estab-
lished, for an elliptic problem, the behavior of the spectra of the equation
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satisfied by the two-scale limit as the scale factor p goes to +∞.
In this paper, we consider various two-scale limits, each computed with

a different homogenization period. In particular, we consider a sequence of
periods (pn)n∈N such that for all integers n, pn+1/pn is a positive integer and
we study the two-scale limit of (uε)ε>0 computed with the homogenization
period pnε. This two-scale limit, denoted u0,pn , is pn-periodic in each com-
ponent of its fast variable. Since pn+1 is always a multiple of pn, one can
always recover the two-scale limit u0,pn from the two scale limit u0,pn+1 . If
pn+1 = mnpn and in dimension d ≥ 1:

u0,pn+1(x,y) =
1

md
n

∑
α∈J0,mn−1Kd

u0,mnpn(x,y +α).

The sequence of two-scale limits (u0,pn)n∈N yields increasing information
on the asymptotic behavior of (uε)ε>0. A natural question is whether the
two-scale limits u0,pn themselves converge whenever n tends to +∞. I.E.
does there exist a function that carry the information of all the pn-two-scale
limits? The goal of our paper is to answer this question. The answer is
positive. We show in this paper that the sequence of two-scale limits is,
after a measure preserving rearrangement, a bounded martingale in L2 and
therefore converges both strongly in L2 and almost everywhere to a function
we call the two-scale shuffle limit.

In §2, we remind the reader about the known theorems of two-scale con-
vergence. In §3, we show how the different two-scale limits are bound by
martingale type equalities and explain how to transform these two-scale lim-
its to get a genuine martingale. This leads to our stating of our main theorem:
Theorem 3.5 in which we show that in a certain meaning the two-scale limits
themselves converge to the two-scale shuffle limit. In §4, we use this result on
the heat equation in multilayers with transmission conditions between adja-
cent layers and establish, for this particular example, the equation satisfied
by the two-scale shuffle limit in Theorem 4.1.

2 Notations and the classical notion of two-
scale convergence

First, as in [1], we introduce some notations. In this paper, p always refer to
a scale factor. It remains constant while taking the two-scale limit. However,
the goal of this paper is to observe the behavior of the two-scale limits as p
tend to +∞.
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By Ω, we denote a bounded open domain of Rd where n ≥ 1. By Yp,
we denote the cube [0, p]d. By L2

#(Yp), we denote the space of measurable
functions defined over Rd, that are p-periodic in each variable and that are
square integrable over Yp. By C#(Yp), we denote the set of continuous func-
tions defined on Rd that are p-periodic in each variable.

We reproduce the now classical definition of two-scale convergence found
in [1, 9]. For convenience, we added the scale factor p.

Definition 2.1 (Two-scale convergence). Let p be a positive real. A sequence
(uε)ε>0 belonging to L2(Ω) is said to p-two-scale converge if there exist u0,p

in L2(Ω× Yp) such that:

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

1

pd

∫
Ω

∫
Yp

u0,p(x,y)ψ (x,y) dy dx, (2.1)

for all ψ in L2(Ω; C#(Yp)).

G. Allaire, see [1], and G.Nguetseng, see [9], proved that any sequence of
functions bounded in L2 has a subsequence that two-scale converges. Let’s
reproduce this precise compactness result.

Theorem 2.2. Let (uε)ε>0 be a sequence of functions belonging to L2(Ω).
Then, there exist u0,p in L2(Ω× (0, 1)) and a subsequence εk converging to 0
such that

lim
k→∞

∫
Ω

uεk(x)ψ

(
x,
x

εk

)
dx =

1

pd

∫
Ω

∫
Yp

u0,p(x,y)ψ (x,y) dy dx, (2.2)

for all ψ in L2(Ω; C#(Y )).

Proof. See G. Allaire [1] and G. Nguetseng [9]. The presence of the scale
factor p has no impact on the proof.

We also have the classical proposition

Proposition 2.3. Let uε p-two-scale converge to u0,p, then

1

pd
‖u0,p‖L2(Ω×Yp) ≤ lim

ε→0
‖uε‖L2(Ω).

Proof. See G. Allaire [1] and G. Nguetseng [9]. The presence of the scale
factor p has no impact on the proof.

The next proposition is easy to derive from Theorem 2.2
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Proposition 2.4. Let (pn)n∈N be an increasing sequence of positive real num-
bers. Let (uε)ε>0 be a continuous sequence of function belonging to L2(Ω),
then there exist a subsequence (εk)k∈N converging to 0, and a sequence of
functions un such that for any integer n the sequence (uεk)k∈N pn-two-scale
converges to u0,pn. I.E., such that for all integers n:

lim
k→∞

∫
Ω

uεk(x)ψ

(
x,
x

εk

)
dx =

1

pdn

∫
Ω

∫
Ypn

u0,pn(x,y)ψ (x,y) dy dx,

for all ψ in L2(Ω; C#(Ypn)).

Proof. Apply Theorem 2.2 multiple times and proceed via diagonal extrac-
tion.

Our goal in this paper is to study the limit of u0,pn as pn tends to +∞.

3 Two-scale limits and bounded martingales
In this section, we always consider a sequence of scale factors (pn)n∈N such
that pn+1 is a multiple of pn for every non negative integer n. We set for
n ≥ 1, mn := pn/pn−1 and for n ≥ 0 Mn := pn/p0. We always consider a
continuous sequence of functions (uε)ε>0 bounded in L2(Ω) and a decreasing
sequence of positive (εk)k∈N such that the sequence (uεk)k∈N pn-two-scale
converges for all integers n. This is justified by Proposition 2.4.

To choose the sequence pn, one may set p0 first, then set pn = Mnp0 and
choose the sequence of integers Mn such that Mn+1 is always a multiple of
Mn and such that any integer eventually divide Mn when n is large enough.
For example, one may set Mn = n! or let Mn be the smallest multiple of all
positive integers smaller than n.

Our goal is to study the convergence of the two-scale limits u0,pn when n
goes to infinity. In this section, we proceed as follows: we begin by estab-
lishing a useful equality that looks like a martingale equality in §3.1, then
we propose a rearrangement of the two-scale limits in §3.2, and finally pro-
pose another rearrangement of the two-scale limits in §3.3, the shuffle, which
transform the sequence of two-scale limits into a bounded martingale.

3.1 An almost martingale equality

Consider a sequence (pn)n∈N such that pn+1/pn is a positive integer for all n.
We begin by deriving the p-two-scale limit from the mp-two-scale limit when
m is an integer.
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Proposition 3.1. Let m be an integer. Let p be a positive scale factor.
Let (uε)ε>0 be a sequence of functions belonging to L2(Ω), and p-two-scale
converging to u0,p and mp-two-scale converging to u0,mp. Then, for almost
all x in Ω and y in Yp:

u0,p(x,y) =
1

md

∑
α∈J0,m−1Kd

u0,mp(x,y +αp).

Proof. Let φ belong to C∞(Ω × Rd) be p-periodic in the last d variables.
Since m is an integer, φ is also mp-periodic in the last d variables. We take
the limit of

∫
Ω
uε(x)φ(x,x/ε) dx, as ε tend to 0, in the sense of two-scale

convergence for both scale factors mp and p:

1

pd

∫
Ω

∫
Yp

u0,p(x,y)φ(x,y) dx dy =

=
1

mdpd

∫
Ω

∫
Ymp

(
u0,mp(x,y)

)
φ(x,y) dx dy,=

=
1

mdpd

∫
Ω

∫
Yp

( ∑
α∈(J0,m−1Kd

u0,mp(x,y +αp)
)
φ(x,y) dx dy,

for all φ in C∞(Ω× Rd).

This simple but essential proposition provides all we need to show that
up to a rearrangement the sequence of two-scale limits u0,pn is actually a
martingale.

We derive the following corollary.

Corollary 3.2. For all x in Ω, y in Rd, j in N and n in N, we have

u0,pn(x,y) =

(
pn
pn+j

)d ∑
α∈J0,pn+j/pn−1Kd

u0,pn+j(x,y +αpn).

Ideally, we would like to consider the limit of u0,pn as n tend to +∞.
Because of this equality, the sequence u0,pn is “morally” a martingale for the
filtration made of these σ-fields:

Fn = B(Ω)×
(
B(Rn) + pnZd

)
.

Unfortunately, this isn’t technically true as all the sets belonging to these
σ fields are of infinite measure and the u0,pn are all periodic. However, the
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equalities defining what is a martingale are satisfied if one replaces the stan-
dard integral of Rd by the limit of the mean over a ball as its radius tends to
+∞. I.E., we have for all F in Fn

lim
R→+∞

1

|B(0, R)|

∫
Ω

∫
B(0,R)

1{(x,y) ∈ F}u0,pn(x,y) dy dx =

= lim
R→+∞

1

|B(0, R)|

∫
Ω

∫
B(0,R)

1{(x,y) ∈ F}u0,pn+j(x,y) dy dx,

where B(0, R) is the open ball of Rd centered on 0 and of radius R and
where |A| is the Lebesgue measure of set A. Unfortunately, we were unable
to derive a direct convergence result using this pseudo martingale equality.
To proceed further, we need to rearrange the two-scale limits to get genuine
martingales.

3.2 Rearrangement of the two-scale limits with integers

In this subsection, we rearrange the two-scale limits as functions defined over
Ω×Zd×Yp0 . While we were unable to obtain a convergence in that case, the
ideas of this section provide insight on the next section in which we prove
convergence for another rearrangement. Given the two-scale limits u0,pn , we
define

vpn : Ω× Zd × Yp0 → R,
(x,α,y) 7→ u0,pn(x,y + p0α).

We have the following proposition

Proposition 3.3. For all n in N, for almost all x in Ω and y in Yp0, the
sequence (vpn(x,α,y))α∈Zd is pn/p0-periodic in each direction. Moreover:

vpn(x,α,y) =

(
Mn

Mn+j

)d ∑
β∈J0,Mn+j/Mn−1Kd

vpn+j(x,α+Mnβ,y). (3.1)

Proof. This is a direct consequence of Corollary 3.2.

This in turn should encourage us to look at the following problem.

Problem 3.4. Let’s call sequences (tn,α)n∈N,α∈Zd that are Mn periodic in
each component of α and that satisfy

tn,α =

(
Mn

Mn+j

)d ∑
β∈J0,Mn+j/Mn−1Kd

tn+j,α+Mnβ.
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“imbricated (Mn)n-periodic d-dimensional sequences”. Study the convergence
of such sequences as n tend to +∞. Under which condition does there exists
a sequence t∞,α such that for all non negative integers n

tn,α = lim
N→+∞

(
1

Nd

)d ∑
β∈J0,N−1Kd

t∞,α+Mnβ.

or such that

tn,α = lim
N→+∞

(
1

2dNd

)d ∑
β∈J−N,N−1Kd

t∞,α+Mnβ.

or both?

By Proposition 3.3, for almost all x in Ω and y in Yp0 , the sequences
(vpn(x,α,y))α∈Zd are imbricated (pn)n-periodic d-dimensional sequences. Solv-
ing Problem 3.4 would be the first step in having a very elegant limit to the
vpn as a function defined on Ω×Zd× Yp0 . Unfortunately, we do not have an
answer for Problem 3.4. While this sequence is morally a martingale with
respect to the filtration made of the σ-fields {α+ pn

p0
Zd,α ∈ J0, pn

p0
− 1Kd}, it

technically is not: we have the same problem we had in the previous section.
To conclude with bounded martingales on the convergence, we would need a
measure µ on Zd such that µ(Zd) = 1, invariant by translation and such that
µ(mZd) = 1/m whenever m is an integer different from 0. Such a measure
cannot be σ-additive. If we remove the σ additivity constraint, then µ exists:
just set

µ(A) = lim
N→+∞

#(A ∩ J−N,NKd)
(2N + 1)d

.

It is unknown to the author if bounded martingales converge when they are
defined on a non σ-additive measure. To avoid that problem, we introduce,
in the next section, a different less natural rearrangement for the u0,pn , the
shuffle, for which we finally prove a convergence result.

3.3 Shuffle rearrangement of two-scale limits

In this section, we finally construct a rearrangement, the shuffle, that results
in a bounded martingale. And, since bounded martingales in L2 converge
both strongly in L2 and almost everywhere, this establishes a convergence
result for the u0,pn as n tend to +∞.

Let for x in Ω, y in [0, p0]d and y′ in [0, 1]d,

wn(x,y,y′) = vpn(x,α(y′),y),
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Figure 1: One step of the measure preserving rearrangement M1 = 2 and
M2 = 6

where α(y′)i = bMny
′
ic for all integers i in J1, dK. The variable y′ replaces

the variable α of the previous section. Using Proposition 3.3, we derive that
for almost all x in Ω, y in Yp0 , (j, n) in N2, and α in J0,Mn − 1Kd∫

∏d
i=1[

αi
Mn

,
αi+1

Mn
)

wn(x,y,y′) dy′ =

=
∑

β∈J0,
Mn+j
Mn

−1Kd

∫
∏d
i=1[

Mnβi+αi
Mn+j

,
Mnβi+αi+1

Mn+j
)

wn+j(x,y,y
′) dy′. (3.2)

To transform the wn into martingales, we need to shuffle the hypercubes
as in Figure 1 where, to simplify the drawing, homogenization was only
performed on the last component of Rd, hence the presence of layers instead
of hypercubes. In that figure, we show one step of the rearrangement. As
seen in the drawing, each step of the rearrangement is measure preserving,
therefore the full rearrangement is also measure preserving. We need n − 1
such steps to fully rearrange wn.

To define rigorously this rearrangement, we begin by defining the function
that maps the rearranged layer index onto the unrearranged layer index:

RM,m(i) :J0,Mm− 1K→ J0,Mm− 1K

i 7→M(i mod m) +

⌊
i

m

⌋
.

(3.3a)
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Figure 2: Two steps of the measure preserving rearrangement M1 = 2, M2 =
6 and M3 = 12

for all i in J0,Mm− 1K. We have RM,m ◦Rm,M = Rm,M ◦RM,m = Id. Then,
we set the function that maps the rearranged layer onto the unrearranged
one:

h∗M,m : [0, 1)→ [0, 1),

y′ 7→ RM,m(bMmy′c)
Mm

+

(
y′ − bMmy′c)

Mm

)
.

(3.3b)

This represents only one step of the rearrangement on one component.
For hypercubes, the permutation is the same but is done componentwise: we
set

hM,m: (0, 1)d → (0, 1)d,

(y′1, . . . , y
′
n) 7→ (h∗M,m(y′1), . . . , h∗M,m(y′n)).

And obtain one step of the rearrangement on all d components. For the
complete rearrangement on one component, see Figure 2, we set

H∗n := h∗Mn−1,mn
◦ . . . ◦ h∗M1,m2

◦ h∗M0,m1
. (3.3c)

To get the complete rearrangement on all components we set

Hn: [0, 1)d → [0, 1)d,

(y′1, . . . , y
′
n) 7→ (H∗n(y′1), . . . , H∗n(y′n)).

(3.3d)
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We also have
Hn = hMn−1,mn ◦ . . . ◦ hM1,m2 ◦ hM0,m1 .

The function Hn shuffles the hypercubes
∏d

i=1[βi/Mn, (βi+1)/Mn), hence we
call Hn the shuffle function.

Finally, we define

w̃n(x,y,y′) := wn(x,y, Hn(y′)). (3.4)

This measure preserving rearrangement, the shuffle, is purposefully con-
structed so the w̃n form a martingale for the following filtration of σ-fields
Fn = B(Ω)× B([0, p0]d)× σ

{∏d
i=1

[
βi
Mn
, βi+1
Mn

)
,β ∈ Zd

}
.

Remark 1. The above rearrangement of hypercubes is similar to the one used
for computing in place the Discrete Fast Fourier transform: the bit reversal.
In the special case where Mn = 2n, the rearrangement simply exchanges
layers i, i.e. [i/2n, (i + 1)/2n), and i′, i.e. [i′/2n, (i′ + 1)/2n), when i and i′
are bit reversal permutations of each other. I.E when i =

∑N−1
j=0 bj2

j and
i′ =

∑N−1
j=0 bj2

N−1−j.
Remark 2. For general Mn, the rearrangement of hypercubes is also a bit
reversal but for a mixed basis. If bMny

′c =
∑n

j=1 bjMj−1 with bj in J0,mj−1K,
then

H∗n

(
1

Mn

n∑
j=1

bj
Mn

Mj

+ (y′ − bMny
′c

Mn

)

)
= y′.

We now state our main result as a self contained theorem.

Theorem 3.5 (Two-Scale Shuffle convergence). Let Ω be a bounded open
domain of Rd with d ≥ 1. Let (uε)ε>0 be a bounded sequence of functions
belonging to L2(Ω). Let (pn) be an increasing sequence of positive numbers
such that for all integers n the ratio pn+1/pn is an integer. Set for all n ≥ 0
Mn := pn/p0 and for all n ≥ 1 mn = pn/pn−1. Let (εk)k∈N be a decreas-
ing sequence of positive real numbers converging to 0 such that the sequence
(uεk)k∈N pn-two-scale converges to u0,pn for all non negative integer n.

Set

w̃n : Ω× [0, p0]d × [0, 1]d → R
(x,y,y′) 7→ u0,pn (x, p0bMnHn(y′)c+ y) .

where Hn is defined by Equations (3.3).
Then, the sequence w̃n is a bounded martingale in L2 for the filtration

Fn = B(Ω)× B([0, p0]d)× σ

{
d∏
i=1

[
βi
Mn

,
βi + 1

Mn

)
,β ∈ Zd

}
. (3.5)
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And, the sequence w̃n converges both strongly in L2 and almost everywhere
to w̃∞, which we call the two-scale shuffle limit. Moreover,∫∫∫

A

w̃n(x,y,y′) dy′ dy dx =

∫∫∫
A

w̃∞(x,y,y′) dy′ dy dx,

for all sets A in Fn. I.E., w̃n = E(w̃∞|Fn).

Proof. The w̃n were constructed specifically so as to be a martingale for the
filtration (3.5). To prove they are a martingale for the filtration (Fn)n∈N, we
only need to prove that for every nonnegative integer n, we have for almost
all x in Ω, almost all y in [0, p0] and for all β in J0,Mn − 1Kd we have∫

∏d
i=1[

βi
Mn

,
βi+1

Mn
)

w̃n+1(x,y,y′) dy′ =

∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

w̃n(x,y,y′) dy′.

I.E., we need to show that∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn(x,y, Hn(y′)) dy′ =

∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn+1(x,y, HMn,mn+1◦Hn(y′)) dy′.

But Hn maps any hypercube [βi/Mn, (βi + 1)/Mn) to another hypercube
[β′i/Mn, (β

′
i + 1)/Mn) and Hn is measure preserving therefore, we only need

to prove that for almost all x in Ω, almost all y in [0, p0] and for all β in
J0,Mn − 1Kd∫

∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn(x,y,y′) dy′ =

∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn+1(x,y, HMn,mn+1(y
′)) dy′.

is satisfied. But this equality is equivalent to

1

Md
n

vpn(x,β,y) =

=
1

Md
n+1

∑
β′∈J0,mn+1−1Kd

vpn+1(x, RMn,mn+1(mn+1β + β′),y) =

=
1

Md
n+1

∑
β′∈J0,mn+1−1Kd

vpn+1(x, (β + β′Mn),y),

which is true by Proposition 3.3. Therefore, the sequence w̃n is a martingale
for the filtration (Fn)n∈N.

By Proposition 2.3, this martingale is bounded in L2. It converges both
strongly in L2(Ω× [0, p0]d× [0, 1]d) and almost everywhere to a function w̃∞,
see [6, Corollary 7.22].
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It is possible to recover u0,pn from the two-scale shuffle limit w̃∞. First,
for all β in J0,Mn − 1Kd, all y′ in

∏n
d=1[βi, βi + 1/Mn), and almost all (x,y)

in Ω× [0, p0]d, we have

w̃n(x,y,y′) =
1

Md
n

∫
∏n
d=1[βi,βi+1/Mn)

w̃∞(x,y,y′) dy′

because w̃n = E(w̃∞|Fn). Since the shuffle function Hn is one to one from
[0, 1)d to [0, 1)d, see Remark 2, we have wn(x,y,y′) = w̃n(x,y, H−1

n (y′)).
Finally, u0,pn(x,y) is equal to the value taken by wn(x,y − p0by/p0c, ·) on
the interval [by/p0c/Mn, (by/p0c+ 1)/Mn).

4 Application: heat equation in multilayers
In [11], the author established the equations satisfied by the two-scale limit
of the heat equation in multilayers with transmission conditions between
adjacent layers.

As noted in [11, Remark 6.2] the equation satisfied by the two-scale limit
depends on the number of layers present in the homogenization period. In
this section, our goal is to establish the equation satisfied by the limit of
two-scale limits in the sense of Theorem 3.5 ?

In this section, we only homogenize in the last space variable. We also
use the following notations, 4T = ∂2

∂x21
+ ∂2

∂x22
and ∇T = [ ∂

∂x1
, ∂
∂x2

]T

To avoid unecessary complications, we consider here a simpler problem
than the one considered in [11, System (4.1)]. Let Ω be B × (0, 1) where
B is a convex bounded open subset of R+ with smooth boundary. Let δ,
0 < δ < 1/2. For all N , let I be the interval (δ, 1− δ). Let IN be

⋃N−1
j=0 ((j +

δ)/n, (j+1−δ)/n). Let ΩN be the domain B×IN . Let ΓN,+j = B×{(j+δ)/N}
and ΓN,−j = B×{(j−δ)/N}. Let ΓN,+ =

⋃N−1
j=1 ΓN,+j and ΓN,− =

⋃N−1
j=1 ΓN,−j .

Let Γe = ∂B × (0, 1) ∪ ΓN,+0 ∪ ΓN,−N . Let γ be the application on ∂ΩN that
maps u in H1(ΩN) to its trace on ∂ΩN . Let γ′u be the trace swapped between
ΓN,+j and ΓN,−j .

For all positive integer N , we consider the heat equation

∂uN
∂t
− A4uN = 0 in ΩN × R+ (4.1a)

with the boundary conditions

A
∂uN
∂ν

=

{
0 on Γe × R+

−K
N
γuN + J

N
(γ′uN − γuN) on (ΓN,+ ∪ ΓN,+)× R+.

(4.1b)
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and the initial condition
u(·, 0) = u0. (4.1c)

Let (Mn)n≥0 be a sequence of positive integers such that M0 = 1 and such
that Mn+1 is always a multiple of Mn. Using two-scale convergence[1, 9]
and its variant on periodic surfaces[7, 8, 3], the properties of u0,Mn , the Mn-
two-scale limit of (uN)N∈N, were established in [11, Theorem 6.1]. First, the
two-scale limit u0,Mn(x, t, ·) is constant on each interval (j+ δ, j+ 1− δ). We
note u0,Mn,j(x, t) the value of u0,Mn(x, t, ·) on this interval. These functions
satisfies, for all j in Z/MnZ, the weak forumulation of

∂u0,Mn,j

∂t
−A4T u0,Mn,j+

2K

1− 2δ
u0,Mn,j+

J

1− 2δ
(2u0,Mn,j−u0,Mn,j+1−u0,Mn,j−1) = 0,

(4.2a)
in ΩN × R+, with boundary conditions

∂u0,Mn,j

∂ν
= 0 on ∂B × R+ × (0, 1). (4.2b)

We now use Theorem 3.5 to have the two-scale limits themselves con-
verge. We choose Mn = 2n to avoid complications at first. We establish the
following:

Theorem 4.1. Let w̃n be the two-scale shuffle limit defined from u0,2n as in
Theorem 3.5. For all x in Ω×R+, and y′ in [0, 1]. The function w̃n(x, t, ·, y′)
is constant on (δ, 1−δ). If we denote by w̃n(x, t, y′) the value of w̃n(x, t, ·, y′)
on (δ, 1− δ), the two-scale shuffle limit w̃∞ is a weak solution to:

∂w̃∞
∂t

(x, t, y′)− A4T w̃∞(x, t, y′) +
2K

1− 2δ
w̃∞(x, t, y′)

+
J

1− 2δ
(2w̃∞(x, t, y′)− w̃∞(x, t, τ+(y′))− w̃∞(x, t, τ−(y′))) =0,

(4.3a)

in ΩN × R+ × (0, 1), and where, for all non negative integers j:

τ+(y′) = y′ + 3 · 2−(j+1) − 1 when 1− 2−j ≤ y′ < 1− 2−(j+1),

τ−(y′) = y′ − 3 · 2−(j+1) + 1 when 2−(j+1) ≤ y′ < 2−j.

with boundary conditions

∂u0,Mn,j

∂ν
= 0 on ∂B × R+ × (0, 1). (4.3b)
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Proof. Consider a test function ϕ belonging to C∞(Ω×R+). Let n in N and
β belongs to J0, 2n − 1K. Set ψ(x, t, y) = φ(x, t)1{y ∈ [ β

2n
, β+1

2n
}. Then∫∫

QT

∫
[ β
2n
,β+1

2n
)

∂wn
∂t

(x, t, y′) · φ(x, t) dy′ dx dt

+A

∫∫
QT

∫
[ β
2n
,β+1

2n
)

∇T∂wn(x, t, y′) · ∇Tφ(x, t) dy′ dx dt

+
2K

1− 2δ

∫∫
QT

∫
[ β
2n
,β+1

2n
)

wn(x, t, y′) · φ(x, t) dy′ dx dt

+
J

1− 2δ

∫
[ β
2n
,β+1

2n
)

2wn(x, t, y′) · φ(x, t) dy′ dx dt

− J

1− 2δ

∫
[ β
2n
,β+1

2n
)

(wn(x, t, y′ + 2−n) + wn(x, t, y′ − 2−n) · φ(x, t) dy′ dx dt = 0,

where, to simplify notations, we consider the function wn to be 1-periodic in
y′. Therefore, for all β in J0, 2n − 1K,∫∫

QT

∫
[ β
2n
,β+1

2n
)

∂w̃n
∂t

(x, t, y′) · φ(x, t) dy′ dx dt

+A

∫∫
QT

∫
[ β
2n
,β+1

2n
)

∇T∂w̃n(x, t, y′) · ∇Tφ(x, t) dy′ dx dt

+
2K

1− 2δ

∫∫
QT

∫
[ β
2n
,β+1

2n
)

w̃n(x, t, y′) · φ(x, t) dy′ dx dt

+
J

1− 2δ

∫∫
QT

∫
[ β
2n
,β+1

2n
)

2w̃n(x, t, y′) · φ(x, t) dy′ dx dt

− J

1− 2δ

∫∫
QT

∫
[ β
2n
,β+1

2n
)

w̃n(x, t, H∗n
−1(H∗n(y′) + 2−n)) · φ(x, t) dy′ dx dt

− J

1− 2δ

∫∫
QT

∫
[ β
2n
,β+1

2n
)

w̃n(x, t, H∗n
−1(H∗n(y′)− 2−n)) · φ(x, t) dy′ dx dt = 0

(4.4)

Here H∗n is simply the bit reversal of the first n coefficients in the binary
expansion. Thus:

H∗n
−1(H∗n(y′+2−n)) =

{
y′ + 3 · 2−(j+1) − 1 if 1− 2−j ≤ y′ < 1− 2−(j+1), 0 ≤ j ≤ n− 1,

y′ − 1 + 2−n if 1− 2−n ≤ y′ < 1.

(4.5)
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And

H∗n
−1(H∗n(y′)−2−n) =

{
y′ − 3 · 2−(j+1) + 1 if 2−(j+1) < y′ ≤ 2−j, 0 ≤ j ≤ n− 1,

y′ + 1− 2−n if 0 < y′ ≤ 2−n.

(4.6)
SInce φ(x, t)1{y′ ∈ [ β

2n
, β+1

2n
} is Fn-measurable and w̃n = E(w̃∞|Fn), Equal-

ity (4.4) remains valid after replacing w̃n by w̃∞. Therefore,∫∫
QT

∫
[ β
2n
,β+1

2n
)

∂w̃∞
∂t

(x, t, y′) · φ(x, t) dy′ dx dt

+A

∫∫
QT

∫
[ β
2n
,β+1

2n
)

∇Tw̃∞(x, t, y′) · ∇Tφ(x, t) dy′ dx dt

+
2K

1− 2δ

∫∫
QT

∫
[ β
2n
,β+1

2n
)

w̃∞(x, t, y′) · φ(x, t) dy′ dx dt

+
J

1− 2δ

∫
[ β
2n
,β+1

2n
)

2w̃∞(x, t, y′) · φ(x, t) dy′ dx dt

− J

1− 2δ

∫
[ β
2n
,β+1

2n
)

(w̃∞(x, t, τ+(y′))− w̃∞(x, t, τ−(y′))) · φ(x, t) dy′ dx dt = 0

for all n in N and β in J1, 2n−2K. Choose y′ in (0, 1), for any positive integer
n, set β = b2ny′c and take the limit in the above equality divided by 2−n as
n tends to +∞.

If instead of settingMn = 2n, we consider a general sequence (Mn)n∈N, the
same reasonning holds. WhenMn is 2n, the shuffling of layers is the bit rever-
sal of the first n coefficients of the binary representation of y, thus involutive.
This is not the case for general Mn and we must use Remark 2. Therefore,
utmost care must be taken to compute the analogue of (4.5) and (4.6). We
provide the limit in the general case without proof. In that case, we have

H∗n
−1(H∗n(y′) +

1

Mn

) =

{
y′ −

∑j
l=1

1
Ml

+ 1
Mj+1

if 1− 1
Mj
≤ y′ < 1− 1

Mj+1
, 0 ≤ j ≤ n− 1,

y′ − 1 + 1
Mn

if 1− 1
Mn
≤ y′ < 1.

H∗n
−1(H∗n(y′)− 1

Mn

) =

{
y′ +

∑j
l=1

1
Ml
− 1

Mj+1
if 1− 1

Mj
≤ y′ < 1− 1

Mj+1
, 0 ≤ j ≤ n− 1,

y′ + 1− 1
Mn

if 0 < y′ ≤ 1
Mn
.
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and the limit equation (4.3a) remains valid if we set instead

τ+(y′) = y′ −
j∑
l=1

1

Ml

+
1

Mj+1

when 1− 1

Mj

≤ y′ < 1− 1

Mj+1

(4.7a)

τ−(y′) = y′ +

j∑
l=1

1

Ml

− 1

Mj+1

when
1

Mj

< y′ ≤ 1− 1

Mj+1

, (4.7b)

for all non negative integer j.

5 Conclusion
We have proven in this paper that the two-scale limits of a given sequence of
functions computed for periods that are multiple of the previous ones, form
a bounded martingale and thus converge both strongly in L2 and almost
everywhere. From the limit, called the two-scale shuffle limit, one can recover
any element in the sequence of two-scale limits: this limit contains all the
information contained in the whole sequence of two-scale limits. For a good
choice of increasing periods, this limits captures everything that happens
at any length scale that is a multiple of ε. We established the equation
satisfied by the two-scale shuffle limit for the solution to the heat equation
in multilayers with transmission conditions between layers.

Unfortunately, this limit does not capture all phenomena with a period
linear in ε: it cannot capture phenomena with an irrational scale factor. The
construction of the martingale depends on the assumption that pn+1 is always
a multiple of pn. If there are two interesting scales whose ratio is irrational
then no choice of periodic scale carry the information for both scale.

While we were able to conclude using the rearrangement described in
§3.3, we feel results on the existence of the limit in the setting of §3.2 would
be more satisfying. Solving Problem 3.4 would be a first step to obtain a
limit in this setting.
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