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Homogenization at different linear scales and
bounded martingales

Kévin Santugini-Repiquet

September 9, 2011

Abstract

In this short paper, we look at two scale limits of sequences with
varying homogenization periods, each period being a multiple of the
previous one. We establish that, up to a measure preserving rear-
rangement, these two scale limits form a martingale which is bounded:
the rearranged two scale limits themselves converge both strongly in
L2 and almost everywhere when the period tend to +∞. This limit
contains all the information present in all the two scale limits in the
sequence.

1 Introduction
Homogenization is used to study the solutions of equations when there are
multiple scales of interest, usually a microscopic one and a macroscopic one.
In particular, one may study the solutions uε of a PDE with quasi ε-periodic
coefficient study their behavior as the small period ε tend to 0. Two scale
convergence, introduced by M. Neuss Radu [5], and G. Allaire [1] is suited
to study this particular subset of homogenization problems called periodic
homogenization. It can also be used in the presence of periodic holes in the
geometry, see [2, 3] or to homogenize multilayers [8, 7].

Intuitively, two scale convergence introduces the concept of two scale limit
u0 which is a function of both a macroscopic variable x and a microscopic
p-periodic variable y such that, in some “meaning”, x 7→ u0(x,x/ε) is a good
approximation of uε.

As indicated by its name, two scale convergence captures the behavior at
two scales: the macroscopic one and the pε-periodic one. However, two scale
convergence does not capture all phenomena that happens at a scale linear
in ε but only those whose length scale is pε/m where m is an integer. The
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two scale limit of a sequence depends, not only on the asymptotic scale, but
also on the precise value of the chosen period. For example, any phenomena
happening at the length scale of 2ε will not be fully apparent in the two scale
limit computed with period ε. The two scale limit computed with period 2ε
will contain no less —and might actually contain more— information than
the two scale limit computed with period ε. For example, the homogenization
of sin(2πx/ε) + sin(πx/ε) gives a two scale limit of u0 : (x, y) 7→ sin(2πy)
if computed with the homogenization period ε, i.e. when p = 1, and u0 :
(x, y) 7→ sin(2πy) + sin(πy) if computed with the homogenization period 2ε,
i.e. when p = 2. Furthermore, if we choose p = 1/2, then the two-scale
limit is none other than the null function. Worse, the scale factor p could be
irrational. The choice of the scale factor p used in the homogenization process
is therefore of utmost importance in two scale convergence. Using a badly
chosen scale factor p may and will often cause a huge loss of information. At
worst, we recover no more information than the one obtained by the standard
weak L2 limit: if pε is the correct choice of homogenization period, the two
scale limit computed with period λpε where λ is an irrational number should,
intuitively, carry no information about what happens at scale pε.

Fortunately, there is usually a natural choice of period: the coefficients
of the PDE are often chosen quasi-periodic in ε. The most natural choice
is to choose p = 1, i.e. to consider the correct microscopic scale for uε is ε
itself. If there are two important periods to consider ε1 and ε2, the intuitive
solution is to choose a period that is a multiple of both. However, this can
only be done if the ratio ε1/ε2 is a rational number.

To increase the information obtained by two scale convergence, we may
also consider an homogenization period ofmε instead of ε. This is usually not
apparent in homogenization without holes or with an acceptable sequences
of holes[3], because usually in these cases, the sequence of solutions, after
extension to the domain without holes, (uε)ε is bounded in H1 and the two
scale limit does not depend on the fast variable, see [5, 1]. However, if we
homogenize the solutions of PDE on domains with periodic non acceptable
holes such as multilayers, then the sequence of solutions, after extension to
the domain without holes, is no longer bounded in H1. And the two scale
limit might no longer be independent of the fast variable. Nevertheless, it of-
ten only takes a finite number —one per connected component of the periodic
cube with holes— of values when the fast variable varies, see for example [8,
Theorem 6.1] for such a two scale limit. In that case, homogenizing with
period mε with m ≥ 2 might give a more precise result than homogenizing
with period ε.

In this paper, we look at two scale limits of sequences for different choices
of the period. In particular, we consider a sequence of periods (pn)n∈N such
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that for all integers k, pn+1/pn is a positive integer and we study the two scale
limit of (uε)ε computed with the homogenization period pnε. This two scale
limit, denoted u0,pn is pn-periodic in each of its fast variable. Since pn+1 is
always a multiple of pn, one can always recover the two scale limit u0,pn from
the two scale limit u0,pn+1 . Actually, if pn+1 = mnpn and we place ourselves
in dimension d ≥ 1, we have

u0,pn+1(x,y) =
1

md
n

∑
α∈J0,m−1Kd

u0,mnpn(x,y +α).

The sequence of two scale limits (u0,pn)n∈N yields increasing information
on the asymptotic behavior of (uε)ε. A natural question is to wonder whether
the two scale limits u0,pn themselves converge whenever n tends to +∞. I.E.
does there exist a function that carry the information of all the pn-two scale
limits? The goal of our paper is to answer this question. The answer is
positive. We show in this paper that the sequence of two scale limits is,
after a measure preserving rearrangement, a bounded martingale in L2 and
therefore converges both strongly in L2 and almost everywhere.

In §2, we remind the reader about the known theorems of two scale con-
vergence. In §3, we show how the different two scale limits are bound by
martingale type equalities and explain how to transform these two scale lim-
its to get a real martingale. This leads to our stating of our main theorem:
Theorem 3.5.

2 Notations and the classical notion of two scale
convergence

First, as in [1], we introduce some notations. In this paper, p always refer to
a scale factor. It remains constant while taking the two scale limit. However,
the goal of this paper is to observe the behavior of the two scale limits as p
tend to +∞.

By Ω, we denote an open domain of Rd where n ≥ 1. By Yp, we denote the
cube [0, p]d. By L2

#(Yp), we denote the space of measurable functions defined
over Rd, that are p-periodic in each variable and that are square integrable
over Yp. By C#(Yp), we denote the continuous functions defined on Rd that
are p-periodic in each variable.

We reproduce the now classical definition of two scale convergence found
in [1, 5, 6]. For convenience, we added the scale factor p

Definition 2.1 (Two scale convergence). Let p be a positive real. A sequence
(uε)ε>0 belonging to L2(Ω) is said to p-two scale converge if there exist u0,p
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in L2(Ω× Yp) such that:

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

1

pd

∫
Ω

∫
Yp

u0,p(x,y)ψ (x,y) dy dx, (2.1)

for all ψ in L2(Ω; C#(Yp)).

G. Allaire, see [1], and M. Neuss Radu, see [5, 6], proved that any sequence
of functions bounded in L2 has a subsequence that two scale converges. Let’s
reproduce this precise compactness result.

Theorem 2.2. Let (uε)ε>0 be a continuous sequence of functions belonging to
L2(Ω), then there exist u0,p in L2(Ω× (0, 1)) and a subsequence εk converging
to 0 such that

lim
k→∞

∫
Ω

uεk(x)ψ

(
x,
x

εk

)
dx =

1

pd

∫
Ω

∫
Yp

u0,p(x,y)ψ (x,y) dy dx, (2.2)

for all ψ in L2(Ω; C#(Y )).

Proof. See G. Allaire [1] and M. Neuss Radu [5, 6]. The presence of the scale
factor p has no impact on the proof.

We also have the classical proposition

Proposition 2.3. Let uε p-two scale converge to u0,p, then

1

pd
‖u0,p‖L2(Ω×Yp) ≤ lim

ε→0
‖uε‖L2(Ω).

Proof. See G. Allaire [1] and M. Neuss Radu [5, 6]. The presence of the scale
factor p has no impact on the proof.

The next proposition is easy to derive from Theorem 2.2

Proposition 2.4. Let (pn)n∈N be an increasing sequence of positive real num-
bers. Let (uε)ε>0 be a continuous sequence of function belonging to L2(Ω),
then there exist a subsequence εk converging to 0, and a sequence of func-
tions un such that for any integer n the sequence uεk pn-two scale converges
to u0,pn. I.E., such that for any integer n:

lim
k→∞

∫
Ω

uεk(x)ψ

(
x,
x

εk

)
dx =

1

pdn

∫
Ω

∫
Ypn

u0,pn(x,y)ψ (x,y) dy dx,

for all ψ in L2(Ω; C#(Ypn)).

Proof. Apply Theorem 2.2 multiple times and proceed via diagonal extrac-
tion.

Our goal in this paper is to study the limit of u0,pn as pn tends to +∞.
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3 Rearrangement of two scale limits and bounded
martingales

In this section, we always consider a sequence of scale factors (pn)n∈N such
that pn+1 is a multiple of pn for every nonnegative integer n. We set for n ≥ 1,
mn := pn/pn−1 and for n ≥ 0 Mn := pn/p0. We always consider a continuous
sequence of functions (uε)ε>0 bounded in L2(Ω) and a decreasing sequence of
positive (εk)k∈N such that the sequence (uεk)k∈N pn-two scale converges for
all integers n. This is justified by Proposition 2.4.

To choose the sequence pn, one may set p0 first, then set pn = Mnp0 and
choose the sequence of integers Mn such that Mn+1 is always a multiple of
Mn and such that any integer eventually divide Mn when n is large enough.
For example, one may set Mn = n! or Mn being the smallest multiple of all
positive integers smaller than n.

Our goal is to study the convergence of the two scale limits u0,pn when k
goes to infinity. In this section, we proceed as follows: we begin by estab-
lishing a useful equality that looks like a martingale equality in §3.1, then we
propose a rearrangement of the two scale limits in §3.2 and finally propose
another rearrangement of the two scale limits in §3.3 which transform the
sequence of two scale limits into a bounded martingale.

3.1 An almost martingale equality

Consider a sequence (pn)k∈N such that pn+1/pn is a positive integer for all k.
We begin by deriving the p-two scale limit from the mp-two scale limit when
m is an integer.

Proposition 3.1. Let m be an integer. Let p be a positive scale factor.
Let (uε)ε>0 be a sequence of functions belonging to L2(Ω), and p-two scale
converging to u0,p and mp two scale converging to u0,mp. Then, for almost
all x in Ω and y in Yp:

u0,p(x,y) =
1

md

∑
α∈J0,m−1Kd

u0,mp(x,y +αp).

Proof. Let φ belong to C∞(Ω × Rd) be p-periodic in the last d variables.
Since m is an integer, φ is also mp-periodic in the last d variables. We take
the limit of

∫
Ω
uε(x)φ(x,x/ε) dx, as ε tend to 0, in the sense of two scale
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convergence for both scale factors mp and p:

1

pd

∫
Ω

∫
Yp

u0,p(x,y)φ(x,y) dx dy =

=
1

mdpd

∫
Ω

∫
Ymp

( ∑
α∈(J0,m−1Kd

u0,mp(x,y +α)
)
φ(x,y) dx dy,

for all φ in C∞(Ω× Rd).

This simple but essential proposition provides all we need to show that
up to a rearrangement the sequence of two scale limits u0,pn is actually a
martingale.

We derive the following corollary.

Corollary 3.2. For all x in Ω, y in Rd and j, n in N, we have

u0,pn(x,y) =

(
pn
pn+j

)d ∑
α∈J0,pn+j/pn−1Kd

u0,pn+j(x,y +αpj).

Ideally, we would like to consider the limit of u0,pn as n tend to +∞.
Actually, because of this equality, the sequence u0,pn is “morally” a martingale
for the filtration made of these σ-fields:

Fn = B(Ω)×
(
B(Rn) + pnZd

)
.

Unfortunately, it isn’t technically true as all the sets belonging to these σ
fields are of infinite measure and the u0,pn are all periodic. However, the
equalities defining what is a martingale are satisfied if one replaces the stan-
dard integral of Rd by the limit of the mean over a ball as its radius tends to
+∞. I.E. we have for all F in Fn

lim
R→+∞

1

|B(0, R)|

∫
Ω

∫
B(0,R)

1{(x,y) ∈ F}u0,pn(x,y) dy dx =

= lim
R→+∞

1

|B(0, R)|

∫
Ω

∫
B(0,R)

1{(x,y) ∈ F}u0,pn+j(x,y) dy dx,

where B(0, R) is the open ball of Rd centered on 0 and of radius R and
where |A| is the Lebesgue measure of set A. Unfortunately, we were unable
to derive a direct convergence result using this pseudo martingale equality.
To proceed further, we need to rearrange the two scale limits to get true
martingales.
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3.2 Rearrangement of the two scale limits with integers

In this subsection, we rearrange the two scale limits as functions defined over
Ω×Zd×Yp0 . While we were unable to obtain a convergence in that case, the
ideas of this sections provide insight on the next section in which we prove
convergence for another rearrangement. Given the two scale limits u0,pn , we
define

vpn : Ω× Zd × Yp0 → R,
(x,α,y) 7→ u0,pn(x,y +Mnα).

where Mn = pn/p0.
This rearrangement of the two scale limit is natural for homogenization

with a non admissible set of holes of period p0ε. In that case, if uε is regular
enough, for example H1 inside each hypercube, then the u0,pn depend only
on x and on the hypercube of dimension p0 to which y belong. In many
applications, the vpn depend only on x and α but not on y.

We have the following proposition

Proposition 3.3. For all n in N, for almost all x in Ω and all y in Yp0, the
sequence (vpn(x,α,y))α∈Zd is pn/p0-periodic in each direction. Moreover:

vpn(x,y)(x,α,y) =

(
Mn

Mn+j

)d ∑
β∈J0,Mn+j/Mn−1Kd

vpn+j(x,α+Mnβ,y). (3.1)

Proof. This is a direct consequence of Proposition 3.1.

This in turn should encourage us to look at the following problem.

Problem 3.4. Let’s call sequences (wn,α)n∈N,α∈Zd that are Mn periodic in
each component of α and that satisfy

tn,α =

(
Mn

Mn+j

)d ∑
β∈J0,Mn+j/Mn−1Kd

tn+j,α+Mnβ.

“imbricated (Mn)n-periodic d-dimensional sequences”. Study the convergence
of such sequences as n tend to +∞. Under which condition does there exists
a sequence t∞,α such that for all positive integers n

tn,α = lim
N→+∞

(
1

Nd

)d ∑
β∈J0,N−1Kd

t∞,α+Mnβ.
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or such that

tn,α = lim
N→+∞

(
1

2dNd

)d ∑
β∈J−N,N−1Kd

t∞,α+Mnβ.

or both?

By Proposition 3.3, for almost all x in Ω and all y in Yp0 , the sequences
(vn,α)α∈Zd are imbricated (pn)n-periodic d-dimensional sequences. Solving
Problem 3.4 would be the first step in having a very elegant limit to the
vn,α as a function defined on Ω × Zd. Unfortunately, we do not have an
answer for Problem 3.4. While this sequence is morally a martingale with
respect to the filtration made of the σ-fields {α+ pn

p0
Z)d,α ∈ J0, pn

p0
− 1K}, it

technically is not: we have the same problem we had in the previous section.
To conclude with bounded martingales on the convergence, we would need a
measure µ on Zd such that µ(Zd) = 1, invariant by translation and such that
µ(mZd) = 1/m whenever m is an integer different from 0. Such a measure
cannot be σ-additive. If we remove the σ additivity constraint, then µ exists:
just set

µ(A) = lim
N→+∞

#(A ∩ J−N,NKd)
(2N + 1)d

.

It is unknown to the author if bounded martingales converge when they are
defined on a non σ-additive measure. To avoid that problem, we introduce,
in the next section, a different less natural rearrangement for the u0,pn for
which we finally prove a convergence result.

3.3 Continuous rearrangement of two scale limits

In this section, we finally construct a rearrangement that results in a bounded
martingale. And since bounded martingales in L2 converge both strongly in
L2 and almost everywhere, this establishes a convergence result for the u0,pn

as n tend to +∞.
Set for x in Ω, y in [0, p0]d and y′ in [0, 1]d. The variable y′ replaces the

variable α of the previous section. Consider first

wn(x,y,y′) = vpn(x,α(y′),y)

whereα(y′)i = bMny
′
ic for all integers i in J1, dK. We’re now going to permute

the hypercubes as in Figure 1 where to simplify the drawing, we considered
homogenization only on the last component of Rd, hence the presence of layers
instead of hypercubes. In that figure, we show one step of the rearrangement.
As seen in the drawing, each step of the rearrangement is measure preserving,
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Original w1 w2 after one step

Sa
m
e
m
ea
n

Sa
m
e
m
ea
n

Layer 0

Layer 1

Original w2

Layer 0

Layer 2

Layer 4

Layer 1

Layer 3

Layer 5

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 1: One step of the measure preserving rearrangement M1 = 2 and
M2 = 6

therefore the full rearrangement is also measure preserving. We need n − 1
such steps to fully rearrange wn.

To define rigorously this rearrangement, we begin by defining the function
that maps the rearranged layer index onto the unrearranged layer index, see
Figure 1:

RM,m(i) = M(i mod m) +

⌊
i

m

⌋
. (3.2a)

for all i in J0,Mm− 1K. Then we set the function that maps the rearranged
layer onto the unrearranged one:

h∗M,m : [0, 1)→ [0, 1),

y′ 7→ RM,m(bMmy′c)
Mm

+

(
y′ − bMmy′c)

Mm

)
.

(3.2b)

This represents only one step on the rearrangement on one component.
For hypercubes, the permutation is the same but is done componentwise: we
set

hM,m: (0, 1)d → (0, 1)d,

(y′1, . . . , y
′
n) 7→ (h∗M,m(y′1), . . . , h∗M,m(y′n)).

And obtain one step of the rearrangement on all d components. For the
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0
1
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3
4
5
6
7
8
9
10
11

0
6
1
7
2
8
3
9
4
10
5
11

0
6
2
8
4
10
1
7
3
9
5
11

Second step First step Original

Figure 2: Two steps of the measure preserving rearrangement M1 = 2, M2 =
6 and M3 = 12

complete rearrangement on one component, see Figure 2, we set

H∗n := h∗Mn−1,mn
◦ . . . ◦ h∗M1,m2

◦ h∗M0,m1
. (3.2c)

To get the complete rearrangement on all components we set

Hn: [0, 1)d → [0, 1)d,

(y′1, . . . , y
′
n) 7→ (H∗n(y′1), . . . , H∗n(y′n)).

(3.2d)

We also have
Hn = hMn−1,mn ◦ . . . ◦ hM1,m2 ◦ hM0,m1 .

Finally, we define

w̃n(x,y,y′) := wn(x,y, Hn(y′)). (3.3)

This measure preserving rearrangement is purposefully constructed so the
w̃n form a martingale for the following filtration of σ-fields Fn = B(Ω) ×
B([0, p0]d)× σ

{∏d
i=1

[
βi
Mn
, βi+1
Mn

)
,β ∈ Zd

}
.

Remark 1. The above rearrangement of hypercubes is similar to the one used
for computing in place the Discrete Fast Fourier transform: the bit reversal.
In the special case where Mn = 2n, the rearrangement simply exchanges
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layers i, i.e. [i/2n, (i + 1)/2n), and i′, i.e. [i′/2n, (i′ + 1)/2n), when i and i′
are bit reversal permutations of each other. I.E when i =

∑N−1
k=0 bk2

k and
i′ =

∑N−1
k=0 bk2

N−1−k.

We now state our complete self contained theorem.

Theorem 3.5. Let Ω be an open domain of Rd with d ≥ 1. Let (uε)ε>0 be a
bounded continuum of functions belonging to L2(Ω). Let (pn) be an increasing
sequence of positive numbers such that for all integer n the ratio pn+1/pn is
an integer. Set for all n ≥ 0 Mn := pn/p0 and for all n ≥ 1 mn = pn/pn−1.
Let (εk)k∈N be a decreasing sequence of positive real numbers converging to
0 such that the sequence (uεk)k∈N pn-two scale converges to u0,pn for all non
negative integer n.

Set

w̃n : Ω× [0, p0]d × [0, 1]d → R
(x,y,y′) 7→ u0,pn (x, p0bMnHn(y′)c+ y) .

where Hn is defined by Equations (3.2).
Then, the sequence w̃n is a bounded martingale in L2 for the filtration

Fn = B(Ω)× B([0, p0]d)× σ

{
d∏
i=1

[
βi
Mn

,
βi + 1

Mn

)
,β ∈ Zd

}
. (3.4)

And the sequence w̃n converges both strongly in L2 and almost everywhere to
w̃∞. Moreover,∫∫∫

A

w̃n(x,y,y′) dy′ dy dx =

∫∫∫
A

w̃∞(x,y,y′) dy′ dy dx,

for all sets A in Fn. I.E., w̃n = E(w̃∞|Fn).

Proof. The w̃n were constructed specifically so as to be a martingale for the
filtration (3.4). To prove they are a martingale for the filtration (Fn)n∈N, we
only need to prove that for every nonnegative integer n, we have for almost
all x, almost all y in [0, p0] and for all β in J0,MnKd we have∫

∏d
i=1[

βi
Mn

,
βi+1

Mn
)

w̃n+1(x,y,y′) dy′ =

∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

w̃n(x,y,y′) dy′

I.E., we need to show that∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn+1(x,y, HMn,mn+1◦Hn(y′)) dy′ =

∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn(x,y, Hn(y′)) dy′

11



But Hn maps any hypercube [βi/Mn, (βi + 1)/Mn) to another hypercube
[β′i/Mn, (β

′
i + 1)/Mn) and Hn is measure preserving therefore, we only need

to prove that for almost all x, almost all y in [0, p0] and for all β in J0,MnKd∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn+1(x,y, HMn,mn+1(y
′)) dy′ =

∫
∏d
i=1[

βi
Mn

,
βi+1

Mn
)

wn(x,y,y′) dy′

is satisfied. But this equality is equivalent to

1

Md
n

vpn(x,β,y) =

=
1

Md
n+1

∑
β′∈J0,mn+1Kd

vpn+1(x, RMn,mn+1(mn+1βi + β′i),y) =

=
1

Md
n+1

∑
β′∈J0,mn+1Kd

vpn+1(x, (βi + β′iMn),y)

which is true by Proposition 3.3. Therefore, the sequence w̃n is a martingale
for the filtration (Fn)n∈N.

This martingale is bounded by Proposition 2.3 in L2. It converges both
strongly in L2(Ω× [0, p0]d× [0, 1]d) and almost everywhere to a function ũ∞,
see [4, Corollary 7.22].

4 Conclusion
We have proven in this paper that the two scale limits of a given sequence of
functions computed for periods that are multiple of the previous ones, form
a bounded martingale and thus converge both strongly in L2 and almost
everywhere. From the limit, one can recover any element in the sequence
of two scale limits: this limit contains all the information contained in the
whole sequence of two scale limits. For a good choice of increasing periods,
this limits captures everything that happens at any length scale that is a
multiple of ε.

Unfortunately, this limit does not capture all phenomena with a period
linear in ε: it cannot capture phenomena with an irrational scale factor. The
construction of the martingale depends on the assumption that pn+1 is always
a multiple of pn. If there are two interesting scales whose ratio is irrational
then no choice of periodic scale carry the information for both scale.

While we were able to conclude using the rearrangement described in §3.3,
we feel results on the existence of the limit in the setting of subsection 3.2
would be more satisfying. Solving 3.4 would be a first step to obtain a limit
in this setting.
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