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Abstract

This paper is devoted to the study of derivative hedging in incomplete markets when frictions are
considered. We extend the general local risk minimisation approach introduced in [I] to account for
liquidity costs, and derive the corresponding optimal strategies in both the discrete- and continuous-time
settings. We examplify our method in the case of stochastic volatility and/or jump-diffusion models.

Introduction

The optimal hedging of derivatives in uncomplete markets is a subject of the utmost importance from a
application-driven point of view, as well as an introduction to a host of many challenging mathematical
problems. Originating in the pioneering work of [9], the local risk minimization method has been identified
as one of the most intuitive and practical way of defining realistic hedging strategies and related option prices.
In the original approach developped in [9], the local risk was defined as the second moment of the incremental
cost between two consecutive re-hedging periods. In a recent work [I]], this approach was revisited so as to
extend it to general, convex local risk functionals, and the corresponding optimality conditions were derived
in the discrete- and continuous-time settings. This article is devoted to the task of extending our previous
results to the realistically important case of transaction costs. More precisely, and contrarily to one of the
early and important contributions in that direction, see [14], we do not introduce a bid-ask spread, as this
would lead to infinite costs in the continuous limit, but rather, consider as in [5] a supply curve corresponding
to the existence of finite liquidity at a given price. Such a paradigm is especially well-suited to the situation
of a trader hedging a large book or trading in an illiquid market. It also connects with recent researches
on orderbook modelling and market impact, when the supply curve is seen as a smoothed-out version of a
stochastic orderbook profile.

The main result of this paper is twofold : on one hand, in a discrete-time setting, the optimality system is fully
characterized, and admits a natural interpretation in terms of a non-linear martingale transform orthogonal
to the martingale part of a modified price process. Then, extensions to a continuous-time setting are
considered, for which only the case of Ito processes can be understood in full generality. For processes having
discontinuous paths, pseudo-optimality can be considered, but the connection with the original minimization
problem is an open question.

The paper is organized as follows: Section 1 presents, in the discrete-time case, the basic definitions of the
cost of a strategy and its associated risk. Section 2 contains the optimality and pseudo-optimality conditions
in discrete time, and provide an interpretation of the optimal strategy in terms of a non-linear martingale
transform orthogonal to the cost-adjusted price process (the supply price). In Section 3, we extend those
results to the continuous-time setting, while Section 4 and 5 are respectively devoted to applications to
stochastic volatility and jump-diffusion models.
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1 Liquidity costs and risk process

1.1 Cost process

In this section, we investigate the discrete time setting, studying the existence and uniqueness of solutions
to the minimization problem. The market will classically be represented, see e.g. [9][1], by a multi-period
model where the risky asset is a strictly positive semimartingale Sg, (k¥ = 0,---,T) on some probabil-
ity space (2, F, P). Let Fj denote the c—field of events which are observable up to and including time
k. We assume that Sy is adapted and square-integrable and that the conditional variance of its returns
E ((Sk41 — Sk)?Fr) — E (Skt1 — Sk Fi)? is strictly positive P-almost surely. In order to simplify the expo-
sition, the risk-free rate is supposed to be deterministic and therefore, using discounted stock prices, one can
assume that it is zero.

The task of interest is that of hedging a contingent claim associated to a square-integrable random variable
H € L*(P) of the following form H = §7Sp + g § and B being Fr—measurable random variables.
We thus consider a general trading strategy ® represented by two stochastic processes o, (kK = 0,---,T)
and By, (k= 0,---,T), both adapted to F;, and in L?(P). & is the amount of stock held during the k*"
period = [t,tr+1), and has to be fixed at the beginning of that period. That is to say, oy is Fr—measurable
(k=0,---,T), and likewise for B, the amount held in the cash account during the k** period.

The theoretical value of the portfolio at time k is its value right after applying the strategy and is given by

Vi =0,Sk+ Br, k=1,--- | T.

We admit only strategies such that each Vj, is square-integrable and which replicate the contingent claim H,
i.e. we require Vo = H, which for instance is the case upon choosing o7 = 62 and Br = 2.

Denote by ACy the incremental cost of applying strategy ® at time ¢, £ > 0. In the presence of liquidity
costs on the stock, ACY} is given by

Ack(q)) = L(((Sk75/6—1)7Skatk)+(ﬂk75k—l) Vke {k: 17 7T}

where the function £ measures the costs of adjusting the stock part, thereby accounting for the liquidity
effect, namely:

- If (6 — dk—1) > 0, meaning that the strategy requires to buy stock, it might not necessarily be possible
at the theoretical price Sy but rather, at a higher price, so that the bigger the quantity to acquire, the
greater the marginal costs.

- If on the contrary (Jx — dx—1) < 0, meaning that the strategy now requires to sell, again it might not
necessarily be possible at the theoretical price Sy but rather, at a lower price, so that, once again, the
bigger the quantity to sell, the greater the marginal costs.

1.2 Liquidity costs

As a consequence of the finite liquidity observed on real markets and described above, it is legitimate to
assume that £ : (R,R;,Ry) — R is a strictly increasing, convex function of its first argument satisfying
£(0,.,.) = 0. Let us make the further assumption that it is differentiable with respect to its first argument,
with %(0, S,.) = S. At this stage, it is noteworthy to point out that the bid/ask spread is not taken into
account, nor is the potential market impact of a transaction. This last assumption amounts to assuming
that the period of trading is much greater than the relaxation time of the market impact function.

If there exists an adapted function g, i.e. g = g(z,t,w) with w € Fj, such that the liquidity costs can be
written as L((0x — 0x—1), Sk, tk) = (O — 0k—1)9((0x — dk—1),tx), then g is called the supply curve. We refer
to [3] for more details on the self-financing approach in the case of a supply curve. Here, a more general
assumption is made, namely, that there exists an increasing density function [ : (R,R,,R;) — R, [ € C!
representing the cost of buying a marginal amount of stock. That is to say, £ has the following form:

E(U,Sk,tk)Z/ I(x, Sk, ty)dx. (1.1)
0



In particular, {(0, Sk, t) is equal to Sy, in the absence of bid/ask spread. Assumption corresponds to a
smoothing of the realistic orderbook profile giving the quantity available at a given price.

In order to make the extension to continuous-time more tractable whilst not narrowing the scope of the
paper, we shall further assume that the marginal costs can be written as a stationary function times the
theoretical spot price S, i.e. l(x,S,t) = I(x)S:.

1.3 Local risk

The local risk is naturally defined, see e.g. [I]], as the conditional expectation given information up to time
k of the functional associated to the risk function f, of the costs incurred at time k£ + 1. This reads

ARy(®) = E (f(ACk+1)|Fk)
or, with obvious notation,

ARy (®) = Ei, (f(ACk41)) -

Note that, contrarily to the case of infinite liquidity, these assumptions on the liquidity costs together with
the convexity of the risk function f do not ensure that (x,y) — f(L(x)S +y) is a convex function. This lack
of convexity will obviously make uniqueness results difficult to obtain.

2 Optimal and pseudo-optimal strategies

The defintion of an optimal strategy is now addressed. Classically, as in [9][1], such a strategy sequentially
minimizes the incremental risk process backward in time, and indeed solves the following problem

Problem (*) Given a contingent claim H, find an admissible strategy ®* such that
Vk e (0,---,T —1), V® admissible with dx1 = 07, and fry1 = Biy 1, ARL(P) > ARy (")

Standard regularity and convexity conditions on f, [ﬂ as well as the assumptions on Sy and S, provide
the existence of an optimal strategy solution to the first-order optimality equations

{ Eg (f (ACk4+1(97))) = 0
Ex (f (ACk41(®*)) L ((0k+1 — k), Sks1,tht1)) = 0

or equivalently

{ Ex (f/ (ACkJrl((I)*))) =0 (2 1)
Bk (f" (ACk41(®7)) 1 (k41 — 6k) Sk41) = 0 '

where £’ stands for the partial derivatives of £ with respect to its first argument.
We now prove the existence of a locally risk-minimizing strategy.

Theorem 2.1 Problem (*) has a at least one solution ®* whose components 6* and B* solve the set of

equations ((2.1))).

Proof Let h(z,y,w) = Ex, (f(L((U — ), S, tg1) + (V —y))) (w) with U, V and S € L2(P). We first observe
that, thanks to the structure hypotheses on liquidity costs, for a fixed w, h is a continuous and differentiable
function of (z,y) and therefore reaches its minimum at (z*,y*) only if (x*,y*) is a critical point of h, i.e.
Vh(z*,y*) = 0. Secondly, there holds that limj|(y,y)||—o0 M(%,y,w) = +00 P — a.e., so that h has a global

We refer the reader to [I] for the detailed statement of these conditions.



minimum P—almost surely. There remains to prove that (z*,y*) is Fr,—measurable: let D,, = {j27"|j € Z}
be the set of dyadic rational of order n and define

(@n(w), yn(w)) = inf{(z,y) € Dy x Dy, h(z,y,w) < h(z',y',w)¥(z",y’) € Dn x Dy}

Since w — h(x,y,w) is Fr—measurable, (z,,y,) is also F—measurable. As (z,,y,) is bounded in n P—a.e.
and h is continuous in (z,y), (&,9) = liminf, e (2n,yn) is a Fr—measurable minimizer of h, satisfying
Vh(z,y) = 0. This ends the proof of Theorem

The set of equations can be given a natural interpretation after the introduction of the two processes
Cl =% F(AC) and S5 =38 (1(A8;) S — 1(0)S;_1) = X8, (1(Ad;) Si — S;_1) with initial conditions
Cg =0and S5 = Sp: l simply states that C,{ is a martingale strongly orthogonal to the martingale part
of (S,f)k The first process will be referred to as the f—costs process as in [I], while the new process S°

will be referred to as the supply price process. Following [?], this property of C,f will be termed "pseudo-
optimality". Let us also mention that, in the case of "infinite" liquidity {(.) = 1, the supply price process is
just the stock price S, and one recovers the results of [IJ.

3 Continuous time setting

Let now (2, F, P) be a probability space with a filtration (F;)o<;<7 satisfying the usual conditions of right-
continuity and completeness. T € R*T denotes a fixed and finite time horizon. Furthermore, we assume
that Fo is trivial and that Fp = F. The risky asset S = (S¢)o<t<r is supposed to be a strictly positive
semimartingale

S=S+M+A

such that M = (M,)o<i<r is a square-integrable martingale with My = 0, and A = (A4;)o<i<7 i8S a con-
tinuous and adapted process of finite variation |A| with Ay = 0. Throughout this article, we shall use a
right-continuous version of S.

The aim of this section is to define and characterize the f-cost process and the supply process, so as to exend
the notions of pseudo-optimality to the continuous-time case. In order to do so, we need to introduce some
definitions that will extend the rather intuitive notions of the discrete-time setting to the more intricate
continuous-time models.

3.1 Trading strategies and local risk

A general trading strategy ® is then a pair of cadlag and adapted processes 6 = (§;)o<i<7, 8 = (Bt)o<i<T
while a contingent claim is described by a random variable H € L?(P), with H = 67 Sy + g, 6 and g#
being Fr—measurable random variables.

In order to define the processes which are the basic ingredients of pseudo-optimality in continuous time, we
need to restrict the set of trading strategies to those we call H-admissible according to the

Definition 3.1.1 A trading strategy will be called H-admissible if it meets the following requirements

op =0" P —a.s.

Br=p" P—a.s.

0 has finite and integrable quadratic variation

B has finite and integrable quadratic variation

6 and B have finite and integrable quadratic covariation.

We now recap the definitions (see [I]) required to extend the concept of local risk-minimization to the
continuous time framework.



Small perturbations

Definition 3.1.2 A small perturbation is a bounded admissibleﬂ strategy ¢ = (,0) such that B = 0 and
or = 0.

Local risk along a partition

Given an H—admissible strategy ®, a partition 7 of [0,T], where 7 = {0 = tg,t1,--- ,tx = T} and a small
perturbation ¢, one defines the process

ARti (q) + ¢

[ti7ti+1()(w) - Ath ((I))(w)
tit1 — 1

@ gltw) = Y

titit1 €T

1[ti7ti+1((t)

with ARy, () = E (f(AC,,,,)|F:,) and (as in the previous sections) ACY,,, is the incremental cost associ-
ated to a strategy.
The concept of local risk minimization can now be specified:

Definition 3.1.3 An H—admissible strategy ® is called locally risk-minimizing for the contingent claim H
if for every small perturbation ¢ and every increasing sequence of partitions (7, )nen tending to the identity,
there holds

liminfr™[®,¢] >0 P — a.e.

n— oo

3.2 The f—costs process
Given a general trading strategy ®, its f—cost process Cy(®) E|is defined as the limit, whenever it exists, of

ln
FIL(6TF — §T=1 §TR) 4 BTE — fTR-1)),
k=1

where convergence takes place in ucp topology, for any sequences P,, of Riemann partitions of [0, 7] of length
I, (X7 stands for the process stopped at T).
Below is a result showing that the f—cost process of an H—admissible strategy is well defined.

Proposition 3.1 The f—cost process of an H—admissible strategy ® is well-defined and is given by the
formula

Ce(P) =
70) (Vi = Vo = Jy, 84S, + $(0) Jy, So-dl5,5];)
—— ([57 Bls +2 [y, Se—d[B,0]S + [y, S>_dls, 5];)
+ Y gcsct [/ (ABs + LA, S,)) — f(0)(ABs + AS,S,) (3.1)

with notation [X,Y]¢ standing for the continuous part of the (cidlag) quadratic covariation process.

Proof The proof relies on exactly the same ingredients as in Theorem 2 of [I], where the case without transac-
tion costs is thoroughly studied along the lines of the proof of Ito formula’s proof for general semimartingales
in e.g. [I6]. The only (minor) difference lies in the use of Taylor’s theorem, which we apply to f'(L(z)S +y)
rather than f'(5) .

2 Admissible means that it satisfies the same regularity requirements as an H—admissible strategy without the equality
constraints on the terminal conditions.
3The superscript f is dropped as the cost function is fixed once and for all and no confusion can occur.



Corollary 3.2 The f—cost process of an H—admissible strategy ® can also be expressed in terms of the
portfolio value V

Ci(P) =
77(0) (Vi = Vo = Jy, 8-S,
7" (O)1(0) (% fy, Se-dls )
5O (V)5 — 2 fy, adV, S)s + [y, 82 dIS, S
+ Y geacs [(AV: = 6, AS, + L(AG,, S) — A6,S,)
 Ygeaet [MO)(AV; — 5,_AS), (3.2)

Proof A straightforward application of the properties of quadratic variations, when viewing § as a function

of V in formula (3.1)).
Compared to the case of infinite liquidity, the additional term in the expression of Cy(®) f”(0){’(0) (% f(er Se_d|d, 5]‘;) ,

and it is non-decreasing given the convexity of both f and L.

3.3 The supply price process
Exactly as in the previous paragraph, for an H—admissible trading strategy ®, one can define the supply
price process S (®) as the limit in ucp topology, whenever it exists, of

In

3 (1(5ﬂ? i) 57;11)

k=1
for any sequences P,, of Riemann partitions of [0, 7] of length /,,. Given an H—admissible strategy ®, the
existence of the associated supply price is ensured by the following result.

Proposition 3.3 The supply price process S° of an H—admissible strateqy ® is well-defined and given by
the formula
S5(®) = S, +1'(0) (5tst — 500 — [1, 6S_dSs) +107(0) [, S,-d[5, )¢
+ 2 0<s<t (L((AGs) —1)S, — I'(0)Ad,S;) . (3.3)
Proof The proof follows the same lines as that of Proposition [3.1] and is omitted.

4 Application to stochastic volatility models

Of great interest is the particularization of the general concepts previously defined to some specific asset
dynamics. In this section, the case of stochastic volatility is considered. In order to derive an explicit formula
for the f—cost and supply price processes, and completely characterize pseudo-optimal strategies, we then
let (S,0) be a solution of the following set of SDE’s

dS; = pdt+ o dW} (4.1)
doy = ydt + S dW}E (4.2)
where (W1, W?) is a two-dimensional Wiener process under P with correlation p, i.e. d < W' W2 >;= pdt.
Under appropriate conditions hold for the functions p, v; and ¥, see e.g. [?], admits a unique
strong continuous solution with S; > 0 and o; > 0. We will from now on assume that such conditions

hold true and restrict our study to a Markovian framework, thereby looking for the optimal strategy ® as a
smooth function of the state variables

575 = 6(tast50t)
‘/t = V(ta St70't).



4.1 PDE formulation

In order to derive a set of PDE’s satisfied by pseudo-optimal strategies, one first has to rewrite the cost
process as a function of the diffusion parameters and the strategy. A straightforward calculation using (3.2)
yields

¢ av ov 10°V , 19%*V 2 o*V
Ci(®) = /o {f (0)<a as”“ a +§ﬁ ”iTE asao”"“z“_‘S“““)
+ 71O ((38)" 0%+ (52) 2% +288 82 p0us)
(3)
- £59 ((3%)% 02 <aa> ¥2 + 295 % 00,3, )
- f“”)() (%503 +%pau2u)+—f”°>52aﬂ du
t
+ / £"(0) <as )JudWl / £"(0) 2 dW?2.
0

Likewise, using , there holds for the supply price process

t t
SS(@®) = S, +1U(0) (5tst—5050—/0 6uuudu—/0 5uaude>

t 2 2
00 a6 a6 09
1070 / — ) o2+ (=) 22 +2 5 —po.S, | du
+ 20 [ \55) 7t as) T 2a59.77 U
Now, applying to the strategy ® the first pseudo-optimality criterion, i.e. that C' must be a martingale

under the measure P, we find a first fully non-linear PDE satisfied by the strategy (V,¢)

oy (VL LY LV, 10V 2+a2v
ou a5t T 9 T 2952 %4 T 3 gg2 9590

oS ((22) o2 4 (20) 52 4 20 9
+f (O)Z(O)2 55 o, + 9% Z“+2858 PO
30 ([ovN? ,  [oV®, L,V OV
5 \\as) T \as ) =t 2a5 80T

30
190, (Ggot+ Gormm ) + a2 —o

Eu - 5u/~’4u

with terminal condition corresponding Vy = 67 S + .
In order to apply the second pseudo-optimality criterion, i.e. that the martingale C' must be orthogonal to
the martingale part of the supply price process S°, we first identify the martingale part of the latter

¢
SP (@) —E(S7(@)) = / 1+1'(0)S— 00 o dW} + / (0 )5652 dW2,
0 oS 0 0o
so that the second PDE satisfied by (V) is
ov , 04 ov , a8
oV 96

oV 95 .
<as‘5>al(>5 o8+ 5o l(0)SE7 =0,



With some rearrangements, the pseudo-optimal strategy ® is shown to solve the following coupled system
of nonlinear PDEs

8%V 2 8%V _
by +76530p02 =

vV | vV vV 19%V 2
ou T osh T 9: 7 T 295707 T 3 552

N[

op+a ((%a + %—‘;pE - 60)2 +(1—p?) (%)2 2
+(0)5 (350 + 3o%)" + (1= o) (8

g

(9% —0) (1+1(0)S22) 0%+ L (1 +1'(0)S22) pox

+ (2% —6) 221'(0)Spos + ZL 21(0)S%? = 0

with terminal condition Vp = 67 Sy + 8H.

A system such as is quite challenging: one can see it as a parabolic equation coupled with a nonlinear,
stationary hyperbolic equation which can be viewed as a constraint. The study of will be the subject
of another work.

The case of a complete market

The case of a complete market corresponds to 3, the volatility of volatility, equal to zero. The equation for

the hedge ratio J then reduces to
ov , 06
(as - 5> (1 +1 (0)585) 0.

so that a sufficient condition is that V,¢ is a solution to

ov
= — 4.4
5 55 (4.4)
v 182V o OV

Upon the generalized Black and Scholes PDE having a solution, a property easily shown to hold when
the contingent claim has a convex payoff, equation gives a perfect hedge. As already holds in the infinite
liquidity case, the solution does not depend on the risk function f. In fact, the f—cost process is identically
zero, which amounts to having a self-financing strategy incorporating liquidity costs that perfectly replicates
the contingent claim H.

4.2 The minimization problem

Despite the fact that, in discrete time, a pseudo-optimal strategy satisfying ((2.1)) might not be optimal, in
continuous time, and when working with continuous path processes, there exists a correspondence between
the two concepts H As a matter of fact, we now prove that a strategy solving system of equations is
locally risk-minimizing for the function f.

Given the smoothness of the risk function f and the liquidity costs function £, one can write a Taylor
expansion around the unperturbed strategy ®. Given a partition 7 and ¢t € [0, T], and assuming without loss
of generality that t is one of the ¢, there holds that

T gl(tw) = Pt [“’fo)_(ff — ARy, (®)(w)
Et, (f(ACt (P + @i t21())) (W) — B, (F(ACh,,, (D)) (w)

tit1 —t;

4We refer the reader to paragraph 3.2 of [I] for the precise definition of local risk-minimization in continuous time.



Taylor’s formula applied to g : (z,y) — f(L(z) 4+ y) then yields for some ¢ € ]

f(ACti+1 (@ + ¢‘[ti,ti+1())) =
f(ACtH»l (CI)» - ﬂti f/(ACtH»l ((I))) - 6ti£/(q)>f/(ACti+l ((I))) + %51521h(¢;>

B+ 5L @)0(B)

where g(¢) = f"(ACy,.,(9)) and h(§) = L"(8) f'(ACy,,,($)) with ¢ = (B,4) such that |5| < B and [5] < 4.
Using the standing assumptions on f, namely f/(0) = 0, f”(0) > 0, the remainder term 5t2h(¢~>) + (B, +
6, L'($))%9(¢) will remain strictly positive in a neighborhood of t; for &;, and 8, small enough. Rearranging
and simplifying yields

Er, (f'(ACy,, () () Er, (£'(2)f'(AC,, (2))) (w)

[P, P(t = . O, 4.6
ril®, dlt,) B tiv1 —t; % liv1 — 4 (4.6)
1B, (620(0)) (w)
L (4.7)
2 tig1 —t;
1B (B + 00, £'(9)%9(9) ) ()
L L . (4.8)
2 tit1 — ¢
Thanks to the pathwise conitnuity of Ito processes, there holds
E:, (f'(AC:,, (D
lim t; (f ( tl+1( ))) (LU) - A (f/ ° AC)t
tit1—t; tit1 — i
E; (L£(®)f(AC:, (P
o B @S ACL @)@ ae
tit1—1; tiv1 — °
and
B (h0) @)
lim ————— = Ahy,
tip1 =1, ti+1 —1; )
B (900) @)
lim ———— = Ag,
tiy1—t; tiv1 —
I ) L
T T (L' 9),.
LOE(O) @
ti+11rgti tig1 —ti N ( ’ g)ti
where A is the infinitesimal generator associated with the diffusion:
oh oh 19*h , 10%°h_, 0*h
= — — —— ——=% 3.
M=95" T 907 T20527 T 2002 T 950077
Finally, one obtains that the process 7} in (4.6) is given by
rele, Al(t,w) = BeA (f' o AC), + A (L - f' o AC), (4.9)
+ 5 (BEAge +2B:0A (L - g), + 6FA (L? - g+ Dh),). (4.10)



Upon setting the first component § of the perturbation equal to zero (that is, we perturb only ), a first
condition for a strategy ¢ to be locally risk-minimizing is derived:

1
BeA (f o AC), + EBngt >0 P —ae. V.

Hence, there holds A (f' o AC), = 0. Similarly, upon setting now = 0, the following second condition for
the strategy ¢ follows:

1
AL [0 AC), + S0FA (L% g+ h), >0 P —ae. ¥,

As a consequence, A (L' - f' o AC), = 0, and one can easily workout the equivalence below

A(floAC), = 0,
AL - f'oAC), = 0

2 2
£7(0) (au + G hu + o Vu+ 335505 + 5557 Sn + 3555 PTuBu — Sultu
5 )

2
2
*f%wwi«%>ﬁ+«ézwa%?m@u
2

0
(3)
HEO((55)7 o2+ (59)° 22 + 285 Srpou .
~fO(0), (5608 + 5y pouT W)+ 50808 = o
(55 —9) (L+1(0)555) 0 + 5 (1+1(0)55) pos
+(%5-0) 2 l(o)spaz+ IV R(0)Sx2 = 0.

As claimed in the beginning of this section, one can see that the optimal strategies with respect to local
risk-minimization are the same as the pseudo-optimal strategies. This result is similar to that obtained in
[1] in the case of "infinite" liquidity, the only requirement being that the infinitesimal generator is a local
operator.

5 Application to stochastic volatility /jump diffusion models

This section is devoted to a situation where non-quadratic risk definitely implies a different hedging strategy.
The evolution of S is modelled by an SDE with stochastic volatility and Poisson jumps in the vein of the
Bates model [?]

dS; = pdt+ o dW} + kdN,
dO’t = ’}/tdt + EtthQ,

where as before W' and W?2 are Wiener processes under P and d < W', W?2 >,= pdt, N, is a Poisson process
with intensity A, and the amplitude of the jumps k has probability distribution K. We also assume that W4,
N; and k are independent. Similarly to the case of stochastic volatility, standard assumptions are made to
ensure that the set of SDE has a unique strong solution.

With these assumptions, one can look for the optimal strategy ®, in a Markovian framework, as a function
of the state variables

0y = O(t, S 00)
‘/t = V(taSt7Ut)

and derive an equation for these quantities.
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5.1 PIDE formulation

The PIDE’s corresponding to respectively the portfolio value and optimal strategy follow as in Section ?7?
fro a rewriteing of the cost process

¢ 2 2
o (f”(O) (?TZ + G hu + Fovu + 335700 + 5 557 T + 355 PTuSu — 5uMU)

+ B0 () ot + (59" 22+ 25 %zpauzu)

+ el CORAICHIRRR et

- O 05 (3502 + 3 pouL) + L505202 ) du

+ J2£0) (2% — 6, ) 0 dWE

+ oy £(0) 2V s, dw?

+ Iy fo F(AVi = 8, AS, + L(AS,, Sy) — A8,S,) K (k)dkdN,

which follows from equation (3.2). Note that AV, the jump of V' when there S has a jump AS, of size k
at time wu, is equal to V(u—, Sy— + k,04—) — V(u—, Sy—, 04— ), and similarly for Ad,,.

Applying the first pseudo-optimality criterion to the strategy ®, i.e. that C is a martingale under the
measure P, yields the PIDE satisfied by the portfolio value V'

ov oV ov 192V 192V 92V
" vy oV 2 1 2 B
f (O)(au + 55t 5ot 5 5o “+27302Z + 5 cps PTuSu 5uuu>

FOO) (VN 2, (V) g2 L0V OV
L 95 ) Tt \Bs ) 258 g e
U(0)S, ((86\> 5, [06\°, .06V
T ((as) Tut o) Fut 255 gs P7u

—f(3)(0)5u, (W + alp Zu) I f(3)( )(52 0_2

S 0o umo
+ / F(AV — 60 AS)K(k)dkAy =0
R

with terminal conditions
Vr = 5HST + 5H.

In order to apply the second pseudo-optimality criterion, i.e. that the martingale C' be orthogonal to the
martingale part of the supply price process S°, we first identify the martingale part

S S ! l 94 1 94 2
SP(®)—E (S75 ((I))) = 141 (0)585 o dW, + l S E aw;
0
+ Jo Ja ((1(A6,) = 1)S, + k) <k)ddeu
with N, the compensated Poisson process of N. Therefore the second PDE satisfied by the strategy (V,0) is
oV , a6 oV , a6

ov 9, oV 96 ,
+<055>a '(0)Spo E*a*a*l( )Y

+/ F(AVy = 8u_ASy + L(ASy, Su) — A8,Su) (1(A8,) — 1)S, + k) K (k)dkA, =0
R
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again with terminal conditions Vp = 6% Sy + gH.

Contrarily to the stochastic volatility case, the optimal strategy in the jump-diffusion model requires the
knowledge of both functions f and £ on their whole domain of definition. Thas feature was to be expected
from the non-local character of the associated infinitesimal generator.
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