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A Mathematical Approach to Order Book Modeling

Frédéric Abergel∗ and Aymen Jedidi∗

November, 2012

Abstract

Motivated by the desire to bridge the gap between the microscopic description of price forma-
tion (agent-based modeling) and the Stochastic Differential Equations approach used classically
to describe price evolution at macroscopic time scales, we present a mathematical study of the
order book as a multidimensional continuous-time Markov chain and derive several mathemat-
ical results in the case of independent Poissonian arrival times. In particular, we show that the
cancellation structure is an important factor ensuring the existence of a stationary distribution and
the exponential convergence towards it. We also prove, by means of the Functional Central Limit
Theorem (FCLT), that the rescaled-centered price process converges to a Brownian motion.

Keywords: Limit order book; agent-based modeling; order flow; bid-ask spread; Markov chain;
stochastic stability; FCLT; geometric mixing.

1 Introduction and Background
The emergence of electronic trading as a major means of trading financial assets makes the study of
the order book central to understanding the mechanisms of price formation. In order-driven markets,
buy and sell orders are matched continuously subject to price and time priority. The order book is the
list of all buy and sell limit orders, with their corresponding price and size, at a given instant of time.
Essentially, three types of orders can be submitted:

• Limit order: Specify a price (also called “quote”) at which one is willing to buy or sell a certain
number of shares;

• Market order: Immediately buy or sell a certain number of shares at the best available opposite
quote;

• Cancellation order: Cancel an existing limit order.

In the literature, “agents” who submit exclusively limit orders are referred to as liquidity providers.
Those who submit market orders are referred to as liquidity takers.

∗Chaire de Finance Quantitative, Laboratoire de Mathématiques Appliquées aux Systèmes, École Centrale Paris,
92290 Châtenay-Malabry, France. E-mail: frederic.abergel@ecp.fr, aymen.jedidi@ecp.fr.

1



95 100 105 110

-40

-30

-20

-10

0

10

20

30

40

(1) initial state

95 100 105 110

-40

-30

-20

-10

0

10

20

30

40

(2) liquidity is taken

95 100 105 110

-40

-30

-20

-10

0

10

20

30

40

(3) wide spread

95 100 105 110

-40

-30

-20

-10

0

10

20

30

40

(4) liquidity returns

95 100 105 110

-40

-30

-20

-10

0

10

20

30

40

(5) liquidity returns

95 100 105 110

-40

-30

-20

-10

0

10

20

30

40

(6) final state

Figure 1: Order book schematic illustration: a buy market order arrives and removes liquidity from
the ask side, then sell limit orders are submitted and liquidity is restored.

Limit orders are stored in the order book until they are either executed against an incoming market
order or canceled. The ask price PA (or simply the ask) is the price of the best (i.e. lowest) limit sell
order. The bid price PB is the price of the best (i.e. highest) limit buy order. The gap between the bid
and the ask

S := PA − PB, (1)

is always positive and is called the spread. Prices are not continuous, but rather have a discrete
resolution ∆P, the tick, which represents the smallest quantity by which they can change. We define
the mid-price as the average between the bid and the ask

P :=
PA + PB

2
. (2)

The price dynamics is the result of the interplay between the incoming order flow and the order
book [4]. Figure 1 is a schematic illustration of this process [11]. Note that we chose to represent
quantities on the bid side of the book by non-positive numbers.

Although in reality orders can have any size, we shall assume in most of the paper that all orders
have a fixed unit size q. This assumption is convenient to carry out our analysis and is, for now, of
secondary importance to the problem we are interested in1. Throughout the paper, we may refer to
three different “times”:

• Physical time (or clock time) in seconds,
1It will be relaxed in section 7 where we resort to numerical simulation.
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• Event time (or tick time): the time counter is incremented by 1 every time an event (i.e. market,
limit or cancellation order) occurs,

• Trade time (or transaction time): the time counter is incremented every trade (i.e. every market
order).

Related literature. Order book modeling has been an area of intense research activity in the last
decade. The remarkable interest in this area is due to two factors:

• Widespread of algorithmic trading in which the order book is the place where offer and demand
meet,

• Availability of tick by tick data that record every change in the order book and allow precise
analysis of the price formation process at the microscopic level.

Schematically, two modeling approaches have been successful in capturing key properties of the
order book—at least partially. The first approach, led by economists, models the interactions between
rational agents who act strategically: they choose their trading decisions as solutions to individual
utility maximization problems (See e.g. [20] and references therein).

In the second approach, proposed by econophysicists, agents are assumed to act randomly. This
is sometime referred to as zero-intelligence order book modeling, in the sense that order arrivals
and placements are entirely stochastic. The focus here is more on the “mechanistic” aspects of the
continuous double auction rather than the strategic interactions between agents. Despite this apparent
limitation, zero-intelligence (or statistical) order book models do capture many salient features of real
markets (See [8, 10] and references therein). Two notable developments in this strand of research are
[14] who proposed one of the earliest stochastic order book models, and [5] who added the possibility
to cancel existing limit orders.

In their seminal paper [22], Smith et al. develop a dynamical statistical order book model under
the assumption of IID Poissonian order flow. They provide a thorough analysis of the model using
simulation, dimensional analysis and mean field approximation. They study key characteristics of the
model, namely:

1. Price diffusion.

2. Liquidity characteristics: average depth profile, bid-ask spread, price impact and time and prob-
ability to fill a limit order.

One of the most important messages of their analysis is that zero-intelligence order book models
are able to produce reasonable market dynamics and liquidity characteristics. Our focus here is on the
first point, that is, the convergence of the price process, which is a jump process at the microscopic
level, to a diffusive process2 at macroscopic time scales. The authors in [22] suggest that a diffusive
regime is reached. Their argument relies on a mean field approximation. Essentially, this amounts to
neglecting the dependence between order fluctuations at adjacent price levels.

Another important paper of interest to us is [7]. Cont et al. propose to model the order book
dynamics from the vantage point of queuing systems. They remarkably succeed in deriving many

2In this paper, we mean (abusively) by “diffusive process” or simply “diffusion” the mathematical concept of Brownian
motion.
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conditional probabilities of practical importance such as the probability of an increase in the mid-
price, of the execution of an order at the bid before the ask quote moves, and of “making the spread”.
To our knowledge, they are the first to clearly set the problem of stochastic order book modeling in
the context of Markov chains, which is a very powerful and well-studied mathematical concept.
Outline. In this paper, we build on the models of [7] and [22] to present a stylized description
of the order book, and derive several mathematical results in the case of independent Poissonian
arrival times. In particular, we show that the cancellation structure is an important factor ensuring
the existence of a stationary distribution and the exponential convergence towards it. We also prove,
by means of the Functional Central Limit Theorem (FCLT), that the rescaled-centered price process
converges to a Brownian motion, which is a new result.

The remainder of the paper is organized as follows. In section 2, we motivate our approach using
an elementary example where the spread is kept constant (“perfect market making”). In sections 3
trough 5, we compute the infinitesimal generator associated with the order book in a general setting,
and link the price dynamics to the instantaneous state of the order book. In section 6, we prove that the
order book is ergodic—in particular it has a stationary distribution—that it converges to its stationary
state exponentially fast, and that the large-scale limit of the price process is a Brownian motion.
Our proofs rely on the theory of infinitesimal generators and Foster-Lyapunov stability criteria for
Markov chains. We outline an order book simulation algorithm in section 7 and provide a numerical
illustration. Finally, section 8 summarizes our results and contains critiques of Markovian order book
models.

2 An Elementary Approximation: Perfect Market Making
We start with the simplest agent-based market model:

• The order book starts in a full state: All limits above PA(0) and below PB(0) are filled with one
limit order of unit size q. The spread starts equal to 1 tick;

• The flow of market orders is modeled by two independent Poisson processes M+(t) (buy orders)
and M−(t) (sell orders) with constant arrival rates (or intensities) λ+ and λ−;

• There is one liquidity provider, who reacts immediately after a market order arrives so as to
maintain the spread constantly equal to 1 tick. He places a limit order on the same side as the
market order (i.e. a buy limit order after a buy market order and vice versa) with probability u
and on the opposite side with probability 1 − u.

The mid-price dynamics can be written in the following form

dP(t) = ∆P(dM+(t) − dM−(t))Z, (3)

where Z is a Bernoulli random variable{
Z = 0 with probability (1 − u),
Z = 1 with probability u.

(4)
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The infinitesimal generator3 L associated with this dynamics is

L f (P) = u
(
λ+( f (P + ∆P) − f ) + λ−( f (P − ∆P) − f )

)
, (6)

where f denotes a test function. It is well known that a continuous limit is obtained under suitable
assumptions on the intensity and tick size. Noting that (6) can be rewritten as

L f (P) =
1
2

u(λ+ + λ−)(∆P)2 f (P + ∆P) − 2 f + f (P − ∆P)
(∆P)2

+ u(λ+ − λ−)∆P
f (P + ∆P) − f (P − ∆P)

2∆P
, (7)

and under the following assumptions{
u(λ+ + λ−)(∆P)2−→σ2 as ∆P→ 0,

u(λ+ − λ−)∆P−→µ as ∆P→ 0,
(8)

the generator converges to the classical diffusion operator

σ2

2
∂2 f
∂P2 + µ

∂ f
∂P

, (9)

corresponding to a Brownian motion with drift. This simple case is worked out as an example of the
type of limit theorems that we will be interested in in the sequel. One should also note that a more
classical approach using the Functional Central limit Theorem (FCLT) as in [1] or [25] yields similar
results ; For given fixed values of λ+, λ− and ∆P, the rescaled-centred price process

P(nt) − nµt
√

nσ
(10)

converges as n→ ∞, to a standard Brownian motion (B(t)) whereσ = ∆P
√

(λ+ + λ−)u,
µ = ∆P(λ+ − λ−)u.

(11)

Let us also mention that one can easily achieve more complex diffusive limits such as a local volatility
model by imposing that the limit is a function of P and t{

u(λ+ + λ−)(∆P)2 → σ2(P, t),
u(λ+ − λ−)∆P→ µ(P, t).

(12)

This would be the case if the original intensities are functions of P and t themselves.

3The infinitesimal generator of a time-homogeneous Markov process (X(t))t≥0 is the operator L, if exists, defined to
act on sufficiently regular functions f : Rn → R, by

L f (x) := lim
t↓0

E[ f (X(t))|X(0) = x] − f (x)
t

. (5)

It provides an analytical tool to study (X(t)).
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3 Order Book Dynamics

3.1 Model setup: Poissonian arrivals, reference frame and boundary condi-
tions

We now consider the dynamics of a general order book under the assumption of Poissonian arrival
times for market orders, limit orders and cancellations. We shall assume that each side of the order
book is fully described by a finite number of limits K, ranging from 1 to K ticks away from the best
available opposite quote. We will use the notation4

X(t) := (a(t); b(t)) := (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) , (13)

where a := (a1, . . . , aK) designates the ask side of the order book and ai the number of shares available
i ticks away from the best opposite quote, and b := (b1, . . . , bK) designates the bid side of the book.
By doing so, we adopt the representation described in [7] or [22]5, but depart slightly from it by
adopting a finite moving frame, as we think it is realistic and more convenient when scaling in tick
size will be addressed.

Let us now recall the events that may happen:

• arrival of a new market order;

• arrival of a new limit order;

• cancellation of an already existing limit order.

These events are described by independent Poisson processes:

• M±(t): arrival of new market order, with intensity λM+

I(a , 0) and λM−I(b , 0);

• L±i (t): arrival of a limit order at level i, with intensity λL±
i ;

• C±i (t): cancellation of a limit order at level i, with intensity λC+

i ai and λC−
i |bi|.

q is the size of any new incoming order, and the superscript “+” (respectively “−”) refers to the ask
(respectively bid) side of the book. Note that the intensity of the cancellation process at level i is
proportional to the available quantity at that level. That is to say, each order at level i has a lifetime
drawn from an exponential distribution with intensity λC±

i . Note also that buy limit orders L−i (t) arrive
below the ask price PA(t), and sell limit orders L+

i (t) arrive above the bid price PB(t).
We impose constant boundary conditions outside the moving frame of size 2K: Every time the

moving frame leaves a price level, the number of shares at that level is set to a∞ (or b∞ depending
on the side of the book). Our choice of a finite moving frame and constant6 boundary conditions has
three motivations. Firstly, it assures that the order book does not empty and that PA, PB are always
well defined. Secondly, it keeps the spread S and the increments of PA, PB and P = PA+PB

2 bounded—
This will be important when addressing the scaling limit of the price. Thirdly, it makes the model
Markovian as we do not keep track of the price levels that have been visited (then left) by the moving
frame at some prior time. Figure 2 is a representation of the order book using the above notations.

4In what follows, bold notation indicates vector quantities.
5See also [12] for an interesting discussion.
6Actually, taking for a∞ and |b∞| independent positive random variables would not change much our analysis. We take

constants for simplicity.
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Figure 2: Order book dynamics: in this example, K = 9, q = 1, a∞ = 4, b∞ = −4. The shape of the order
book is such that a(t) = (0, 0, 0, 0, 1, 3, 5, 4, 2) and b(t) = (0, 0, 0, 0,−1, 0,−4,−5,−3). The spread S (t) = 5
ticks. Assume that at time t′ > t a sell market order dM−(t′) arrives, then a(t′) = (0, 0, 0, 0, 0, 0, 1, 3, 5), b(t′) =

(0, 0, 0, 0, 0, 0,−4,−5,−3) and S (t′) = 7. Assume instead that at t′ > t a buy limit order dL−1 (t′) arrives one tick
away from the best opposite quote, then a(t′) = (1, 3, 5, 4, 2, 4, 4, 4, 4), b(t′) = (−1, 0, 0, 0,−1, 0,−4,−5,−3)
and S (t′) = 1.

3.2 Comparison to previous results and models
Before we proceed, we would like to recall some results already present in the literature and highlight
their differences with respect to our analysis. Smith et al. have already investigated in [22] the scaling
properties of some liquidity and price characteristics in a stochastic order book model. These results
are summarized in table 1. In the model of Smith et al. [22], orders arrive on an infinite price grid
(This is consistent as limit orders arrival rate per price level is finite). Moreover, the arrival rates
are independent of the price level, which has the advantage of enabling the analytical predictions
summarized in table 1.
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Quantity Scaling relation
Average asymptotic depth λL

λC

Average spread λM

λL f (ε, ∆P
pc

)

Slope of average depth profile (λL)2

λMλC g(ε, ∆P
pc

)

Price “diffusion” parameter at short time scales (λM)2λC

λL ε−0.5

Price “diffusion” parameter at long time scales (λM)2λC

λL ε0.5

Table 1: Results of Smith et al. ε :=
q
λM

2λC

is a “granularity” parameter that characterizes the effect of

discreteness in order sizes, pc :=
λM

2λL is a characteristic price interval, and f and g are slowly varying
functions.

We stress that, to our understanding, these results are obtained by mean-field approximations,
which assume that the fluctuations at adjacent price levels are independent. This allows fruitful sim-
plifications of the complex dynamics of the order book. In addition, the authors do not characterize
the convergence of the coarse-grained price process in the sense of Stochastic Process Limits, nor do
they show that the limiting process is precisely a Brownian motion (theorem 6.4).

In the model of Cont el al. [7], arrival rates are indexed by the distance to the best opposite quote,
which is more realistic. The order book is constrained to a finite price grid [1, Pmax] that facilitates
the analysis of the Markov chain. Here, we use a combination of the two models in that the arrival
rates are not uniformly distributed across prices, and the reference frame is finite but moving. Cont
et al. [7] have considered the question of the ergodicity of their order book model. We also address
this question following a different route, and more importantly to our analysis, exhibit the rate of
convergence to the stationary state, which turns out to be the key of the proof of theorem 6.4.

3.3 Evolution of the order book
We can write the following coupled SDEs for the quantities of outstanding limit orders in each side
of the order book7

dai(t) = −

q − i−1∑
k=1

ak


+

dM+(t) + qdL+
i (t) − qdC+

i (t)

+ (JM−(a) − a)idM−(t) +

K∑
i=1

(JL−i (a) − a)idL−i (t) +

K∑
i=1

(JC−i (a) − a)idC−i (t),

dbi(t) =

q − i−1∑
k=1

|bk|


+

dM−(t) − qdL−i (t) + qdC−i (t)

+ (JM+

(b) − b)idM+(t) +

K∑
i=1

(JL+
i (b) − b)idL+

i (t) +

K∑
i=1

(JC+
i (b) − b)idC+

i (t),

(14)

7Remember that, by convention, the bi’s are non-positive.
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where the J’s are shift operators corresponding to the renumbering of the ask side following an event
affecting the bid side of the book and vice versa. For instance the shift operator corresponding to the
arrival of a sell market order dM−(t) of size q is8

JM−(a) =

0, 0, . . . , 0︸      ︷︷      ︸
k times

, a1, a2, . . . , aK−k

 , (15)

with

k := inf{p :
p∑

j=1

|b j| > q} − inf{p : |bp| > 0}. (16)

Similar expressions can be derived for the other events affecting the order book.
In the next sections, we will study some general properties of the order book, starting with the

generator associated with this 2K-dimensional continuous-time Markov chain.

4 Infinitesimal Generator
Let us work out the infinitesimal generator associated with the jump process described above. We
have

L f (a; b) = λM+

( f
(
[ai − (q − A(i − 1))+]+; JM+

(b)
)
− f )

+

K∑
i=1

λL+

i ( f
(
ai + q; JL+

i (b)
)
− f )

+

K∑
i=1

λC+

i ai( f
(
ai − q; JC+

i (b)
)
− f )

+ λM−
(

f
(
JM−(a); [bi + (q − B(i − 1))+]−

)
− f

)
+

K∑
i=1

λL−
i ( f

(
JL−i (a); bi − q

)
− f )

+

K∑
i=1

λC−
i |bi|( f

(
JC−i (a); bi + q

)
− f ), (17)

where, to ease the notations, we note f (ai; b) instead of f (a1, . . . , ai, . . . , aK; b) etc. and

x+ := max(x, 0), x− := min(x, 0), x ∈ R. (18)

The operator above, although cumbersome to put in writing, is simple to decipher: a series of standard
difference operators corresponding to the “deposition-evaporation” of orders at each limit, combined
with the shift operators expressing the moves in the best limits and therefore, in the origins of the
frames for the two sides of the order book. Note the coupling of the two sides: the shifts on the a’s

8For notational simplicity, we write JM− (a) instead of JM− (a; b) etc. for the shift operators.

9



depend on the b’s, and vice versa. More precisely the shifts depend on the profile of the order book
on the other side, namely the cumulative depth up to level i defined by

A(i) :=
i∑

k=1

ak,

B(i) :=
i∑

k=1

|bk|,

(19)

and the generalized inverse functions thereof
A−1(q′) := inf{p :

p∑
j=1

a j > q′},

B−1(q′) := inf{p :
p∑

j=1

|b j| > q′},

(20)

where q′ designates a certain quantity of shares9.

Remark 4.1 The index corresponding to the best opposite quote equals the spread S in ticks, that is
iA := A−1(0) = inf{p :

p∑
j=1

a j > 0} =
S

∆P
:= iS ,

iB := B−1(0) = inf{p :
p∑

j=1

|b j| > 0} =
S

∆P
:= iS = iA.

(21)

5 Price Dynamics
We now focus on the dynamics of the best ask and bid prices, denoted by PA(t) and PB(t). One can
easily see that they satisfy the following SDEs

dPA(t) = ∆P[(A−1(q) − A−1(0))dM+(t)

−

K∑
i=1

(A−1(0) − i)+dL+
i (t) + (A−1(q) − A−1(0))dC+

iA(t)],

dPB(t) = −∆P[(B−1(q) − B−1(0))dM−(t)

−

K∑
i=1

(B−1(0) − i)+dL−i (t) + (B−1(q) − B−1(0))dC−iB
(t)],

(22)

9Note that a more rigorous notation would be

A(i, a(t)) and A−1(q′, a(t))

for the depth and inverse depth functions respectively. We drop the dependence on the last variable as it is clear from the
context.
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which describe the various events that affect them: change due to a market order, change due to
limit orders inside the spread, and change due to the cancellation of a limit order at the best price.
Equivalently, the respective dynamics of the mid-price and the spread are

dP(t) =
∆P
2

[
(A−1(q) − A−1(0))dM+(t) − (B−1(q) − B−1(0))dM−(t)

−

K∑
i=1

(A−1(0) − i)+dL+
i (t) +

K∑
i=1

(B−1(0) − i)+dL−i (t)

+ (A−1(q) − A−1(0))dC+
iA(t) − (B−1(q) − B−1(0))dC−iB

(t)
]
, (23)

dS (t) = ∆P
[
(A−1(q) − A−1(0))dM+(t) + (B−1(q) − B−1(0))dM−(t)

−

K∑
i=1

(A−1(0) − i)+dL+
i (t) −

K∑
i=1

(B−1(0) − i)+dL−i (t)

+ (A−1(q) − A−1(0))dC+
iA(t) + (B−1(q) − B−1(0))dC−iB

(t)
]
. (24)

The equations above are interesting in that they relate in an explicit way the profile of the order book
to the size of an increment of the mid-price or the spread, therefore linking the price dynamics to the
order flow. For instance the infinitesimal drifts of the mid-price and the spread, conditional on the
shape of the order book at time t, are given by

E [dP(t)|(a; b)] =
∆P
2

[
(A−1(q) − A−1(0))λM+

− (B−1(q) − B−1(0))λM−

−

K∑
i=1

(A−1(0) − i)+λ
L+

i +

K∑
i=1

(B−1(0) − i)+λ
L−
i

+ (A−1(q) − A−1(0))λC+

iA aiA − (B−1(q) − B−1(0))λC−
iB
|biB |

]
dt, (25)

and

E [dS (t)|(a; b)] = ∆P
[
(A−1(q) − A−1(0))λM+

+ (B−1(q) − B−1(0))λM−

−

K∑
i=1

(A−1(0) − i)+λ
L+

i −

K∑
i=1

(A−1(0) − i)+λ
L−
i

+ (A−1(q) − A−1(0))λC+

iA aiA + (B−1(q) − B−1(0))λC−
iB
|biB |

]
dt. (26)

6 Ergodicty and Diffusive Limit
In this section, our interest lies in the following questions:

1. Is the order book model defined above stable?

2. What is the stochastic-process limit of the price at large time scales?
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The notions of “stability” and “large-scale limit” will be made precise below. We first need some
useful definitions from the theory of Markov chains and stochastic stability. Let (Qt)t≥0 be the Markov
transition probability function of the order book at time t, that is

Qt(x, E) := P [X(t) ∈ E|X(0) = x] , t ∈ R+, x ∈ S, E ⊂ S, (27)

where S ⊂ Z2K is the state space of the order book. We recall that a (aperiodic, irreducible) Markov
process is ergodic if an invariant probability measure π exists and

lim
t→∞
||Qt(x, .) − π(.)|| = 0,∀x ∈ S, (28)

where ||.|| designates for a signed measure ν the total variation norm10 defined as

||ν|| := sup
f :| f |<1

|ν( f )| = sup
E∈B(S)

ν(E) − inf
E∈B(S)

ν(E). (30)

In (30), B(S) is the Borel σ-field generated by S, and for a measurable function f on S, ν( f ) :=∫
S

f dν.
V-uniform ergodicity. A Markov process is said V-uniformly ergodic if there exists a coercive11

function V > 1, an invariant distribution π, and constants 0 < r < 1, and R < ∞ such that

||Qt(x, .) − π(.)|| ≤ RrtV(x), x ∈ S, t ∈ R+. (31)

V−uniform ergodicity can be characterized in terms of the infinitesimal generator of the Markov
process. Indeed, it is shown in [15, 18] that it is equivalent to the existence of a coercive function V
(the “Lyapunov test function”) such that

LV(x) ≤ −βV(x) + γ, (Geometric Drift condition.) (32)

for some positive constants β and γ. (Theorems 6.1 and 7.1 in [18].) Intuitively, condition (32) says
that the larger V(X(t)) the stronger X is pulled back towards the center of the state space S. A similar
drift condition is available for discrete-time Markov processes (Xn)n∈N and reads

DV(x) ≤ −βV(x) + γIC(x), (33)

whereD is the drift operator

DV(x) := E[V(Xn+1) − V(Xn)|Xn = x]. (34)

and C ⊂ S a finite set. (Theorem 16.0.1 in [15].) We refer to [15] for further details.
10The convergence in total variation norm implies the more familiar pointwise convergence

lim
t→∞
|Qt(x, y) − π(y)| = 0, x, y ∈ S. (29)

Note that since the state space S is countable, one can formulate the results without the need of a “measure-theoretic”
framework. We prefer to use this setting as it is more flexible, and can accommodate possible generalizations of these
results.

11That is, a function such that V(x)→ ∞ as |x| → ∞.

12



6.1 Ergodicity of the order book and rate of convergence to the stationary
state

Of utmost interest is the behavior of the order book in its stationary state. We have the following
result:

Theorem 6.1 If λC = min1≤i≤K{λ
C±
i } > 0, then (X(t))t≥0 = (a(t); b(t))t≥0 is an ergodic Markov process.

In particular (X(t)) has a stationary distribution π. Moreover, the rate of convergence of the order
book to its stationary state is exponential. That is, there exist r < 1 and R < ∞ such that

||Qt(x, .) − π(.)|| ≤ RrtV(x), t ∈ R+, x ∈ S. (35)

Proof. Let

V(x) := V(a; b) :=
K∑

i=1

ai +

K∑
i=1

|bi| + q (36)

be the total number of shares in the book (+q shares). Using the expression of the infinitesimal
generator (17) we have

LV(x) ≤ −(λM+

+ λM−)q +

K∑
i=1

(λL+

i + λL−
i )q −

K∑
i=1

(λC+

i ai + λC−
i |bi|)q

+

K∑
i=1

λL+

i (iS − i)+a∞ +

K∑
i=1

λL+

i (iS − i)+|b∞| (37)

≤ −(λM+

+ λM−)q + (ΛL− + ΛL+

)q − λCqV(x)

+ K(ΛL−a∞ + ΛL+

|b∞|), (38)

where

ΛL± :=
K∑

i=1

λL±
i and λC := min

1≤i≤K
{λC±

i } > 0. (39)

The first three terms in the right hand side of inequality (37) correspond respectively to the arrival of
a market, limit or cancellation order—ignoring the effect of the shift operators. The last two terms
are due to shifts occurring after the arrival of a limit order inside the spread. The terms due to shifts
occurring after market or cancellation orders (which we do not put in the r.h.s. of (37)) are negative,
hence the inequality. To obtain inequality (38), we used the fact that the spread iS is bounded by
K + 1—a consequence of the boundary conditions we impose— and hence (iS − i)+ is bounded by K.

The drift condition (38) can be rewritten as

LV(x) ≤ −βV(x) + γ, (40)

for some positive constants β, γ. Inequality (40) together with theorem 7.1 in [18] let us assert that
(X(t)) is V-uniformly ergodic, hence (35).

Corollary 6.1 The spread S (t) = A−1(0, a(t))∆P = S (X(t)) has a well-defined stationary distribution—
This is expected as by construction the spread is bounded by K + 1.
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6.2 The embedded Markov chain
Let (Xn) denote the embedded Markov chain associated with (X(t)). In event time, the probabilities
of each event are “normalized” by the quantity

Λ(x) := λM+

+ λM− + ΛL+

+ ΛL− +

K∑
i=1

λC+

i ai +

K∑
i=1

λC−
i |bi|. (41)

For instance, the probability of a buy market order when the order book is in state x, is

P[“Buy market order at time n”|Xn−1 = x] := pM+

(x) =
λM+

Λ(x)
. (42)

The choice of the test function V(x) =
∑

i ai +
∑

i bi + q does not yield a geometric drift condition,
and more care should be taken to obtain a suitable test function. Let z > 1 be a fixed real number and
consider the function12

V(x) := z
∑

i ai+
∑

i |bi | := zϕ(x). (43)

We have

Theorem 6.2 (Xn) is V-uniformly ergodic. Hence, there exist r2 < 1 and R2 < ∞ such that

||Un(x, .) − ν(.)|| ≤ R2rn
2V(x), n ∈ N, , x ∈ S. (44)

where (Un)n∈N is the transition probability function of (Xn)n∈N and ν its stationary distribution.

Proof.

DV(x) ≤
λM+

Λ(x)
(z

∑
i ai−q+

∑
i |bi | − V(x))

+
∑

j

λL+

j

Λ(x)
(z

∑
i ai+q+

∑
i |bi |+K|b∞ | − V(x))

+
∑

j

λC+

j a j

Λ(x)
(z

∑
i ai−q+

∑
i |bi | − V(x))

+
λM−

Λ(x)
(z

∑
i ai+

∑
i |bi |−q − V(x))

+
∑

j

λL−
j

Λ(x)
(z

∑
i ai+Ka∞+

∑
i |bi |+q − V(x))

+
∑

j

λC−
j |b j|

Λ(x)
(z

∑
i ai+

∑
i |bi |−q − V(x)). (45)

12To save notations, we always use the letter V for the test function.
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If we factor out V(x) = z
∑

ai+
∑

bi in the r.h.s of (45), we get

DV(x)
V(x)

≤
λM+

+ λM−

Λ(x)
(z−q − 1)

+
ΛL− + ΛL−

Λ(x)
(zq+Kd∞ − 1)

+

∑
j λ

C+

j a j +
∑

j λ
C−
j |b j|

Λ(x)
(z−q − 1), (46)

where
d∞ := max{a∞, |b∞|}. (47)

Then

DV(x)
V(x)

≤
λM+

+ λM−

λM+
+ λM− + ΛL+

+ ΛL− + λCϕ(x)
(z−q − 1)

+
ΛL+

+ ΛL−

λM+
+ λM− + ΛL+

+ ΛL− + λCϕ(x)
(zq+Kd∞ − 1)

+
λCϕ(x)

λM+
+ λM− + ΛL+

+ ΛL− + λCϕ(x)
(z−q − 1), (48)

with the usual notations
λC := min λC±

i and λC := max λC±
i . (49)

Denote the r.h.s of (48) B(x). Clearly

lim
ϕ(x)→∞

B(x) =
λC(z−q − 1)

λC
< 0, (50)

hence there exists A > 0 such that for x ∈ S and ϕ(x) > A

DV(x)
V(x)

≤
λC(z−q − 1)

2λC
:= −β < 0. (51)

Let C denote the finite set

C = {x ∈ S : ϕ(x) =
∑

i

ai +
∑

i

bi ≤ A}. (52)

We have
DV(x) ≤ −βV(x) + γIC(x), (53)

with
γ := max

x∈C
DV(x). (54)

Therefore (Xn)n≥0 is V-uniformly ergodic, by theorem 16.0.1 in [15].
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6.3 The case of constant cancellation rates
The proof above can be applied to the case where the cancellation rates do not depend on the state of
the order book X′(t)—We shall denote the order book X′(t) in order to highlight that the assumption
of proportional cancellation rates is relaxed. The probability of a cancellation dC±i (t) in [t, t + δt] is
now

P[C±i (t + δt) −C±i (t) = 1|X′(t) = x′] = λC±
i δt + o(δt), (55)

instead of
P[C+

i (t + δt) −C+
i (t) = 1|X′(t) = x′] = λC+

i ai(t)δt + o(δt), (56)

where limδt→0 o(δt)/δt = 0. Since Λ = λM+

+λM− +ΛL+

+ΛL− +
∑K

i=1 λ
C+

i +
∑K

i=1 λ
C−
i does not depend on

x′, the analysis of the stability of the continuous-time process (X′(t)) and its discrete-time counterpart
(X′n) are essentially the same.

We have the following result:

Theorem 6.3 Set

ΛC± :=
K∑

i=1

λC±
i and ΛL± :=

K∑
i=1

λL±
i . (57)

Under the condition
λM+

+ λM− + ΛC+

+ ΛC− > (ΛL+

+ ΛL−)(1 + Kd∞), (58)

(X′n) is V-uniformly ergodic. There exist r3 < 1 and R3 < ∞ such that

||U′n(x, .) − ν′(.)|| ≤ R3rn
3, n ∈ N, x ∈ S. (59)

The same is true for (X′(t)).

Proof. Let us prove the result for (X′n). Inequality (46) is still valid by the same arguments, but this
time the arrival rates are independent of x′

DV(x′)
V(x′)

≤
λM+

+ λM−

Λ
(z−q − 1)

+
ΛL+

+ ΛL−

Λ
(zq+Kd∞ − 1)

+
ΛC+

+ ΛC−

Λ
(z−q − 1). (60)

Set
z =: 1 + ε > 1. (61)

A Taylor expansion in ε gives

Λ
DV(x)
V(x)

≤ (λM+

+ λM−)(−qε)

+ (ΛL+

+ ΛL−)(q + Kd∞)ε
+ (ΛC+

+ ΛC−)(−qε) + o(ε). (62)
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For ε > 0 small enough, the sign of (62) is determined by the quantity

−(λM+

+ λM−) + (ΛL+

+ ΛL−)(1 + Kd∞) − (ΛC+

+ ΛC−). (63)

Hence, if (58) holds

DV(x) ≤ −βV(x) for some β > 0, (64)

and a geometric drift condition is obtained for X′.

If for concreteness we set q = 1 share, and all the arrival rates are symmetric and do not depend
on i, then condition (58) can be rewritten as

λM + KλC > KλL(1 + Kd∞). (65)

where K is the size of the order book and d∞ is the depth far away from the mid-price. Note that the
above is a sufficient condition for (V-uniform) stability.

6.4 Large-scale limit of the price process
We are now able to answer the main question of this paper. Let us define the process

e(t) ∈ {1, . . . , 2(2K + 1)}

which indicates the last event
{M±, L±i ,C

±
i }i∈{1,...,K},

that has occurred before time t.

Lemma 6.1 If we append e(t) to the order book (X(t)), we get a Markov process

Y(t) := (X(t), e(t)) (66)

which still satisfies the drift condition (32).

Proof. Since e(t) takes its values in a finite set, the arguments of the previous sections are valid with
minor modifications, and with the test functions

V(y) := q +
∑

ai +
∑
|bi| + e, (continuous-time setting) (67)

V(y) := e
∑

ai+
∑
|bi |+e. (discrete-time setting) (68)

The V-uniform ergodicity of (Y(t)) and (Yn) follows.

Given the state Xn−1 of the order book at time n− 1 and the event en, the price increment at time n can
be determined. (See equation (23).) We define the sequence of random variables

ηn := Ψ(Xn−1, en) := Φ(Yn,Yn−1), (69)
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as the price increment at time n. Ψ is a deterministic function giving the elementary “price-impact”
of event en on the order book at state Xn−1. Let µ be the stationary distribution of (Yn), and M its
transition probability function. We are interested in the random sums

Pn :=
n∑

k=1

ηn =

n∑
k=1

Φ(Yk,Yk−1), (70)

where
ηk := ηk − Eµ[ηk] = Φk = Φk − Eµ[Φk], (71)

and the asymptotic behavior of the rescaled-centered price process

P̃(n)(t) :=
Pbntc
√

n
, (72)

as n goes to infinity.

Theorem 6.4 The series

σ2 = Eµ[η
2
0] + 2

∞∑
n=1

Eµ[η0ηn] (73)

converges absolutely, and the rescaled-centered price process is a Brownian motion in the limit of n
going to infinity. That is

P̃(n)(t)
n→∞
−→ σB(t), (74)

where (B(t)) is a standard Brownian motion.

Proof. The idea is to apply the Functional Central Limit Theorem for (stationary and ergodic) se-
quences of weakly dependent random variables with finite variance. Firstly, we note that the variance
of the price increments ηn is finite since it is bounded by K + 1. Secondly, the V-uniform ergodicity
of (Yn) is equivalent to

||Mn(x, .) − µ(.)|| ≤ RρnV(x), n ∈ N, (75)

for some R < ∞ and ρ < 1. This implies thanks to theorem 16.1.5 in [15] that for any g2, h2 ≤ V ,
k, n ∈ N, and any initial condition y

|Ey[g(Yk)h(Yn+k)] − Ey[g(Yk)]Ey[g(Yk)]| ≤ Rρn[1 + ρkV(y)], (76)

where Ey[.] means E[.|Y0 = y]. This in turn implies

|Ey[h(Yk)g(Yk+n)]| ≤ R1ρ
n[1 + ρkV(y)] (77)

for some R1 < ∞, where h = h − Eµ[h], g = g − Eµ[g]. By taking the expectation over µ on both sides
of (77) and noting that Eµ[V(Y0)] is finite by theorem 14.3.7 in [15], we get

|Eµ[h(Yk)g(Yk+n)]| ≤ R2ρ
n =: ρ(n), k, n ∈ N. (78)

Hence the stationary version of (Yn) satisfies a geometric mixing condition, and in particular∑
n

ρ(n) < ∞. (79)
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Theorems 19.2 and 19.3 in [1] on functions of mixing processes13 let us conclude that

σ2 := Eµ[η
2
0] + 2

∞∑
n=1

Eµ[η0ηn] (80)

is well-defined—the series in (80) converges absolutely—and coincides with the asymptotic variance

lim
n→∞

1
n
Eµ

 n∑
k=1

(ηk)
2

 = σ2. (81)

Moreover
P̃(n)(t)

n→∞
−→ σB(t), (82)

where (B(t)) is a standard Brownian motion. The convergence in (82) happens in D[0,∞), the space
of R-valued càdlàg functions, equipped with the Skorohod topology.

Remark 6.1 In the large-scale limit, the mid-price P, the ask price PA = P + S
2 , and the bid price

PB = P − S
2 converge to the same process (σB(t)).

Remark 6.2 Theorem 6.4 is also true with constant cancellation rates under condition (58). In this
case the result holds both in event time and physical time. Indeed, let (N(t))t∈R+

denote a Poisson
process with intensity Λ = λM± + ΛL± +

∑K
i=1 λ

C±
i . The price process in physical time (Pc(t))t∈R+

can be
linked to the price in event time (Pn)n∈N by

Pc(t) = PN(t). (83)

Then

Pbktc
√

k

k→∞
−→ σB(t) as in theorem 6.4, (84)

and since N(u)
Λu

u→∞
−→ 1 a.s.,

Pc(kt)
√

k
=

PN(kt)
√

k

k→∞
∼ →

PbΛktc
√

k

k→∞
−→

√
ΛσB(t). (85)

Remark 6.3 Yet another specification of the cancellation process. Another interesting specification
of the cancellation process (Ci(t)) is to assume that the arrival rate is constant (for each i) but the
canceled volume is proportional to the queue size |Xi|. In this case, the treatments of the continuous
time chain and its embedded discrete-time counterpart are equivalent, and theorems 6.1–6.4 can be
obtained in an analogous manner to the proofs in this section.

Remark 6.4 Random volumes. The results remain true if we assume that volumes are drawn from
random distributions fM, fL and fC under some technical conditions:

• The volume distributions have a finite first moment,

13See also theorem 4.4.1 in [25] and discussion therein.
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• and ∫ ∞

0
zq fL(q)dq < ∞, for some z > 1 (z can be made infinitesimally close to 1.) (86)

Indeed, all this adds to the analysis is an integral over the volume distributions. For instance inequal-
ity (38) becomes

LV(x) ≤ −(λM+

+ λM−)
∫ ∞

0
q fM(q)dq + (ΛL− + ΛL+

)
∫ ∞

0
q fL(q)dq

− λC
∫ ∞

0
q fC(q)dq V(x)

+ K(ΛL−a∞ + ΛL+

|b∞|), (87)

and inequality (46) involves the (potentially divergent) integral∫ ∞

0
zq fL(q)dq,

and the proofs follow with minor changes.

7 Numerical Example
In order to gain a better intuitive understanding of the “mechanics” of the model, we sketch in Algo-
rithm 1 below the simulation procedure in pseudo-code (See also [12] for a similar description.) For
simplicity, we take a symmetric order book model. We also let (usual notations):

λL :=
(
λL

1 , . . . , λ
L
K

)
, (88)

ΛL :=
K∑

i=1

λL
i , (89)

λC(a) :=
(
λC

1 a1, . . . , λ
C
KaK

)
, (90)

ΛC(a) :=
K∑

i=1

λC
i ai, (91)

λC(b) :=
(
λC

1 |b1|, . . . , λ
C
K |bK |

)
, (92)

ΛC(b) :=
K∑

i=1

λC
i |bi|, (93)

Λ(a,b) := 2(λM + ΛL) + ΛC(a) + ΛC(b). (94)

In order to put the simulation results and the data on the same footing, we relax the assumption of
constant order sizes; we draw the order volumes from lognormal distributions. The parameters of the
model are estimated from tick by tick data as detailed in A. For concreteness14, we use the parameters
of the stock SCHN.PA (Schneider Electric) in March 2011 for the plots. They are summarized in
tables 4 and 5.

14The results are qualitatively the same for all CAC 40 stocks.
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Algorithm 1 Order book simulation.
Require: Model parameters— Arrival rates: λM, {λL

i }i∈{1,...K}, {λ
C
i }i∈{1,...K}, order book size: K, reser-

voirs: a∞, b∞, volume distribution parameters: (vM, sM), (vL, sL), (vC, sC).
Simulation Parameters— Number of time steps: N.
Initialization— t ← 0, X(0)← Xinit.

1: for time step n = 1, . . . ,N, do
2: Compute the best bid pB and best ask pA.

3: Compute ΛC(b) =

K∑
i=1

λC
i |bi|, i.e. the weighted sum of shares at price levels from pA − K to

pA − 1.

4: Compute ΛC(a) =

K∑
i=1

λC
i ai.

5: Draw the waiting time τ for the next event from an exponential distribution with parameter

Λ(a,b) = 2(λM + ΛL) + ΛC(a) + ΛC(b).

6: Draw a new event according to the probability vector(
λM, λM,ΛL,ΛL,ΛC(a),ΛC(b)

)
/Λ(a,b).

These probabilities correspond respectively to a buy market order, a sell market order, a buy
limit order, a sell limit order, a cancellation of an existing sell order and a cancellation of an
existing buy order.

7: Depending on the event type, draw the order volume from a lognormal distribution with pa-
rameters (vM, sM), (vL, sL) or (vC, sC).

8: If the selected event is a limit order, select the relative price level from {1, 2, . . . ,K} according
to the probability vector (

λL
1 , . . . , λ

L
K

)
/ΛL.

9: If the selected event is a cancellation, select the relative price level at which to cancel an order
from {1, 2, . . . ,K} according to the probability vector(

λC
1 a1, . . . , λ

C
KaK

)
/ΛC(a).

(or λC(b)/ΛC(b) for the bid side.)
10: Update the order book state according to the selected event.
11: Enforce the boundary conditions:

ai = a∞, i ≥ K + 1,
bi = b∞, i ≥ K + 1.

12: Increment the event time n by 1 and the physical time t by τ.
13: end for

Remark 7.1 For the practical implementation, it is easier to work with an “absolute” price
frame ∆p × {1 . . . L} where L � K.
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Figure 3 represents the average depth profile, that is, the average number of outstanding shares
at a distance of i ticks from the best opposite price. The agreement between the simulation and the
data is fairly good (See panel (a) of figure 12 for a cross-sectional view on CAC 40 stocks.) We also
plot the distribution of the spread in figure 4. Note that the simulated distribution is tighter than the
actual one (this is systematic and is documented in panel (b) of figure 12.) Figure 5 shows the fast
decay of the autocorrelation function of the price increments. Note the high negative autocorrelation
of simulated trade prices relatively to the data. In accordance with the theoretical analysis, figures
6–8 illustrate the asymptotic normality of price increments.

The signature plot of the price time series is defined as the variance of price increments at lag h
normalized by the lag, that is

σ2
h :=
V [P(t + h) − P(t)]

h
. (95)

This function measures the variance of price increments per time unit. It is interesting in that it shows
the transition from the variance at small time scales where micro-structure effects dominate, to the
long-term variance. By theorem 6.415

lim
h→∞

σ2
h = σ2, for some fixed value σ. (96)

We verify this numerically in figure 9. Two remarks are in order regarding the signature plot:
Long-term variance— The simulated long-term variance is systematically lower than the variance

computed from the data (This is documented in panel (c) of figure 12.) Intuitively, the depth of the
order book is expected to increase from the best price towards the center of the book. In the absence of
autocorrelation in trade signs, this would cause prices to wander less often far away from the current
best as they hit a higher “resistance”. We also suspect that actual prices exhibit locally more “drifting
phases” than in a (symmetric) Markovian model where the expected price drift is null at all times. An
interesting analysis of a simple order book model that allows time-varying arrival rates can be found
in [6].

Short-term variance— The signature plot predicted by the model is too high at short time scales
relative to the asymptotic variance, especially for traded prices. This is classically known to be due
to bid-ask bounce. It is however remarkable that the signature plot of actual trade prices looks much
flatter compared to the simulation (See figure 9.) This was discovered and discussed in detail by
Bouchaud et al. in [3], and Lillo and Farmer in [13] (See also [9] and [2].) They note that actual order
signs exhibit positive long-ranged correlations. They also note that actual prices are diffusive—the
signature plot is flat—even at small time scales. They solve this apparent paradox by showing that
diffusivity results from two opposite effects: autocorrelation in trade signs induces persistence in the
prices, just at the exact amount to counterbalance the mean reversion induced by the liquidity stored
in the order book. This subtle equilibrium between liquidity takers and liquidity providers which
guarantees price diffusivity at short lags, is not accounted for by the bare Markovian order book model
we study, and one can speak about anomalous diffusion at short time scales for Markovian order book
models [22]. Because of the absence of positive autocorrelation in trade signs in the model, this effect
is magnified when one looks at trades. The next paragraph elaborates on this point.
Anomalous diffusion at short time scales. A qualitative understanding of the discrepancy between
the model and the data signature plots at short time scales can be gleaned with the following heuristic

15Strictly, we proved the result in event-time in the case of proportional cancellation rates.
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Figure 3: Average depth profile. Simulation parameters are summarized in tables 4 and 5.
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Figure 4: Probability distribution of the spread (Simulation parameters as in tables 4 and 5.)
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h :=

V [P(t + h) − P(t)]
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tick2.second−1 for panel (b). We used a 1,000,000 event simulation run for the model signature plots.
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across 23 days. For calendar time signature plots, prices are sampled every second using the last tick
rule. The inset is a zoom-in.
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argument. In what follows, we reason in trade time t. Denote by PTr(t) the price of the trade at time
t, and α(t) its sign:{

α(t) = 1, for a buyer initiated trade, i.e. a buy market order,
α(t) = −1, for a seller initiated trade, i.e. a sell market order.

(97)

We assume that the two signs are equally probable (symmetric model). But to make the argument
valid for both the model (for which successive trade signs are independent) and the data (for which
trade signs exhibit long memory) we do not assume independence of successive trade signs. Let also
for a quantity Z

∆Z(t) := Z(t + 1) − Z(t). (98)

We have by definition

PTr(t) = P(t−) +
1
2
α(t)S (t−), (99)

where P(t−) and S (t−) are respectively the prevailing mid-price and spread just before the trade. From
equation (99)

σTr
1

2 := V[∆PTr(t)]

= E
[(

∆PTr(t)
)2
]

= E
[(

∆P(t−)
)2
]

+ E
[
∆P(t−)∆(α(t)S (t−))

]
+

1
4
E

[(
∆(α(t)S (t−))

)2
]
. (100)

The first term in the r.h.s. is the variance of mid-price increments σ2
1. The second term represents the

covariance of mid-price increments and the trade sign (weighted by the spread) and we assume it is
negligible16. Let us focus on the third term:

∆(α(t)S (t−)) = α(t + 1)∆S (t−) + S (t−)∆α(t). (101)

Then

E
[(

∆(α(t)S (t−))
)2
]

= E
[
(∆α(t))2

]
E

[
S (t−)2

]
+ 2E

[
α(t + 1)∆S (t−)S (t−)∆α(t)

]
+ E

[
α(t + 1)2

]
E

[
(∆S (t−))2

]
. (102)

Again, we neglect the cross term17 in the r.h.s. and we are left with

E
[(

∆(α(t)S (t−))
)2
]
≈ E

[
(∆α(t))2

]
E

[
S (t−)2

]
+ E

[
(∆S (t−))2

]
. (103)

16This amounts to neglecting the correlation between trade signs and mid-quote movements, which is justified by the
dominance of cancellations and limit orders in comparison to market orders in order book data.

17This time, we are neglecting the correlation between trade signs and spread movements.
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But

E
[
(∆α(t))2

]
= E

[
α(t + 1)2

]
+ E

[
α(t)2

]
− 2E [α(t)α(t + 1)]

= 2 (1 − ρ1(α)) , (104)

where ρ1(α) is the autocorrelation of trade signs at the first lag.
Finally18:

σTr
1

2
≈ σ1

2 +
1
2

(1 − ρ1(α))E
[
S (t−)2

]
+

1
4
E

[
(∆S (t−))2

]
. (106)

Two effects are clear from equation (106):

1. The trade price variance at short time scales is larger than the mid-price variance,

2. Autocorrelation in trade signs dampens this discrepancy. This partially explains19 why the
trades signature plot obtained from the data is flatter than the model predictions: ρ1(α)model = 0,
while ρ1(α)data ≈ 0.6.

From a modeling perspective, a possible solution to recover the diffusivity even at very short time
scales, is to incorporate long-ranged correlation in the order flow. Toth et al. [24] have investigated
numerically this route using a “ε-intelligence” order book model. In this model, market orders signs
are long-ranged correlated, that is, in trade time

ρn(α) = E [α(t + n)α(t)] ∝ n−γ, γ ∈]0, 1[. (107)

And the size of incoming market orders is a fraction f of the volume displayed at the best opposite
quote, with f drawn from the distribution

Pξ( f ) = ξ(1 − f )ξ−1, (108)

They show that, by fine tuning the additional parameters γ and ξ, one can ensure the diffusive behavior
of the price both at mesoscopic (≈ a few trades) and macroscopic (≈ hundred trades) time scales20.

8 Conclusions
This paper analyzes a simple Markovian order book model, in which elementary changes in the price
and spread processes are explicitly linked to the instantaneous shape of the order book and the order
flow parameters.

18More generally, after n trades:

σTr
n

2
≈ σn

2 +
1

2n
(1 − ρn(α))E

[
S (t−)2

]
. (105)

19Interestingly, although the arguments that led to (106) are rather qualitative, a back of the envelope calculation with
E

[
S 2

]
∈ [1, 9], gives a difference σTr2

− σ2 in the range [0.5, 4.5]; which has the same order of magnitude of the values
obtained by simulation.

20Note that Toth. el al. [24] model the “latent order book”, not the actual observable order book. The former represents
the intended volume at each price level p, that is, the volume that would be revealed should the price come close to p. So
that the interpretation of their parameters, in particular the expected lifetime τlife of an order, does not strictly match ours.
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Two basic properties were investigated: the ergodicity of the order book and the large-scale limit
of the price process. The first property, which we answered positively, is desirable in that it assures
the stability of the order book in the long run, and gives a theoretical underpinning to statistical mea-
surements on order book data. The scaling limit of the price process is, as anticipated, a Brownian
motion. A key ingredient in this result is the convergence of the order book to its stationary state at an
exponential rate, a property equivalent to a geometric mixing condition satisfied by the stationary ver-
sion of the order book. This short memory effect, plus a constraint on the variance of price increments
guarantee a diffusive limit at large time scales. Our two assumptions are independent Poissonian order
flows and the presence of two reservoirs of liquidity K ticks away from the best quotes to guarantee
that the spread does not diverge21.

We believe the results hold for a wide class of Markovian order book models: In general, one can
state that price increments in a stable Markovian order book model are aggregationally Gaussian22.

In a sense, this could offer a mathematical justification to the Bachelier model of asset prices, from
a market microstructure perspective. In reality, the picture is however more subtle: even if the price
process is asymptotically diffusive, at short time scales, the model produces stronger anti-correlation
in traded prices than what is actually observed in the data. At those time scales, price diffusivity
is arguably the result of a balance between persistent liquidity taking and anti-persistent liquidity
providing.

We believe however that the approach presented here is interesting for clearly identifying con-
ditions under which the asymptotic normality of price increments holds; and more importantly, for
introducing a set of mathematical tools for further investigating the price dynamics in more sophisti-
cated stochastic order book models. Indeed, using the same techniques, we are studying extensions of
our results to the case of mutually exciting—and therefore dependent—order flows (point 1 below).
This will be published elsewhere.

We conclude with some remarks regarding possible extensions:

1. Mutually dependent order flows: Actual order flows exhibit non-negligible dependences. As
documented in [19], market orders excite limit orders and vice versa. A possible solution for
endogenously incorporating these dependences is the use of mutually exciting processes:

λM(t) = λM(0) +

∫ t

0
ϕMM(t − s)dNM(s)

+

∫ t

0
ϕLM(t − s)dNL(s),

λL(t) = λL(0) +

∫ t

0
ϕLL(t − s)dNL(s)

+

∫ t

0
ϕML(t − s)dNM(s),

(109)

This model has the additional advantage of capturing clustering in order arrivals (due to the

21We believe this assumption can be relaxed under a balance condition on the arrival rates. One has however to consider
an order book model with finite but unbounded support, and control not only the stability of the spread but also of all the
gaps in the book.

22Rigorously, the convergence to the stationary state has to happen fast enough. That is, with an integrable convergence
rate ρ(n) as in (79).
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self-excitation terms ϕMM and ϕLL), and for exponentially decaying kernels23 can be cast into a
Markovian setting.

2. Long-ranged correlation in order signs: As discussed in section 7, this is a very important
feature of the data. Analyzing this mathematically is more difficult since the model is no longer
Markovian.

3. Stochastic arrival rates: It is natural to add another source of randomness on the rates them-
selves, for instance

dλ(t) = θ(λ(t) − λ(t))dt + ν
√
λ(t)dW(t), (110)

where λ is a (deterministic) background intensity to account for the U-shaped daily trading
activity and θ, ν are the parameters of a CIR process. This would lead to stochastic volatility in
the prices.

4. Price jumps and liquidity crisis: Although we argued that the simple Markovian order book
model we study is stable and asymptotically diffusive, markets do show signs of fragility quite
often and large jumps do occur in actual prices. Understanding how these macroscopic jumps
(or departure from equilibrium) arise from events at the order book level, for instance via sudden
evaporation of liquidity in one side of the book is much needed.

5. Feedback loops: Richer price dynamics (e.g. fat-tailed return distributions) can be obtained
using feedback loops between the arrival rates and the price (or its volatility) as in [21].

6. etc.

These may, however, render the model less amenable to mathematical analysis, and we leave the
investigation of such interesting (but sometime difficult) questions for future research.

A Model Parameters

Description of the data
For reproducibility, we summarize in tables 4 and 5 the parameters used to obtain figures 3–9. These
correspond to estimating the model for the stock SCHN.PA (Schneider Electric). Our dataset consists
of TRTH24 data for the CAC 40 index constituents in March 2011 (23 trading days). We have tick by
tick order book data up to 10 price levels, and trades. A snapshot of these files is given in tables 2 and
3. In order to avoid the diurnal seasonality in trading activity (and the impact of the US market open on
European stocks), we somehow arbitrarily restrict our attention to the time window [9 : 30–14 : 00]
CET.

23ϕ(u) = αe−βu.
24Thomson Reuters Tick History.
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Timestamp Side Level Price Quantity
33480.158 B 1 121.1 480
33480.476 B 2 121.05 1636
33481.517 B 5 120.9 1318
33483.218 B 1 121.1 420
33484.254 B 1 121.1 556
33486.832 A 1 121.15 187
33489.014 B 2 121.05 1397
33490.473 B 1 121.1 342
33490.473 B 1 121.1 304
33490.473 B 1 121.1 256
33490.473 A 1 121.15 237

Table 2: Tick by tick data file sample. Note that the field “Level” does not necessarily correspond
to the distance in ticks from the best opposite quote as there might be gaps in the book. Lines
corresponding to the trades in table 3 are highlighted in italics.

Timestamp Last Last quantity
33483.097 121.1 60
33490.380 121.1 214
33490.380 121.1 38
33490.380 121.1 48

Table 3: Trades data file sample.
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Trades and tick by tick data processing
Because one cannot distinguish market orders from cancellations in tick by tick data, and since the
timestamps of the trades and tick by tick data files are asynchronous, we use a matching procedure
to reconstruct the order book events. In a nutshell, we proceed as follows for each stock and each
trading day:

1. Parse the tick by tick data file to compute order book state variations:

• If the variation is positive (volume at one or more price levels has increased), then label
the event as a limit order.

• If the variation is negative (volume at one or more price levels has decreased), then label
the event as a “likely market order”.

• If no variation—this happens when there is just a renumbering in the field “Level” that
does not affect the state of the book—do not count an event.

2. Parse the trades file and for each trade:

(a) Compare the trade price and volume to likely market orders whose timestamps are in
[tTr −∆t, tTr + ∆t], where tTr is the trade timestamp and ∆t is a predefined time window25.

(b) Match the trade to the first likely market order with the same price and volume and label
the corresponding event as a market order—making sure the change in order book state
happens at the best price limits.

(c) Remaining negative variations are labeled as cancellations.

Doing so, we have an average matching rate of around 85% for CAC 40 stocks. As a byproduct, one
gets the sign of each matched trade, that is, whether it is buyer or seller initiated.

Parameters estimation
If T be the trading duration of interest each day (T = 4.5 hours—[9 : 30–14 : 00]—in our case.)
Then

λ̂M :=
#trades

2T
, (111)

and

λ̂L
i :=

1
2T

.

(#buy limit orders arriving i tick away from the best opposite quote

+ #sell lim. orders etc.) . (112)

25We set ∆t = 3 s for CAC 40 stocks. We found that the median reporting delay for trades is −900 ms: on average,
trades are reported 900 milliseconds before the change is recorded in tick by tick data.
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K 30
a∞ 250
b∞ 250

(vM, sM) (4.00, 1.19)
(vL, sL) (4.47, 0.83)
(vC, sC) (4.48, 0.82)
λM± 0.1237

Table 4: Model parameters for the stock SCHN.PA (Schneider Electric) in March 2011 (23 trading
days). Figures 10 and 11 are graphical representation of these parameters.

For cancellations, we need to normalize the count by the average number of shares 〈Xi〉 at distance i
from the best opposite quote:

λ̂C
i :=

1
〈Xi〉

1
2T

.

(#cancellation orders in the bid side arriving i tick away from the best opposite quote

+ #cancellation orders in the ask side etc.) , (113)

We then average λ̂M, λ̂L
i and λ̂L

i across 23 trading days to get the final estimates. As for the volumes,
we estimate by maximum likelihood the parameters (̂v, ŝ) of a lognormal distribution separately for
each order type. We depict the parameters in figures 10 and 11.

B Results for CAC 40 stocks
In order to get a cross-sectional view of the performance of the model on all CAC 40 stocks, we esti-
mate the parameters separately for each stock and run a 100, 000 event simulation for each parameter
set. We then compare in figure 12 the average depth, average spread and the long-term “volatility”
measured directly from the data, to those obtained from the simulations. Dashed line is the identity
function—It would correspond to a perfect match between model predictions and the data. Solid line
is a linear regression zdata = b1 + b2 zmodel for each quantity of interest z.

Note that despite the good agreement between the average depth profiles (panel (a)), and although
the model successfully predicts the relative magnitudes of the long-term variance σ2

∞ and the average
spread 〈S 〉 for different stocks, it tends to systematically underestimate σ2

∞ and 〈S 〉. This may be
related to the absence of autocorrelation in order signs in the model and the presence of more drifting
phases in actual prices than in those obtained by simulation.
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Figure 12: A cross-sectional comparison of liquidity and price diffusion characteristics between the
model and data for CAC 40 stocks (March 2011).
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