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A MATHEMATICAL APPROACH TO ORDER BOOK MODELING

FREDERIC ABERGEL AND AYMEN JEDIDI

ABSTRACT. Motivated by the desire to bridge the gap between the microscopic
description of price formation (agent-based modeling) and the stochastic differ-
ential equations approach used classically to describe price evolution at macro-
scopic time scales, we present a mathematical study of the order book as a mul-
tidimensional continuous-time Markov chain and derive several mathematical
results in the case of independent Poissonian arrival times. In particular, we
show that the cancellation structure is an important factor ensuring the exis-
tence of a stationary distribution and the exponential convergence towards it.
We also prove, by means of the functional central limit theorem (FCLT), that the
rescaled-centered price process converges to a Brownian motion. We illustrate

the analysis with numerical simulation and comparison against market data.

1. INTRODUCTION AND BACKGROUND

The emergence of electronic trading as a major means of trading financial assets
makes the study of the order book central to understanding the mechanisms of price
formation. In order-driven markets, buy and sell orders are matched continuously
subject to price and time priority. The order book is the list of all buy and sell
limit orders, with their corresponding price and size, at a given instant of time.

Essentially, three types of orders can be submitted:

e Limit order: Specify a price (also called “quote”) at which one is willing
to buy or sell a certain number of shares;

e Market order: Immediately buy or sell a certain number of shares at the
best available opposite quote;

e Cancellation order: Cancel an existing limit order.

In the literature, “agents” who submit exclusively limit orders are referred to as
liquidity providers. Those who submit market orders are referred to as liquidity
takers.

Limit orders are stored in the order book until they are either executed against

an incoming market order or canceled. The ask price P4 (or simply the ask) is the

Date: November, 2012.
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Ficure 1. Order book schematic illustration: a buy market order
arrives and removes liquidity from the ask side, then sell limit or-
ders are submitted and liquidity is restored.

price of the best (i.e. lowest) limit sell order. The bid price P? is the price of the
best (i.e. highest) limit buy order. The gap between the bid and the ask

S :=P"- PP, (1)

is always positive and is called the spread. Prices are not continuous, but rather
have a discrete resolution AP, the tick, which represents the smallest quantity by
which they can change. We define the mid-price as the average between the bid
and the ask " 5

P+ P
= — 2
> 2)

The price dynamics is the result of the interplay between the incoming order

P:

flow and the order book [4]. Figure 1 is a schematic illustration of this process
[11]. Note that we chose to represent quantities on the bid side of the book by
non-positive numbers.

Although in reality orders can have any size, we shall assume in most of the
paper that all orders have a fixed unit size g. This assumption is convenient to
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carry out our analysis and is, for now, of secondary importance to the problem we

are interested in'. Throughout the paper, we may refer to three different “times”:

e Physical time (or clock time) in seconds,

e Event time (or tick time): the time counter is incremented by 1 every time
an event (i.e. market, limit or cancellation order) occurs,

e Trade time (or transaction time): the time counter is incremented every
trade (i.e. every market order).

Related literature. Order book modeling has been an area of intense research

activity in the last decade. The remarkable interest in this area is due to two factors:

e Widespread use of algorithmic trading in which the order book is the place
where offer and demand meet,

e Availability of tick by tick data that record every change in the order book
and allow precise analysis of the price formation process at the microscopic
level.

Schematically, two modeling approaches have been successful in capturing key
properties of the order book—at least partially. The first approach, led by economists,
models the interactions between rational agents who act strategically: they choose
their trading decisions as solutions to individual utility maximization problems
(See e.g. [20] and references therein).

In the second approach, proposed by econophysicists, agents are assumed to act
randomly. This is sometime referred to as zero-intelligence order book modeling,
in the sense that order arrivals and placements are entirely stochastic. The focus
here is more on the “mechanistic” aspects of the continuous double auction rather
than the strategic interactions between agents. Despite this apparent limitation,
zero-intelligence (or statistical) order book models do capture many salient features
of real markets (See [8, 10] and references therein). Two notable developments in
this strand of research are [14] who proposed one of the earliest stochastic order
book models, and [5] who added the possibility to cancel existing limit orders.

In their seminal paper [22], Smith et al. develop a dynamical statistical order
book model under the assumption of IID Poissonian order flow. They provide a
thorough analysis of the model using simulation, dimensional analysis and mean

field approximation. They study key characteristics of the model, namely:

(1) Price diffusion.
(2) Liquidity characteristics: average depth profile, bid-ask spread, price im-
pact and time and probability to fill a limit order.

1Tt will be relaxed in section 7 where we resort to numerical simulation.
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One of the most important messages of their analysis is that zero-intelligence
order book models are able to produce reasonable market dynamics and liquid-
ity characteristics. Our focus here is on the first point, that is, the convergence
of the price process, which is a jump process at the microscopic level, to a dif-
fusive process® at macroscopic time scales. The authors in [22] suggest that a
diffusive regime is reached. Their argument relies on a mean field approximation.
Essentially, this amounts to neglecting the dependence between order fluctuations
at adjacent price levels.

Another important paper of interest to us is [7]. Cont et al. propose to model the
order book dynamics from the vantage point of queuing systems. They remarkably
succeed in deriving many conditional probabilities of practical importance such as
the probability of an increase in the mid-price, of the execution of an order at the
bid before the ask quote moves, and of “making the spread”. To our knowledge,
they are the first to clearly set the problem of stochastic order book modeling in the
context of Markov chains, which is a very powerful and well-studied mathematical
concept.

QOutline. In this paper, we build on the models of [7] and [22] to present a stylized
description of the order book, and derive several mathematical results in the case of
independent Poissonian arrival times. In particular, we show that the cancellation
structure is an important factor ensuring the existence of a stationary distribution
for the order book and the exponential convergence towards it. We also prove, by
means of the functional central limit theorem (FCLT), that the rescaled-centered
price process converges to a Brownian motion, which is a new result.

The remainder of the paper is organized as follows. In section 2, we motivate our
approach using an elementary example where the spread is kept constant (“perfect
market making”). In sections 3 trough 5, we compute the infinitesimal generator
associated with the order book in a general setting, and link the price dynamics to
the instantaneous state of the order book. In section 6, we prove that the order book
is ergodic—in particular it has a stationary distribution—that it converges to its
stationary state exponentially fast, and that the large-scale limit of the price process
is a Brownian motion. Our proofs rely on the theory of infinitesimal generators and
Foster-Lyapunov stability criteria for Markov chains. We outline an order book
simulation algorithm in section 7 and provide a numerical illustration. Finally,
section 8 summarizes our results and contains critiques of Markovian order book

models.

%In this paper, we mean (abusively) by “diffusive process” or simply “diffusion” the mathematical
concept of Brownian motion.
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2. AN ELEMENTARY APPROXIMATION: PERFECT MARKET MAKING
We start with the simplest agent-based market model:

e The order book starts in a full state: All limits above PA(0) and below
P2(0) are filled with one limit order of unit size ¢. The spread starts equal
to 1 tick;

e The flow of market orders is modeled by two independent Poisson pro-
cesses M*(¢) (buy orders) and M~ (¢) (sell orders) with constant arrival rates
(or intensities) A* and A~;

e There is one liquidity provider, who reacts immediately after a market order
arrives so as to maintain the spread constantly equal to 1 tick. He places a
limit order on the same side as the market order (i.e. a buy limit order after
a buy market order and vice versa) with probability u and on the opposite
side with probability 1 — u.

The mid-price dynamics can be written in the following form
dP(t) = AP (dM* (1) — dM~(1))Z, 3)
where Z is a Bernoulli random variable
Z = 0 with probability (1 — u), 4
and
Z = 1 with probability u. o)
The infinitesimal generator’ £ associated with this dynamics is
Lf(P)=u [A" (f(P+AP) =~ )+ A (f(P-AP) - f)], (N

where f denotes a test function. It is well known that a continuous limit is obtained
under suitable assumptions on the intensity and tick size. Noting that (7) can be
rewritten as
2 f(P+AP)=2f + f(P— AP)
(AP)
f(P+AP)— f(P—AP)
2AP ’

LF(P) = %MCF4UFXAP)

+ uA*=A)AP )]

3The infinitesimal generator of a time-homogeneous Markov process (X(7)),»¢ is the operator L, if
exists, defined to act on sufficiently regular functions f : R" — R, by

E[fX0))IX(0) = x] - f(x)
. :

Lf(x) = ltilnol (6)

It provides an analytical tool to study (X()).
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and under the following assumptions

u (A" + A)AP)*—0? as AP — 0, )
and
u (A" —A1)AP—pu as AP — 0, (10)
the generator converges to the classical diffusion operator
o2 3 f of
— = = 11
2 0P " Hop (h

corresponding to a Brownian motion with drift. This simple case is worked out
as an example of the type of limit theorems that we will be interested in in the
sequel. One should also note that a more classical approach using the Functional
Central limit Theorem (FCLT) as in [1] or [25] yields similar results ; For given
fixed values of 4™, A~ and AP, the rescaled-centred price process

P(nt) — nut

12
o= (12)
converges as n — oo, to a standard Brownian motion (B(¢)) where
o =APA(AT + A )u, (13)
and
u=APA" — A )u. (14)

Let us also mention that one can easily achieve more complex diffusive limits such

as a local volatility model by imposing that the limit is a function of P and ¢
u (" + A7)AP)? - o (P,1), (15)
and
u (At = A)AP - u(P,1). (16)

This is the case if the original intensities are functions of P and ¢ themselves.

3. OrpER Book DyNamics

3.1. Model setup: Poissonian arrivals, reference frame and boundary condi-
tions. We now consider the dynamics of a general order book under the assump-
tion of Poissonian arrival times for market orders, limit orders and cancellations.
We shall assume that each side of the order book is fully described by a finite num-

ber of limits K, ranging from 1 to K ticks away from the best available opposite



A MATHEMATICAL APPROACH TO ORDER BOOK MODELING 7

quote. We will use the notation*

X() = (@a); b(0) := (a1(0), ..., ax(®); bi(1), ..., bg(1)), (7
where a := (ay, ..., ag) designates the ask side of the order book and a; the number
of shares available i ticks away from the best opposite quote, and b := (b1, ..., bk)

designates the bid side of the book. By doing so, we adopt the representation
described in [7] or [22]°, but depart slightly from it by adopting a finite moving
frame, as we think it is realistic and more convenient when scaling in tick size will
be addressed.

Let us now recall the events that may happen:

e arrival of a new market order;
e arrival of a new limit order;

e cancellation of an already existing limit order.
These events are described by independent Poisson processes:

e M*(¢): arrival of new market order, with intensity Pl I(a # 0) and A7 I(b # 0);

° Lf(t): arrival of a limit order at level i, with intensity /liLi;

° Cl.i(t): cancellation of a limit order at level i, with intensity /1ic+a[ and

A7 1bil.

q is the size of any new incoming order, and the superscript “+” (respectively “—")
refers to the ask (respectively bid) side of the book. Note that the intensity of
the cancellation process at level i is proportional to the available quantity at that
level. That is to say, each order at level i has a lifetime drawn from an exponential
distribution with intensity /ll.Ci. Note also that buy limit orders L. (¢) arrive below
the ask price PA(1), and sell limit orders Llf’ (#) arrive above the bid price P2(z).

We impose constant boundary conditions outside the moving frame of size 2K:
Every time the moving frame leaves a price level, the number of shares at that
level is set to as (or b, depending on the side of the book). Our choice of a finite
moving frame and constant® boundary conditions has three motivations. Firstly, it
assures that the order book does not empty and that P4, P? are always well defined.
Secondly, it keeps the spread S and the increments of P4, P? and P = (P4 + P?)/2
bounded—This will be important when addressing the scaling limit of the price.

Thirdly, it makes the model Markovian as we do not keep track of the price levels

“In what follows, bold notation indicates vector quantities.

SSee also [12] for an interesting discussion.

6Actually, taking for a., and |b.,| independent positive random variables would not change much our
analysis. We take constants for simplicity.
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FiGURE 2. Order book dynamics: in this example, K = 9, ¢ = 1,
de = 4, b = —4. The shape of the order book is such that
a(r) = (0,0,0,0,1,3,5,4,2) and b(r) = (0,0,0,0,—1,0,-4,-5,-3).
The spread S(f) = 5 ticks. Assume that at time ¢ > ¢ a sell
market order dM~(¢') arrives, then a(¥) = (0,0,0,0,0,0,1,3,5),
b(#') = (0,0,0,0,0,0,-4,-5,-3) and S(#) = 7. Assume instead
that at ¢ > ¢t a buy limit order dL; (') arrives one tick away from
the best opposite quote, then a(#’) = (1,3,5,4,2,4,4,4,4), b(¥') =
(-1,0,0,0,-1,0,-4,-5,-3)and S(¢') = 1.

that have been visited (then left) by the moving frame at some prior time. Figure 2
is a representation of the order book using the above notations.

3.2. Comparison to previous results and models. Before we proceed, we would
like to recall some results already present in the literature and highlight their differ-
ences with respect to our analysis. Smith et al. have already investigated in [22] the
scaling properties of some liquidity and price characteristics in a stochastic order
book model. These results are summarized in table 1. In the model of Smith et
al. [22], orders arrive on an infinite price grid (This is consistent as limit orders
arrival rate per price level is finite). Moreover, the arrival rates are independent
of the price level, which has the advantage of enabling the analytical predictions
summarized in table 1.
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Quantity Scaling relation
Average asymptotic depth AL/A¢
Average spread AM AL f(e,AP/p.)
Slope of average depth profile (A2 JAM XCg(e, AP/ p,)
Price “diffusion” parameter at short time scales (AM)ZC AL 0
Price “diffusion” parameter at long time scales (AM)2 )€ /L0

TaBLE 1. Results of Smith et al. € := g/ (/IM /2/lc) is a “granular-
ity” parameter that characterizes the effect of discreteness in order
sizes, pe := AM /24" is a characteristic price interval, and f and g
are slowly varying functions.

We stress that, to our understanding, these results are obtained by mean-field
approximations, which assume that the fluctuations at adjacent price levels are in-
dependent. This allows fruitful simplifications of the complex dynamics of the
order book. In addition, the authors do not characterize the convergence of the
coarse-grained price process in the sense of Stochastic Process Limits, nor do they
show that the limiting process is precisely a Brownian motion (theorem 6.4).

In the model of Cont el al. [7], arrival rates are indexed by the distance to the
best opposite quote, which is more realistic. The order book is constrained to a
finite price grid [1, Py,,.] that facilitates the analysis of the Markov chain. Here,
we use a combination of the two models in that the arrival rates are not uniformly
distributed across prices, and the reference frame is finite but moving. Cont et al.
[7] have considered the question of the ergodicity of their order book model. We
also address this question following a different route, and more importantly to our
analysis, exhibit the rate of convergence to the stationary state, which turns out to
be the key of the proof of theorem 6.4.

3.3. Evolution of the order book. We can write the following coupled SDEs for
the quantities of outstanding limit orders in each side of the order book:’
i-1

daj(t) = - [q -~ Z ak) dM*(t) + gdL] (1) — qdC; (1)
k=1 ¥

K
+ UM @) - andM () + ) (U4 @) - aydLy (1)
i=1

K
+ > (S @) - aydCr (), (18)
i=1

"Remember that, by convention, the b;’s are non-positive.
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and
i—1

dbi(t) = (q - Z |bk|] dM~(t) — qdL; (1) + qdC; (1)
k=1 +

K
+ (M (b) = b)dM* (1) + > (JH (b) = bydL; (1)
i=1

K
+ U (b) = b)dC] (1), (19)
i=1

where the J’s are shift operators corresponding to the renumbering of the ask side
following an event affecting the bid side of the book and vice versa. For instance
the shift operator corresponding to the arrival of a sell market order dM™(¢) of size

qis®
JM (@) =10,0,...,0,a1,a0,...,ax—x|, (20)
————
k times
with
14
k := inf{p : Z bjl > g} —inf{p : |b,| > O}. (21)
j=1

Similar expressions can be derived for the other events affecting the order book.

In the next sections, we will study some general properties of the order book,
starting with the generator associated with this 2K-dimensional continuous-time
Markov chain.

8For notational simplicity, we write J¥" (a) instead of JM (a; b) etc. for the shift operators.
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4. INFINITESIMAL GENERATOR

Let us work out the infinitesimal generator associated with the jump process
described above. We have

Lf @b) = 2" (f (la; - (g = AG = )i 143 I ) - )

K
£ 3 A (f (a4 g TH B) - )
i=1

K
+ a8 ai(f (ai = g: I B) = )
i=1
+ (£ (M @)z [bi + (g = BG - 1),1-) - f)

K
+ ) A (15 @ibi—g) = )

i=1

K
+ A B (J6 @) b+ q) - ), (22)
i=1
where, to ease the notations, we note f(a;; b) instead of f(ay,...,a;,...,ak;b)etc.
and
x4 := max(x,0), x_ := min(x,0), x € R. (23)

The operator above, although cumbersome to put in writing, is simple to deci-
pher: a series of standard difference operators corresponding to the “deposition-
evaporation” of orders at each limit, combined with the shift operators expressing
the moves in the best limits and therefore, in the origins of the frames for the two
sides of the order book. Note the coupling of the two sides: the shifts on the a’s
depend on the b’s, and vice versa. More precisely the shifts depend on the profile of
the order book on the other side, namely the cumulative depth up to level i defined

by

i

A) = Z ar, (24)
k=1
and _
Bi) := ) Ibyl, (25)
k=1

and the generalized inverse functions thereof

AN =inflp: ) a;>q), (26)

IR

J=1
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and

p
B¢ :=inf{p: ) Ibjl > '), (27)
j=1

where ¢’ designates a certain quantity of shares’.

Remark 4.1. The index corresponding to the best opposite quote equals the spread
S in ticks, that is

P
. _ . S .
in :=A"'(0) = inf{p : § laj>0}:E::15, (28)
J:
and
< S
ip:= B—l(o) = inf{p : j; |bj| > 0} = P =g = iq4. (29)

5. Price DyNamics

We now focus on the dynamics of the best ask and bid prices, denoted by P4 ()
and P5(¢). One can easily see that they satisfy the following SDEs:

dP() = AP[(A™'(q) - AT (0)dM* (1)
K
- > A7) = dLf (1) + (A7 () - AT 0)ACT (0], (30)
i=1
and
dP%(t) = -AP[(B™'(q) - B~ (0))dM (t)

K
- > B0 ~dL (D) + (B (@) - B O)AC, 0], (31)
i=1

which describe the various events that affect them: change due to a market order,
change due to limit orders inside the spread, and change due to the cancellation of a
limit order at the best price. Equivalently, the respective dynamics of the mid-price

9Note that a more rigorous notation would be
A(i,a(r) and A™' (¢, a(1)

for the depth and inverse depth functions respectively. We drop the dependence on the last variable
as it is clear from the context.
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and the spread are:
AP
dP(1) = —-[(A™(g) = A7H0)dM* (1) - (B~ (g) = B~ ()M (1)

- i (A7(0) — ) dLf () + i (B~'(0) - i)+ dL; (1)
i=1 i=1
+ (47 (q) - A7H0)ACT, (1) - (B™ (q) - B (0)dC (0], (32)
ds (1) = AP[(A™(q) - A™' (0)aM* (1) + (B (q) — B~ (0))aM" (1)
- i (A™'(0) — i) dL; (1) - i (B~ (0) — i)+ dL; (1)
i=1 i=1

+ (A7 (q) — A7 O)C;, (1) + (B~ (g) — B~ (0)dC;, (1)) (33)

A

The equations above are interesting in that they relate in an explicit way the profile
of the order book to the size of an increment of the mid-price or the spread, there-
fore linking the price dynamics to the order flow. For instance the infinitesimal
drifts of the mid-price and the spread, conditional on the shape of the order book
at time #, are given by:

AP + -
E[dP(0la:b)] = = [(47(q) - A7 02" ~ (B! (q) - B~'(0)"

K K
=) @O =D+ Y (B0 - i
i=1 i=1

+ (A7 g) - AT ONAS @i, — (B7 (@) - BT ODAS Ibyyl|dt, (34)
and

E[dS (1)l(a;b)] = AP [(A7'(g) - A7 )" + (B (q) - B~ ()™
K K
-2 @O =i A = (AT 0) - i)l
i=1 i=1
+ (A7 (g) - ATHODAS @i, + (BT () — B O)AS, by l]dr. (35)

6. Ercobicty anp DirrusIvE LimiT

In this section, our interest lies in the following questions:

(1) Is the order book model defined above stable?
(2) What is the stochastic-process limit of the price at large time scales?

The notions of “stability” and “large-scale limit” will be made precise below. We
first need some useful definitions from the theory of Markov chains and stochastic
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stability. Let (Q");0 be the Markov transition probability function of the order
book at time ¢, that is

O'(x,E):=P[X() € EIX(0)=x], teR,,x€S,EC S, (36)

where S ¢ Z?K is the state space of the order book. We recall that a (aperiodic,

irreducible) Markov process is ergodic if an invariant probability measure 7 exists

and
tlim I0'(x,.) =7l = 0,Yx € S, (37)
where ||.|| designates for a signed measure v the total variation norm'® defined as
IVl := sup ()l = sup v(E)— inf v(E). (39)
filfi<1 E€B(S) E€B(S)

In (39), B(S) is the Borel o-field generated by S, and for a measurable function f
on S, v(f) := j:sfdv.

V-uniform ergodicity. A Markov process is said V-uniformly ergodic if there
exists a coercive!! function V > 1, an invariant distribution 7, and constants
0 < r < 1, and R < o such that

I0'(x,.) — (Il < RFV(X),x € S,1 € R,. (40)

V—uniform ergodicity can be characterized in terms of the infinitesimal generator
of the Markov process. Indeed, it is shown in [15, 18] that it is equivalent to the

existence of a coercive function V (the “Lyapunov test function’) such that
LV(x) < -BV(X) +7v, (Geometric drift condition.) 41

for some positive constants 8 and y. (Theorems 6.1 and 7.1 in [18].) Intuitively,
condition (41) says that the larger V(X(#)) the stronger X is pulled back towards the
center of the state space S. A similar drift condition is available for discrete-time

Markov processes (X;,)nen and reads
DV(x) < -BV(x) + ylc(x), (42)
where D is the drift operator

DV(x) := E[V(Xy+1) = VX)X, = X]. (43)

10The convergence in total variation norm implies the more familiar pointwise convergence
lim|Q'(x,y) - n(y)| = 0,x,y € S. (38)
1—00

Note that since the state space S is countable, one can formulate the results without the need of a
“measure-theoretic” framework. We prefer to use this setting as it is more flexible, and can accom-
modate possible generalizations of these results.

HThat is, a function such that V(x) — oo as x| — oo.
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and C C S a finite set. (Theorem 16.0.1 in [15].) We refer to [15] for further
details.

6.1. Ergodicity of the order book and rate of convergence to the stationary
state. Of utmost interest is the behavior of the order book in its stationary state.
We have the following result:

Theorem 6.1. If Ac = minj << K{/ll.ci} > 0, then (X(1)=0 = (a(®);b(t))s>0 is an
ergodic Markov process. In particular (X(t)) has a stationary distribution 7. More-
over, the rate of convergence of the order book to its stationary state is exponential.

That is, there exist r < 1 and R < oo such that

I0'(x,.) — ()l < RFV(x),t e R*,x € S. (44)
Proof. Let
K K
V() := V(@;b) = Y a;+ Y bl +q (45)
i=1 i=1

be the total number of shares in the book (+¢ shares). Using the expression of the
infinitesimal generator (22) we have

K K
LV < ="+ M )g+ Y (A + 2 )g - Y (A a4+ AT Ibilg
i=1 i=1

K K
# D A s = idvaw + ) AF (is = i).lbeol (46)
i=1 i=1

< -+ Mg+ (AL + AL )g - 2%V(x)

+ K(AY aeo + AL |beo)), (47)
where
K
L* . _ L* C ._ : c*
AF = ZI‘AAZ. and A€ = min {17} > 0. (48)
=

The first three terms in the right hand side of inequality (46) correspond respec-
tively to the arrival of a market, limit or cancellation order—ignoring the effect of
the shift operators. The last two terms are due to shifts occurring after the arrival
of a limit order inside the spread. The terms due to shifts occurring after market or
cancellation orders (which we do not put in the r.h.s. of (46)) are negative, hence
the inequality. To obtain inequality (47), we used the fact that the spread is is
bounded by K + 1—a consequence of the boundary conditions we impose— and
hence (is — i); is bounded by K.
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The drift condition (47) can be rewritten as
LV(x) < -BV(x) +7, (49)

for some positive constants ,y. Inequality (49) together with theorem 7.1 in [18]
let us assert that (X(¢)) is V-uniformly ergodic, hence (44). O

Corollary 6.1. The spread S(t) = A~'(0,a(t))AP = S(X(¢)) has a well-defined
stationary distribution—This is expected as by construction the spread is bounded
by K + 1.

6.2. The embedded Markov chain. Let (X,,) denote the embedded Markov chain
associated with (X(¢)). In event time, the probabilities of each event are “normal-
ized” by the quantity

K K
AX) = 2 2 A AE Y A+ Al b (50)
i=1 i=1
For instance, the probability of a buy market order when the order book is in state
X, 1S
+ M
P[“Buy market order at time n”’|X,—-; = X] := pM x) = m &2}
X

The choice of the test function V(x) = >}; a; + >; b; + g does not yield a geometric

drift condition, and more care should be taken to obtain a suitable test function.

Let z > 1 be a fixed real number and consider the function'?

V(x) := Z2i it Zilbil . (), (52)

We have

Theorem 6.2. (X,) is V-uniformly ergodic. Hence, there exist ro < 1 and Ry < oo
such that
IU"(x,.) = vl < Rar3V(x),n €N, ,x € S. (53)

where (U")qen is the transition probability function of (X,)nenw and v its stationary

distribution.

127 save notations, we always use the letter V for the test function.
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Proof.
M+

DV(x) < %(Zzzai—%ﬁilbil_v(x))

A

AL
J i ai+q+%; |bil+Klbeo|
+ § I (Ei i -V
LA (x))

+

/lC
iai—q+; b
+ Z A (ZZ q+2i |bil - V(x))

AM

+ A(X)(ZZ,az+Z lbil-q _ V(X))
L
YiaitKacw+Y,; |bil+
A(x)(z - V(x))
A5 |b;
+ Z A(l ) |( LiaitEilbil=q _ y(x)),

If we factor out V(x) = zZ%*X% in the r.h.s of (54), we get

AMT 4 M”
DV(x) < + @ 1)
V(x) A(X)
AL+ AL
+ - q+Kdoo _ 1
Aw ¢ )
Z]/lf aj+2]/lf7|bj —q
A(x) '
where
doo 1= Max{deo, |bol}.
Then
M* M~
DV(x) < A"+ A _ 1)
V(x) M AMT 4 ALY 4 AL 4 2Cp(x)
+ AL+ + AL7 ( q+Kdoo
AMT M 4 ALT 4 AL 4+ 2C(x)
/1C
+ e ——@7-D,

AMT 4 AMT 4 ALY+ AL 4+ 2Cp(x)

with the usual notations

A :=min A" and AC := max AS .

-1

(54)

(55)

(56)

(57)

(58)
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Denote the r.h.s of (57) B(x). Clearly
A%(z9-1
lim B(x) = # <0, (59)
p(x)—00 A€
hence there exists A > 0 such that for x € S and ¢(x) > A

DV(x) _ A°@z1-1)

< — =—B<0. (60)
V(x) 21C B
Let C denote the finite set
C=1ixeS:¢x) =) ai+ ) b <AL (61)
We have
DV(x) < -BV(X) + ylc(x), (62)
with
v := max DV(x). (63)
xeC
Therefore (X,,)n>0 is V-uniformly ergodic, by theorem 16.0.1 in [15]. O

6.3. The case of constant cancellation rates. The proof above can be applied to
the case where the cancellation rates do not depend on the state of the order book
X’ (t)—We shall denote the order book X’(¢) in order to highlight that the assump-
tion of proportional cancellation rates is relaxed. The probability of a cancellation
dC3 (1) in [t,t + 1] is now

P[CE(r + 61) — CE(1) = 1IX'(2) = X'] = A5 61 + 0(61), (64)
instead of
PIC (1 + 61) — CF (1) = 1IX () = X'] = A a;(t)61 + 0(50), (65)

where limg_0 0(61)/5t = 0. Since A = AM" + M + AL+ AL + 3K AT+ 3K &
does not depend on x’, the analysis of the stability of the continuous-time process
(X’(1)) and its discrete-time counterpart (X)) are essentially the same.

We have the following result:

Theorem 6.3. Set
K K
AC = Z A" and AF* = Z AL (66)
i=1 i=1

Under the condition

ML M L AT AC S (AL + AR+ Kdo), (67)
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(X7,) is V-uniformly ergodic. There exist r3 < 1 and R3 < oo such that
NU"(x,.) =V Ol < R3r5V(x),n e N,x € S. (68)
The same is true for (X'(1)).

Proof. Let us prove the result for (X)). Inequality (55) is still valid by the same
arguments, but this time the arrival rates are independent of x’

DV(x') § AMT 4 M”

-4 _q
V) A @b
AL+ AL
q+Kde _ 1
S (z )
AT+ AC
+ T(Z_q — 1) (69)
Set
z=:14+€e>1. (70)

A Taylor expansion in € gives

DV(X) M+ M-
A Voo < A7+ 27 )=qe)
+ (AY + AY)(g + Kdw)e
+ (AY + A )(=ge) + ole). (71)

For € > 0 small enough, the sign of (71) is determined by the quantity
—AM 4 AMTY (ALY + ALY + Kdw) — (AST + AS). (72)
Hence, if (67) holds
PV(x) < -pV(x) for some S > 0, (73)
and a geometric drift condition is obtained for X’. O

If for concreteness we set g = 1 share, and all the arrival rates are symmetric
and do not depend on i, then condition (67) can be rewritten as

M4+ KA€ > KA5(1 + Kd). (74)

where K is the size of the order book and d, is the depth far away from the mid-

price. Note that the above is a sufficient condition for (V-uniform) stability.

6.4. Large-scale limit of the price process. We are now able to answer the main

question of this paper. Let us define the process

et efl,...,2Q2K + 1))



20 FREDERIC ABERGEL AND AYMEN JEDIDI
which indicates the last event
{M*, L, C¥lieq1,. k)
that has occurred before time .
Lemma 6.1. If we append e(t) to the order book (X(t)), we get a Markov process
Y() == (X(1), e(n)) (75)
which still satisfies the drift condition (41).

Proof. Since e(t) takes its values in a finite set, the arguments of the previous sec-
tions are valid with minor modifications, and with the test functions

V(y)
V(y) := eX4txlbilte  (discrete-time setting) (77)

q+ Z a; + Z |bi] + e, (continuous-time setting) (76)

The V-uniform ergodicity of (Y(¢)) and (Y,) follows.
O

Given the state X,,_; of the order book at time n — 1 and the event ¢,, the price
increment at time » can be determined. (See equation (32).) We define the sequence
of random variables

M = (X1, ) 1= O(Y,, Y1), (78)

as the price increment at time 7. ¥ is a deterministic function giving the elementary
“price-impact” of event e, on the order book at state X,,_;. Let u be the stationary
distribution of (Y,,), and M its transition probability function. We are interested in
the random sums

n n
Pyi= Y 7, = ) O(Ye, Yior), (79)
k=1 k=1
where
M = M — Bulmi] = @ = O — B, [ D], (80)

and the asymptotic behavior of the rescaled-centered price process

—~ P
gy - Pl
PO =2, @81)

as n goes to infinity.

Theorem 6.4. The series

o = Bulifgl +2 ) Bulifoi, ] (82)

n=1
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converges absolutely, and the rescaled-centered price process is a Brownian mo-
tion in the limit of n going to infinity. That is

PO =S B, (83)

where (B(t)) is a standard Brownian motion.

Proof. The idea is to apply the functional central limit theorem for (stationary and
ergodic) sequences of weakly dependent random variables with finite variance.
Firstly, we note that the variance of the price increments 7, is finite since it is

bounded by K + 1. Secondly, the V-uniform ergodicity of (Y,,) is equivalent to
IM"(x,.) — p(Il < Rp"V(x),n €N, (84)

for some R < oo and p < 1. This implies thanks to theorem 16.1.5 in [15] that for
any g%, h> <V, k,n € N, and any initial condition y

[Ey[g(Yo)h(Yui)] = By[g(YOIEy[g(Y1l < Ro"[1 + p*V(y)], (85)

where Ey[.] means E[.[Yo = y]. This in turn implies

[Ey[M(YZ(Yirn)ll < Rip"[1 + p*V(y)] (86)

for some Ry < oo, where h = h — Eulhl, g = g — E,[g]. By taking the expectation
over u on both sides of (86) and noting that E,[V(Y()] is finite by theorem 14.3.7
in [15], we get

[Eu[h(Y)Z(Yin)]l < Rop” =: p(n), k,n € N. (87)

Hence the stationary version of (Y,,) satisfies a geometric mixing condition, and in
particular

Z o(n) < co. (88)

Theorems 19.2 and 19.3 in [1] on functions of mixing processes!? let us conclude
that

o = Byl +2 ) Bulifoii,] (89)
n=1

is well-defined—the series in (89) converges absolutely—and coincides with the
asymptotic variance

o1
Mim - B

> (ﬁk)z} = o, (90)
k=1

13See also theorem 4.4.1 in [25] and discussion therein.
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Moreover

PPty "=5 oB@), 1)
where (B(#)) is a standard Brownian motion. The convergence in (91) happens
in DI[0, o), the space of R-valued cadlag functions, equipped with the Skorohod
topology. O

Remark 6.1. In the large-scale limit, the mid-price P, the ask price PA=P+ %,
and the bid price P2 = P — % converge to the same process (o B(t)).

Remark 6.2. Theorem 6.4 is also true with constant cancellation rates under con-
dition (67). In this case the result holds both in event time and physical time.
Indeed, let (N(t));cr, denote a Poisson process with intensity A = AMT L AL 4

l-Ii 1 /ll.Ci. The price process in physical time (P.(t));cr, can be linked to the price
in event time (Pp)nen by

Pc(t) = Pn. 92)
Then
Pth | k—00 .
— o B(t) as in theorem 6.4, (93)
Vi
and since A/’\(Z) T as.,

Pelkt) _ Paan ko P K25 R, (94)
vk vk Vk

Remark 6.3. Yet another specification of the cancellation process. Another inter-

esting specification of the cancellation process (Ci(t)) is to assume that the arrival

rate is constant (for each i) but the canceled volume is proportional to the queue

size |X|. In this case, the treatments of the continuous time chain and its embedded

discrete-time counterpart are equivalent, and theorems 6.1-6.4 can be obtained in

an analogous manner to the proofs in this section.

7. NuMERICAL EXAMPLE

In order to gain a better intuitive understanding of the “mechanics” of the model,
we sketch in Algorithm 1 below the simulation procedure in pseudo-code (See also
[12] for a similar description.) For simplicity, we take a symmetric order book
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model. We also let (usual notations):

A= (AR, (95)
Al = Zklaf, (96)
@ = (Tfal,...,ﬁga,(), 97)
Af@) = ZK:AI.%,-, (98)
i=1
A°m) = (bl A bkl). (99)
AC(b) = i/lﬂb,-l, (100)
A(a,b) = ;=(11M+AL)+AC(a)+AC(b). (101)

In order to put the simulation results and the data on the same footing, we relax
the assumption of constant order sizes; we draw the order volumes from lognormal
distributions. The parameters of the model are estimated from tick by tick data as
detailed in A. For concreteness'¥, we use the parameters of the stock SCHN.PA
(Schneider Electric) in March 2011 for the plots. They are summarized in tables 4
and 5.

Figure 3 represents the average depth profile, that is, the average number of out-
standing shares at a distance of i ticks from the best opposite price. The agreement
between the simulation and the data is fairly good (See panel (a) of figure 12 for a
cross-sectional view on CAC 40 stocks.) We also plot the distribution of the spread
in figure 4. Note that the simulated distribution is tighter than the actual one (this
is systematic and is documented in panel (b) of figure 12.) Figure 5 shows the
fast decay of the autocorrelation function of the price increments. Note the high
negative autocorrelation of simulated trade prices relatively to the data. In accor-
dance with the theoretical analysis, figures 6-8 illustrate the asymptotic normality
of price increments.

The signature plot of the price time series is defined as the variance of price
increments at lag 4 normalized by the lag, that is

> VI[P(t+h)— P(1)]
o, = A .
This function measures the variance of price increments per time unit. It is inter-

(102)

esting in that it shows the transition from the variance at small time scales where

14The results are qualitatively the same for all CAC 40 stocks.
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Algorithm 1 Order book simulation.

Require: Model parameters— Arrival rates: AM (Al k), (A5 }ieq1,..k), OF

1:
2:

3:

10:
11:

12:
13:

1
der book size: K, reservoirs: de, b, volume distribution parameters:

oM, sMy, VE, b, (06, s6).
Simulation Parameters— Number of time steps: N.
Initialization— t < 0, X(0) < Xiit.
for timestepn=1,...,N, do
Compute the best bid p? and best ask p*.
K

Compute AC(b) = Z /liclbil, i.e. the weighted sum of shares at price levels
from p? — K to p# l—:l

Compute Ac(a) = Z /lical-.

Draw the waiting tiir:nle 7 for the next event from an exponential distribution
with parameter

Aa,b) = 2™ + ALy + AC@a) + AC(b).
Draw a new event according to the probability vector
(24, 2", AF, A%, AC(a), A€ (b)) /A(a, b).

These probabilities correspond respectively to a buy market order, a sell
market order, a buy limit order, a sell limit order, a cancellation of an existing
sell order and a cancellation of an existing buy order.

Depending on the event type, draw the order volume from a lognormal dis-
tribution with parameters oM, My (vE, by or (VE, s©).

If the selected event is a limit order, select the relative price level from
{1,2,..., K} according to the probability vector

(2f.....2%) /AL,

If the selected event is a cancellation, select the relative price level at which
to cancel an order from {1,2, ..., K} according to the probability vector

(1 ar..... AGax) /A ().

(or A°(b)/ A€ (b) for the bid side.)
Update the order book state according to the selected event.
Enforce the boundary conditions:

a;, = G, l>K+1,
bi = bo,i>K+1.

Increment the event time n by 1 and the physical time ¢ by 7.
end for

Remark 7.1. For the practical implementation, it is easier to work with an
“absolute” price frame Ap X {1 ...L} where L > K.
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micro-structure effects dominate, to the long-term variance. By theorem 6.4'3

lim o-i = o2, for some fixed value o- (103)

h—oo
We verify this numerically in figure 9. Two remarks are in order regarding the

signature plot:

Long-term variance— The simulated long-term variance is systematically lower
than the variance computed from the data (This is documented in panel (¢) of figure
12.) Intuitively, the depth of the order book is expected to increase from the best
price towards the center of the book. In the absence of autocorrelation in trade
signs, this would cause prices to wander less often far away from the current best
as they hit a higher “resistance”. We also suspect that actual prices exhibit locally
more “drifting phases” than in a (symmetric) Markovian model where the expected
price drift is null at all times. An interesting analysis of a simple order book model

that allows time-varying arrival rates can be found in [6].

Short-term variance— The signature plot predicted by the model is too high at
short time scales relative to the asymptotic variance, especially for traded prices.
This is classically known to be due to bid-ask bounce. It is however remarkable
that the signature plot of actual trade prices looks much flatter compared to the sim-
ulation (See figure 9.) This was discovered and discussed in detail by Bouchaud
et al. in [3], and Lillo and Farmer in [13] (See also [9] and [2].) They note that
actual order signs exhibit positive long-ranged correlations. They also note that ac-
tual prices are diffusive—the signature plot is flat—even at small time scales. They
solve this apparent paradox by showing that diffusivity results from two opposite
effects: autocorrelation in trade signs induces persistence in the prices, just at the
exact amount to counterbalance the mean reversion induced by the liquidity stored
in the order book. This subtle equilibrium between liquidity takers and liquidity
providers which guarantees price diffusivity at short lags, is not accounted for by
the bare Markovian order book model we study, and one can speak about anoma-
lous diffusion at short time scales for Markovian order book models [22]. Because
of the absence of positive autocorrelation in trade signs in the model, this effect is
magnified when one looks at trades. The next paragraph elaborates on this point.

Anomalous diffusion at short time scales. A qualitative understanding of the
discrepancy between the model and the data signature plots at short time scales

can be gleaned with the following heuristic argument. In what follows, we reason

N Strictly spreaking, we proved the result in event-time.



26 FREDERIC ABERGEL AND AYMEN JEDIDI
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Ficure 3. Average depth profile. Simulation parameters are sum-
marized in tables 4 and 5.

in trade time ¢. Denote by P77 (¢) the price of the trade at time ¢, and «(?) its sign:
a(t) = 1, for a buyer initiated trade, i.e. a buy market order, (104)
and,
a(t) = —1, for a seller initiated trade, i.e. a sell market order. (105)

We assume that the two signs are equally probable (symmetric model). But to
make the argument valid for both the model (for which successive trade signs are
independent) and the data (for which trade signs exhibit long memory) we do not

assume independence of successive trade signs. Let also for a quantity Z
AZ(@t) :=Z(t + 1) - Z(0). (106)
We have by definition

PT"(t) = P(t™) + %a/(t)S @), (107)
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Ficure 4. Probability distribution of the spread. Note that the
model (dark gray) predicts a tighter spread than the data.

where P(t7) and S (¢7) are respectively the prevailing mid-price and spread just

before the trade. From equation (107)
oI = VIAPT(9)]

- B [(APT’(t))Z]

= E[(aP@))

+ E[APE)A(()S (17))]

+ iE [(A@)s @)’ (108)
The first term in the r.h.s. is the variance of mid-price increments 0'%. The sec-

ond term represents the covariance of mid-price increments and the trade sign
(weighted by the spread) and we assume it is negligible's. Let us focus on the

16This amounts to neglecting the correlation between trade signs and mid-quote movements, which
is justified by the dominance of cancellations and limit orders in comparison to market orders in
order book data.



28 FREDERIC ABERGEL AND AYMEN JEDIDI

l _O T T T T
—@ Trade price (Model
—A Mid-price (Model)
—© Trade price (Data)

0.5F h

Autocorrelation of price increments

_0.5 | | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Lag (trade time)

Ficure 5. Autocorrelation of price increments. This figure shows
the fast decay of the autocorrelation function, and the large nega-
tive autocorrelation of trades at the first lag.

third term:
Aa()S (7)) = a(t+ DAS (@) + S )Aa(r). (109)
Then

E[(Ma0s@))] = E|@a)|E[sGY]
2E [a(t + DAS (t7)S (17)Aa(?)]

E [a/(t + 1)2] E [(AS (z—))z] . (110)

_I_

+

Again, we neglect the cross term!” in the r.h.s. and we are left with

E[(A@0S@))] ~ Blda@)|E[sE )]
+ E[As@))?]. (111)

1 This time, we are neglecting the correlation between trade signs and spread movements.
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FiGure 6. Price sample path. At large time scales, the price pro-
cess is a Brownian motion.
But
E[(Aa0)| = Elat+1)?]+E[a®?] - 2E [a(@a(r + 1)]
= 2(1-pi(e), (112)
where p; () is the autocorrelation of trade signs at the first lag.
Finally'®:
2 1 _ 1 _
ol s+ 50 ~p1@)E[S )]+ ZE[(AS(z . (114)

Two effects are clear from equation (114):

(1) The trade price variance at short time scales is larger than the mid-price

variance,

8More generally, after n trades:

2 1 _
o) R ot 4 5 (1= pu@)E[S ()],

(113)
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Ficure 7. Q-Q plot of mid-price increments. # is the time lag
in seconds. This figure illustrates the aggregational normality of
price increments.

(2) Autocorrelation in trade signs dampens this discrepancy. This partially
explains'® why the trades signature plot obtained from the data is flatter
than the model predictions: p1(@)moder = 0, wWhile p1(@)jara = 0.6.

From a modeling perspective, a possible solution to recover the diffusivity even
at very short time scales, is to incorporate long-ranged correlation in the order flow.
Toth et al. [24] have investigated numerically this route using a “e-intelligence”
order book model. In this model, market orders signs are long-ranged correlated,

that is, in trade time

on(@) = Ela(t + n)a®)] <« n?, v €]0, 1[. (115)

nterestin gly, although the arguments that led to (114) are rather qualitative, a back of the envelope
calculation with E [S 2] € [1,9], gives a difference o — o2 in the range [0.5,4.5]; which has the
same order of magnitude of the values obtained by simulation.
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Ficure 8. Probability distribution of price increments. Time lag
h = 1000 events.

And the size of incoming market orders is a fraction f of the volume displayed at
the best opposite quote, with f drawn from the distribution

Pe(f) = (1 - f)F1, (116)

They show that, by fine tuning the additional parameters y and &, one can ensure the
diffusive behavior of the price both at mesoscopic (~ a few trades) and macroscopic

(~ hundred trades) time scales?.

8. CONCLUSIONS

This paper analyzes a simple Markovian order book model, in which elementary
changes in the price and spread processes are explicitly linked to the instantaneous
shape of the order book and the order flow parameters.

20Note that Toth. el al. [24] model the “latent order book”, not the actual observable order book.
The former represents the intended volume at each price level p, that is, the volume that would be
revealed should the price come close to p. So that the interpretation of their parameters, in particular
the expected lifetime 73 of an order, does not strictly match ours.



32 FREDERIC ABERGEL AND AYMEN JEDIDI

1.2} Trades (Sim.) 4
= = = Mid-price (Sim.)
Trades (Data)

— — — Mid-price (Data)

0.8
SRS
g

0.6

0.4

0.2F

N
0 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
Time lag h (trade time)
(a) Trade time.
0.25
Trades (Sim.)
= = = Mid-price (Sim.)
Trades (Data)

0.2 — — — Mid-price (Data)| ]
0.06
0.05

0.15 i
0.04 Aaqw\nab ....‘,,q“i-.«,.q’
w 0.03\
0.1H] 0.02f “YIvervaseicanay mrantyeyioel] |
1 1 1 1 1 1 1 1 1

0
0 100 200 300 400 500 600 700 800 900 1000
Time lag h (seconds)

(8) Calendar time.

Ficure 9. Signature plot: 0',21 = V[P(t+ h) — P(t)]/h. y axis unit
is tick? per trade for panel (a) and tick?.second™! for panel (b).
We used a 1,000,000 event simulation run for the model signa-
ture plots. Data signature plots are computed separately for each
trading day [9 : 30-14 : 00] then averaged across 23 days. For cal-
endar time signature plots, prices are sampled every second using
the last tick rule. The inset is a zoom-in.
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Two basic properties were investigated: the ergodicity of the order book and
the large-scale limit of the price process. The first property, which we answered
positively, is desirable in that it assures the stability of the order book in the long
run, and gives a theoretical underpinning to statistical measurements on order book
data. The scaling limit of the price process is, as anticipated, a Brownian motion.
A key ingredient in this result is the convergence of the order book to its stationary
state at an exponential rate, a property equivalent to a geometric mixing condition
satisfied by the stationary version of the order book. This short memory eftect, plus
a constraint on the variance of price increments guarantee a diffusive limit at large
time scales. Our assumptions are independent Poissonian order flows, proportional
cancellation rates, and the presence of two reservoirs of liquidity K ticks away from
the best quotes to guarantee that the spread does not diverge.>!

We believe the results hold for a wide class of Markovian order book models:
In general, one can state that price increments in a stable Markovian order book
model are aggregationally Gaussian??.

In a sense, this could offer a mathematical justification to the Bachelier model
of asset prices, from a market microstructure perspective. In reality, the picture
is however more subtle: even if the price process is asymptotically diffusive, at
short time scales, the model produces stronger anti-correlation in traded prices
than what is actually observed in the data. At those time scales, price diffusivity
is arguably the result of a balance between persistent liquidity taking and anti-
persistent liquidity providing.

We believe however that the approach presented here is interesting for clearly
identifying conditions under which the asymptotic normality of price increments
holds; and more importantly, for introducing a set of mathematical tools for further
investigating the price dynamics in more sophisticated stochastic order book mod-
els. Indeed, using the same techniques, we are studying extensions of our results
to the case of mutually exciting—and therefore dependent—order flows (point 1
below). This will be published elsewhere.

At this stage of development, our work can naturally be extended in several
ways. In the following lines, we suggest some possible avenues to explore.

First of all, actual order flows exhibit non-negligible cross dependences. As

documented in [19], market orders excite limit orders and vice versa. A possible

2lWe believe this assumption can be relaxed under a balance condition on the arrival rates. One has
however to consider an order book model with finite but unbounded support, and control not only
the stability of the spread but also of all the gaps in the book.

22Rigorously, the convergence to the stationary state has to happen fast enough. That is, with an
integrable convergence rate p(n) as in (88).
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solution for endogenously incorporating these dependences is the use of mutually

exciting processes:

Mo = M)+ f oMMt — 5)dNM(s)
0

+ f "M (t — AN (s), (117)
0

and,

t
ALy = A0y + f OHE(t — $)dNE(s)
0

+ f oMLt — $)dNM(s), (118)
0

This model has the additional advantage of capturing clustering in order arrivals
(due to the self-excitation terms ¢™™ and ¢1), and for exponentially decaying
kernels>® can be cast into a Markovian setting.

Besides, long-ranged correlation in order signs is a very important feature of
the data, as discussed in section 7. Analyzing this mathematically is more difficult
since the model is no longer Markovian.

Moreover, it is natural to add another source of randomness on the rates them-

selves, for instance

dA(t) = OQUE) — AD)dt + v JADAW (D), (119)

where A is a (deterministic) background intensity to account for the U-shaped daily
trading activity and 6, v are the parameters of a CIR process. Such stochastic ar-
rival rates would lead to stochastic volatility in the prices.

Although we argued that the simple Markovian order book model we study is
stable and asymptotically diffusive, markets do show signs of fragility quite often
and large jumps do occur in actual prices. Understanding how these macroscopic
jumps (or departure from equilibrium) arise from events at the order book level,
for instance via sudden evaporation of liquidity in one side of the book is much
needed.

Finally, richer price dynamics (e.g. fat-tailed return distributions) can be ob-
tained using feedback loops between the arrival rates and the price (or its volatility)
as in [21].

o) = ae .
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Timestamp | Side | Level | Price | Quantity
33480.158 | B 1 121.1 480
33480.476 | B 2 | 121.05| 1636
33481.517 | B 5 120.9 1318
33483.218 | B 1 121.1 420
33484.254 | B 1 121.1 556
33486.832 | A 1 121.15 187
33489.014 | B 2 121.05| 1397
33490.473 | B 1 121.1 342
33490.473 | B 1 121.1 304
33490.473 | B 1 121.1 256
33490473 | A 1 121.15 237

TaBLE 2. Tick by tick data file sample. Note that the field “Level”
does not necessarily correspond to the distance in ticks from the
best opposite quote as there might be gaps in the book. Lines
corresponding to the trades in table 3 are highlighted in italics.

Timestamp | Last | Last quantity
33483.097 | 121.1 60
33490.380 | 121.1 214
33490.380 | 121.1 38
33490.380 | 121.1 48

TaBLE 3. Trades data file sample.

These extensions may, however, render the model less amenable to mathemati-
cal analysis, and we leave the investigation of such interesting (but sometime diffi-
cult) questions for future research.

APPENDIX A. MODEL PARAMETERS

Description of the data. For reproducibility, we summarize in tables 4 and 5 the
parameters used to obtain figures 3-9. These correspond to estimating the model
for the stock SCHN.PA (Schneider Electric). Our dataset consists of TRTH?* data
for the CAC 40 index constituents in March 2011 (23 trading days). We have tick
by tick order book data up to 10 price levels, and trades. A snapshot of these
files is given in tables 2 and 3. In order to avoid the diurnal seasonality in trading
activity (and the impact of the US market open on European stocks), we somehow
arbitrarily restrict our attention to the time window [9 : 30-14 : 00] CET.

24Thomson Reuters Tick History.
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Trades and tick by tick data processing. Because one cannot distinguish market
orders from cancellations in tick by tick data, and since the timestamps of the
trades and tick by tick data files are asynchronous, we use a matching procedure
to reconstruct the order book events. In a nutshell, we proceed as follows for each
stock and each trading day:

(1) Parse the tick by tick data file to compute order book state variations:

o If the variation is positive (volume at one or more price levels has
increased), then label the event as a limit order.

o If the variation is negative (volume at one or more price levels has
decreased), then label the event as a “likely market order”.

o If no variation—this happens when there is just a renumbering in the
field “Level” that does not affect the state of the book—do not count
an event.

(2) Parse the trades file and for each trade:

(a) Compare the trade price and volume to likely market orders whose
timestamps are in [t7" — At, 7" + At], where t'" is the trade timestamp
and At is a predefined time window?.

(b) Match the trade to the first likely market order with the same price and
volume and label the corresponding event as a market order—making
sure the change in order book state happens at the best price limits.

(¢) Remaining negative variations are labeled as cancellations.

Doing so, we have an average matching rate of around 85% for CAC 40 stocks. As
a byproduct, one gets the sign of each matched trade, that is, whether it is buyer or
seller initiated.

Parameters estimation. If 7 be the trading duration of interest each day (T = 4.5
hours—I[9 : 30-14 : 00]—in our case.) Then

#trades

2T

(120)

and

i L
PTar

(#buy limit orders arriving i tick away from the best opposite quote
+ #sell lim. orders etc.). (121)
We set At = 3 s for CAC 40 stocks. We found that the median reporting delay for trades is

—900 ms: on average, trades are reported 900 milliseconds before the change is recorded in tick by
tick data.
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K | 30 |
Aoo 250
beo 250

oM, sM) 1 (4.00,1.19)

ok, sh) | (4.47,0.83)

(v, s%) | (4.48,0.82)
A" [ 01237 |

TaBLE 4. Model parameters for the stock SCHN.PA (Schneider

Electric) in March 2011 (23 trading days). Figures 10 and 11 are

graphical representation of these parameters.

For cancellations, we need to normalize the count by the average number of shares
(X;) at distance i from the best opposite quote:

=L 1
! (X;) 2T
(#cancellation orders in the bid side arriving i tick away from the best opposite quote

+ #cancellation orders in the ask side etc.), (122)

We then average aM , /iz and /ZL across 23 trading days to get the final estimates.
As for the volumes, we estimate by maximum likelihood the parameters (v,s) of a
lognormal distribution separately for each order type. We depict the parameters in
figures 10 and 11.

AppPENDIX B. REesuLts ForR CAC 40 sTocks

In order to get a cross-sectional view of the performance of the model on all
CAC 40 stocks, we estimate the parameters separately for each stock and run a
100, 000 event simulation for each parameter set. We then compare in figure 12
the average depth, average spread and the long-term “volatility” measured directly
from the data, to those obtained from the simulations. Dashed line is the identity
function—It would correspond to a perfect match between model predictions and
the data. Solid line is a linear regression zqya = b1 + b2 Zmodel fOr €ach quantity
of interest z.

Note that despite the good agreement between the average depth profiles (panel
(a)), and although the model successfully predicts the relative magnitudes of the
long-term variance o2, and the average spread (S) for different stocks, it tends to
systematically underestimate o2, and (S ). This may be related to the absence of
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Ficure 10. Model parameters: arrival rates and average depth pro-
file (parameters as in table 5). Error bars indicate variability across
different trading days.
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Ficure 11. Model parameters: volume distribution. Panels (a), (b)
and (c) correspond respectively to market, limit and cancellation
orders volumes. Dashed lines are lognormal fits (parameters as in
table 4).
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i (ticks) | (X;) (shares) | aF" | 10%.05
I 276 0.2842 | 0.8636
2 1129 | 0.5255 | 0.4635
3 1896 | 0.2971 | 0.1487
4 1924 | 0.2307 | 0.1096
5 1951 | 0.0826 | 0.0402
6 1966 | 0.0682 | 0.0341
7 1873 | 0.0631 | 0.0311
8 1786 | 0.0481 | 0.0237
9 1752 | 0.0462 | 0.0233
10 1691 0.0321 | 0.0178
11 1558 |0.0178 | 0.0127
12 1435 [ 0.0015 | 0.0012
13 1338 [ 0.0001 | 0.0001
14 1238 0.0 0.0
15 1122 : :
16 1036
17 943
18 850
19 796
20 716
21 667
22 621
23 560
24 490
25 443
26 400
27 357
28 317
29 285 : :

30 249 0.0 0.0

TaBLE 5. Model parameters for the stock SCHN.PA (Schneider
Electric) in March 2011 (23 trading days). Figures 10 and 11 are
graphical representation of these parameters.

autocorrelation in order signs in the model and the presence of more drifting phases
in actual prices than in those obtained by simulation.
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0.5 1 15 2 25 3 35 4 45
Log (A) (5) (model)

02 04 06 08 1 12 14 16 18 2
Log (S) (model)

S(zGN

0.2 04 0.6 0.8 1 12
0o (model)

Ficure 12. A cross-sectional comparison of liquidity and price
diffusion characteristics between the model and data for CAC 40
stocks (March 2011).
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by by R®
Log(A)(5) | —0.42(+0.11) | 1.13(+0.04) | 0.99
Log(S) 0.20(£0.06) | 1.16(x0.07) | 0.97
[ —-0.012(+0.05) | 1.35(+0.11) | 0.94
TaBLE 6. CAC 40 stocks regression results.
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