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High Frequency Correlation Modelling
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Many statistical arbitrage strategies, such as pair trading or basket trading, are based
on several assets. Optimal execution routines should also take into account correla-
tion between stocks when proceeding clients orders. However, not so much effort
has been devoted to correlation modelling and only few empirical results are known
about high frequency correlation. Depending on the time scale under consideration,
a plausible candidate for modelling correlation should:

• at high frequency: reproduce the Epps effect [1], take into account lead-lag rela-
tionships between assets [2]

• at the daily scale: avoid purely Gaussian correlations [3]

We develop a theoretical framework based on correlated point processes in order
to capture the Epps effect in section1. We show in section2 that this model con-
verges to correlated Brownian motions when moving to large time scales. A way of
introducing non-Gaussian correlations is also discussed in section2. We conclude by
addressing the limits of this model and further research on high frequency correla-
tion.

1 A model for high frequency correlation

In this section, we start by reviewing the most famous empirical fact about high fre-
quency correlation, namely the Epps effect. Then we suggesta theoretical framework
that captures this salient feature of high frequency data.

1.1 Empirical fact: the Epps effect

In 1979, T.W. Epps[1] observed that, in his own words:

“Correlations among price changes[. . .] are found to decrease with the length of
the interval for which the price changes are measured.”
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This result was then recovered on more recent data and on several markets [4, 5,
6, 7]. Two reasons for the Epps effect were advocated in the literature:

• Market orders on two assets are asynchronous: as∆t→ 0

P
(

(
{

Xi∆t −X(i−1)∆t) 6= 0
}

∩
{

(Yi∆t − Y(i−1)∆t) 6= 0
})

→ 0 (1)

so that
∑

i(Xi∆t − X(i−1)∆t)(Yi∆t − Y(i−1)∆t) → 0, whereXi∆t andYi∆t

are the prices of two assets recorded at timei∆t (∆t being the sampling period)
with any scheme of interpolation (previous-tick, linear, etc. . . ). Indeed, when
sampling prices at very high frequency, it is highly unlikely that both assets will
experience a price jump.

• Information needs a human time scale to be processed [2]. On financial markets,
some assets, called the leaders, which are often the most liquid, incorporate infor-
mation onto their prices faster than others, called the laggers. As a result, when
dealing with two assets that exhibit a so-called lead-lag relationship, there will
be only partial correlation at timescales shorter than the characteristic lead-lag
time.

Figure1 illustrates the Epps effect on French high frequency data. The stocks
studied are BNPP.PA,SOGN.PA,RENA.FP,VLOF.PA,LVMH.PA ,LYOE.PA dur-
ing the time period from 2008-02-04 to 2008-20-03. Clearly,the correlation is al-
most nil when sampling at few seconds of trading. The correlation converges to an
asymptotic level after about half an hour of trading.

As a testimony that the Epps effect is not only due to asynchronicity, figure2
plots the empirical probability of having both assets jumping in a time window of a
given length for the same three pairs of stocks. Obviously, this probability is quite
small for few seconds. It is noteworthy that the characteristic time of this probability
is not only smaller than the Epps effect one but is also the same for all the three pairs
of stocks. If asynchronicity was to be the sole reason for theEpps effect, then all the
Epps curves should converge after about ten minutes.

1.2 Correlated point processes as a model for correlation

Because of the existence of a minimal price change on markets, called the tick, prices
are closer to pure jump processes rather than diffusions, which is the standard as-
sumption for daily data. When looking at several assets, a natural question that arises
is therefore how to correlate point processes. As a point process is fully described
by either the associated counting process or the intensity process, there are basically
four ways of addressing the issue of correlation, that we explain in table1.

From the microstructure of markets point of view, the upper left solution is unre-
alistic because it is highly unlikely that two market orderson two different assets are
executed at the very same time. Therefore, the most appropriate solution is to use cor-
related stochastic intensities. The upper right solution,i.e. Hawkes processes, can be
interpreted as particular choice for the correlation structure: past events on one asset
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Fig. 1. Correlation coefficient for three pairs of French stocks as a function of the sampling
period of price changes.

Table 1. Four ways of correlating two point processes

N2 λ2

N1 sync. jumps Hawkes processes
(ex:N2 = N1 +N0) λ2 = f(N1, . . .)

λ1 async. jumps
λ’s must be random

tend to trigger (or inhibit) events on the other asset, so that correlation is endogenous.

Let us consider the following model:

dP i
t = ∆P i

(

dN i,+
t − dN i,−

t

)

(2)

where

• P i
t is the price of asseti at timet. It can be all kind of prices: last traded price,

midprice, best limit, etc. . .
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Fig. 2. Empirical probability of having both prices jumping in a time window of a givenlength
as a function of this length for three pairs of French stocks.

• ∆P i is the jump size for asseti. It is assumed to be constant for the sake of
simplicity.

• N
i,+
t (resp.N i,−

t ) is the number of market orders that triggered upward (resp.
downward) price changes for asseti up to timet.

This model is a pure price model in the sense that it does not explicitly take into
account the dynamics of the order book, which impacts∆P i. In this model, we can
explicitly compute the Epps curve3:

ρ∆t = Corr
(

dP 1
∆t, dP

2
∆t

)

=
a

√

b0 +
b1
∆t +

b2
∆t2

(3)

where

3 See appendix A for the proof.
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a = Cov
(

λ1,+ − λ1,−, λ2,+ − λ2,−
)

b0 = V ar
(

λ1,+ − λ1,−
)

V ar
(

λ2,+ − λ2,−
)

b1 = E
(

λ1,+ + λ1,−
)

V ar
(

λ2,+ − λ2,−
)

+ E
(

λ2,+ + λ2,−
)

V ar
(

λ1,+ − λ1,−
)

b2 = E
(

λ1,+ + λ1,−
)

E
(

λ2,+ + λ2,−
)

The features ofρ∆t are:

• ρ∆t → 0 as∆t→ 0
• ρ∆t → a√

b0
= Corr

(

λ1,+ − λ1,−, λ2,+ − λ2,−
)

as∆t→ +∞
• ρ∆t is increasing and concave

which reproduce most of the curves plotted on figure1. In the case of time-

dependent intensities
(

λ
1,±
t , λ

2,±
t , t ≥ 0

)

, we get

ρ∆t = Corr
(

dP 1
∆t, dP

2
∆t

)

=
a∆t

√

b0,∆t +
b1,∆t

∆t +
b2,∆t

∆t2

(4)

a∆t = Cov

(

1

∆t

∫ ∆t

0

(

λ1,+s − λ1,−s

)

ds,
1

∆t

∫ ∆t

0

(

λ2,+s − λ2,−s

)

ds

)

b0,∆t = V ar

(

1

∆t

∫ ∆t

0

(

λ1,+s − λ1,−s

)

ds

)

V ar

(

1

∆t

∫ ∆t

0

(

λ2,+s − λ2,−s

)

ds

)

b1,∆t = E

(

1

∆t

∫ ∆t

0

(

λ1,+s + λ1,−s

)

ds

)

V ar

(

1

∆t

∫ ∆t

0

(

λ2,+s − λ2,−s

)

ds

)

+ E

(

1

∆t

∫ ∆t

0

(

λ2,+s + λ2,−s

)

ds

)

V ar

(

1

∆t

∫ ∆t

0

(

λ1,+s − λ1,−s

)

ds

)

b2,∆t = E

(

1

∆t

∫ ∆t

0

(

λ1,+s + λ1,−s

)

ds

)

E

(

1

∆t

∫ ∆t

0

(

λ2,+s + λ2,−s

)

ds

)

In particular, the use of time-dependent intensities allows for non-monotonous
shapes ofρ∆t.

Figure3 shows least squares fits of the empirical curves with equation 3. The last
fit is not as accurate as the two firsts because the Epps curve isnot monotonous. This
is the typical case where time-dependent intensities are needed to achieve a better fit.

The least square fit is not really natural and can not allow us to decide whether our
model is sophisticated enough to reproduce market mechanisms or not. We should
rather use maximum likelihood or moments estimation. If ourmodel is right, then the
asymptotic value of the correlation should be equal toCorr

(

λ1,+ − λ1,−, λ2,+ − λ2,−
)

,
that we approximate by the empirical correlation of the imbalances of upwards/downwards
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Fig. 3. Least squares fit of equation3 for three pairs of French stocks.
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movesCorr
(

N1,+ −N1,−, N2,+ −N2,−). We also compute the correlation of
the imbalances of buy/sell market orders and the correlation of the total number
of tradesCorr

(

N1,+ +N1,−, N2,+ +N2,−) for comparison. Figure4 shows how
these quantities behave.

The asymptotic level of the empirical correlation is ratherfar from what the
model predicts, i.e. the upwards/downwards imbalance correlation. So there might
be other market mechanisms that are important to take into account. In particular,
it seems that the correlation of returns is close to the correlation of the total num-
ber of tradesCorr

(

N1,+ +N1,−, N2,+ +N2,−), which is a good proxy for the

correlation of the variances of returnsCorr
(

(

dP 1
)2
,
(

dP 2
)2
)

.

2 Large scale limit

So far we have been concerned with high frequency correlation modelling. We might
be interested in how a model behaves after a long time, a day, say. More stylized
facts are known about daily time series[3]. In particular, we would like our model on
a daily scale to

• exhibit a diffusive behavior:V ar (dP∆t) ∝ ∆t

• display non-Gaussian tails for the distribution of returns
• reproduce volatility clustering
• allow for a non-Gaussian correlation structure, such as extreme correlations

In order to study the large scale limit of the point process model, let us consider
the special case of Hawkes processes, which was introduced in [8]

dP
i,(δ)
t = ∆P i

√
δ
(

dN i,+
t/δ − dN i,−

t/δ

)

λ
i,±
t = µ+

∫ t

0

φ(t− s)dN i,∓
s +

∫ t

0

ψ(t− s)dN j,±
s

with the stationarity constraint that the spectral radius of the matrix of theL1-
norm of regression kernels is strictly less than one. The large scale limit is reached as
δ → 0. It can be shown4 that this model converges to correlated Brownian motions

4 See appendix B for the proof.
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Fig. 4. Comparison between various correlations for three pairs of French stocks.
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dP i,0
t = σ.∆Pi.C

(

dBi
t +D.dBj

t

)

σ :=

√

2µ

1− (‖φ‖+ ‖ψ‖)

C :=
1 + ‖φ‖

(1 + ‖φ‖)2 − ‖ψ‖2

D :=
‖ψ‖

1 + ‖φ‖

where(B1, B2) is a standard bi-dimensional Brownian motion. So this model
achieves a diffusive behaviour but fails to reproduce non-Gaussian tails and non-
Gaussian correlation and volatility clustering.

We suggest a way of making the correlation structure more complex by introduc-
ing a common exogenous noise in the dynamics of the intensities

dP i,δ
t = ∆Pi

√
δ
(

dN i,+
t/δ − dN i,−

t/δ

)

λ
i,±
t = µ+

∫ t

0

φ(t− s)dN i,∓
s +

∫ t

0

ψ(t− s)dN j,±
s +M±

t

Then the diffusive limit reads

dP i,0
t = ∆Pi.C

(

σ
(

dBi
t +D.dBj

t

)

+ E.dM0
t

)

σ :=

√

2µ

1− (‖φ‖+ ‖ψ‖)

C :=
1 + ‖φ‖

(1 + ‖φ‖)2 − ‖ψ‖2

D :=
‖ψ‖

1 + ‖φ‖

E :=
1 + ‖φ‖+ ‖ψ‖

1 + ‖φ‖

M0
t :=M

0,+
t −M

0,−
t := lim

δ→0

√
δ

∫ t/δ

0

(

M+
s −M−

s

)

ds

As a result, the correlation coefficient reads

ρ =
2σ2D + E2 d〈M0〉

t

dt

σ2 (1 +D2) + E2 d〈M0〉t
dt
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which is stochastic as long as
d〈M0〉

t

dt is5. For instance,M0 can be interpreted
as a market driver which is common to all stocks. Therefore the correlation depends
on the market volatility. Indeed, many studies on daily correlation matrices tend to
show that the largest part of the spectra of the correlation is explained by a market
factor, rather than by direct interactions between stocks.

3 Conclusion and further research

We studied a framework for high frequency correlation modelling based on point
processes. This model exhibits a correlation structure that depends on the time scale,
in agreement with the Epps effect. However, it seems that there are still market mech-
anisms to be included to make it more in agreement with real data.

There are still open questions regarding high frequency correlation such as lead-
lag estimation[9, 10] and modelling. Furthermore, the roleplayed by the order book
shape in the dynamics of correlation has never been studied.We are also investigat-
ing ways of achieving better fits of empirical data by adding new parameters in the
dynamics of the intensities of market orders, such as an exogenous noise.
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Appendix A

Standard computations show that

Cov
(

dP 1
∆t, dP

2
∆t

)

= ∆P 1∆P 2
(

Cov
(

N
1,+
∆t , N

2,+
∆t

)

+ Cov
(

N
1,−
∆t , N

2,−
∆t

)

− Cov
(

N
1,+
∆t , N

2,−
∆t

)

− Cov
(

N
1,−
∆t , N

2,+
∆t

))

V ar
(

dP i
∆t

)

=
(

∆P i
)2
(

V ar
(

N
i,+
∆t

)

+ V ar
(

N
i,−
∆t

)

− 2Cov
(

N
i,+
∆t , N

i,−
∆t

))

and

Cov
(

N
1,a
∆t , N

2,b
∆t

)

= E
(

Cov
(

N
1,a
∆t , N

2,b
∆t

)

|λ1,a, λ2,b
)

+ Cov
(

E
(

N
1,a
∆t |λ1,a

)

, E
(

N
2,b
∆t |λ2,b

))

= 0 +∆t2.Cov
(

λ1,a, λ2,b
)

for a, b ∈ {+,−} and

V ar
(

N
i,±
∆t

)

= ∆t.E
(

λi,±
)

+∆t2.V ar
(

λi,±
)

Finally, we get

Corr
(

dP 1
∆t, dP

2
∆t

)

=
a

√

b0 +
b1
∆t +

b2
∆t2

where

a = Cov
(

λ1,+ − λ1,−, λ2,+ − λ2,−
)

b0 = V ar
(

λ1,+ − λ1,−
)

V ar
(

λ2,+ − λ2,−
)

b1 = E
(

λ1,+ + λ1,−
)

V ar
(

λ2,+ − λ2,−
)

+ E
(

λ2,+ + λ2,−
)

V ar
(

λ1,+ − λ1,−
)

b2 = E
(

λ1,+ + λ1,−
)

E
(

λ2,+ + λ2,−
)

so that

lim
∆t→0

Corr
(

dP 1
∆t, dP

2
∆t

)

= 0

lim
∆t→+∞

Corr
(

dP 1
∆t, dP

2
∆t

)

=
a√
b0

= Corr
(

λ1,+ − λ1,−, λ2,+ − λ2,−
)

In the case of time-dependent intensities, the same line of computing goes except
thatλ’s have to be replaced by their time average1

∆t

∫ t+∆t

t
λ(s)ds.
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Appendix B

Let us consider the following Hawkes model

dPt = ∆P
(

dN+
t − dN−

t

)

λ±t = µ+

∫ t

0

φ(t− s)dN∓
s

where∆P ∈ R+ and‖φ‖ < 1. We are looking for the diffusive limit of this
model. Therefore, we introduce the rescaled model

dP δ
t = ∆P

√
δ
(

dN+
t/δ − dN−

t/δ

)

We are interested in the limitδ → 0. Let us split the price into two parts: the
martingale and the compensator

dP δ
t = dM δ

t + dCδ
t

M δ
t = ∆P

√
δ

(

(

N+
t/δ −N−

t/δ

)

−
∫ t/δ

0

(

λ+s − λ−s
)

ds

)

Cδ
t = ∆P

√
δ

∫ t/δ

0

(

λ+s − λ−s
)

ds

Regarding the compensator, we have

Cδ
t = ∆P

√
δ

∫ t/δ

0

(

λ+s − λ−s
)

ds

= −‖φ‖
∫ t

0

dP δ
u

∫
t−u
δ

0

φ(x)

‖φ‖ dx→ −‖φ‖dP 0
t

Let us compute the quadratic variation of the martingale part

〈

M δ
〉

t

∆P 2
= δ

∫ t/δ

0

(

λ+s + λ−s
)

ds

= 2µt+ δ

∫ t/δ

0

(

dN+
u + dN−

u

)

∫ t/δ−u

0

φ(x)dx

= 2µt+ δ

∫ t/δ

0

dN+
u − λ+u du+ dN−

u − λ−u du

∫ t/δ−u

0

φ(x)dx+ δ

∫ t/δ

0

(

λ+u + λ−u
)

du

∫ t/δ−u

0

φ(x)dx

→ 2µt
∑

n≥0

‖φ‖n =

(

2µ

1− ‖φ‖

)

t
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since

lim
δ→0

δ

∫ t/δ

0

((

dN+
u − λ+u du

)

+
(

dN−
u − λ−u du

))

∫ t/δ−u

0

φ(x)dx = lim
δ→0

√
δ ‖φ‖

(

B+
t +B−

t

)

= 0

Therefore, we getM δ
t →

√

2µ
1−‖φ‖ (∆P )Bt by using the following lemma.

Lemma 1. LetM be a local martingale and< M >∞:= limt→+∞ < M >t. Then

E

(

sup
t≥0

M2
t

)

≤ 4.E(< M >∞)

If these two quantities are finite, thenM is a martingale which converges a.s.
and inL2 towards a random variableM∞ ast→ +∞.

Finally, the diffusive limit reads

dP 0
t =

√

2µ

1− ‖φ‖
∆P

1 + ‖φ‖dBt

In the case of a bivariate price model

dP i,δ
t = ∆Pi

√
δ
(

dN i,+
t/δ − dN i,−

t/δ

)

λ
i,±
t = µ+

∫ t

0

φ(t− s)dN i,∓
s +

∫ t

0

ψ(t− s)dN j,±
s

The very same line of proof yields

dP i,0
t = σ.∆Pi.C

(

dBi
t +D.dBj

t

)

σ :=

√

2µ

1− (‖φ‖+ ‖ψ‖)

C :=
1 + ‖φ‖

(1 + ‖φ‖)2 − ‖ψ‖2

D :=
‖ψ‖

1 + ‖φ‖

so that the correlation coefficient of the two assets is constant

ρ =

〈

P
1,0
t , P 2,0

〉

t
√

〈P 1,0〉t 〈P 2,0〉t
=

2D

1 +D2

Finally, we introduce an exogenous noise in the dynamics of the intensities
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dP i,δ
t = ∆Pi

√
δ
(

dN i,+
t/δ − dN i,−

t/δ

)

λ
i,±
t = µ+

∫ t

0

φ(t− s)dN i,∓
s +

∫ t

0

ψ(t− s)dN j,±
s +M±

t

We assume that there exists two random processes
(

M
0,±
t , t ≥ 0

)

such that

lim
δ→0

√
δ

∫ t/δ

0

M±
s ds =M

0,±
t

and
〈

M0,±〉
t
<∞. Then the diffusive limit reads

dP i,0
t = ∆Pi.C

(

σ
(

dBi
t +D.dBj

t

)

+ E.dM0
t

)

σ :=

√

2µ

1− (‖φ‖+ ‖ψ‖)

C :=
1 + ‖φ‖

(1 + ‖φ‖)2 − ‖ψ‖2

D :=
‖ψ‖

1 + ‖φ‖

E :=
1 + ‖φ‖+ ‖ψ‖

1 + ‖φ‖
M0

t :=M
0,+
t −M

0,−
t


