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High Frequency Correlation M odelling

Huth Nicolag and Abergel Frédérig,

! Chair of Quantitative Finance, Ecole Centrale Paiisol as. hut h@cp. f r
2 Chair of Quantitative Finance, Ecole Centrale Parieder i c. aber gel @cp. fr

Many statistical arbitrage strategies, such as pair ttpdirbasket trading, are based
on several assets. Optimal execution routines should asari#go account correla-
tion between stocks when proceeding clients orders. Hawewet so much effort
has been devoted to correlation modelling and only few ecadiresults are known
about high frequency correlation. Depending on the timéesaader consideration,
a plausible candidate for modelling correlation should:

e at high frequency: reproduce the Epps effect [1], take ictmant lead-lag rela-
tionships between assets [2]
e at the daily scale: avoid purely Gaussian correlations [3]

We develop a theoretical framework based on correlated poacesses in order
to capture the Epps effect in sectionWe show in sectior2 that this model con-
verges to correlated Brownian motions when moving to lange tscales. A way of
introducing non-Gaussian correlations is also discugseddtior2. We conclude by
addressing the limits of this model and further researchigh frequency correla-
tion.

1 A model for high frequency correlation

In this section, we start by reviewing the most famous emglifeect about high fre-
quency correlation, namely the Epps effect. Then we suggbstoretical framework
that captures this salient feature of high frequency data.

1.1 Empirical fact: the Epps effect

In 1979, T.W. Epps[1] observed that, in his own words:

“Correlations among price changés .] are found to decrease with the length of
the interval for which the price changes are measured.
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This result was then recovered on more recent data and oratevarkets [4, 5,
6, 7]. Two reasons for the Epps effect were advocated in theatitre:

e Market orders on two assets are asynchronousttas: 0

P (({Xiar — X—1yae) # 0} N{(Yiae — Yu—nyae) #0}) -0 (1)

so that) ,(Xiar — X—1)ae)(Yiar — Y—1)ar) — 0, where X;4; and ;¢
are the prices of two assets recorded at time (At being the sampling period)
with any scheme of interpolation (previous-tick, lineac.e.). Indeed, when
sampling prices at very high frequency, it is highly unlikétat both assets will
experience a price jump.

e Information needs a human time scale to be processed [2]n@ndial markets,
some assets, called the leaders, which are often the moist, ligcorporate infor-
mation onto their prices faster than others, called thedegydAs a result, when
dealing with two assets that exhibit a so-called lead-ldatimnship, there will
be only partial correlation at timescales shorter than treracteristic lead-lag
time.

Figure 1 illustrates the Epps effect on French high frequency dahe. Stocks
studied are BNPP.RAOGN.PARENA.FP,VLOF.PA LVMH.PA,LYOE.PA dur-
ing the time period from 2008-02-04 to 2008-20-03. Cledtig correlation is al-
most nil when sampling at few seconds of trading. The caticelaconverges to an
asymptotic level after about half an hour of trading.

As a testimony that the Epps effect is not only due to asyntbity, figure 2
plots the empirical probability of having both assets jungpin a time window of a
given length for the same three pairs of stocks. Obviouklg, probability is quite
small for few seconds. It is noteworthy that the charadierisne of this probability
is not only smaller than the Epps effect one but is also theedanell the three pairs
of stocks. If asynchronicity was to be the sole reason foEggs effect, then all the
Epps curves should converge after about ten minutes.

1.2 Correlated point processes asa model for correlation

Because of the existence of a minimal price change on madadted the tick, prices
are closer to pure jump processes rather than diffusionghwib the standard as-
sumption for daily data. When looking at several assets, aalajuestion that arises
is therefore how to correlate point processes. As a poirntge®is fully described
by either the associated counting process or the intenitgegs, there are basically
four ways of addressing the issue of correlation, that wéagxjn tablel.

From the microstructure of markets point of view, the uppérdolution is unre-
alistic because it is highly unlikely that two market orderstwo different assets are
executed at the very same time. Therefore, the most apptegdhution is to use cor-
related stochastic intensities. The upper right solufienHawkes processes, can be
interpreted as particular choice for the correlation strrec past events on one asset
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Fig. 1. Correlation coefficient for three pairs of French stocks as a functigheosampling
period of price changes.

Table 1. Four ways of correlating two point processes

N2 )\2
N1 sync. jumps Hawkes processes
(eX:NQINl +N0) )\2:f(N1,)
A1 async. jumps
A’'s must be random

tend to trigger (or inhibit) events on the other asset, sodbiaelation is endogenous.

Let us consider the following model:
dPi = AP (ngV+ - de”) @)
where

e P/ is the price of assetat timet. It can be all kind of prices: last traded price,
midprice, best limit, etc. . .
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Fig. 2. Empirical probability of having both prices jumping in a time window of a gilesrgth
as a function of this length for three pairs of French stocks.

e AP s the jump size for assét It is assumed to be constant for the sake of
simplicity. .

e N}T (resp.N} ") is the number of market orders that triggered upward (resp.
downward) price changes for asseip to timet.

This model is a pure price model in the sense that it does mpdicélky take into
account the dynamics of the order book, which impatf¥’. In this model, we can
explicitly compute the Epps curve

a

Voo &+ 3

par = Corr (dPh,,dP3,) = 3

where

3 See appendix A for the proof.
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a=Cov ()\1’+ . )\2’_)

bo = Var (AVT = AM7) Var (AT —A>7)

by =E AT+ A ) Var (AT = A27) + E(APT 4+ 2A27) Var (WD = Ab7)
bo=E AT+ AV E (AT 4 037)

The features op 5, are:

par — 0asAt — 0
PAL — \/LbT) = Corr ()\1’+ - )\1’_, A2t — )\2"_) asAt — +oo
e p,q isincreasing and concave

which reproduce most of the curves plotted on figlrdn the case of time-
dependent intensitie(ski’ﬁ ME > 0), we get

aa
par = Corr (dPit,dPit) = - d - 4)
\/bo,At R vl s vl

1 At 1 At
oo (3 [ 1y an g [T o )
1 At 1 At
bo,at = Var (At/o (ALt =A07) ds) Var <At/0 (A2 =227) ds>
1 At 1 At
biat =FE (At/o (AT +A07) ds) Var (At/o (A2t =227) ds)
1 At 1 At
+E (At/O (A2 4+ 227) ds> Var (At/o (A2t —=Ab7) ds>
1 At 1 At
byar = E (At/o (AT +A07) ds> E (At/o (A2F +227) ds>

In particular, the use of time-dependent intensities adlé@r non-monotonous
shapes 0p A;.

Figure3 shows least squares fits of the empirical curves with equatidhe last
fitis not as accurate as the two firsts because the Epps cureérisonotonous. This
is the typical case where time-dependent intensities aréatkto achieve a better fit.

The least square fit is not really natural and can not allow detide whether our
model is sophisticated enough to reproduce market meaharos not. We should
rather use maximum likelihood or moments estimation. Ifrmodel is right, then the
asymptotic value of the correlation should be equalter (A — AL— A% — A27),
that we approximate by the empirical correlation of the ifabaes of upwards/downwards
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BNPP, SOGN

06
o

05
1

0.4
1

0.3

©  Calendartime correlation

3 - Model correlation
0 1000 2000 3000 4000 5000 6000 7000
Sampling period (seconds)
RENA, VLOF
~
o ° o
-
] °©
© o O—
S 7 o
wn
@
/
=4 )
S 7 [
P
[
g
) [
s e
|
|
o [o]
i
-1
° ©  Calendar time correlation
S Model correlation
0 1000 2000 3000 4000 5000 6000 7000
Sampling period (seconds)
LVMH, LYOE
~
~
© |
o
o
o
o o °
v | O(S) — o —
° o) © o
7 -
°
<+ 4 |
NE
34
) j}
o
S -
° ©  Calendartime correlation
o 7| ~— Model correlation
T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Sampling period (seconds)

Fig. 3. Least squares fit of equatidrfor three pairs of French stocks.
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movesCorr (N — NL= N2+ — N2~). We also compute the correlation of
the imbalances of buy/sell market orders and the correlagfothe total number
of tradesCorr (N*+ + N~ N2+ 4+ N2~) for comparison. Figuré shows how
these quantities behave.

The asymptotic level of the empirical correlation is ratffer from what the
model predicts, i.e. the upwards/downwards imbalance latioa. So there might
be other market mechanisms that are important to take irdoust. In particular,
it seems that the correlation of returns is close to the taiom of the total num-
ber of tradesCorr (N + N*~ N2+ 4+ N2~), which is a good proxy for the

correlation of the variances of retur@®rr ((dPl)2 , (dP2)2>.

2 Largescalelimit

So far we have been concerned with high frequency correlatiodelling. We might
be interested in how a model behaves after a long time, a dsiyMore stylized
facts are known about daily time series[3]. In particulag,would like our model on
a daily scale to

e exhibit a diffusive behavioV ar (dPa;) o< At

display non-Gaussian tails for the distribution of returns
reproduce volatility clustering
allow for a non-Gaussian correlation structure, such agmé correlations

In order to study the large scale limit of the point processlehdet us consider
the special case of Hawkes processes, which was introdod8d i

ap " = APWVG (anyit - any;;)
. t
NoE =g +/ Bt — s)ANST +/ vl - )Ny
0 0

with the stationarity constraint that the spectral radifithe matrix of theL'-
norm of regression kernels is strictly less than one. Ttgelacale limit is reached as
§ — 0. It can be showhthat this model converges to correlated Brownian motions

4 See appendix B for the proof.
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AP’ = 6. AP,.C (dB;’ + D.ng)

g = —2M
VT el 1ol
L+ 9]

T Aol = 19l

_ vl
T+ 4l

where (B!, B?) is a standard bi-dimensional Brownian motion. So this model
achieves a diffusive behaviour but fails to reproduce nemsSian tails and non-
Gaussian correlation and volatility clustering.

We suggest a way of making the correlation structure moregptenby introduc-
ing a common exogenous noise in the dynamics of the intessiti

AP} = APV (aNjE — anyy; )
t t
ANE=p +/ ot — s)dNT +/ (t — s)ANLF + M-
0 0

Then the diffusive limit reads

dP;* = AP.C (o (4B} + D.dB] ) + B.dM])

o= —2M
(PR
_ 1+l

(1 + o) = I
_ vl
T+ )4l
L+ gl + 9]
E:=
1+ ]9l

/s
MO = MYt — M) = lim Vo (MF — M) ds
§—0 0 '

As a result, the correlation coefficient reads

d(M°),

202D + E? I
d(MO)

p:
02 (14 D?) 4+ B2 =5
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70
which is stochastic as long éié% is®. For instanceM" can be interpreted
as a market driver which is common to all stocks. Therefoeectirrelation depends
on the market volatility. Indeed, many studies on daily elation matrices tend to
show that the largest part of the spectra of the correlas@xplained by a market
factor, rather than by direct interactions between stocks.

3 Conclusion and further research

We studied a framework for high frequency correlation miglbased on point
processes. This model exhibits a correlation structurtediti@ends on the time scale,
in agreement with the Epps effect. However, it seems thag e still market mech-
anisms to be included to make it more in agreement with real da

There are still open questions regarding high frequencyetaiion such as lead-
lag estimation[9, 10] and modelling. Furthermore, the méyed by the order book
shape in the dynamics of correlation has never been studiedre also investigat-
ing ways of achieving better fits of empirical data by addiegvrparameters in the
dynamics of the intensities of market orders, such as anesmgs noise.
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Appendix A

Standard computations show that

Cov (AP, dP4,) = AP*AP* (Cov (N4, N5T) + Cov (N, N
— Cov (Ni’:r, NZ’;) — Cov (Ni’;, NZ’j) )
Var (dPh,) = (AP")* (Var (N57) + Var (N5; ) = 2Cov (N5, NE; )

and

Cov (N&7, N3} = B (Cov (NEf NA) N X20) + Cou (B (NEF ), B (NZA) )
=0+ At*.Cov (A1, A?)

fora,b € {+,—} and

Var (NZ?:) = At.E ()\i"i) + A2 Var ()\i’i)
Finally, we get

a

Voot B+ 3

Corr (dPit, dPit) =
where

a=Cov (AVT = Ab7 AZF - \»7)

bo = Var (AT = Ab7) Var (AT = A7)

by =E AT+ A7) Var (W = A27) + E (AT 4227 Var AV = A7)
bo=E (AT +AVT)E (AT 4 027)

so that

. 1 2\ _
AI?EO Corr (dPj,,dP3,) =0

~ 1 2y 2
Atli)n}roo Corr (dPAt,dPAt) = e

In the case of time-dependent intensities, the same linerapating goes except
that\'s have to be replaced by their time averagteft”m A(s)ds.

= Corr (AT — AL A2F - \37)
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Appendix B

Let us consider the following Hawkes model

dP, = AP (AN," — dN;)
t
N =t [ olt - 5Ny
0

where AP € RT and||¢|| < 1. We are looking for the diffusive limit of this
model. Therefore, we introduce the rescaled model

dN,

f/a)

We are interested in the limit — 0. Let us split the price into two parts: the
martingale and the compensator

= APV (AN, ~

dP? =AM} +dc?

t/s
APf(( s Nt75)—/0 (/\j—A;)ds>
/8
CE:AP\/S/ (AS = A))ds
0

Regarding the compensator, we have

C) = APV§ / ;) ds

_ _ 0
=~ ol [ ar / fitda >~ ol ar

Let us compute the quadratic variation of the martingale part

(M°)
t +
Ap? 6/ )\ —l—)\

t/o t/0—u
:Qut+§/ (deerN;)/ é(z)dx
0 0
t/5—u t t/5—u
—2ut+6/ AN — Xfdu+dN, — A, du/ ¢(a:)dx+5/ ()\j[—i—)\;)du/ o(z)da
0 0 0

ot Y ol ( ||¢> !

n>0
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since

175 t/5—u
tim s [ (AN = Afdu) + (4N = X)) /0 Sz = lim V5 |16]| (B + B;) =0

Therefore, we geds — % (AP) B, by using the following lemma.

Lemmal. Let M be alocal martingale aneék M >.:= lim;_, o, < M >;. Then

E (supr) <4.E(< M >)
>0

If these two quantities are finite, thevl is a martingale which converges a.s.
and in L2 towards a random variabl@/., ast — +occo.

Finally, the diffusive limit reads

24 AP
dpP? = —— _dB
V=Tl t+lel

In the case of a bivariate price model

AP} = APV (aNjE - Ny )
At — +/ ot — s)dNZT +/ Y(t — s)dNI*
0 0

The very same line of proof yields

AP’ = 6. AP,.C (ng + D.ng)

g = —2M
VT el 1ol

L+ |8l
- 2 2
L+ lol)” = vl
_ vl
L+ (|8l
so that the correlation coefficient of the two assets is consta
1,0 2,0
(), ap

p= =
(PL0), (P0), 14 D2

Finally, we introduce an exogenous noise in the dynamickeiftitensities
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i,6 i+ i,—
aP; = APG (anyjF - any;)
t t
AbE =y +/ p(t — s)dNEF +/ (t — s)ANI* + ME
0 0
We assume that there exists two random proceéM;%{t > 0) such that

t/6

lim v/§ MEds = M
6—0 0 :

and<M07i>t < 0. Then the diffusive limit reads

AP = AP,.C (0 (dB;’ + D.ng') + E.thO)

g = —QU
=l + Tl

1t
L+ 16l = oI
_ vl
=T
1t llel+ 1wl
A P
M = M — M




