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We consider an incompressible, viscous, finite depth fluid flowing down a three dimensional channel. In the absence of surface tension, we prove the existence of a unique stationary solution in weighted Sobolev spaces. The result is based on a thorough study of the linearized problem, particularly the pseudodifferential operator relating the normal velocity of the fluid and the normal component of the associated stress tensor along the free surface, and requires the use of the Nash-Moser Implicit Function Theorem.

Introduction

We consider an incompressible, viscous, finite depth fluid flowing down a three dimensional inclined channel at low Reynolds number. In the case where the bottom of the channel is flat, there exists a well-known stationary solution, usually referred to as the Poiseuille-Nusselt flow [START_REF] Abergel | A mathematical theory for a viscous, free-surface flow over an inclined plane[END_REF]. However, the question of finding such a stationary solution for a general bottom profile is not easy to address. First of all, it is expected from previous results going as far back as those in [START_REF] Benjamin | Wave formation in laminar flow down an inclined plane[END_REF], that conditions on the slope of the inclined channel should apply. Such conditions are already present in a two-dimensional version of the current work, see [START_REF] Abergel | A mathematical theory for a viscous, free-surface flow over an inclined plane[END_REF]. What is more, standard perturbation methods resting upon the usual Implicit Function Theorem fail to apply, since the linearized operator at the Poiseuille-Nusselt solution is not elliptic when surface tension is neglected. Hence, analysis such as that made in [START_REF] Abergel | A mathematical theory for a viscous, free-surface flow over an inclined plane[END_REF] or [START_REF] Nazarov | On noncompact free boundary problems for the plane stationary Navier-Stokes equations[END_REF] fails to settle the issue. As a matter of fact, it has been proven, see e.g. [START_REF] Abergel | A geometric approach to the study of stationary free surface flow for viscous liquids[END_REF], that surface tension, when taken into account, plays a particularly important role in the structure of the linearized solution operator, transforming it into an elliptic pseudodifferential operator. In the absence of surface tension, there exist some drastic differences between the two-and three-dimensional cases. Two-dimensional free surface flows are still associated to an elliptic operator, albeit with a purely imaginary principal symbol. However, in the three-dimensional case, the linearized free surface problem is no longer elliptic, and one has to carefully analyze the structure of the associated operator in order to study its invertibility. Moreover, even though the linearized operator may be invertible, one has to overcome a loss of smoothness when inverting it, a phenomenon making the analysis more complicated. Our aim in this work is to prove the existence of a unique, smooth, stationary free surface for threedimensional flows close to the Poiseuille-Nusselt flow. The paper is organized as follows: Section 1 contains an exposition of the physical problem and its mathematical formulation, together with the description of the appropriate functional setting. Section 2 introduces the technical tools necessary to compute the derivative of the main operator with respect to the domain. Section 3 is devoted to a detailed study of the linearized 1 operator and its invertibility, whereas Section 4 presents the heavy machinery involved in the Nash-Moser Theorem, and its application to the proof of the main result.

1 Formulation of the problem

Governing equations

Let Ω γ ρ be the unbounded domain Ω γ ρ = {(x, y, z) ∈ R 3 , -∞ < x < +∞, -∞ < y < +∞, γ(x, y) < z < z 0 + ρ(x, y)} in R 3 , where ρ is a mapping from R 2 into R describing the free surface, γ is a mapping from R 2 into R representing the fixed bottom, while z 0 is the height of the free surface when x, y goes to ∞. Such a representation is legitimate whenever ρ, γ are small enough. Denote by ∂Ω γ ρ the boundary of Ω γ ρ , so that

∂Ω γ ρ = Γ γ ∪ Σ ρ ,
Γ γ being the fixed bottom of the channel and Σ ρ , the free surface. Let u be the velocity field and p be the pressure. We define the stress tensor

σ(u) = ν(∇u + t ∇u) -pId
where ν > 0 is the viscosity of the fluid, and let f be the gravitational field. For simplicity, ν will be set equal to 1 in the rest of the paper.

In the frame shown on Figure 1, f has coordinates

  C 1 0 -C 2   with C 1 = g sin α and C 2 = g cos α, where α, 0 < α < Π 2
, is the angle shown on Figure 1.

The goal of this paper is to study, for a given γ, the existence and uniqueness of a triple u, p, ρ solving the stationary Stokes system

-div σ(u) = f in Ω γ ρ (1.1) div u = 0 in Ω γ ρ , (1.2) 
supplemented with the respective fixed-and free-boundary conditions

u = ζ on Γ γ σ(u).n = 0 on Σ ρ (1.3)
as well as the lateral boundary conditions at ∞ lim

(x,y)→∞ u(x, y, z) =   C 1 (z 0 z -1 2 z 2 ) 0 0   . (1.4)
Morevoer, a kinematic equation for the free surface should also hold. In the stationary case, this condition is simply u.n = 0 on Σ ρ .

(1.5)

Equations (1.1)-(1.4) will be referred to as the Auxiliary Problem. This system of equations is absolutely standard, and we will not dwell upon the physical derivation of it, nor their interpretation. It is interesting, 

σ(u) = (∇u + t ∇u) -pId =   -C 2 (z 0 -z) 0 C 1 (z 0 -z) 0 -C 2 (z 0 -z) 0 C 1 (z 0 -z) 0 -C 2 (z 0 -z)   ,
and one can easily see that its restriction to the free surface z = z 0 has only zero entries. We also note that the normal component of its normal derivative

∂σ ∂n .n.n = ∂σ ∂z .   0 0 1   .   0 0 1   is equal to C 2 ,
whereas the tangential part of its normal derivative has coordinates equal to

  -C 1 0 0   .
In particular, C 1 is small when the angle α is, a property that will be crucial in this work. Before moving on the analysis of the free surface problem, some remarks are in order. Firstly, we consider the Stokes rather than the Navier-Stokes system for the sake of simplicity, and also because, due to the perturbative nature of the argument that will be used, a similar result easily obtains for the Navier-Stokes system. Secondly, the normal stress condition should be σ(u).n = K.n on Σ ρ , expressing the fact that the normal stress has no tangential component, but the constant K can be set equal to 0, a choice that fully characterizes the pressure field, defined only up to a constant. As regards the boundary condition ζ on the fixed bottom, it will be set equal to 0, which is the case of no-slip boundary condition. One could equally choose ζ to be a small, smooth function rapidly decaying to 0 at ∞.

Function spaces

Let us now introduce a family of Banach spaces well adapted to the resolution of Equations (1.1)-(1.5). These spaces are weighted Sobolev spaces with an exponential weight function in the (x, y)-plane, and are defined below. For δ ∈ R * + , X = (x, y) ∈ R 2 and s > 0, set

Ψ δ (X) = exp 1 + δ 2 (x 2 + y 2 ) (1.6)
and define

H s δ (R D ) = {f ∈ H s (R D ) : f (X, z)Ψ(X) H s (R D ) < +∞} (1.7)
where

X = (x, y) ∈ R 2 , D 2, z ∈ R D-2
, and H s (R D ) stands for the usual Sobolev space. Similarly, one can define the corresponding Hölder spaces

C s δ (R D ) = {f ∈ C s (R D ) : |α| s Sup( D α f )Ψ(X) + |α|=[s] Sup([D α f ]) < +∞} (1.8)
where [s] is the integer part of s and

[f ] = sup x =y |f (x)-f (y) |x-y| s-[s]
. We recall for further use a classical embedding theorem.

Proposition 1.1 Let m ∈ N, α ∈ ]0, 1[ be such that s -D 2 m + α. Then ∀f ∈ H s δ (R D ), f ∈ C m+α δ (R D ) and there exists a constant C > 0 such that ∀f ∈ H s δ (R D ), f C m+α δ C f H s δ .

The main result

Denote by B (X ) the ball of radius centered at the origin in X, when X is a Banach space and > 0. Our main result can now be stated.

Theorem 1.2 There exists an α 0 > 0 with the property that, whenever the angle α in Figure 1 is less than α 0 , there exists δ 0 > 0 such that there holds

∀δ δ 0 , ∃ > 0, ∀γ ∈ B (H 10 δ (R 2 )), ∃!(u, p, ρ) solution to Equations (1.1)-(1.5). Moreover, ρ ∈ H 5 δ (R 2 ), (u, ∇p) ∈ H 3 δ (Ω γ ρ ) × H 1 δ (Ω γ ρ )
, and the solution depends continuously on the data; that is, there exists a constant C > 0 depending only on δ and the physical parameters of the problem such that ρ

H 5 δ + u H 3 δ + ∇p H 1 δ C( f H 1 δ + γ H 10 δ )
where f is the right-hand side of Equation(1.1).

The proof of Theorem (1.2) is quite lengthy, and will be presented in the rest of the paper. It relies on a thorough study of the linearization of Equations (1.1)-(1.5), as can be expected from our formulation as a perturbation problem. A similar approach has been used in various works related to free surface stationary flows for the Stokes system. However, to the best of our knowledge, all correct results that are available in the litterature are based either on the assumption of a non-zero surface tension coefficient, or on a two-dimensional formulation, see [START_REF] Abergel | A geometric approach to the study of stationary free surface flow for viscous liquids[END_REF] and [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF] for general expositions. Now, in the case considered here, the situation is much more complex, because the standard approach using the Implicit Function Theorem fails as we now explain. In fact, Equation (1.5) can be interpreted as the problem of finding the zero of the nonlinear mapping G associating, to a candidate free surface ρ, the value of the normal velocity u.n on Σ ρ , viz.

G(γ, ρ) = u |Σρ .n ρ (1.9)

where γ (describing the fixed bottom of the domain) plays the role of a small parameter. Note that G is considered, by composition, as a function with domain R 2 rather than Σ ρ , so that the function space it lives in will be fixed for all γ, ρ.

It is clear that the classical Poiseuille-Nusselt flow corresponds to the particular, trivial solution G(0, 0) = 0 and therefore, the use of the Implicit Function Theorem may seem appropriate. However, a major difficulty arises when studying the derivative DG Dρ (0, 0) of G. One can see that it is indeed invertible in some sense, thanks to the fact that the velocity field never vanishes along the flat free surface, but also that, unfortunately, ( DG Dρ (0, 0)) -1 • DG Dρ (0, 0) is an unbounded operator. We therefore have to invoke, and verify the cumbersome assumptions of, a Nash-Moser-type iterative scheme to overcome the loss of regularity. In particular, this program requires the study of the invertibility of the linearized operator DG Dρ (γ, ρ) in a full neighbourhood of the origin, and not only at the particular solution (0, 0). In the next section, we introduce the appropriate formalism to study the dependence of the operator G on the candidate free surface, explicitly computing its derivative.

2 The free-surface operator

Some geometric prerequisites

We briefly recall some classical results pertaining to the parameterization of a free surface Σ ρ as a graph above a reference manifold, see [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF] for a comprehensive treatment. Let Σ be a two-dimensional reference manifold. Denote by M (s) a generic point on Σ and by n(s) the unit normal vector to Σ(s) pointing outward, where s = s 1 , s 2 is a system of local coordinates on Σ. We will use the notation ∂ s k for the tangential derivative operator with respect to the k th local coordinate s k on Σ. Classical results in Differential Geometry, see e.g. [START_REF] Doubrovine | Géométrie contemporaine[END_REF], allow us to assert the existence of a neighourhood of Σ such that, for all points M in this neighbourhood, there exists a unique d ∈ R, M = M (s) ∈ Σ such that M = M (s) + dn(s). Here, d stands for the distance of M to Σ and M (s) is the projection of M onto Σ. For l 0 > 0 small enough (the size of l 0 depending only on the maximum principal curvature of Σ ), this representation defines a C ∞ -diffeomorphism from Σ×] -l 0 , l 0 [ onto the l 0 -neighbourhood of Σ, that is, the set of points who sit at a distance less than l 0 from Σ. Hence, to any smooth, small enough function ρ defined on Σ, one can associate a manifold using the parameterization

Σ ρ = {M ∈ R 3 : ∃ M = M (s) ∈ Σ, M = M + ρ(s)n}. (2.1)
For instance, one can obviously represent any point in the three dimensional half-space over the (x, y) plane using tangential and normal coordinates -this property still holds true for small enough perturbations and small enough neighbourhoods of this plane.

Properties of G

Let us now turn to the study of the nonlinear operator G introduced formally in (1.9). The following standard result yields that G is well-defined for γ, ρ small enough.

Proposition 2.1 There exists δ 01 > 0 such that ∀δ δ 01 , ∃ > 0, ∀s 4, G defined in (1.9)

is of class C 2 from B (H s δ (R 2 ) 2 ) into B (H s-3 2 δ (R 2 )).
The proof of Proposition 2.1 is performed in two steps. First, one uses a global change of variables mapping Ω γ ρ onto the domain Ω 0 0 corresponding to the unperturbed flow. The well-posedness of the transformed Stokes system in the exponentially weighted Sobolev spaces is ensured by classical results, see e.g. [START_REF] Amick | Steady solutions of the Navier-Stokes equations in unbounded channels and pipes[END_REF] [START_REF] Solonnikov | Solvability of the problem of effluence of a viscous incompressible fluid in an infinite open basin[END_REF], and a perturbation argument as in [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF]. The only technical point is that one requires the algebra structure , see [START_REF] Strichartz | A note on Sobolev algebras[END_REF], and must be satisfied by the derivatives of ρ and γ up to the second order with D = 2. We choose to impose the slightly more stringent condition s 4 ensuring that the coefficients of the transformed Stokes system on the fixed domain Ω 0 0 are globally bounded, exponentially decaying Höldercontinuous functions for all exponent α, 0 < α < 1. Then, a differentiability argument for the solution of a well-posed boundary-value-problem with respect to the coefficients of the equation is used. These arguments are identical to the ones given in great details in [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF], Section 2.2 or [START_REF] Abergel | A mathematical theory for a viscous, free-surface flow over an inclined plane[END_REF] for the case of Hölder spaces.

The derivative of G

In the rest of Section 2, as well as in Section 3, we shall make the assumption that the perturbation of the profile γ and the candidate free surface ρ are smooth. This assumption is not a restriction, as will become clear in the use of Zehnder's Implicit Function Theorem, and allow us to state in a more comfortable way the various results regarding the linearization of G. In particular, the use of normal variations of the domain for the explicit computation of the derivative of G will allow for more convenient expressions than those that could be obtained through a general change of variables. Since G is differentiable in a neighbourhood of the origin, we can compute its partial derivative DG Dρ (ρ).h as the limit when t → 0 of

1 t (G(M ρ + thn ρ , ρ + th) -G(M ρ , ρ)), (2.2) 
with M ρ = M 0 + ρn 0 , see Figure 2.

The computations we need to perform are well understood and detailed at length in [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF], hence they will only be briefly sketched here. We first specialize the geometric description presented in Subsection 2.1 by choosing conformal coordinates on Σ ρ , see [START_REF] Doubrovine | Géométrie contemporaine[END_REF]. Denoting by E the coefficient of the first fundamental form on Σ ρ , the local Frénet frame on the tangent plane to Σ ρ is given by

e i = 1 E ∂M ∂s i
and there holds ∂M ∂si . ∂M ∂sj = 0, i = j,

| ∂M ∂si | = E, n = i e i .
The computation in (2.2) is split into three parts. The first part comes from the variation of the normal field, that is 1 t u ρ+th (M ρ + thn ρ ) × (n ρ+th (M ρ + thn ρ ) -n ρ (M ρ )), the limit of which as t → 0 is simply

-u.∇h (2.3)
where the gradient operator ∇ is defined intrinsically on Σ ρ , and is equal to 1 E (∂ s1 , ∂ s2 ) in the chosen coordinates system (s 1 , s 2 ). The second term in (2.2) comes from the variation of the point at which the function u is evaluated,

1 t (u ρ+th (M ρ + thn ρ ) -u ρ+th (M ρ )).n ρ (M ρ )
the limit of which is obviously ∂u ∂n ρ (M ρ ).n ρ .

(2.4)

Finally, the third term in (2.2) comes from the variation of u with respect to the domain. Defining the local derivative of u with respect to normal domain variations as

v(M ) = lim t→0 u ρ+th (M ) -u ρ (M ) t , (2.5) 
for any point M lying in the interior of the domain Ω γ ρ , then the limit of the last term is

v(M ρ ).n ρ (2.6) 
for a function v that we now characterize. v is the solution of a boundary-value problem akin to the Stokes system with non-homogenous boundary conditions, the derivation of which mimicks that in [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF], Section 2.2.2. Consequently, the next result is stated without proof.

Proposition 2.2

The derivative with respect to normal variations of the domain of the solution u to the Auxiliary Problem (1.1) to (1.4) is given by the solution (v, q) to the linearized Stokes system

-div τ (v) = 0 in Ω γ ρ , (2.7 
)

div v = 0 in Ω γ ρ (2.8) v = 0 on Γ γ , (2.9) 
τ (v).n ρ = h ∂σ ∂n ρ .n ρ + σ∇h on Σ ρ . (2.10) 
The results of this section are summarized in the following proposition.

Proposition 2.3

The derivative with respect to ρ of the operator G defined in (1.9) is given by

DG Dρ (ρ).h = -u.∇h + ∂u ∂n ρ (M ρ ).n ρ h + v.n ρ , (2.11) 
where v is characterized in Proposition 2.2.

Note that in the propositions 2.2 and 2.3 above, u is the solution to the Auxiliary System (1.1)- (1.4) in Ω γ ρ , and σ is the associated stress tensor.

Inverting the linearized operator

In this section, the invertibility of DG Dρ (ρ).h is addressed. The main result is stated and proven in Theorem 3.5 below, under a main "physical" assumption on the inclination angle α, as well as a smallness assumption on the perturbation of the fixed and free boundaries (we recall the assumption that the perturbation of the profile γ and the candidate free surface ρ are smooth). From its expression (2.11), one can see that DG Dρ (ρ) is the sum of a linear first-order differential operator and a non-local term. In the simple case of the Poiseuille-Nusselt flow, one uses the expressions for u and σ in Section 1.1 to obtain that ∂σ ∂n0 .n 0 .n 0 > 0, ∂u ∂n0 .n 0 = 0 and σ = 0 on Σ 0 . Moreover, the first-order differential operator

u |Σ0 .∇h ≡ C 1 1 2 z 2 0
∂h ∂x is non-degenerate. These remarks come in handy when studying the invertibility of DG Dρ (ρ). In fact, one can think of the equation

DG Dρ (ρ)h = f (3.1)
as a linear hyperbolic problem given by the vector field u |Σ0 , perturbed by non-local terms. This hyperbolicity is essential, and typically fails to hold true on a closed surface, say, due to Poincaré's theorem for vector field on the sphere. However, it is not sufficient to solve (3.1), unless one knows how to control the lower-order terms in (3.1). This problem has been tackled in a general setting in [START_REF] Abergel | Higher order symmetrizers and application to an unusual transport equation[END_REF], where the classical approach of symmetrizers has been extended to a situation very much inspired by the current one. The results in [START_REF] Abergel | Higher order symmetrizers and application to an unusual transport equation[END_REF] provide a way to control a small 0 th -order operator "sandwiched" between a vector field as above, and an invertible operator of order -1. This approach will now be applied to the resolution of (3.1).

The emphasis is then on the non-local term, v.n ρ . In the rest of the article, P will denote the operator h → v.n ρ where v is the solution of Equations (2.7)-(2.10). The operator P can be decomposed into the form

P = PS • D + PS • M , where Dh =    (h ∂σ ∂nρ .n ρ + σ∇h).t 1 ρ (h ∂σ ∂nρ .n ρ + σ∇h).t 2 ρ 0    (3.2)
is a first-order differential operator acting on functions defined on Σ ρ and

M h = h   0 0 ∂σ ∂nρ .n ρ .n ρ   (3.3)
is the normal component of the RHS in the linearized problem. As for PS, it is a Poincaré-Steklov-type operator PSf = w.n ρ (3.4) for the Stokes system

-div τ (w) = 0 in Ω γ ρ div w = 0 in Ω γ ρ (3.5) w = 0 on Γ γ , (3.6) 
τ (w).n ρ = f on Σ ρ , (3.7) 
with Neuman boundary conditions on the candidate free surface.

In the remainder of this section, denote by PS n the scalar "normal to normal" operator defined as

PS n h = w.n ρ (3.8)
for a Stokes system similar to (3.5)-(3.7) but with specific right-hand-side

-div τ (w) = 0 in Ω γ ρ div w = 0 in Ω γ ρ w = 0 on Γ γ , τ (w).n ρ .t i ρ = 0 on Σ ρ , i = 1, 2, τ (w).n ρ .n ρ = h on Σ ρ .
PS n will play a fundamental part in the study of the invertibility of P, as will soon become clear. One can obviously rewrite P = P orth + P tan as the sum of two operators, P orth (resp. P tan ) mapping the normal (resp. tangential) stress to the normal component of the velocity field. Regarding P orth , the following result holds true. Proposition 3.1 The operator P orth is a pseudodifferential operator of order -1 whose principal symbol is given by

p(ξ) = ∂σ ∂nρ .n ρ .n ρ 2|ξ| .
Proof: the fact the P orth is a pseudodifferential operator is straightforward, since it is the composition of two such operators. Its principal symbol is simply the product of that of the operator PS n with the function ∂σ ∂nρ .n ρ .n ρ . To compute the principal symbol -defined unambiguously in any system of local coordinates -of PS n , we use again conformal coordinates on Σ ρ . Upon referring once more to [START_REF] Abergel | Interfaces stationnaires pour les 'équations de Navier Stokes[END_REF], in particular Section 3.2.3, one is easily convinced that it is sufficient to freeze the coefficients of the equation at λ = 0, and therefore to focus on the simpler operator h → V 3 (s 1 , s 2 , 0) where V is the solution to the system:

-V + ∇Q = 0 in R 2 × R - * div V = 0 in R 2 × R - * lim λ→-∞ V = 0 (3.9)   ∂V1 ∂λ + ∂V3 ∂s1 ∂V2 ∂λ + ∂V3 ∂s2 2 ∂V3 ∂λ -Q   =   0 0 h   on {λ = 0}. (3.10)
Upon taking the Fourier transform in the s variables, the system

-∂ 2 V1 ∂λ 2 + |ξ 2 | V1 + iξ 1 Q = 0, (3.11) -∂ 2 V2 ∂λ 2 + |ξ 2 | V2 + iξ 2 Q = 0, (3.12 
)

-∂ 2 V3 ∂λ 2 + |ξ 2 | V3 + ∂ Q ∂λ = 0, (3.13 
)

iξ 1 V1 + iξ 2 V2 + ∂ V3 ∂λ = 0, (3.14) 
obtains. Then, solving for Q and combining the equations above, one immediately finds that

Q(ξ 1 , ξ 2 λ) = 1 |ξ| 2 ∂ ∂λ ( ∂ 2 ∂λ 2 -|ξ| 2 ) V3 (3.15)
and therefore

∂ 2 ∂λ 2 -|ξ| 2 ∂ 2 V3 ∂λ 2 = |ξ| 2 ∂ Q ∂λ . (3.16)
On the other hand, there also holds with A = B = 0 because of boundedness conditions as λ → -∞. In particular, it must be the case that V3 (ξ, 0) = C, and we need to compute the value of C. From (3.15), one easily derives that Q(ξ, λ) = 2D exp(λ|ξ|). The third coordinate of the stress tensor on λ = 0 is given by 2 ∂ V3 ∂λ (ξ, 0) -Q(ξ, 0), which simplifies to 2C|ξ|. Using the boundary conditions (3.10), it follows that

-|ξ| 2 ∂ 2 ∂λ 2 -|ξ| 2 V3 = -|ξ| 2 ∂ Q ∂λ , (3.17 
C = h 2|ξ| (3.20)
and the proposition is proven.

Next, we state and prove the following important lemma, which will be essential in showing that P orth is invertible for all small enough ρ.

Lemma 3.2 PS n is a coercive, self-adjoint operator from H -1 2 (Σ ρ ) into H 1 2 (Σ ρ ). Therefore, there exists a constant C > 0 such that, for all h ∈ H -1 2 (Σ ρ ) (PS n h, h) C h 2 .
Proof : the self-adjointess of P S is a straightforward consequences of Green's formula, and the coercivity follows easily from Korn's inequality. In fact, setting v.n = PS n h and writing, for a test function w,

Ωρ div τ (v).w + 1 2 Ωρ (∇v + t ∇v) : (∇w + t ∇w) = Σρ (τ (v).n)w,
one obtains, using v itself as a test function, that

1 2 Ωρ |∇v + t ∇v| 2 = Σρ (τ (v).n.n)(w.n),
which means that

(PS n h, h) = 1 2 Ωρ |∇v + t ∇v| 2
and thanks to Korn's inequality (PS n h, h) C v 2 H 1 . This inequality implies that PS n is coercive, and hence, invertible from

H -1 2 (Σ ρ ) into H 1 2 (Σ ρ ).
The lemma then results from the following trace theorem.

Lemma 3.3 Let Ω be an open set in R 3 with a C 2 boundary. Then for v ∈ H 1 (Ω) such that τ.n is parallel to n and div τ (v) = 0, one can define a normal stress operator v → τ.n.n ∈ H -1 2 (∂Ω) satisfying the continuity property v H 1 (Ω) C τ.n.n H -1 2 (∂Ω)
.

The operator thus defined coincides with the usual normal stress operator when v is C 1 up to the boundary of Ω

The proof of Lemma 3.3 is a direct consequence of [START_REF] Temam | Navier-Stokes equations[END_REF], Chapter 1, Theorem 1.2 and so is omitted. Upon using Lemma 3.3, one then has

(PS n h, h) C v 2 H 1 (Ω γ ρ ) C τ.n.n 2 H -1 2 (∂Ω γ ρ )
, which ends the proof of Lemma 3.2.

We may now state the main result concerning P orth .

Lemma 3.4 For all δ > 0, s > 4, there exists a neigbourhood of 0 in C s δ (R 2 ) 2 such that whenever (γ, ρ) lies in this neigbourhood, P orth has a bounded inverse defined from

H 1 2 (Σ ρ ) into H -1 2 (Σ ρ ).
Proof: an easy consequence of the invertibility of PS n and the fact that the multiplier ∂σ ∂nρ .n ρ .n ρ , being bounded from below by a positive number along the unperturbed free surface corresponding to γ = ρ ≡ 0, therefore stays so whenever (γ, ρ) is small enough. In fact,

P -1 orth f is defined, for f ∈ H 1 2 (Σ ρ ), as the solution h ∈ H -1 2 (Σ ρ ) of P orth h = f , that is h = 1 ∂σ ∂nρ .n ρ .n ρ PS -1 n f
where the existence of PS -1 n has just been established.

Regarding the second term in the decomposition of P, P tan , it is a priori a pseudodifferential operator of order 0, whose most salient feature is that it has a small norm as a bounded operator from L 2 into L 2 , say, as long as the angle α is small enough and the perturbation of the fixed profiles and the free surfaces γ, ρ are small enough. As a matter of fact, one can see by inspection of (3.2) that there are two components in the tangential operator Dh. The first one is a 0 th -order term parallel to the tangential part of ∂σ ∂nρ .n ρ , a quantity equal to the constant vector

  -C 1 0 0
  in the case of the unperturbed Poiseuille-Nusselt flow, and the other is the vector field σ∇h, identically equal to 0 in the unperturbed case. Therefore, one can safely choose an α small enough and a small enough neighbourhood for the perturbation γ, ρ so as to ensure that P tan has a small norm. Note that this condition on α is in fact a natural one, as has been already demonstrated in [START_REF] Abergel | A mathematical theory for a viscous, free-surface flow over an inclined plane[END_REF] [START_REF] Benjamin | Wave formation in laminar flow down an inclined plane[END_REF].

We are now in a position to state the main result of this section, pertaining to the invertibility of the linearized operator defined in (2.11).

Theorem 3.5 There exists an α 0 > 0 and a δ 0 > 0 such that ∀α < α 0 , ∀δ, 0 < δ < δ 0 , ∀s > 4, there exists a neigbourhood of 0 in C s δ (R 2 ) 2 with the property that whenever (γ, ρ) lies in this neigbourhood, DG Dρ defined in (2.11) has a bounded inverse defined from H t+ 1 2 (Σ ρ ) into H t-1 2 (Σ ρ ) for all t > 0.

Proof: this result is essentially that of Proposition 1.1 in [START_REF] Abergel | Higher order symmetrizers and application to an unusual transport equation[END_REF], with a few minor modifications. In fact, one must check that the assumptions of Proposition 1.1 of [START_REF] Abergel | Higher order symmetrizers and application to an unusual transport equation[END_REF] hold true for the linearized operator DG Dρ . A careful examination shows that there is a slight difference, namely, that P is not self-adjoint. However, it has just been proven to be invertible, clearly a sufficient condition in the light of the proof of Proposition 1.1 in [START_REF] Abergel | Higher order symmetrizers and application to an unusual transport equation[END_REF]. Therefore, so is the linearized operator DG Dρ in the usual Sobolev spaces. A straightforward extension of the proof in [START_REF] Abergel | Higher order symmetrizers and application to an unusual transport equation[END_REF] also yields the next result.

Corollary 3.6 Under the same set of assumptions as above, there exists a δ 02 > 0 such that, ∀δ, 0 < δ δ 02 , DG Dρ has a bounded inverse defined from H

t+ 1 2 δ (Σ ρ ) into H t-1 2 δ (Σ ρ ) for all t > 0.
Proof: one uses the changes of right-hand-side and unknown function f (x) = f 0 (x) exp(-δ 1 + |x| 2 ), h(x) = h 0 (x) exp(-δ 1 + |x| 2 ) to obtain a modified operator for which Theorem 3.5 still holds true provided that δ is small enough.

Proof of the main result

This final section is devoted to the proof of Theorem 1.2.

Zehnder's Implicit Function Theorem

We start by presenting the machinery fully developped in [START_REF] Zehnder | Generalized implicit function theorem with applications to small divisors problems[END_REF]. Let {X t } t 0 be a one-parameter family of Banach spaces, with norm denoted by |.| t , such that for all t, t with 0 t t +∞

X 0 ⊇ X t ⊇ X t ⊇ X ∞ ≡ t 0 X t and |z| t |z| t .
We will work with three such scales of Banach spaces, respectively denoted by {X t } t 0 , {Y t } t 0 and {Z t } t 0 . The mapping G in (1.9) will be defined from D ⊂ Y 0 × X 0 into R ⊂ Z 0 . There holds that G(0, 0) = 0, and Zehnder's Implicit Function Theorem provides conditions ensuring that, for γ close enough to 0, there exists a unique ρ(γ) solution to G(γ, ρ(γ)) = 0.

We recall that γ is the perturbation of the bottom profile. For > 0, let

B t = {(γ, ρ) ∈ Y t × X t : |γ| < , |ρ| < }.
Below are listed the hypotheses that have to be satisfied by G for a suitably chose > 0.

Hypothesis 1 (smoothness)

The operator G : B 0 → Z 0 is at least C 2 with respect to ρ and C 0 with respect to (γ, ρ), and there exists a constant M 0 > 0 such that

∀(γ, ρ) ∈ B 0 , sup(|D ρ G(γ, ρ)| 0 , |D 2 ρ G(γ, ρ)| 0 ) M 0 . (4.1) 
and

∀(γ, ρ), (γ , ρ) ∈ B 0 , |G(γ, ρ) -G(γ , ρ)| 0 M 0 |γ -γ | 0 . (4.2) 
Hypothesis 2 (approximate inverse with loss of ν derivatives) For all (γ, ρ) in B ν , there exists a linear mapping H(γ, ρ) :

Z ν → X 0 such that ∀φ ∈ Z ν , |H(γ, ρ)φ| 0 M 0 |φ| ν . (4.3) 
H(γ, ρ) is continuous from Z t into X t-ν whenever (γ, ρ) ∈ B ν (Y t × X t ) and there holds

∀(γ, ρ) ∈ B K t , |H(γ, ρ)G(γ, ρ)| t-ν M t K. (4.4) 
Moreover, H is an approximate left inverse of D ρ G(γ, ρ) in the sense that

∀φ ∈ Z ν , |[D ρ G(γ, ρ) • H(γ, ρ) -Id]φ| 0 N 0 |G(γ, ρ)| ν |φ| ν . (4.5) 
Hypothesis 3 (order) (G, 0, 0) is of order s, where s > ν 1 (see Hypothesis 2 above for the definition of ν). More precisely,

∀t ∈ [1, s], G(B 0 (Y t × X t )) ⊂ Z t (4.6) and ∀t ∈ [1, s], ∃M t > 0, ∃K 0 > 0, ∀(γ, ρ) ∈ B K0 t B 1 , |G(γ, ρ)| t M t |f | t . (4.7) 
When all the hypotheses above are satisfied, the following deep result applies.

Theorem 4.1 (Zehnder [START_REF] Zehnder | Generalized implicit function theorem with applications to small divisors problems[END_REF]) Let (G, γ 0 , ρ 0 ) be of order s and satisfy Hypotheses 1 to 3 above. Then there exists a neighbourhood N λ = {γ ∈ Y λ , |γ| < C} with µ, λ in the admissible parameter set

• 1 < κ < 2, • 1 < α, • 1 ν µ < λ < s, • λ > max{2κν(2 -κ) -1 , κ(ν + κµ)}, • s > max{αν(α -1) -1 , λ + αν(κ -1) -1 },
and a mapping Ψ : N λ → X µ such that for all γ ∈ N λ , ρ γ ≡ Ψ(γ) is the unique solution to

G(γ, ρ γ ) = 0 (4.8) with |ρ γ | µ < C -1 |γ| λ . Furthermore, Ψ is continuous whenever H is.
To apply this theorem to the proof of Theorem 1.2, we use the weighted Sobolev spaces introduced in Section 3

X t = H 4+t δ (R 2 ) Y t = H 4+t δ (R 2 ) Z t = H 5 2 +t δ (R 2 ), so that X ∞ = S(R 2 ) Y ∞ = S(R 2 ) × S(R 2 ) Z ∞ = S(R 2 ).
The choice of the exponent in the Sobolev spaces just introduced is guided by Proposition 2.1, as 5 2 = 4 -3 2 . Before proceeding to the verification of Hypotheses 1-3 above, let us explain the use of the Nash-Moser Implicit Function Theorem: its constructive proof, see see e.g. [START_REF] Zehnder | Generalized implicit function theorem with applications to small divisors problems[END_REF], p. 118 to 125, or [START_REF] Alinhac | Pseudodifferential Operators and the Nash Moser Theorem[END_REF], Chapter III, p. 128, relies on a Newton iteration having the form

ρ n+1 = ρ n -(S n • ( DG Dρ (ρ n , γ)) -1 • G)(ρ n , γ), (4.9) 
where S n is a smoothing operator coping for the loss of derivatives. Combining Proposition 2.1 with Corollary 3.6, one can see that the loss of regularity when applying DG Dρ -1 • G is equal to 5 2 , so that DG Dρ -1 • G will be bounded and continuous from X t to X t-5 2 , see the estimate (4.10) below. We therefore proceed to check the hypotheses of Theorem 4.1 with the parameter ν (the loss in regularity) set equal to 5 2 . Fix δ < Max(δ 01 , δ 02 ), δ 01 (resp. δ 02 ) being introduced in Proposition 2.1 (resp. Corollary 3.6). We also pick s (the order parameter in Hypothesis 3) equal to +∞, meaning that we are interested in smooth solutions only. Hypothesis 1 is an easy consequence of Proposition 2.1, or, more precisely, an extension thereof so as to include the fixed boundary γ as well as the candidate free surface ρ in the differentiability. The proof relies again on a change of variables and results on the smooth dependence of the solution to the Auxiliary Problem with respect to its coefficients, and will be omitted. As for Hypothesis 3, we remark that (0, 0) ∈ U ∞ × X ∞ and that we already established as a general result that G(γ, ρ) ∈ Z t if (γ, ρ) ∈ Y t × X t for t ∈ [1, +∞[. The last point to check is that for all t ∈ [1, +∞[, there exists an M t such that |G(γ, ρ)| t M t K whenever |γ -γ 0 | t < K, |ρ -ρ 0 | t < K in (Y t × X t ) B 1 (here, we have chosen K < ). Such an inequality follows from computations similar to those involved in the proof of Hypothesis 2, albeit with respect to both γ and ρ this time, the key point being (see the remark at the bottom of p. 120 in [START_REF] Zehnder | Generalized implicit function theorem with applications to small divisors problems[END_REF]) that the control of a low-order norm is sufficient to ensure the linear growth of higher-order norms for the operator G. As a consequence, one can even choose M t = M 0 for all t, a remark that will be essential in verifying Hypothesis 2. Regarding this hypothesis, we state and prove a more precise result. Proposition 4.2 For all (γ, ρ) ∈ Y ∞ × X ∞ , there exists a linear mapping H : Z 5 2 → X 0 such that |H(γ, ρ)φ| 0 M 0 |φ| Z 5

2

. H can be extended to a continuous operator from Z t into X t- 5 2 for all t 5 2 . Moreover, there exists a constant M t such that the inequality |H(γ, ρ)(G(γ, ρ))| t- Proof: In Theorem 3.5 and Corollary 3.6, we have established the existence of an exact inverse H : Z 5 2 → X 0 to D ρ G, and also that H is a continuous operator from Z t into X t- 5 2 for all t 0, provided (γ, ρ) ∈ Y ∞ ×X ∞ . There still remains to prove that |H(γ, ρ)(G(γ, ρ))| t-5 2 M t K whenever (γ, ρ) ∈ (Y t × X t ) B 1 with |γ -γ 0 | t < K, |ρ -ρ 0 | t < K. This is a consequence of the boundedness of H and the uniform (in t) estimate on G in Hypothesis 3, see (4.7). Finally, we must prove that Hypothesis 2 can be replaced by Proposition 4.2. In the original proof by Zehnder ([26], p. 118 to 125), the use of an approximate inverse is made after the smoothing procedure for (γ, ρ). Hence, the estimate 4.5 |(D ρ G(γ, ρ) • H(γ, ρ) -Id)φ| 0 N 0 |F (γ, ρ)| 5 2 |φ| 5 2 in Hypothesis 2 is only required for the regularized approximating sequence (γ n τ , ρ n τ ), τ being the smoothing factor. Since this sequence comprises smooth functions, Proposition 4.2 above applies, and actually yields a stronger result that the one required in the original proof by Zehnder. There, the constant N 0 had to be uniform with respect to the smoothing parameter τ , a condition that becomes irrelevant thanks to the exact invertibility of D ρ G(γ, ρ). This concludes the proof of Theorem 1.2.
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 2 Figure 2: Deformation along the normal field
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 22 ) so that we finally obtain the ODE ∂ -|ξ| 2 2 V3 = 0 (3.18) for V3 . Hence, V3 has the representation V3 (ξ, λ) = (A + Bλ) exp(-λ|ξ|) + (C + Dλ) exp(λ|ξ|) (3.19)

  holds true for all (γ, ρ) ∈ (Y t × X t ) B 1 with |γ -f 0 | t < K, |ρ -ρ 0 | t < K. Finally, H(γ, ρ) is an exact inverse to D ρ G(γ, ρ), i.e. ∀φ ∈ Z t+ν , D ρ G(γ, ρ) • H(γ, ρ) -Id φ = 0. (4.11) 
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