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France

Abstract

We consider an incompressible, viscous, �nite depth �uid �owing down a three dimensional channel.

In the absence of surface tension, we prove the existence of a unique stationary solution in weighted

Sobolev spaces. The result is based on a thorough study of the linearized problem, particularly the

pseudodi�erential operator relating the normal velocity of the �uid and the normal component of the

associated stress tensor along the free surface, and requires the use of the Nash-Moser Implicit Function

Theorem.

Introduction

We consider an incompressible, viscous, �nite depth �uid �owing down a three dimensional inclined channel
at low Reynolds number. In the case where the bottom of the channel is �at, there exists a well-known
stationary solution, usually referred to as the Poiseuille-Nusselt �ow [4]. However, the question of �nding
such a stationary solution for a general bottom pro�le is not easy to address. First of all, it is expected from
previous results going as far back as those in [12], that conditions on the slope of the inclined channel should
apply. Such conditions are already present in a two-dimensional version of the current work, see [4]. What is
more, standard perturbation methods resting upon the usual Implicit Function Theorem fail to apply, since
the linearized operator at the Poiseuille-Nusselt solution is not elliptic when surface tension is neglected.
Hence, analysis such as that made in [4] or [17] fails to settle the issue. As a matter of fact, it has been
proven, see e.g. [1], that surface tension, when taken into account, plays a particularly important role in the
structure of the linearized solution operator, transforming it into an elliptic pseudodi�erential operator. In
the absence of surface tension, there exist some drastic di�erences between the two- and three-dimensional
cases. Two-dimensional free surface �ows are still associated to an elliptic operator, albeit with a purely
imaginary principal symbol. However, in the three-dimensional case, the linearized free surface problem is
no longer elliptic, and one has to carefully analyze the structure of the associated operator in order to study
its invertibility. Moreover, even though the linearized operator may be invertible, one has to overcome a loss
of smoothness when inverting it, a phenomenon making the analysis more complicated.
Our aim in this work is to prove the existence of a unique, smooth, stationary free surface for three-
dimensional �ows close to the Poiseuille-Nusselt �ow. The paper is organized as follows: Section 1 contains
an exposition of the physical problem and its mathematical formulation, together with the description of the
appropriate functional setting. Section 2 introduces the technical tools necessary to compute the derivative
of the main operator with respect to the domain. Section 3 is devoted to a detailed study of the linearized
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operator and its invertibility, whereas Section 4 presents the heavy machinery involved in the Nash-Moser
Theorem, and its application to the proof of the main result.

1 Formulation of the problem

1.1 Governing equations

Let Ωγρ be the unbounded domain

Ωγρ = {(x, y, z) ∈ R3,−∞ < x < +∞,−∞ < y < +∞, γ(x, y) < z < z0 + ρ(x, y)}

in R3, where ρ is a mapping from R2 into R describing the free surface, γ is a mapping from R2 into
R representing the �xed bottom, while z0 is the height of the free surface when x, y goes to ∞. Such a
representation is legitimate whenever ρ, γ are small enough. Denote by ∂Ωγρ the boundary of Ωγρ , so that

∂Ωγρ = Γγ ∪ Σρ,

Γγ being the �xed bottom of the channel and Σρ, the free surface. Let u be the velocity �eld and p be the
pressure. We de�ne the stress tensor

σ(u) = ν(∇u+t ∇u)− pId

where ν > 0 is the viscosity of the �uid, and let f be the gravitational �eld. For simplicity, ν will be set
equal to 1 in the rest of the paper.

In the frame shown on Figure 1, f has coordinates

 C1

0
−C2

 with C1 = g sinα and C2 = g cosα, where α,

0 < α < Π
2 , is the angle shown on Figure 1.

The goal of this paper is to study, for a given γ, the existence and uniqueness of a triple
(
u, p, ρ

)
solving

the stationary Stokes system
− div σ(u) = f in Ωγρ (1.1)

div u = 0 in Ωγρ , (1.2)

supplemented with the respective �xed- and free-boundary conditions

u = ζ on Γγ σ(u).n = 0 on Σρ (1.3)

as well as the lateral boundary conditions at ∞

lim
(x,y)→∞

u(x, y, z) =

C1(z0z − 1
2z

2)
0
0

 . (1.4)

Morevoer, a kinematic equation for the free surface should also hold. In the stationary case, this condition
is simply

u.n = 0 on Σρ. (1.5)

Equations (1.1)-(1.4) will be referred to as the Auxiliary Problem. This system of equations is absolutely
standard, and we will not dwell upon the physical derivation of it, nor their interpretation. It is interesting,
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Figure 1: Flow down an inclined plane

and will be useful in the sequel, to fully characterize the Poiseuille-Nusselt �ow corresponding to ρ = γ ≡ 0.
The solution to Equations (1.1)-(1.5) is given by the velocity �eldU1(x, y, z)

U2(x, y, z)
U3(x, y, z)

 =

C1(z0z − 1
2z

2)
0
0


and the pressure �eld p(x, y, z) = C2(z0 − z). In particular, the associated stress tensor has the expression

σ(u) = (∇u+t ∇u)− pId =

−C2(z0 − z) 0 C1(z0 − z)
0 −C2(z0 − z) 0

C1(z0 − z) 0 −C2(z0 − z)

 ,

and one can easily see that its restriction to the free surface z = z0 has only zero entries. We also note that
the normal component of its normal derivative

∂σ

∂n
.n.n =

∂σ

∂z
.

0
0
1

 .

0
0
1



is equal to C2, whereas the tangential part of its normal derivative has coordinates equal to

−C1

0
0

.
In particular, C1 is small when the angle α is, a property that will be crucial in this work.
Before moving on the analysis of the free surface problem, some remarks are in order. Firstly, we consider
the Stokes rather than the Navier-Stokes system for the sake of simplicity, and also because, due to the
perturbative nature of the argument that will be used, a similar result easily obtains for the Navier-Stokes
system. Secondly, the normal stress condition should be σ(u).n = K.n on Σρ, expressing the fact that the
normal stress has no tangential component, but the constant K can be set equal to 0, a choice that fully
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characterizes the pressure �eld, de�ned only up to a constant. As regards the boundary condition ζ on the
�xed bottom, it will be set equal to 0, which is the case of no-slip boundary condition. One could equally
choose ζ to be a small, smooth function rapidly decaying to 0 at ∞.

1.2 Function spaces

Let us now introduce a family of Banach spaces well adapted to the resolution of Equations (1.1)-(1.5).
These spaces are weighted Sobolev spaces with an exponential weight function in the (x, y)-plane, and are
de�ned below.
For δ ∈ R∗+, X = (x, y) ∈ R2 and s > 0, set

Ψδ(X) = exp
√

1 + δ2(x2 + y2) (1.6)

and de�ne
Hs
δ (RD) = {f ∈ Hs(RD) : ‖f(X, z)Ψ(X)‖Hs(RD) < +∞} (1.7)

where X = (x, y) ∈ R2, D > 2, z ∈ RD−2, and Hs(RD) stands for the usual Sobolev space. Similarly, one
can de�ne the corresponding Hölder spaces

Csδ (RD) = {f ∈ Cs(RD) :
∑
|α|6s

Sup(‖Dαf‖)Ψ(X) +
∑
|α|=[s]

Sup([Dαf ]) < +∞} (1.8)

where [s] is the integer part of s and [f ] = supx6=y
|f(x)−f(y)
|x−y|s−[s] . We recall for further use a classical embedding

theorem.

Proposition 1.1 Let m ∈ N, α ∈ ]0, 1[ be such that s− D
2 > m + α. Then ∀f ∈ Hs

δ (RD), f ∈ Cm+α
δ (RD)

and there exists a constant C > 0 such that ∀f ∈ Hs
δ (RD), ‖f‖Cm+α

δ
6 C‖f‖Hsδ .

1.3 The main result

Denote by B ε(X ) the ball of radius ε centered at the origin in X, when X is a Banach space and ε > 0. Our
main result can now be stated.

Theorem 1.2 There exists an α0 > 0 with the property that, whenever the angle α in Figure 1 is less than
α0, there exists δ0 > 0 such that there holds

∀δ 6 δ0,∃ε > 0,∀γ ∈ B ε(H 10
δ (R2)),∃!(u, p, ρ) solution to Equations (1.1)-(1.5).

Moreover, ρ ∈ H5
δ (R2), (u,∇p) ∈ H3

δ (Ωγρ)×H1
δ (Ωγρ), and the solution depends continuously on the data;

that is, there exists a constant C > 0 depending only on δ and the physical parameters of the problem such
that

‖ρ‖H5
δ

+ ‖u‖H3
δ

+ ‖∇p‖H1
δ
6 C(‖f‖H1

δ
+ ‖γ‖H10

δ
)

where f is the right-hand side of Equation(1.1).

The proof of Theorem (1.2) is quite lengthy, and will be presented in the rest of the paper. It relies on
a thorough study of the linearization of Equations (1.1)-(1.5), as can be expected from our formulation
as a perturbation problem. A similar approach has been used in various works related to free surface
stationary �ows for the Stokes system. However, to the best of our knowledge, all correct results that are
available in the litterature are based either on the assumption of a non-zero surface tension coe�cient, or
on a two-dimensional formulation, see [1] and [5] for general expositions. Now, in the case considered here,
the situation is much more complex, because the standard approach using the Implicit Function Theorem
fails as we now explain. In fact, Equation (1.5) can be interpreted as the problem of �nding the zero of the
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nonlinear mapping G associating, to a candidate free surface ρ, the value of the normal velocity u.n on Σρ,
viz.

G(γ, ρ) = u|Σρ .nρ (1.9)

where γ (describing the �xed bottom of the domain) plays the role of a small parameter. Note that G is
considered, by composition, as a function with domain R2 rather than Σρ, so that the function space it lives
in will be �xed for all γ, ρ.
It is clear that the classical Poiseuille-Nusselt �ow corresponds to the particular, trivial solution G(0, 0) = 0
and therefore, the use of the Implicit Function Theorem may seem appropriate. However, a major di�culty
arises when studying the derivative DG

Dρ (0, 0) of G. One can see that it is indeed invertible in some sense,
thanks to the fact that the velocity �eld never vanishes along the �at free surface, but also that, unfortunately,
(DGDρ (0, 0))−1 ◦ DGDρ (0, 0) is an unbounded operator. We therefore have to invoke, and verify the cumbersome
assumptions of, a Nash-Moser-type iterative scheme to overcome the loss of regularity. In particular, this
program requires the study of the invertibility of the linearized operator DG

Dρ (γ, ρ) in a full neighbourhood of
the origin, and not only at the particular solution (0, 0).
In the next section, we introduce the appropriate formalism to study the dependence of the operator G on
the candidate free surface, explicitly computing its derivative.

2 The free-surface operator

2.1 Some geometric prerequisites

We brie�y recall some classical results pertaining to the parameterization of a free surface Σρ as a graph
above a reference manifold, see [5] for a comprehensive treatment.
Let Σ̄ be a two-dimensional reference manifold. Denote by M̄(s) a generic point on Σ̄ and by n̄(s) the unit
normal vector to Σ̄(s) pointing outward, where s =

(
s1, s2

)
is a system of local coordinates on Σ̄. We will

use the notation ∂sk for the tangential derivative operator with respect to the kth local coordinate sk on Σ̄.
Classical results in Di�erential Geometry, see e.g. [14], allow us to assert the existence of a neighourhood
of Σ̄ such that, for all points M in this neighbourhood, there exists a unique d ∈ R, M̄ = M̄(s) ∈ Σ̄ such
that M = M̄(s) + dn̄(s). Here, d stands for the distance of M to Σ̄ and M̄(s) is the projection of M onto
Σ̄. For l0 > 0 small enough (the size of l0 depending only on the maximum principal curvature of Σ̄ ), this
representation de�nes a C∞-di�eomorphism from Σ̄×]− l0, l0[ onto the l0-neighbourhood of Σ̄, that is, the
set of points who sit at a distance less than l0 from Σ̄. Hence, to any smooth, small enough function ρ
de�ned on Σ̄, one can associate a manifold using the parameterization

Σρ = {M ∈ R3 : ∃M̄ = M̄(s) ∈ Σ̄,M = M̄ + ρ(s)n̄}. (2.1)

For instance, one can obviously represent any point in the three dimensional half-space over the (x, y) plane
using tangential and normal coordinates - this property still holds true for small enough perturbations and
small enough neighbourhoods of this plane.

2.2 Properties of G

Let us now turn to the study of the nonlinear operator G introduced formally in (1.9). The following standard
result yields that G is well-de�ned for γ, ρ small enough.

Proposition 2.1 There exists δ01 > 0 such that ∀δ 6 δ01,∃ε > 0,∀s > 4, G de�ned in (1.9) is of class C2

from B ε(Hs
δ (R2)2) into B ε(H

s− 3
2

δ (R2)).

The proof of Proposition 2.1 is performed in two steps. First, one uses a global change of variables mapping
Ωγρ onto the domain Ω0

0 corresponding to the unperturbed �ow. The well-posedness of the transformed
Stokes system in the exponentially weighted Sobolev spaces is ensured by classical results, see e.g. [7][22],
and a perturbation argument as in [5]. The only technical point is that one requires the algebra structure
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Figure 2: Deformation along the normal �eld

of the Sobolev spaces under composition and pointwise multiplication. Such a condition is classically known
to hold for s > D

2 , see [23], and must be satis�ed by the derivatives of ρ and γ up to the second order with
D = 2. We choose to impose the slightly more stringent condition s > 4 ensuring that the coe�cients of
the transformed Stokes system on the �xed domain Ω0

0 are globally bounded, exponentially decaying Hölder-
continuous functions for all exponent α, 0 < α < 1. Then, a di�erentiability argument for the solution of a
well-posed boundary-value-problem with respect to the coe�cients of the equation is used. These arguments
are identical to the ones given in great details in [5], Section 2.2 or [4] for the case of Hölder spaces.

2.3 The derivative of G

In the rest of Section 2, as well as in Section 3, we shall make the assumption that the perturbation of the
pro�le γ and the candidate free surface ρ are smooth. This assumption is not a restriction, as will become
clear in the use of Zehnder's Implicit Function Theorem, and allow us to state in a more comfortable way
the various results regarding the linearization of G. In particular, the use of normal variations of the domain
for the explicit computation of the derivative of G will allow for more convenient expressions than those that
could be obtained through a general change of variables.
Since G is di�erentiable in a neighbourhood of the origin, we can compute its partial derivative DG

Dρ (ρ).h as
the limit when t→ 0 of

1

t
(G(Mρ + thnρ, ρ+ th)−G(Mρ, ρ)), (2.2)

with Mρ = M0 + ρn0, see Figure 2.

The computations we need to perform are well understood and detailed at length in [5], hence they will
only be brie�y sketched here. We �rst specialize the geometric description presented in Subsection 2.1 by
choosing conformal coordinates on Σρ, see [14]. Denoting by E the coe�cient of the �rst fundamental form
on Σρ, the local Frénet frame on the tangent plane to Σρ is given by

ei =
1

E

∂M

∂si

and there holds ∂M
∂si

.∂M∂sj = 0, i 6= j, |∂M∂si | = E, n =
∧
i ei.
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The computation in (2.2) is split into three parts. The �rst part comes from the variation of the normal
�eld, that is 1

tuρ+th(Mρ + thnρ)× (nρ+th(Mρ + thnρ)− nρ(Mρ)), the limit of which as t→ 0 is simply

− u.∇h (2.3)

where the gradient operator ∇ is de�ned intrinsically on Σρ, and is equal to 1
E (∂s1 , ∂s2) in the chosen

coordinates system (s1, s2). The second term in (2.2) comes from the variation of the point at which the
function u is evaluated,

1

t
(uρ+th(Mρ + thnρ)− uρ+th(Mρ)).nρ(Mρ)

the limit of which is obviously
∂u

∂nρ
(Mρ).nρ. (2.4)

Finally, the third term in (2.2) comes from the variation of u with respect to the domain. De�ning the local
derivative of u with respect to normal domain variations as

v(M) = lim
t→0

uρ+th(M)− uρ(M)

t
, (2.5)

for any point M lying in the interior of the domain Ωγρ , then the limit of the last term is

v(Mρ).nρ (2.6)

for a function v that we now characterize. v is the solution of a boundary-value problem akin to the Stokes
system with non-homogenous boundary conditions, the derivation of which mimicks that in [5], Section 2.2.2.
Consequently, the next result is stated without proof.

Proposition 2.2 The derivative with respect to normal variations of the domain of the solution u to the
Auxiliary Problem (1.1) to (1.4) is given by the solution (v, q) to the linearized Stokes system

− div τ(v) = 0 in Ωγρ , (2.7)

div v = 0 in Ωγρ (2.8)

v = 0 on Γγ , (2.9)

τ(v).nρ = h
∂σ

∂nρ
.nρ + σ∇h on Σρ. (2.10)

The results of this section are summarized in the following proposition.

Proposition 2.3 The derivative with respect to ρ of the operator G de�ned in (1.9) is given by

DG

Dρ
(ρ).h = −u.∇h+

∂u

∂nρ
(Mρ).nρh+ v.nρ, (2.11)

where v is characterized in Proposition 2.2.

Note that in the propositions 2.2 and 2.3 above, u is the solution to the Auxiliary System (1.1)-(1.4) in Ωγρ ,
and σ is the associated stress tensor.
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3 Inverting the linearized operator

In this section, the invertibility of DGDρ (ρ).h is addressed. The main result is stated and proven in Theorem
3.5 below, under a main "physical" assumption on the inclination angle α, as well as a smallness assumption
on the perturbation of the �xed and free boundaries (we recall the assumption that the perturbation of the
pro�le γ and the candidate free surface ρ are smooth).
From its expression (2.11), one can see that DG

Dρ (ρ) is the sum of a linear �rst-order di�erential operator
and a non-local term. In the simple case of the Poiseuille-Nusselt �ow, one uses the expressions for u and
σ in Section 1.1 to obtain that ∂σ

∂n0
.n0.n0 > 0, ∂u

∂n0
.n0 = 0 and σ = 0 on Σ0. Moreover, the �rst-order

di�erential operator

u|Σ0
.∇h ≡ C1

1

2
z2

0

∂h

∂x

is non-degenerate. These remarks come in handy when studying the invertibility of DGDρ (ρ). In fact, one can
think of the equation

DG

Dρ
(ρ)h = f (3.1)

as a linear hyperbolic problem given by the vector �eld u|Σ0
, perturbed by non-local terms. This hyperbolicity

is essential, and typically fails to hold true on a closed surface, say, due to Poincaré's theorem for vector �eld
on the sphere. However, it is not su�cient to solve (3.1), unless one knows how to control the lower-order
terms in (3.1). This problem has been tackled in a general setting in [3], where the classical approach of
symmetrizers has been extended to a situation very much inspired by the current one. The results in [3]
provide a way to control a small 0th-order operator "sandwiched" between a vector �eld as above, and an
invertible operator of order −1. This approach will now be applied to the resolution of (3.1).
The emphasis is then on the non-local term, v.nρ. In the rest of the article, P will denote the operator
h 7→ v.nρ where v is the solution of Equations (2.7)-(2.10). The operator P can be decomposed into the
form P = PS ◦D + PS ◦M , where

Dh =

(h ∂σ
∂nρ

.nρ + σ∇h).t1ρ
(h ∂σ

∂nρ
.nρ + σ∇h).t2ρ

0

 (3.2)

is a �rst-order di�erential operator acting on functions de�ned on Σρ and

Mh = h

 0
0

∂σ
∂nρ

.nρ.nρ

 (3.3)

is the normal component of the RHS in the linearized problem. As for PS, it is a Poincaré-Steklov-type
operator

PSf = w.nρ (3.4)

for the Stokes system
− div τ(w) = 0 in Ωγρ divw = 0 in Ωγρ (3.5)

w = 0 on Γγ , (3.6)

τ(w).nρ = f on Σρ, (3.7)

with Neuman boundary conditions on the candidate free surface.
In the remainder of this section, denote by PSn the scalar "normal to normal" operator de�ned as

PSnh = w.nρ (3.8)

for a Stokes system similar to (3.5)-(3.7) but with speci�c right-hand-side

− div τ(w) = 0 in Ωγρ divw = 0 in Ωγρ
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w = 0 on Γγ ,

τ(w).nρ.t
i
ρ = 0 on Σρ , i = 1, 2,

τ(w).nρ.nρ = h on Σρ.

PSn will play a fundamental part in the study of the invertibility of P, as will soon become clear.
One can obviously rewrite P = Porth + Ptan as the sum of two operators, Porth (resp. Ptan) mapping the
normal (resp. tangential) stress to the normal component of the velocity �eld.
Regarding Porth, the following result holds true.

Proposition 3.1 The operator Porth is a pseudodi�erential operator of order −1 whose principal symbol is
given by

p(ξ) =

∂σ
∂nρ

.nρ.nρ

2|ξ|
.

Proof: the fact the Porth is a pseudodi�erential operator is straightforward, since it is the composition of
two such operators. Its principal symbol is simply the product of that of the operator PSn with the function
∂σ
∂nρ

.nρ.nρ. To compute the principal symbol - de�ned unambiguously in any system of local coordinates - of
PSn, we use again conformal coordinates on Σρ. Upon referring once more to [5], in particular Section 3.2.3,
one is easily convinced that it is su�cient to freeze the coe�cients of the equation at λ = 0, and therefore
to focus on the simpler operator h→ V3(s1, s2, 0) where V is the solution to the system:

−4V +∇Q = 0 inR2 ×R−∗ div V = 0 inR2 ×R−∗ lim
λ→−∞

V = 0 (3.9)∂V1

∂λ + ∂V3

∂s1
∂V2

∂λ + ∂V3

∂s2

2∂V3

∂λ −Q

 =

0
0
h

 on {λ = 0}. (3.10)

Upon taking the Fourier transform in the s variables, the system(
−∂

2V̂1

∂λ2 + |ξ2|V̂1

)
+ iξ1Q̂ = 0, (3.11)(

−∂
2V̂2

∂λ2 + |ξ2|V̂2

)
+ iξ2Q̂ = 0, (3.12)(

−∂
2V̂3

∂λ2 + |ξ2|V̂3

)
+
∂Q̂

∂λ
= 0, (3.13)

iξ1V̂1 + iξ2V̂2 +
∂V̂3

∂λ
= 0, (3.14)

obtains. Then, solving for Q̂ and combining the equations above, one immediately �nds that

Q̂(ξ1, ξ2λ) =
1

|ξ|2
(
∂
∂λ ( ∂2

∂λ2 − |ξ|2)
)
V̂3 (3.15)

and therefore (
∂2

∂λ2 − |ξ|2
) ∂2V̂3

∂λ2
= |ξ|2 ∂Q̂

∂λ
. (3.16)

On the other hand, there also holds

− |ξ|2
(
∂2

∂λ2 − |ξ|2
)
V̂3 = −|ξ|2 ∂Q̂

∂λ
, (3.17)

so that we �nally obtain the ODE (
∂2

∂λ2 − |ξ|2
)2

V̂3 = 0 (3.18)
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for V̂3. Hence, V̂3 has the representation

V̂3(ξ, λ) = (A+Bλ) exp(−λ|ξ|) + (C +Dλ) exp(λ|ξ|) (3.19)

with A = B = 0 because of boundedness conditions as λ → −∞. In particular, it must be the case that
V̂3(ξ, 0) = C, and we need to compute the value of C. From (3.15), one easily derives that Q̂(ξ, λ) =

2D exp(λ|ξ|). The third coordinate of the stress tensor on λ = 0 is given by 2∂V̂3

∂λ (ξ, 0) − Q(ξ, 0), which
simpli�es to 2C|ξ|. Using the boundary conditions (3.10), it follows that

C =
ĥ

2|ξ|
(3.20)

and the proposition is proven.

Next, we state and prove the following important lemma, which will be essential in showing that Porth
is invertible for all small enough ρ.

Lemma 3.2 PSn is a coercive, self-adjoint operator from H−
1
2 (Σρ) into H

1
2 (Σρ). Therefore, there exists a

constant C > 0 such that, for all h ∈ H− 1
2 (Σρ)

(PSnh, h) > C‖h‖2.

Proof : the self-adjointess of PS is a straightforward consequences of Green's formula, and the coercivity
follows easily from Korn's inequality. In fact, setting v.n = PSnh and writing, for a test function w,∫

Ωρ

div τ(v).w +
1

2

∫
Ωρ

(∇v +t ∇v) : (∇w +t ∇w) =

∫
Σρ

(τ(v).n)w,

one obtains, using v itself as a test function, that

1

2

∫
Ωρ

|∇v +t ∇v|2 =

∫
Σρ

(τ(v).n.n)(w.n),

which means that

(PSnh, h) =
1

2

∫
Ωρ

|∇v +t ∇v|2

and thanks to Korn's inequality (PSnh, h) > C‖v‖2H1 . This inequality implies that PSn is coercive, and
hence, invertible from H−

1
2 (Σρ) into H

1
2 (Σρ). The lemma then results from the following trace theorem.

Lemma 3.3 Let Ω be an open set in R3 with a C2 boundary. Then for v ∈ H1(Ω) such that τ.n is parallel to

n and div τ(v) = 0, one can de�ne a normal stress operator v → τ.n.n ∈ H −1
2 (∂Ω) satisfying the continuity

property
‖v‖H1(Ω) > C‖τ.n.n‖

H
−1
2 (∂Ω)

.

The operator thus de�ned coincides with the usual normal stress operator when v is C1 up to the boundary
of Ω

The proof of Lemma 3.3 is a direct consequence of [24], Chapter 1, Theorem 1.2 and so is omitted. Upon
using Lemma 3.3, one then has

(PSnh, h) > C‖v‖2H1(Ωγρ ) > C‖τ.n.n‖2
H
−1
2 (∂Ωγρ )

,

which ends the proof of Lemma 3.2.
We may now state the main result concerning Porth.
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Lemma 3.4 For all δ > 0, s > 4, there exists a neigbourhood of 0 in Csδ (R2)2 such that whenever (γ, ρ) lies

in this neigbourhood, Porth has a bounded inverse de�ned from H
1
2 (Σρ) into H−

1
2 (Σρ).

Proof: an easy consequence of the invertibility of PSn and the fact that the multiplier ∂σ
∂nρ

.nρ.nρ, being
bounded from below by a positive number along the unperturbed free surface corresponding to γ = ρ ≡ 0,
therefore stays so whenever (γ, ρ) is small enough. In fact, P−1

orthf is de�ned, for f ∈ H 1
2 (Σρ), as the solution

h ∈ H −1
2 (Σρ) of Porthh = f , that is

h =
1

∂σ
∂nρ

.nρ.nρ
PS−1

n f

where the existence of PS−1
n has just been established.

Regarding the second term in the decomposition of P, Ptan, it is a priori a pseudodi�erential operator
of order 6 0, whose most salient feature is that it has a small norm as a bounded operator from L2 into L2,
say, as long as the angle α is small enough and the perturbation of the �xed pro�les and the free surfaces
γ, ρ are small enough. As a matter of fact, one can see by inspection of (3.2) that there are two components
in the tangential operator Dh. The �rst one is a 0th-order term parallel to the tangential part of ∂σ

∂nρ
.nρ, a

quantity equal to the constant vector

−C1

0
0

 in the case of the unperturbed Poiseuille-Nusselt �ow, and

the other is the vector �eld σ∇h, identically equal to 0 in the unperturbed case. Therefore, one can safely
choose an α small enough and a small enough neighbourhood for the perturbation γ, ρ so as to ensure that
Ptan has a small norm.
Note that this condition on α is in fact a natural one, as has been already demonstrated in [4][12].
We are now in a position to state the main result of this section, pertaining to the invertibility of the
linearized operator de�ned in (2.11).

Theorem 3.5 There exists an α0 > 0 and a δ0 > 0 such that ∀α < α0, ∀δ, 0 < δ < δ0, ∀s > 4, there exists
a neigbourhood of 0 in Csδ (R2)2 with the property that whenever (γ, ρ) lies in this neigbourhood, DGDρ de�ned

in (2.11) has a bounded inverse de�ned from Ht+ 1
2 (Σρ) into Ht− 1

2 (Σρ) for all t > 0.

Proof: this result is essentially that of Proposition 1.1 in [3], with a few minor modi�cations. In fact, one
must check that the assumptions of Proposition 1.1 of [3] hold true for the linearized operator DG

Dρ . A careful
examination shows that there is a slight di�erence, namely, that P is not self-adjoint. However, it has just
been proven to be invertible, clearly a su�cient condition in the light of the proof of Proposition 1.1 in [3].
Therefore, so is the linearized operator DG

Dρ in the usual Sobolev spaces.
A straightforward extension of the proof in [3] also yields the next result.

Corollary 3.6 Under the same set of assumptions as above, there exists a δ02 > 0 such that, ∀δ, 0 < δ 6 δ02,
DG
Dρ has a bounded inverse de�ned from H

t+ 1
2

δ (Σρ) into H
t− 1

2

δ (Σρ) for all t > 0.

Proof: one uses the changes of right-hand-side and unknown function f(x) = f0(x) exp(−δ
√

1 + |x|2), h(x) =

h0(x) exp(−δ
√

1 + |x|2) to obtain a modi�ed operator for which Theorem 3.5 still holds true provided that
δ is small enough.

4 Proof of the main result

This �nal section is devoted to the proof of Theorem 1.2.
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4.1 Zehnder's Implicit Function Theorem

We start by presenting the machinery fully developped in [26]. Let {Xt}t>0 be a one-parameter family of
Banach spaces, with norm denoted by |.|t, such that for all t, t′ with 0 6 t′ 6 t 6 +∞

X0 ⊇ Xt′ ⊇ Xt ⊇ X∞ ≡
⋂
t>0

Xt

and

|z|t′ 6 |z|t.

We will work with three such scales of Banach spaces, respectively denoted by {Xt}t>0, {Yt}t>0 and {Zt}t>0.
The mapping G in (1.9) will be de�ned from D ⊂ Y0 ×X0 into R ⊂ Z0. There holds that G(0, 0) = 0, and
Zehnder's Implicit Function Theorem provides conditions ensuring that, for γ close enough to 0, there exists
a unique ρ(γ) solution to

G(γ, ρ(γ)) = 0.

We recall that γ is the perturbation of the bottom pro�le.
For ε > 0, let Bεt = {(γ, ρ) ∈ Yt × Xt : |γ| < ε, |ρ| < ε}. Below are listed the hypotheses that have to be
satis�ed by G for a suitably chose ε > 0.
Hypothesis 1 (smoothness)
The operator G : Bε0 → Z0 is at least C2 with respect to ρ and C0 with respect to (γ, ρ), and there exists a
constant M0 > 0 such that

∀(γ, ρ) ∈ Bε0, sup(|DρG(γ, ρ)|0, |D2
ρG(γ, ρ)|0) 6M0. (4.1)

and
∀(γ, ρ), (γ′, ρ) ∈ Bε0, |G(γ, ρ)−G(γ′, ρ)|0 6M0|γ − γ′|0. (4.2)

Hypothesis 2 (approximate inverse with loss of ν derivatives)
For all (γ, ρ) in Bεν , there exists a linear mapping H(γ, ρ) : Zν → X0 such that

∀φ ∈ Zν , |H(γ, ρ)φ|0 6M0|φ|ν . (4.3)

H(γ, ρ) is continuous from Zt into Xt−ν whenever (γ, ρ) ∈ Bεν
⋂

(Yt ×Xt) and there holds

∀(γ, ρ) ∈ BKt , |H(γ, ρ)G(γ, ρ)|t−ν 6MtK. (4.4)

Moreover, H is an approximate left inverse of DρG(γ, ρ) in the sense that

∀φ ∈ Zν , |[DρG(γ, ρ) ◦H(γ, ρ)− Id]φ|0 6 N0|F (γ, ρ)|ν |φν |. (4.5)

Hypothesis 3 (order)
(G, 0, 0) is of order s, where s > ν > 1 (see Hypothesis 2 above for the de�nition of ν). More precisely,

∀t ∈ [1, s], G(Bε0
⋂

(Yt ×Xt)) ⊂ Zt (4.6)

and
∀t ∈ [1, s], ∃Mt > 0,∃K0 > 0,∀(γ, ρ) ∈ BK0

t

⋂
Bε1, |G(γ, ρ)|t 6Mt|f |t. (4.7)

When all the hypotheses above are satis�ed, the following deep result applies.

Theorem 4.1 (Zehnder [26]) Let (G, γ0, ρ0) be of order s and satisfy Hypotheses 1 to 3 above. Then there
exists a neighbourhood Nλ = {γ ∈ Yλ, |γ| < C} with µ, λ in the admissible parameter set

• 1 < κ < 2,

12



• 1 < α,

• 1 6 ν 6 µ < λ < s,

• λ > max{2κν(2− κ)−1, κ(ν + κµ)},

• s > max{αν(α− 1)−1, λ+ αν(κ− 1)−1},

and a mapping Ψ : Nλ → Xµ such that for all γ ∈ Nλ, ργ ≡ Ψ(γ) is the unique solution to

G(γ, ργ) = 0 (4.8)

with |ργ |µ < C−1|γ|λ. Furthermore, Ψ is continuous whenever H is.

To apply this theorem to the proof of Theorem 1.2, we use the weighted Sobolev spaces introduced in Section
3

Xt = H4+t
δ (R2) Yt = H4+t

δ (R2) Zt = H
5
2 +t

δ (R2),

so that
X∞ = S(R2) Y∞ = S(R2)× S(R2) Z∞ = S(R2).

The choice of the exponent in the Sobolev spaces just introduced is guided by Proposition 2.1, as 5
2 = 4− 3

2 .
Before proceeding to the veri�cation of Hypotheses 1-3 above, let us explain the use of the Nash-Moser
Implicit Function Theorem: its constructive proof, see see e.g. [26], p. 118 to 125, or [6], Chapter III, p.
128, relies on a Newton iteration having the form

ρn+1 = ρn − (Sn ◦ (
DG

Dρ
(ρn, γ))−1 ◦G)(ρn, γ), (4.9)

where Sn is a smoothing operator coping for the loss of derivatives. Combining Proposition 2.1 with Corollary
3.6, one can see that the loss of regularity when applying DG

Dρ

−1 ◦G is equal to 5
2 , so that DG

Dρ

−1 ◦G will be
bounded and continuous from Xt to Xt− 5

2
, see the estimate (4.10) below. We therefore proceed to check the

hypotheses of Theorem 4.1 with the parameter ν (the loss in regularity) set equal to 5
2 .

Fix δ < Max(δ01, δ02), δ01 (resp. δ02) being introduced in Proposition 2.1 (resp. Corollary 3.6). We also pick
s (the order parameter in Hypothesis 3) equal to +∞, meaning that we are interested in smooth solutions
only. Hypothesis 1 is an easy consequence of Proposition 2.1, or, more precisely, an extension thereof so as
to include the �xed boundary γ as well as the candidate free surface ρ in the di�erentiability. The proof
relies again on a change of variables and results on the smooth dependence of the solution to the Auxiliary
Problem with respect to its coe�cients, and will be omitted.
As for Hypothesis 3, we remark that (0, 0) ∈ U∞ ×X∞ and that we already established as a general result
that G(γ, ρ) ∈ Zt if (γ, ρ) ∈ Yt×Xt for t ∈ [1,+∞[. The last point to check is that for all t ∈ [1,+∞[, there
exists an Mt such that |G(γ, ρ)|t 6 MtK whenever |γ − γ0|t < K, |ρ − ρ0|t < K in (Yt × Xt)

⋂
B1 (here,

we have chosen K < ε). Such an inequality follows from computations similar to those involved in the proof
of Hypothesis 2, albeit with respect to both γ and ρ this time, the key point being (see the remark at the
bottom of p. 120 in [26]) that the control of a low-order norm is su�cient to ensure the linear growth of
higher-order norms for the operator G. As a consequence, one can even choose Mt = M0 for all t, a remark
that will be essential in verifying Hypothesis 2. Regarding this hypothesis, we state and prove a more precise
result.

Proposition 4.2 For all (γ, ρ) ∈ Y∞ × X∞, there exists a linear mapping H : Z 5
2
→ X0 such that

|H(γ, ρ)φ|0 6M0|φ|Z 5
2

. H can be extended to a continuous operator from Zt into Xt− 5
2
for all t > 5

2 .

Moreover, there exists a constant Mt such that the inequality

|H(γ, ρ)(G(γ, ρ))|t− 5
2
6MtK (4.10)
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holds true for all (γ, ρ) ∈ (Yt × Xt)
⋂
B1 with |γ − f0|t < K, |ρ − ρ0|t < K. Finally, H(γ, ρ) is an exact

inverse to DρG(γ, ρ), i.e.
∀φ ∈ Zt+ν ,

(
DρG(γ, ρ) ◦H(γ, ρ) − Id

)
φ = 0. (4.11)

Proof: In Theorem 3.5 and Corollary 3.6, we have established the existence of an exact inverse H : Z 5
2
→ X0

to DρG, and also thatH is a continuous operator from Zt into Xt− 5
2
for all t > 0, provided (γ, ρ) ∈ Y∞×X∞.

There still remains to prove that |H(γ, ρ)(G(γ, ρ))|t− 5
2

6 MtK whenever (γ, ρ) ∈ (Yt × Xt)
⋂
B1 with

|γ− γ0|t < K, |ρ− ρ0|t < K. This is a consequence of the boundedness of H and the uniform (in t) estimate
on G in Hypothesis 3, see (4.7).
Finally, we must prove that Hypothesis 2 can be replaced by Proposition 4.2. In the original proof by
Zehnder ([26], p. 118 to 125), the use of an approximate inverse is made after the smoothing procedure
for (γ, ρ). Hence, the estimate 4.5 |(DρG(γ, ρ) ◦ H(γ, ρ) − Id)φ|0 6 N0|F (γ, ρ)| 5

2
|φ| 5

2
in Hypothesis 2 is

only required for the regularized approximating sequence (γnτ , ρ
n
τ ), τ being the smoothing factor. Since this

sequence comprises smooth functions, Proposition 4.2 above applies, and actually yields a stronger result
that the one required in the original proof by Zehnder. There, the constant N0 had to be uniform with
respect to the smoothing parameter τ , a condition that becomes irrelevant thanks to the exact invertibility
of DρG(γ, ρ).
This concludes the proof of Theorem 1.2.
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