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Stationary free surface viscous �ows without surface tension in

three dimensions

Frederic Abergel∗ Jacques-Herbert Bailly

July 29, 2011

Abstract

We consider an incompressible, viscous free surface �ow down a three dimensional channel. In the

absence of surface tension, we prove the existence of a unique stationary �ow in weighted Sobolev spaces.

The proof relies on a careful study of a particular pseudodi�erential operator and the use of a Nash-Moser

implicit function theorem.

Introduction

We consider an incompressible viscous free surface �uid �owing down a three dimensional inclined channel.
In the case where the bottom of the channel is �at, there exists a well-known stationary solution, usually
referred to as the Poiseuille-Nusselt �ow[4]. However, the question of �nding such a stationary solution for
a general pro�le of the bottom is not easy to address, as the linearized operator in the neighbourhood of the
Poiseuille-Nusselt solution is not elliptic, and results such as those obtained by [4] or [14] do not apply in
this situation. As a matter of fact, it has been proven, see e.g. [1] that the surface tension coe�cient, when
it exists, plays a particularly important role in the structure of the linearized solution operator, transform-
ing it into an elliptic second order pseudodi�erential operator. In the general three dimensional case when
surface tension is neglected, the linearized free surface problem is no longer elliptic, and one has to carefullly
analyze the structure of the associated operator in order to study its invertibility. Moreover, event though
this linearized operator may be invertible, there is a loss of smoothness when inverting it, which makes the
analysis even more complicated.

1 Formulation of the problem

1.1 Governing equations

Let Ωγρ be an unbounded domain of R3, with δΩ = ΓγUΣρ, Γγ being the �xed bottom of the channel. More
precisely we de�ne:

Ωγρ = {(x, y, z) ∈ R3,−∞ < x < +∞,−∞ < y < +∞, γ(x, y) < z < z0 + ρ(x, y)}

where ρ is a mapping from R2 into R describing the free surface, while z0 is the height of the free surface
when x, y goes to ∞. Similarly, γ is a mapping from R2 into R representing the �xed bottom.

We now let u be the velocity �eld and p be the pressure in the classical Stokes equations. We denote by
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σ(u) =
1

2
(∇(u) +t ∇(u)) − pId the stress tensor, by f the gravitational �eld with coordinates

C1

0
C2

with
C1 = g sinα and C1 = g cosα, α being the angle shown on Figure 1.1 and g, the gravity constant.

In this paper, we shall prove the existence and uniqueness of a triple
(
u, p, Σρ

)
solution of the

following system of equations:

− div σ(u) = f in Ωγρ ,div u = 0 in Ωγρ , u = ζ on Γγ , σ(u).n = C.n on Σρ (1.1)

with the conditions at in�nity:

lim
(x,y)→+∞

u(x, y, z) =

C1(z0z − 1
2z

2)
0
0

 (1.2)

and the main kinematic equation for the free surface itself, which reads in the stationary case:

u.n = 0 (1.3)

Equations (1.1)(1.2) will be referred to as the Auxiliary problem, while (1.3) will be called the Main Equa-
tion. Note that the constant C involved in the normal stress condition can be set equal to 0 by substracting
o� a constant pressure �eld, and we will assume so in the sequel. The function g is 0 in the case of the no-slip
boundary condition, but can be chosen as a small - in a sense to be made precise later - rapidly decaying
function in S(R2).

1.2 Function spaces

We now introduce the family of Banach spaces to which belong the data and unknowns of our problem.
For δ = (δ1, δ2) in R2

+ and s > 0, we set:

Hs
δ (R3) = {f ∈ Hs(R3)/‖f(X, z) exp(δ1|x|+ δ2|y|)‖Hs(R3) 6 +∞} (1.4)

where X = (x, y) ∈ R2 and Hs(R3) is the usual Sobolev space.
Similarly, we de�ne:

Csδ (R3) = {f ∈ Cs(R3)/
∑
|α|6s

Sup(|Dαf |) exp(δ1|x|+ δ2|y|) +
∑
|α|=[s]

Sup([Dαf ]) 6 +∞} (1.5)

where [s] is the integer part of s and [f ] = supx 6=y
|f(x)−f(y)
|x−y|s−[s] .

We recall for further use a classical embedding theorem:

Proposition 1.1 Let f ∈ Hs
δ (R3), and assume that, for m ∈ N, α ∈ ]0, 1[, there holds:

s− 3
2 + α and 2s > n, then f ∈ Cm+α

δ (R3) and there exists a constant C > 0 such that:
‖f‖Cm+α

δ
6 C‖f‖Hsδ
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1.3 The main result

We introduce the following notation : for X a Banach space, we denote by B ε(X ) the ball of radius ε centered
at the origin in X. Our main result can now be stated:

Theorem 1.2 There exists δ0 small enough such that, for
delta 6 δ0 and ε small enough, f and ζ as in (1.1) with ζ ∈ B ε(H 8

δ (Γ )) and Γ ∈ B ε(H 10
δ (R2)), there exists

a unique triple (u, p,Σ) solution of (1.1)(1.2)(1.3), with
Σ ∈ H5

δ (R2), (u,∇p) ∈ H3
δ (Ω)1

δ(Ω).
Moreover, the solution depends continuously on the data:
‖u‖H3

δ
+ ‖∇p‖H1

δ
6 C(‖f‖+ ‖ζ‖).

The proof of 1.2 is quite lengthy, and will be presented in the rest of this article. It relies on a thorough
study of the linearization of (1.1)(1.2)(1.3), as can be expected from our formulation as a small perturbation
problem. However, and this is where the technical di�culty of this result lies, it is impossible to use a
standard Implicit Function Theorem: when considering the nonlinear mapping G formally de�ned by

G(Σ) = u|Σ.n (1.6)

we will see that DG(Σ)−1 ◦DG(Σ) is an unbounded operator. We therefore have to invoke, and verify the
cumbersome assumptions of, a Nash-Moser type iterative scheme in order to overcome this loss of regularity,
the most di�cult task in this program being the study of the invertibility of the linearized operator DG(Σ)
in a full neighbourhood of the Poiseuille-Nusselt �ow - and not only at this particular solution.

In Section2, we shall de�ne the appropriate formalism in order to study the operator G. In particular,
we will explicitly compute its derivative around the Poiseuille-Nusselt �ow. This linearized operator has
an unusual and interesting characterization as a �rst-order transport like- operator with a nonlocal term
of order −1 of the type studied in [3], and this nonlocal term will play a major role in the invertibility of
the derivative of G. Section3 contains an exposition of the heavy machinery involved in the Nash-Moser
Theorem.

2 Kinematic condition

Let us recall a standard parameteric representation one can use in order to describe a family of free surfaces
Σρ as a graph along the normal above a reference manifold,see eg[5][6] for a detailed exposition.
Let then Σ̄ be a 2-dimensional reference manifold, denote by M̄(s) a generic point on Σ̄ and by n̄(s) the unit
outward normal vector to Σ̄(s). We will use the notation ∂sk for the generic tangential derivative operator
with respect to the kth local coordinate on Σ̄.
For a small enough neighbourhood of Σ̄ there exists a system of local coordinates and a unique representa-
tion, for any point M in this neihgbourhood

M(s, d) = M̄(s) + dn̄(s) (2.1)

and this representation de�nes a C∞-di�eomorphism from Σ̄×] − L0, L0[ onto the L0-neighbourhood of Σ̄,
for L0 small enough (the size of L0 depending only on the maximum principal curvature of Σ̄ ). Hence, by
choosing ρ ∈ Hs

δ (Σ̄;R) with a small enough norm, one can represent any manifold close enough to Σ̄ using
the parameterization just de�ned:

Σρ = Σ̄ + ρn̄ (2.2)

or equivalently:
Σρ = {Mρ = M̄ + ρ(s)n̄, M̄ ∈ Σ̄} (2.3)

For instance, one can trivially represent any point in the three dimensional space over the (x, y) plane
corresponding to the unperturbed Poiseuille-Nusselt �ow using its tangential and normal coordinates, and
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this property still holds true locally for small enough perturbations of this plane.
We can now de�ne precisely the nonlinear operator G we are interested in:

De�nition 2.0.1 Let G be the normal velocity operator

G :
S(R2)→ S(R2)
ρ 7→ u|Σρ .nρ

. (2.4)

G well de�ned in a neighbourhood of the origin in Hs
δ (Σ̄;R).

We �rst state the

Proposition 2.1 There exists δ01 > 0 such that, for δ 6 δ01, there exists ε > 0 such that, for every s > 4

and (ρ, γ) ∈ B ε(H s
δ (R2))

2, the operator G de�ned in 2.0.1 is at least of class C2 from B ε(H s
δ (R2)) into

B ε(H
s− 3

2

δ (R)).

The proof of proposition2.1 is rather classical and rely on usual di�erentiability arguments for the solution
of a well-posed boundary value problem w.r. to the coe�cients of the equation. One uses as in [10][3][5] a
change of variables - the Hanzawa transform - shrinking Ωγρ to the domain corresponding to the Poiseuille-
Nusselt �ow, Ω0 say. More speci�cally, let ζ ∈ C∞(R) be a cut-o� function such that for every ρ ∈ Hs

δ (Σ0)
and γ ∈ Hs

δ (Σ0), the mapping Yρ,γ de�ned by

M(x) 7→M − [ζ(
D

L0
)ρ(S(x)) + ζ(

D + z0

L0
)γ(S(x))]n0(S(x)) (2.5)

for ρ, γ small enough is a C2 di�eomorphism from R3 into itself. One can then set

M(x) = M0(S(x)) +D(x)n0(S(x)) (2.6)

leading to

Yρ,γ(M(x)) = M0(S(x)) + [D(x)− ζ(
D

L0
)ρ(S(x)) + ζ(

D + z0

L0
)γ(S(x))]n0(S(x)) (2.7)

One easily notices that Yρ,γ maps Ωγρ into Ω0, Σρ into Σ0 and Γρ into Γ0.
We now consider the change of unknown function:

v(x̂) = u(Y −1
ρ,γ (x̂)), q(x̂) = p(Y −1

ρ,γ (x̂)), F (x̂) = f(Y −1
ρ,γ (x̂)) (2.8)

and
ζ(x̂) = g(Y −1

ρ,γ (x̂)) (2.9)

for x̂ ∈ Ω0. After performing this change of variable, the auxiliary problem(1.1)(1.2) becomes:

A(ρ, γ)(v, q) = F in Ω0, B(ρ, γ)v = 0 in Ω0, v = ζ on Γ0, C(ρ, γ)(v, q).n0 = C.n0 on Σ0 (2.10)

with the conditions

lim
‖(x̂,ŷ)‖→∞

v(x̂, ŷ, ẑ) =

C1(z0ẑ − 1
2 )ẑ2

0
0

 (2.11)

and
lim

‖(x̂,ŷ)‖→∞
q(x̂, ŷ, ẑ) = C2(ẑ − z0) (2.12)

Denoting by Lγρ the operator de�ning the left-hand side of (2.10), one easily checks that Lγρ maps Hs
δ (Ω0)×

Hs−1
δ (Ω0) into Hs−2

δ (Ω0)×Hs−1
δ (Ω0)×Hs

δ (Γ0)×Hs−1
δ (Σ0). In order to solve (2.10), we �rst eliminate the
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conditions at ∞ by seeking a solution (v, q) under the following form:

v = V + U0, q = Q+ P0 (2.13)

where (U0, PO) is the unperturbed solution corresponding to a �at bottom:

A(0, 0)(v, q) = F in Ω0, B(0, 0)v = 0 in Ω0, v = 0 on Γ0, C(0, 0)(v, q).n0 = C.n0 on Σ0 (2.14)

We now state and prove the following

Proposition 2.2 There exists δ0 > 0 such that if δ 6 δ0 and s > 4, then for every (ρ, γ) ∈ Bε(Hs
δ (R2)×Bε(Hs

δ (R2),
there exists a unique solution (v, q) to (2.10) with

v = V + U0 , q = Q+ P0 (2.15)

(U0, PO) as in (2.14). Morevover, there holds:

‖V ‖Hs−1
δ (Ω0) + ‖∇Q‖Hs−3

δ (Ω0) 6 C(‖g‖Hs−1
δ (Ω0) + ερ,γ) (2.16)

ερ,γ being small for (ρ, γ) ∈ Bε(Hs
δ (R2))×Bε(Hs

δ (R2)).

The proof of (2.2) relies on a classical contraction argument, as follows: one �rst rewrites (2.14) under the
following form

A(0, 0)(V,Q) = [A(0, 0)−A(ρ, γ)](v, q) in Ω0,
B(0, 0)V = [B(0, 0)−B(ρ, γ)]v in Ω0,

V = ζ on Γ0,
C(0, 0)(V,Q).n0 = [C(0, 0)− C(ρ, γ)](v, q).n0C.n0 on Σ0

(2.17)

and look for a �xed point of the following operator (V,Q) = Mγ
ρ (W,R) de�ned as the solution of:

A(0, 0)(V,Q) = [A(0, 0)−A(ρ, γ)](W + U0, R+ P0)inΩ0

B(0, 0)V = [B(0, 0)−B(ρ, γ)](W + UO)inΩ0

V = ζon Γ0

C(0, 0)(V,Q).n0 = [C(0, 0)− C(ρ, γ)](W + U0, R+ P0).n0C.n0 on Σ0

(2.18)

At this stage, the main point is to prove that (2.14) is well-posed when the right-hand sides are replaced by
small data, that is, that the following problem:

A(0, 0)(V,Q) = f1 inΩ0

B(0, 0)V = f2 inΩ0

V = f3 on Γ0

C(0, 0)(V,Q).n0 = f4 on Σ0

(2.19)

has a unique solution for small enough quadruple (f1, f2, f3, f4) in Bε(H
s−3
δ (Ω0)×Hs−2

δ (Ω0)×Hs−1
δ (Σ0)×

Hs−2
δ (Σ0).

This result follows easily from arguments in [21] for the standard Sobolev spaces, and from the detailed
study of the weighted case that we postpone to Section3, see in particular corollary3.5. Using this result,
one can now show that the mapping (W,R) 7→ (V,Q) = Mγ

ρ (W,R) is well-de�ned and is a contraction for
(ρ, γ) ∈ Bε(Hs

δ (R2))×Bε(Hs
δ (R2)) and ε small enough. Property(2.16) is then a simple consequence of the

Lipschitz continuity of the coe�cients of the operator in (2.10).
Let us note that the C2 regularity of the solution operator G of (1.6) obtains through standard arguments
relying on the chain rule, and move on to the computation of the di�erential of G with respect to the free
surface ρ.
For ρ small enough, we compute the derivative DG

Dρ (ρ).h as the limit when t→ 0 of

1

t
(G(Mρ + thnρ, th+ ρ)−G(Mρ, ρ)) (2.20)
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with - as previously de�ned -Mρ = M0 +ρn0, see �gure2. The computations we need to perform are classical
and detailed in[5]. Let us �rst recall- using coordinates in a local frame - that

n0

0
0
1

 (2.21)

Mρ

 x
y

z0 + ρ(x, y)

 (2.22)

nρ
1

E

−ρx−ρy
1

 (2.23)

where E =
√

1 + |∇ρ)
2
. Therefore, we have that

Mth := Mρ+thnρ

 x− thρx
E

y − thρy
E

z0 + ρ(x, y) + th
E

 (2.24)

We now determine the normal vector nth at Mth. Up to smaller order terms in t, one can work out the
following expressions, see[5] for details:

nρ+th(Mρ+th) = nρ(Mρ)−A.∇h+ Lh+ o(t) (2.25)

with

A(ρ) =

1 + (ρy)2 −ρxρy 0
−ρxρy 1 + (ρx)2 0
ρx ρy 0

 (2.26)

L(ρ) :=

L1(ρ)
L2(ρ)
L3(ρ)

 =

ρyρxy + ρxρyy
ρxρxy + ρyρxx
−ρxx − ρyy

 (2.27)

We now return to the derivative of G itself: (2.20) is split into three parts.
First, a part coming from the variation of the normal �eld, that is

1

t
uρ+th(Mρ + thnρ)× (nρ+th(Mρ + thnρ)− nρ(Mρ))

whose limit as t→ 0 is given using (2.25) by:

− 〈uρ(Mρ), A(ρ).∇h)〉+ L0(ρ).h (2.29)

with

L0(ρ).h = 〈uρ(Mρ), L(ρ)〉 .h (2.30)

We rewrite (2.29) as
− 〈V,∇h)〉+ L0(ρ).h (2.31)
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with V easily obtained using the transpose of A(ρ). If we let

U1

U2

U3

 be the coordinates of uρ(Mρ), then one

has:

V

(
U1(1 + |∇ρ|2) + ρxG(ρ)
U2(1 + |∇ρ|2) + ρyG(ρ)

)
(2.32)

We remark that V is a small perturbation of

(
U1

U2

)
which is itself close to

(
1
0

)
.

The second part of (2.20) comes from the variation of the point at which the function u is evaluated:

1

t
uρ+th(Mρ + thnρ)− uρ+th(Mρ)× (nρ+th(Mρ + thnρ)− nρ(Mρ))

,

the limit of which is obviously
∂u

∂nρ
(Mρ).nρ. (2.34)

Finally, the third term in (2.20) comes from the variation of u with respect to the domain, see e.g. [5]: setting

v(M) = lim
t→0

uρ+th(M)− uρ(M)

t
, (2.35)

then the limit of the last term is
v(Mρ).nρ. (2.36)

Finally, the derivative of G is given by the follwoing formula:

DG

Dρ
(ρ).h = −〈V,∇h〉+ L0h+ v.nρ. (2.37)

Similarly to v, we de�ne the local derivatives of the treess tensor and the pressure �eld

v(M) = lim
t→0

σ(uρ+th)(M)− σ(uρ)(M)

t
(2.38)

and

q(M) = lim
t→0

pρ+th(M)− pρ(M)

t
(2.39)

One clearly has that

τ(v) =
1

2
∇v +t ∇v − qI. (2.40)

Using standard arguments, one easily obtains the following system of equation for the local derivative v with
respect to the domain:

−div τ(v) = 0 in Ωγρ ,div v = 0 in Ωγρ , v = 0 on Γγ , τ(v).nρ = Λ(ρ).∇h−(
∂σ

∂nρ
.nρ.nρh)+M0(ρ)h on Σρ, (2.41)

where we have set
Λ(ρ) = (1 + |∇ρ|2)(σ − C) (2.42)
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and
M0(ρ) = (σ − C)L0(ρ). (2.43)

Again, one notices that Λ(ρ) is a small perturbation of (σ − C) and also that M0(ρ) is an operator of order
0 with a small norm whenever ρ ∈ Bε.
In the rest of the article, we will denote by P−1 the operator h.nρ where v is the solution of (2.37). We will
�rst focus on a simpli�ed version of it, P−,01 say, de�ned as h.nρ where w is a solution to the set of equation
(2.44) below:

− div τ(v) = 0 in Ωγρ ,div v = 0 in Ωγρ , v = 0 on Γγ , τ(v).nρ = Λ(ρ).∇h+ h on Σρ (2.44)

The study of the operator P−,01 is key to the proof of the invertibility of the linearized operator DG
Dρ .

2.1 Properties of P−,01

We �rst state the following important technical result:

Proposition 2.3 For any s > 0 and δ 6 δ01, P−1,0 is a continuous linear operator from Hs
δ (R2) into

Hs+1
δ (R2)

Proof: this easy result stems from the obvious linearity of P−1,0 and the fact that the Stokes problem is
well-posed on unbounded domains for small data, see e.g. [19][21]. In fact, the much more accurate result
holds true:

Proposition 2.4 P−1,0 is a pseudodi�erential operator of order −1 whose principal symbol is given by
p(ξ) = 1

|ξ|

Proof: the techniques we use are described with great details in [5], to which we refer the interested reader.
Let us however recall the geist of the computation: P−1,0 is a pseudodi�erential operator on Σρ if it is a
pseudodi�erential operator in R2 in any local coordinate system on Σρ. Moreover, its principal symbol
is uniquely de�ned, irrespective of the choice of local coordinates, and can therefore be computed using
conformal coordinates on Σρ, see e.g. [11].
Denoting again by E the coe�cient of the �rst fundamental form on Σρ, the local basis is now given by

ei =
1

E

∂M

∂si
(2.45)

and the following properties are satis�ed:

∂M

∂si
.
∂M

∂sj
= 0, i, |∂M

∂si
| = E, n =

∧
i

ei (2.46)

For every point N we set N = M(s1, s2) + λnρ, M ∈ Σρ. The coe�cients in (2.44) now becomes dependent
on the space variables, and we write the new system as follows:

A(s1, s2, λ)(W,Q) = 0 inR2 ×R−∗ , B(s1, s2, λ)W = 0 inR2 ×R−∗ , lim
λ→−∞

W (s1, s2, λ) = 0, (2.47)

C(s1, s2, λ)(W,Q) = D(s1, s2, λ)h onλ = 0 (2.48)

where W,Q are the unknown functions w, q after the change of variables (these computations are obviously
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similar to those in Section2).
Now, in order to compute the principal symbol, one can see that it is su�cient to consider the problem with
the coe�cients frozen at λ = 0:

A(s1, s2, 0)(V,R) = 0 inR2 ×R−∗ , B(s1, s2, 0)V = 0 inR2 ×R−∗ , lim
λ→−∞

V (s1, s2, λ) = 0, (2.49)

C(s1, s2, )(V,R) = D(s1, s2, 0)h onλ = 0 (2.50)

The proof of this simpli�cation is straightforward : one �rst forms the di�erence W − V,Q − R, a solution
to:

A(s1, s2, 0)(W − V,Q−R) = (A(s1, s2, 0)−A(s1, s2, λ))(W,Q) inR2 ×R−∗ (2.51)

B(s1, s2, 0)(W − V ) = (B(s1, s2, 0)−B(s1, s2, λ)W inR2 ×R−∗ , lim
λ→−∞

(W − V )(s1, s2, λ) = 0, (2.52)

C(s1, s2, )(W −V,Q−R) = (C(s1, s2, )(W −V,Q−R)−C(s1, s2, λ)(W −V,Q−R))(W,Q) onλ = 0 (2.53)

and use the Taylor formula to obtain an expansion of W − V,Q−R:

W − V = λZ +H, Q−R = λM +K (2.54)

where H,K are smoother than W − V,Q − R and the terms coming from Z,M , being multiplied by λ, do
not contribute to the normal trace operator on λ = 0. Therefore, we may legitimately focus on the simpler
operator h→ V3(s1, s2, 0) where V is the solution to:

− 1

2
4V +∇Q = 0 inR2×R−∗ , div V = 0 inR2×R−∗ , lim

λ→−∞
V = 0, τ(V,Q) = (σ−C)∇h+h onλ = 0 (2.55)

We now use the Fourier transform in the s variables, and obtain the following:

1

2
(−∂

2V̂1

∂λ2
+ |ξ2V̂1) + iξ1Q̂ = 0 (2.56)

1

2
(−∂

2V̂2

∂λ2
+ |ξ2V̂2) + iξ2Q̂ = 0 (2.57)

1

2
(−∂

2V̂3

∂λ2
+ |ξ2V̂3) +

∂Q̂

∂λ
= 0 (2.58)

iξ1V̂1 + iξ1V̂1 +
∂V̂3

∂λ
. (2.59)

Upon solving for Q̂ and combining the equations above, one immediately obtains that

Q̂(ξ1, ξ2λ) =
1

2|xi|2
∂

∂λ
[
∂2

∂λ2
− |ξ|2]V̂3. (2.60)

It follows that [ ∂
2

∂λ2−|ξ|2]∂
2V̂3

∂λ2 = 2|ξ|2 ∂Q̂∂λ . On the other hand, there also holds: −|ξ|
2[ ∂

2

∂λ2−|ξ|2]V̂3 = −2|ξ|2 ∂Q̂∂λ ,
so that we �nally obtain the following ODE for V̂3:

[
∂2

∂λ2
− |ξ|2]V̂3 = 0. (2.61)

Such an equation is trivially solved using the following representation:

V̂3(ξ, λ) = (A+Bλ) exp(−λ|ξ|) + (C +Dλ) exp(λ|ξ|) (2.62)
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so that V̂3(ξ, 0) = A+ C
We can then compute Q̂:

Q̂(ξ, λ) = B exp(−λ|ξ|) +D exp(λ|ξ|). (2.63)

Upon considering the third coordinate of the stress tensor on = 0, there follows:

∂V̂3

∂λ
(ξ, 0) = Q̂(ξ, 0) + i(ξ1σ31 + ξ2σ32)ĥ+ ĥ, (2.64)

an expression which can be simpli�ed since one has that σ31 = σ32 = 0 on the boundary. Finally, one obtains
that:

C −A =
ĥ

|ξ|
(2.65)

which �nally leads to the following equality - given that A = 0 because of the normal velocity boundary
condition:

V̂3(ξ, 0) =
1

|ξ|
ĥ (2.66)

and the lemma is proven.
Next, we need the following lemma

Lemma 2.5 P−1,0 is a self-adjoint operator in L2(R2).
The proof of the lemma consists in a straightforward use of Green formula.
In fact, one can prove the more important result:

Lemma 2.6 P−1,0 is a coercive operator from H−
1
2 (R2) into H

1
2 (R2). Therefore, there exists a constant

C > 0 such that, for every h ∈ H− 1
2 (R2), there holds:

(P−1,0h, h) > C‖h‖2

Proof : a straightforward consequence of the Green formula and the Korn inequality. In fact, setting
v.n = P−1,0h and writing for a test function w∫

Ωρ
div τ(v).w+ 1

2

∫
Ωρ

(∇v+t∇v) : (∇w+t∇w) =
∫

Σρ
(τ(v).n)w, one obtains, using v itself as a test function:

1
2

∫
Ωρ
|∇v +t ∇v|2 =

∫
Σρ

(τ(v).n.n)(w.n), that is:

(P−1,0h, h) = 1
2

∫
Ωρ
|∇v +t ∇v|2

and, thanks to the Korn inequality: (P−1,0h, h) > C‖v‖2H1 The lemma then results from the following
technical result, the proof of which is similar to that provided in [20] and is therefore omitted:

Lemma 2.7 Let Ωρ be an open set in R3 with a C2 boundary. Then for v ∈ H1(Ω) such that τ.n is
parallel to n and div τ(v) = 0, one can de�ne a normal stress operator v → τ.n.n ∈ H −1

2 (∂Ωρ) satisfying the
following continuity property:
‖v‖H1(Ωρ) > C‖τ.n.n‖

H
−1
2 (∂Ωρ)

. This operator coincides with the usual normal stress operator when v is C1

up to the boundary of Ωρ

Upon using this result, one then has:
(P−1,0h, h) > C‖v‖2H1(Ωρ) > C‖τ.n.n‖2

H
−1
2 (∂Ωρ)

which ends the proof of Lemma 2.6.

3 The main result

We now prove our main result, namely, the existence of a unique steady solution (uρ, pρ,Σρ) to the full
problem 1.11.21.3 in weighted Sobolev spaces for a large enough Sobolev index s. As we will be using a Nash
Moser iteration technique, we have to make precise our choice of a scale of Banach spaces.
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3.1 Scale of Banach spaces

In this subsection, we recall the machinery fully developped in[22].
Let then {Xt}t>0 be a one-parameter family of Banach spaces, with norm denoted by |.|t, such that for every
t, t′ with 0 6 t 6 t′ 6 +∞, there holds:

X0 ⊇ Xt′ ⊇ Xt ⊇ X∞ ≡
⋂
t>0

Xt (3.1)

and

∀t, t′, t′ 6 t, |z|t′ 6 |z|t. (3.2)

We will work with three such scales, respectively denoted by {Xt}t>0, {Yt}t>0 and {Zt}t>0. The mapping
G in 1.6 will be de�ned from D ⊂ Y0 ×X0 into R0. Upon setting

f0 = (γ0, 0), ρ0 = 0 (3.3)

with γ0 ≡ 0 being the �at bottom corresponding to the Poiseuille-Nusselt �ow, one clearly has that:

G(f0, 0) = 0. (3.4)

Our purpose is now to prove that, for f close enough to f0, there exists a ρf in a suitable function space
such that G(f, ρf ) = 0.
Below is the set of four hypotheses that have to be satis�ed in order for the Nash-Moser Implicit Function
Theorem to apply:

Hypothesis 1
Let Bt = {(f, ρ) ∈ Yt×Xt/|f − f0| < ε, |ρ− ρ0| < ε}; then G : B0 → Z0 is at least C2 with respect to ρ and
C0 with respect to (f, ρ), and there exists a constant M0 such that:
∀(f, ρ) ∈ Bt, sup(|DρG(f, ρ)|0, |D2

ρG(f, ρ)|0) 6M0.
Hypothesis 2

For every couple (f, ρ), (f ′, ρ′) in B0, there holds:
|G(f, ρ)−G(f ′, ρ′)|0 6M0|f − f ′|0

Hypothesis 3
(G, f0, ρ0) is of order s, s > ν > 1 (see Hypothesis 4 below for the de�nition of ν), that is:
(f0, ρ0) ∈ Ys ×Xs, G(B0

⋂
(Yt ×Xt)) ⊂ Zt and for every t ∈ [1, s], for every t ∈ [1, s], there exists Mt > 0

such that |G(f, ρ)| 6MtK whenever |f − f0|t < K, |ρ− ρ0|t < K
Hypothesis 4 (existence of an approximate inverse)

For every (f, ρ) in Bν , there exists a linear mapping H(f, ρ) : Zρ → X0 such that ∀φ ∈ Zγ , |H(f, ρ)φ|0 6
M0|φ|γ and moreover, H(f, ρ) is continuous from Zt into Xt−γ whenever (f, ρ) ∈ Bν

⋂
(Yt ×Xt]).

One also has that |H(f, ρ)G(f, ρ)|t−ν 6MtK for every (f, ρ) such that |f − f0|t < K, |ρ− ρ0|t < K.
Finally, H is an approximate left inverse of DρG(f, ρ) in the sense that |[DρG(f, ρ)(f, ρ) − Id]φ|0 6
M0|F (f, ρ|ν |φγ | for every φ ∈ Zν .

When all four hypotheses above are satis�ed, the following deep result applies:

Theorem 3.1 (Zehnder [22]) Let (G, f0, ρ0) be of order s and satisfying Hypotheses 1 to 4 above. Then
there exists a neighbourhood Dλ = {f ∈ Yλ, |f − f0| < C} with µ, λ in the admissible parameter set de�ned
as follows:
1 < κ < 2,
1 < α,
1 6 ν 6 µ < λ < s,
λ > max{2κν(2− κ)−1, κ(ν + κµ),
s > max{αν(α− 1)−1, λ+ αν(κ− 1)−1},
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and a mapping Ψ : Dλ → Xµ such that for every f ∈ Dλ there exists a unique ρf ≡ Ψ(f) solution to
G(f, ρf ) = 0 with |ρf − ρ0|ν < C−1|f − f0|λ.
Finally, one has that Ψ is continuous whenever H is.

Our next task is to apply this theorem in the context de�ned above. To this end, we have to choose the
scales of Banach spaces in which we work and check all four hypotheses in that particular case.
Thus, we recast the weighted Sobolev spaces de�ned in Section 2 into the above formalism:

De�nition 3.1.1 For every t ∈ [0,+∞[ and every δ < δ0 we set:
Xt = H4+t

δ (R2)
Yt = H4+t

δ (R2)×H2+t
δ (R2)

Zt = H
3
2 +t

δ (R)
and their respective intersections
X∞ = S(R2)
Y∞ = S(R2)× S(R2)
Z∞ = S(R)

We set: f = (γ, ζ) γ being the function describing the bottom of the domain occupied by the �uid and ζ,
the value of the solution uρ on Γγ , and recall for the sake of completeness the

De�nition 3.1.2 G(f, ρ) = uρ|Σρ .nρ.

3.2 Proof of the main result

In this �nal section, we end the proof of Theorem 1.2. First, let us proceed to check the hypotheses of
Theorem3.1. Given the obvious equality f0 = (γ0, g0) = (0, 0) corresponding to the Poiseuille-Nusselt �ow,
one concludes trivially that G(0, 0) = 0.
Let us now check that Hypothesis 1 is ful�lled: �rst, B0 = {ρ, |ρ|X0

< ε, |f |Y0
< ε}, so that G is well de�ned

from (Y0 × X0) into Z0. In fact, we can invoke the computations performed in Section 2 and conclude

that G(f, ρ) ∈ H
1+t+ 1

2

δ (R) for every t > 0. The other prerequisites for Hypothesis 1 come directly from
Proposition2.1, in particular the fact that M0 can be chosen as a uniformly bounded constant.
Regarding Hypothesis 2, it is nothing else than a Lipchitz estimate for G with respect to the �rst variable:
|G(f, ρ)−G(f ′, ρ′)|0 6M0|f − f ′|0.
In order to prove such an inequality, one has to compare the respective solutions uρ, u

′

ρ corresponding to
di�erent f, f ′ and hence, de�ned on di�erent domains. The key tool is once again the Hanzawa transform
mapping each domain onto the same, unperturbed one. We �rst write for ρ (resp. ρ′) the system satis�ed
by the solution v, q (resp. v′, q′) and form the di�erence, thereby obtaining the following set of equations
similar to those introduced in the proof of Proposition 2.2:

A(ρ, γ)(v − v′, q − q′) = [A(ρ, γ)−A(ρ, γ′)](v′, q′) in Ω0, (3.5)

B(ρ, γ)(v − v′) = [B(ρ, γ)−B(ρ, γ′)]v′ in Ω0, v − v′ = ζ − ζ ′ on Γ0, (3.6)

C(ρ, γ)(v − v′, q − q′).n0 = [C(ρ, γ)− C(ρ, γ′)]v′.n0 on Σ0. (3.7)

The key point here is that v′, q′ remains in a uniformly bounded ball when (γ, g) ∈ B0. One then applies
Taylor formula to the RHS of (3.5) and obtain the bounds required for Hypothesis 2.
We now examine Hypothesis 3: �rst of all, let us notice that (f0, ρ0) ∈ U∞ × X∞ and that we already
established as a general result that G(f, ρ) ∈ Zt if (f, ρ) ∈ Yt×Xt for t ∈ [1,+∞[. The last point to check is
that for every t ∈ [1,+∞[, there exists anMt such that |G(f, ρ)|t 6MtK whenever |f−f0|t < K, |ρ−ρ0|t <
K in (Yt ×Xt)

⋃
B1 (here, we have chosen K < ε).

Such an inequality follows directly from the proof of Hypothesis 2, upon performing similar computations
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with respect to both f and ρ this time. In fact, one can even choose Mt = M0 for all t, a remark that will be
used in a crucial way for the veri�cation of Hypothesis 4. In order to proceed to this veri�cation, we state
and prove the

Proposition 3.2 For every pair (f, ρ) ∈ Y∞ ×X∞ there exists a linear mapping H : Zγ → X0 with γ = 5
2

such that |H(f, ρ)|0 6M0|φ|Zγ .
When (f, ρ) ∈ Y∞ ×X∞, H is continuous from Zt into Xt−γ for every t > 0.
Moreover, the following inequality:
|H(f, ρ)|[G(f, ρ)]|t−γ 6MtK
holds true for every (f, ρ) ∈ (Yt ×Xt)

⋃
B1 with |f − f0|t < K, |ρ− ρ0|t < K.

Finally, H(f, ρ) is an exact inverse to DρG(f, ρ), i.e.: ∀φ ∈ Zt+γ , [DρG(f, ρ)(f, ρ) − Id] = 0

Before proving Proposition 3.2 and showing that it is su�cient to ensure that Hypothesis 4 holds true, let
us now explain the way we shall apply Theorem3.1 to our problem.
(manque page 35 de l'original...)
We now proceed to prove Proposition 3.2. Our goal is to show the existence, for (f, ρ) given in Y∞ ×X∞
and for any F ∈ Ht+ 1

2

δ (R2), of a unique h ∈ Ht− 1
2

δ (R2) such that DρG(f, ρ)h = F .
Recalling that DρG(f, ρ)h = − < V,∇h > +L0(ρ)h+P−1,0h, we want to invoke a result due to the authors:

Theorem 3.3 ([3]) Let V be a smooth real-valued vector �eld in R2, g a smooth real-valued function, and
consider the following problem:

-<V,∇h > +L0(ρ)h+ P−1,0h = f (3.8)

where V = (V1, V2), there exists a non-zero constant vector �eld C such that ‖V − C‖W 1,∞ << 1, L0 is a
bounded operator of order zero with symbol σL0

such that ‖σL0
‖L << 1, and ∇V, σL0

are rapidly decreasing
at in�nity.
We assume furthermore that P−1,0 is a self-adjoint pseudodi�erential operator of order −1 satisfying a
coercivity inequality (P−1,0h, h) > C‖ρ‖

H−
1
2 (R2)

. Its principal symbol is given by σP−1(x, ξ) = m(x)
|ξ| , m(x)

being such that 0 < m 6 m(x) 6M .
Then, for every t > 0 and f ∈ Ht+ 1

2 (R2), there exists a unique solution h ∈ Ht− 1
2 (R2) to (3.3), and the

solution h depends continuously on the data f .

We now check that the assumptions of Theorem 3.3 are satis�ed in the problem we are considering. The
smoothness of V and g is obvious, because they correspond to smooth data (f, ρ). On the other hand,
(V1, V2) is given explictly as in Section2

V

(
U1(1 + |∇ρ|2) + ρxG(ρ)
U2(1 + |∇ρ|2) + ρyG(ρ)

)
,

where (U1, U2) is the solution to (1.1)(1.2) for Ωρ close enough to Ω0. In fact, using results of Section2, in
particular Proposition 2.2, one can show that:

V

(
U1(1 + ε1(x1, x2)
U2(1 + ε2(x1, x2)

)
(3.9)

with ε1, ε2 close to 0. The second condition has to do with the operator L0, which has to be of order 0. This
is a consequence of the computations in Section 2. The principal symbol σL0

of L0 is given by the �rst-order

derivatives of ρ and by
∂Uρ
∂n .n, and therefore ‖σL0

‖∞ << 1. Finally, results concerning the operator P−1,0

have been proven for the particular case P−1,0h = (σ − C)∇h + h, and a perturbation argument will now
give us the desired conclusion for the more general case of P−1,0h = (σ − C)∇h + ∂σ

∂n .n.nh, allowing us to

13



apply Theorem3.3 to obtain the existence of an exact inverse to DρG(f, ρ). In fact, there holds:

Corollary 3.4 Under the assumptions of Theorem3.3, and under the following assumptions: 0 < C0 6

|∂σ∂n .n.n| 6 C1,
∂σ
∂n .n.n < 0, then, for every f ∈ Hs+ 1

2 (R2)

δ , there exists a unique h ∈ Hs− 1
2 (R2)

δ solution to
the equation:

− < V,∇h > +L0h+ P−1h = f (3.10)

Proof: we use, once again, a perturbation argument, and must go back to the proof of the main result in [3].
We shall denote as in [3] A = − < V,∇. > +L0. As for the principal symbol of P−1, it is computed exactly

as in Section2, and we obtain that σ(P−1)(x, ξ) =
∂σ
∂n .n.n

|ξ|
We know already that P−1 is elliptic, as was already the case for P−1,0. However, P−1 is not necessarily
coercive, so we now adapt slightly the proof of Theorem 4.2 in [3] in order to make it work in this particular
case. This modi�cation amounts to rewriting the weak formulation (see the proof of Theorem 4.2 in [3]) and
using a suitably chosen test function of the form Λ(x)h. This easy extension of [3] is left as an exercise to
the reader.
We also state and prove the easy

Corollary 3.5 Under the same set of assumptions as above, there exists δ02 > 0 such that for δ 6 δ02 and

for every f ∈ Hs+ 1
2 (R2)

δ , there exists a unique h ∈ Hs− 1
2 (R2)

δ solution to (3.8).

Proof: one uses the changes of RHS and unknown function f(x) = f0(x) exp(−δ|x|), h(x) = h0(x) exp(−δ|x|)
to obtain a modi�ed equation:

− < V,∇h0 > +L′0h0 + P−1h0 + exp(δ|x|)[P−1, exp(−δ|x|)]h0 = f0 (3.11)

where L′0 = L0− < V,∇(exp(−δ|x|)) > and [., .] stands for the commutator of two operators. Regarding L′0,
it can clearly be considered a small perturbation of L0 for δ small enough. As for [P−1, exp(−δ|x|)], it is an
operator of order −2 that has a small norm when δ is small enough. This proves Corollary??.
At this stage, we have established the existence of an exact inverse H : Zγ → X0 to DρG for γ = 5

2 , H being
a continuous operator from Zt into Xt−γ for every t > 0, when (f, ρ) ∈ Y∞ ×X∞.
There still remains to prove that |H(f, ρ)[G(f, ρ)]|t−γ 6 MtK whenever (f, ρ) ∈ (Yt × Xt)

⋂
B1 with

|f − f0|t < K, |ρ − ρ0|t < K. Now, this is a consequence of the continuity of H: |H(f, ρ)φ| 6 Mt|φ|t+γ
and the estimate on G in Hypothesis 3: |G(f, ρ)φ| 6M0K.
The proof of Theorem1.2 is almost over: we must still prove that Hypothesis 4 can be replaced by Proposi-
tion3.2. In the original proof by Zehnder ([22], p. 118 to 125), the use of an approximate inverse is made after
the smoothing procedure for (f, ρ) - the proof itself relying on a Newton iterative method. Hence, the esti-
mate in Hypothesis 4 |[DρG(f, ρ)(f, ρ)− Id]φ|0 6M0|F (f, ρ|γ |φγ | is in fact only required for the regularized
approximating sequence (fnτ , ρ

n
τ ),τ being the smoothing factor. The result that we prove in Proposition3.2 is

actually stronger. In the original proof by Zehnder, the constant M0 has to be uniform with respect to the
smoothing parameter τ , a condition that becomes irrelevant in our case thanks to the exact invertibility of
DρG(f, ρ) (the interested reader is referred to [22], p. 124-125 for more details). This �nally ends the proof
of Theorem1.2.
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