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Semiclassical 3D Neumann Laplacian with variable magnetic field: a toy model

In this paper we investigate the semiclassical behavior of the lowest eigenvalues of a model Schrödinger operator with variable magnetic field. This work aims at proving an accurate asymptotic expansion for these eigenvalues, the corresponding upper bound being already proved in the general case. The present work also aims at establishing localization estimates for the attached eigenfunctions.

1 Motivation and main results

Motivation

In this paper we are interested in a toy model of Schrödinger operator with variable magnetic field (with Dirichlet and Neumann conditions on the boundary) in the bounded region Ω 0 = {(x, y, z) ∈ R 3 : |x| ≤ x 0 , |y| ≤ y 0 and 0 < z ≤ z 0 }, where x 0 , y 0 , z 0 > 0. We will need the following notation for the part of the boundary carrying the Dirichlet condition:

∂ Dir Ω 0 = {(x, y, z) ∈ Ω 0 : |x| = x 0 or |y| = y 0 or z = z 0 }.
Definition of the operator For h > 0, α ≥ 0 and θ ∈ 0, π 2 , we consider the self-adjoint operator:

L(h, α, θ) = h 2 D 2 y + h 2 D 2 z + (hD x + z cos θ -y sin θ + αz(x 2 + y 2 )) 2 , (1.1) 
with domain:

Dom(L(h, α, θ)) = {ψ ∈ L 2 (Ω 0 ) : L(h, α, θ)ψ ∈ L 2 (Ω 0 ), ψ = 0 on ∂ Dir Ω 0 and ∂ z ψ = 0 on z = 0}.
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We will denote by (λ(h), u h ) an eigenpair (we omit the dependence on α and θ). The vector potential is expressed as:

A(x, y, z) = (V θ (y, z) + αz(x 2 + y 2 ), 0, 0) = (A, 0, 0) where V θ (y, z) = z cos θ -y sin θ.

(1.

2)

The associated magnetic field is given by: ∇ × A = β = (0, cos θ + α(x 2 + y 2 ), sin θ -2αyz).

(1.3)

Constant magnetic field case (α = 0) Let us examine the important case when α = 0:

L(h, 0, θ) = h 2 D 2 y + h 2 D 2 z + (hD x + V θ (y, z)) 2 ,
viewed as an operator on L 2 (R 3 + ). We perform the rescaling:

x = h 1/2 r, y = h 1/2 s, z = h 1/2 t (1.4)
and the operator becomes (after division by h):

H(θ) = D 2 s + D 2 t + (D r + V θ (s, t)) 2 .
Making a Fourier transform in the variable r denoted by F, we get:

FH(θ)F -1 = D 2 s + D 2 t + (τ + V θ (s, t)) 2 .
(1.5)

Then, we use a change of coordinates:

U θ (τ, s, t) = τ , ŝ, t = τ, s - τ sin θ , t (1.6) 
and we obtain:

H Neu (θ) = U θ FH(θ)F -1 U -1 θ = D 2 ŝ + D 2 t + V θ (ŝ, t) 2 .
Notation 1.1 We denote by Q θ the quadratic form associated with H Neu (θ).

The operator H Neu (θ) We can consider H Neu (θ) as an operator acting on L 2 (R 2 + ) ; we denote by H Neu (θ) this realization. The bottom of its spectrum is denoted by σ(θ). In [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] (see the references therein, in particular [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF][START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF]), it is proved that σ is analytic and strictly increasing on 0, π 2 , that σ(0) ∈ (0, 1), σ π 2 = 1 and σ ess (H Neu (θ)) = [1, +∞[. Therefore, σ(θ) is a simple eigenvalue. Notation 1.2 We denote by u θ the positive and L 2 -normalized eigenfunction (which is in the Schwartz class, see [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF]) associated with σ(θ).

Let us also recall that the lower bound of the essential spectrum is related, through the Persson's theorem (see [START_REF] Persson | Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator[END_REF]), to the following estimate:

q Neu θ (χ R u) ≥ (1 -ε(R)) χ R u , ∀u ∈ Dom(q Neu θ ),
where q Neu θ is the quadratic form associated with H Neu (θ), where χ R is a cutoff function away from the ball B(0, R) and ε(R) is tending to zero when R tends to infinity. Moreover, if we consider the Dirichlet realization H Dir (θ), we have:

q Dir θ (u) ≥ u 2 , ∀u ∈ Dom(q Dir θ ). (1.7) 
Let us finally mention that an accurate analysis of the eigenpairs of H Neu (θ) is done in [START_REF] Bonnaillie | Discrete spectrum of a model schrödinger operator on the half-plane with neumann conditions[END_REF] in the regime θ → 0.

Motivations Let us explain why we are led to consider this model.

The reason comes from the theory of superconductivity. As much in 2D as in 3D, the magnetic Laplacian appears in this theory when studying the third critical field H C 3 (which distinguish between normal and superconducting states) after the linearization of the Ginzburg-Landau functional (see for instance [START_REF] Lu | Eigenvalue problems of Ginzburg-Landau operator in bounded domains[END_REF][START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF] and also the book of Fournais and Helffer [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]). It turns out that H C 3 can be related to the lowest eigenvalue of the magnetic Laplacian in the regime h → 0. Many properties of the eigenpairs are investigated when the magnetic field is constant (see [START_REF] Bauman | Stable nucleation for the Ginzburg-Landau system with an applied magnetic field[END_REF][START_REF] Bernoff | Onset of superconductivity in decreasing fields for general domains[END_REF][START_REF] Pino | Boundary concentration for eigenvalue problems related to the onset of superconductivity[END_REF][START_REF] Helffer | Magnetic bottles in connection with superconductivity[END_REF][START_REF] Fournais | Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian[END_REF] for the 2D and [START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF] for the 3D), but less are known when the magnetic field is variable (see [START_REF] Lu | Eigenvalue problems of Ginzburg-Landau operator in bounded domains[END_REF][START_REF] Raymond | Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2[END_REF] for the 2D and [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF][START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF] for the 3D). When the magnetic vanishes, we can refer to [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF][START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF][START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF][START_REF] Helffer | Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom[END_REF][START_REF] Dombrowski | Semiclassical analysis with vanishing magnetic fields[END_REF].

Let us introduce the fundamental invariant in the case of variable magnetic field and our generic assumptions. We let:

β(x, y) = σ(θ(x, y)) β(x, y, 0) ,
where θ(x, y) is the angle of β(x, y, 0) with the boundary z = 0:

β(x, y, 0) sin θ(x, y) = β(x, y, 0) • ν(x, y),
where ν(x, y) is the inward normal at (x, y, 0). It is proved in [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF] that the semiclassical asymptotics of the lowest eigenvalue is:

λ 1 (h) = min(inf z=0 β, inf Ω 0 β )h + o(h).
In this paper (like in [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF]), we are interested in the case when the following generic assumptions are satisfied:

inf z=0 β < inf Ω 0 β (1.8)
β admits a unique and non degenerate minimum.

(1.9)

Under these assumptions, a three terms upper bound is proved for λ 1 (h) in [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF] and the corresponding lower bound, for a general domain, is still an open problem. The aim of this paper is to establish such a lower bound for an example. For α > 0, the toy operator (1.1) is the simplest example of a generic Schrödinger operator with variable magnetic field satisfying Assumptions (1.8) and (1.9). Let us explain in which sense. In the general case studied in [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF] and after using Taylor formulas near (0, 0, 0) at the order 3, we are reduced, in the case of a flat metrics, to an operator in the form:

h 2 D 2 z + (hD y + A (3) y ) 2 + (hD x + A (3) x ) 2 .
It turns out that the terms A

y and the terms of order 2 of A

x are not crucial in order to satisfy the generic assumptions: The most important come from the terms of order 3 in A

(3)

x . Then, we cancel a few more terms to get a diagonal matrix for the Hessian of β. Thus, this model is the one with the less terms and so that the Hessian matrix of β is diagonal. Let us now verify the assumptions. Using the computations of [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF], we have the Taylor expansion:

β(x, y) = σ(θ) + αC(θ)(x 2 + y 2 ) + O(|x| 3 + |y| 3 ).
(1.10) with:

C(θ) = cos θσ(θ) -sin θσ (θ).
Moreover, it is proved in [5, Proposition 5.1] that C(θ) > 0, for θ ∈ 0, π 2 . Thus, Assumption (1.9) is verified if x 0 , y 0 and z 0 are fixed small enough. Using σ(θ) < 1 when θ ∈ 0, π 2 and β(0, 0, 0) = 1, we get Assumption (1.8). Finally, we can briefly compare to what is done in [START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF] in the case of the constant magnetic field. In their paper, the authors establish many localizations properties through Agmon estimates and reduce the general operator to simplest models. By doing this, they refine the localization properties and are led to a normal form involving an harmonic oscillator (see [START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF]Subsection 13.8]). This will be the main philosophy of this paper, even if we already start from a simplest operator.

Remark on the function β Using the explicit expression of the magnetic field, we have:

β(x, y) = βrad (R), R = α(x 2 + y 2 )
and an easy computation gives:

βrad (R) = β rad (R) σ arctan sin θ cos θ + R , with β rad (R) = (cos θ + R) 2 + sin 2 θ.
The computations of [5, Proposition 5.1] imply that βrad is strictly increasing and

∂ R βrad (R = 0) = C(θ) > 0.
Consequently, β admits a unique and non degenerate minimum on R 3 + and tends to infinity far from 0. This is easy to see that:

inf R 3 + β = cos θ.
We deduce that, as long as σ(θ) < cos θ, the generic assumptions of [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF] are satisfied with

Ω 0 = R 3 + .
1.2 Recall and improvement of existing results and statement of the main theorem

Let us recall and improve the main result of [START_REF] Raymond | On the semiclassical 3D Neumann Laplacian with variable magnetic field[END_REF] in our simplified case. We perform the scaling (1.4) and, after division by h, L(h, α, θ) becomes:

L resc (h, α, θ) = D 2 s + D 2 t + (D r + t cos θ -s sin θ + hαt(r 2 + s 2 )
). Using the Fourier transform F (see (1.5)) and the translation U θ (see (1.6)), we have:

U θ FL resc (h, α, θ)F -1 U -1 θ = D 2 ŝ +D 2 t + V θ (ŝ, t) + hα t D τ - D ŝ sin θ 2 + ŝ + τ sin θ 2 2
. This operator will be shortly denoted by L Normal (h) and the corresponding quadratic form q Normal h . We write:

L Normal (h) = H Neu (θ) + hH 1 + h 2 H 2 ,
where:

H 1 = α t D τ - D ŝ sin θ 2 V θ + V θ D τ - D ŝ sin θ 2 + 2V θ ŝ + τ sin θ 2 , H 2 = α 2 t2 D τ - D ŝ sin θ 2 + ŝ + τ sin θ 2 2 ≥ 0.
We look for quasi-eigenpairs in the form:

µ ∼ j≥0 µ j h j and ψ ∼ j≥0 ψ j h j .
We solve the following problem in the sense of formal series:

L Normal (h)ψ ∼ µψ.
Term in h 0 We solve:

H(θ)ψ 0 = µ 0 ψ 0 .
We take: µ 0 = σ(θ) and:

ψ 0 (τ , ŝ, t) = u θ (ŝ, t)f 0 (τ ),
f 0 being to be determined.

Term in h Then, we must solve:

(H(θ) -σ(θ))ψ 1 = (µ 1 -H 1 )ψ 0 .
We apply the Fredholm alternative and we write:

(µ 1 -H 1 )ψ 0 , u θ ŝ, t = 0.
Let us introduce a fundamental operator involved in the asymptotics. We let:

S θ (D τ , τ ) = 2 tV θ u 2 θ dŝd t H harm + 2 sin θ tV θ u 2 θ dŝd t τ + d(θ),
where

H harm = D 2 τ + τ 2 sin 2 θ and d(θ) = sin -2 θ t(D 2 ŝ V θ + V θ D 2 ŝ )u θ , u θ + 2 tŝ 2 V θ u 2 θ dŝd t.
We recall the important fact that (see [24, Formula (2.31)]):

2 tV θ u 2 θ dsdt = C(θ) > 0,
so that S θ (D τ , τ ) can be viewed as the harmonic oscillator up to dilation and translation. We denote ν n (S θ (D τ , τ )) the n-th eigenvalue of S θ (D τ , τ ). The compatibility equation rewrites:

S θ (D τ , τ )f 0 = µ 1 f 0 and we take µ 1 = ν n (S θ (D τ , τ )
) and for f 0 the corresponding L 2 -normalized eigenfunction. Then, we can write the solution ψ 1 in the form:

ψ 1 = ψ ⊥ 1 + f 1 (τ )u θ (ŝ, t)
where ψ ⊥ 1 is the unique solution orthogonal to u θ . We notice that it is in the Schwartz class.

Further terms ("Grushin procedure") We perform a recursion to get the next terms (this is related to the so-called Grushin procedure, see [START_REF] Šin | Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols[END_REF]). We assume that ψ k is determined in the Schwartz class for k = 0, • • • , n -1 and that ψ n is written in the form:

ψ n = ψ ⊥ n + f n (τ )u θ (ŝ, t),
where ψ ⊥ n is determined in the Schwartz class and where f n is to be determined. We also assume that µ k is determined for k = 0, • • • , n. The equation for h n+1 is in the form:

(H(θ) -σ(θ))ψ n+1 = (µ 1 -H 1 )(f n u θ ) + µ n+1 ψ 0 + R n (τ , ŝ, t),
where R n (τ , ŝ, t) is determined and in the Schwartz class. The Fredholm alternative provides:

(S θ (D τ , τ ) -µ 1 )f n = µ n+1 f 0 (τ ) + r n (τ ), with r n = R n , u θ ŝ, t
Applying again the Fredholm alternative, we deduce that µ n+1 = -r n , f 0 τ permits to determine a unique solution f n in the Schwartz class which is orthogonal to f 0 . As a consequence, we can write:

ψ n+1 = ψ ⊥ n+1 + f n+1 (τ )u θ (ŝ, t).
Thus, we have determined (µ j ) j≥0 and (ψ j ) j≥0 . To emphasize the dependence on n, we shall write (µ j,n ) j≥0 and (ψ j,n ) j≥0 . Thanks to the spectral theorem, we deduce:

Theorem 1.
3 For all α > 0, θ ∈ 0, π 2 , there exists a sequence (µ j,n ) j≥0 and there exist positive constants C, h 0 such that for h ∈ (0, h 0 ):

d σ(L(α, θ, h)), h J j=0 µ j,n h j ≤ Ch J+2 and we have µ 0,n = σ(θ), µ 1,n = ν n (S θ (D τ , τ )).
Main result The aim of this paper is to establish the following accurate estimate for λ n (h): Theorem 1.4 For all α > 0, θ ∈ 0, π 2 and n ≥ 1, there exists a sequence (µ j,n ) j≥0 and

ε 0 > 0 s. t. for |x 0 | + |y 0 | + |z 0 | ≤ ε 0 , λ n (h) ∼ h→0 h j≥0 µ j,n h j and we have µ 0,n = σ(θ), µ 1,n = ν n (S θ (D τ , τ )).
Organization of the paper The paper is organized as follows. In Section 2, we recall a first rough lower bound for λ n (h) and provide the corresponding normal Agmon estimates for the eigenfunctions. In particular, we will see that the first eigenfunctions are living in a neighborhood of the boundary of size h 1/2 . In Section 3, we use these rough results to improve the localization of the eigenfunctions with respect to the variables (ŝ, t). In Section 4, we use those localizations estimates to reduce the problem to the study of a normal form (similarly as in [START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF]) involving an harmonic oscillator operating in τ to improve the approximation of the eigenfunctions in order to estimate the spectral gap between the eigenvalues and deduce Theorem 1.4.

First lower bound and localization estimates

In this section, we are concerned by Agmon estimates (with respect to (x, y)) satisfied by an eigenfunction u h associated to λ n (h).

Agmon estimates

We shall prove the following tangential localization: Proposition 2.1 For all δ > 0, there exist C > 0 and h 0 > 0 such that for h ∈ (0, h 0 ):

Ω 0 e δ(x 2 +y 2 )/h 1/4 |u h | 2 dxdydz ≤ C u h 2 , Ω 0 e δ(x 2 +y 2 )/h 1/4 ∇u h 2 dxdydz ≤ Ch -1 u h 2 .
Before starting the proof, let us recall a rough lower bound for λ 1 (h) first obtained in [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF] (see also [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]Theorem 9.1.1]):

Proposition 2.2 There exist C > 0 and h 0 > 0 such that, for h ∈ (0, h 0 ) :

λ n (h) ≥ σ(θ)h -Ch 5/4 .
Combining the upper and lower bounds of λ n (h), this is standard to deduce the following normal Agmon estimates (see [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF]):

Proposition 2.3 There exist δ > 0, C > 0 and h 0 > 0 such that for all h ∈ (0, h 0 ), we have :

Ω 0 e δh -1/2 z (|u h | 2 + h -1 |(ih∇ + A)u h | 2 ) dxdydz ≤ C u h 2 .
Let us now deal with the proof of Proposition 2.1.

Proof of Proposition 2.1 We begin by writing the Agmon identity (see [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF][START_REF] Agmon | Bounds on exponential decay of eigenfunctions of Schrödinger operators[END_REF]):

λ n (h) exp(Φ)u h 2 = q h (exp(Φ)u h ) -h 2 |∇Φ| exp(Φ)u h 2 , (2.1) 
for Φ a Lipschitzian function (depending on h) to be determined. We estimate q h (exp(Φ)u h ) thanks to a localization technique. We use the following partition of unity :

j χ 2 j,h = 1, (2.2) 
j ∇χ j,h 2 ≤ Ch -2ρ , (2.3) 
where the χ j,h are smooth cutoff functions supported in balls of size h ρ . The IMS formula (cf. [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]) provides:

q h (exp(Φ)u h ) ≥ j q h (χ j,h exp(Φ)u h ) -Ch 2-2ρ j χ j,h exp(Φ)u h 2 .
We let: φ j,h = χ j,h exp(Φ)u h . We now perform the approximation by the constant magnetic field case to give a lower bound for q h (φ j,h ). We introduce the linear approximation of A in the ball B j :

A lin j (x, y, z) = A(x j , y j , z j )+2αz j x j (x-x j )+(2αz j y j -sin θ)(y-y j )+(cos θ+α(x 2 j +y 2 j ))(z-z j ).

It satisfies:

|A(x, y, z) -A lin j (x, y, z)| ≤ C(|x -x j | 2 + |y -y j | 2 + |z -z j | 2 ).
Then, we have, with the Cauchy-Schwarz inequality, for all ε > 0 :

q h (φ j,h ) ≥ (1 -ε)( hD y φ j,h 2 + hD z φ j,h 2 + (hD x + A lin j )φ j,h 2 ) -ε -1 Ch 4ρ φ j,h 2 .
For the balls intersecting the boundary, we have:

hD y φ j,h 2 + hD z φ j,h 2 + (hD x + A lin j )φ j,h 2 ≥ β(x j , y j )h φ j,h 2 ≥ h φ j,h 2 σ(θ) (2.4
) and for the other balls:

hD y φ j,h 2 + hD z φ j,h 2 + (hD x +A lin j )φ j,h 2 ≥ β(x j , y j ) h φ j,h 2 ≥ h φ j,h 2 inf Ω 0 β .
(2.5) The optimization of ε provides: ε = h 2ρ-1/2 and the optimization of ρ leads to: ρ = 3 8 . With this choice and (2.1), we get:

j q h (φ j,h ) -Ch 5/4 φ j,h 2 -h 2 φ j,h ∇Φ 2 -λ 1 (h) φ j,h 2 ≤ 0.
We recall the rough upper bound (cf. Theorem 1.3):

λ 1 (h) ≤ σ(θ)h + Ch 2 .
We split the sum into two parts:

j = bnd j + int j .
We choose Φ = δh -1/4 (x 2 + y 2 ), so that, on the one hand, there exists c > 0 (cf. (2.5)) such that:

int j q h (φ j,h ) -Ch 5/4 φ j,h 2 -h 2 φ j,h ∇Φ 2 -λ 1 (h) φ j,h 2 ≥ ch int j φ j,h 2 ≥ 0
and on the other hand (cf. (2.4)):

bnd j q h (φ j,h ) -Ch 5/4 φ j,h 2 -h 2 φ j,h ∇Φ 2 -λ 1 (h) φ j,h 2 ≥ bnd j Ω 0 β(x j , y j )h -σ(θ)h -C(δ)h 5/4 ) |φ j,h | 2 dxdydz.
Therefore, we deduce:

ch int j φ j,h 2 + bnd j Ω 0 β(x j , y j )h -σ(θ)h -C(δ)h 5/4 ) |φ j,h | 2 dxdydz ≤ 0.
By non degeneracy of the minimum of β (see (1.10)), we get the existence of c 1 > 0 and c 2 > 0 such that for all j:

c 2 (x 2 j + y 2 j ) ≥ β(x j , y j ) -σ(θ) ≥ c 1 (x 2 j + y 2 j ).
We now split the sum on the boundary into two parts: the j's such that x 2 j + y 2 j ≥ 2h 1/4 c -1 1 C(δ) and the j's such that:

x 2 j + y 2 j < 2h 1/4 c -1 1 C(δ).
We infer:

c int j Ω 0 |χ j,h exp(Φ)u h | 2 dxdydz + bnd j Ω 0 |χ j,h exp(Φ)u h | 2 dxdydz ≤ C u h 2 .
Corollary 2.4 For all η > 0, we have:

|x|+|y|≥h 1/8-η |x| k |y| l |z| m (|u h | 2 + |D x u h | 2 + |D y u h | 2 + |D z u h | 2 ) dxdydz = O(h ∞ ) u h 2 . z≥h 1/2-η |x| k |y| l |z| m (|u h | 2 + |D x u h | 2 + |D y u h | 2 + |D z u h | 2 ) dxdydz = O(h ∞ ) u h 2 .
Let us consider η > 0 small enough and introduce the cutoff function defined by:

χ h (x, y) = χ 0 h -1/8+η x, h -1/8+η y, h -1/2+η z ,
where χ 0 is a smooth cutoff function being 1 near (0, 0, 0). We can notice, by elliptic regularity, that χ h u h is smooth (as it is supported away from the vertices).

Let us consider N ≥ 1. For n = 1, • • • , N , let us consider u n,h a L 2 -normalized eigenfunction associated with λ n (h) so that u n,h , u m,h = 0 for n = m. We let:

E N (h) = span n=1,••• ,N u n,h .
We notice that Propositions 2.3 and 2.1 hold for the elements of E N (h). As a consequence of Propositions 2.3 and 2.1, we have: Corollary 2.5 We have:

q h (ũ h ) ≤ λ N (h) + O(h ∞ ), with ũh = χ h u h , where u h ∈ E N (h).
Agmon estimates of higher order In the last paragraph we proved Agmon estimates for u h and its first derivatives. We will also need estimates for the higher derivatives. This is the aim of the following proposition (this kind of higher order estimates can be found for instance in [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF]): Proposition 2.6 For all ν ∈ N 3 , there exists δ > 0, γ ≥ 0, h 0 > 0 and C > 0 such that, for h ∈ (0, h 0 ):

e δh -1/2 z |D ν ũh | 2 dxdydz ≤ Ch -γ ũh 2 . e δh -1/4 (x 2 +y 2 ) |D ν ũh | 2 dxdydz ≤ Ch -γ ũh 2 ,
where u h ∈ E N (h).

Proof: For |ν| = 1, this is already proved. Let ν such that |ν| ≥ 1 and assume that the inequality is proved for all multi-indices with length smaller than |ν|. We recall that, when u h is an eigenfunction:

L(h)ũ h = λ n (h)ũ h + [L(h), χ h ]u h .
Let us apply D ν to the equation. We get:

L(h)D ν ũh = λ n (h)D ν ũh + D ν [L(h), χ h ]u h + [L(h), D ν ]ũ h .
It follows, for Φ = δh -1/2 z or Φ = δh -1/4 (x 2 + y 2 ):

L(h)e Φ D ν ũh = λ n (h)e Φ D ν ũh + e Φ D ν [L(h), χ h ]u h + e Φ [L(h), D ν ]ũ h + [L(h), e Φ ]D ν ũh .
Then, we take the scalar product with e Φ D ν ũh . From the recursion assumption and up to choose δ smaller to absorbe polynomials, we deduce the existence of γ 1 > 0 and γ 2 > 0 such that:

[L(h), e Φ ]D ν ũh , e Φ D ν ũh = h 2 ∇Φe Φ D ν ũh 2 ≤ Ch -γ 1 ũh 2 , | e Φ [L(h), D ν ]ũ h , e Φ D ν ũh | ≤ Ch -γ 1 ũh 2 , | e Φ D ν [L(h), χ h ]u h , e Φ D ν ũh | ≤ Ch -γ 1 ũh 2 + Ch γ 2 q h (e Φ D ν ũh ).
We infer:

q h (e Φ D ν ũh ) ≤ Ch -γ 1 ũh 2 .
In particular, we get the control of D t D ν , D s D ν and, up to loose again some negative power of h, we get the control of D r D ν . The extension to u h ∈ E N (h) is then standard.

In particular, we infer:

Corollary 2.7 For all η > 0, we have, for all ν ∈ N 3 :

|x|+|y|≥h 1/8-η |x| k |y| l |z| m |D ν ũh | 2 dxdydz = O(h ∞ ) ũh 2 , z≥h 1/2-η |x| k |y| l |z| m |D ν ũh | 2 dxdydz = O(h ∞ ) ũh 2 ,
where u h ∈ E N (h).

Toward a normal form

For u h ∈ E N (h), we let:

w h (r, s, t) = χ resc h (r, s, t)u resc h (r, s, t) = χ 0 (h 3/8+η r, h 3/8+η s, h η t)u h (h 1/2 r, h 1/2 s, h 1/2 t) (2.6) and v h (τ , ŝ, t) = U θ Fw h .
We consider F N (h) the image of E N (h) by these transformations. We can reformulate Corollary 2.5.

Corollary 2.8

With the previous notation, we have the lower bound, for v h ∈ F N (h):

q Normal h (v h ) ≤ λ resc N (h) + O(h ∞ ),
where

λ resc N (h) = h -1 λ N (h).
We can also notice that, when u h is an eigenfunction associated with λ p (h):

L Normal (h)v h = λ resc p (h)v h + r h , (2.7) 
where the remainder r h is O(h ∞ ) in the sense of Corollary 2.7.

In the following, we aim at proving localization and approximation estimates for v h rather that u h . Moreover, these approximations will allow us to estimate the energy q Normal h (v h ).

Approximation and refined localizations in the phase space

This section aims at estimating momenta of v h with respect to polynoms in the phase space. Before starting the analysis, let us recall the link (cf. (1.6)) between the variables (τ, s, t) and (τ , ŝ, t):

D τ = D τ + 1 sin θ D s , D ŝ = D s , D t = D t . (3.1)
We will use the following obvious remark:

Remark 3.1 We can notice that if φ is supported in supp(χ h ), we have:

q resc h (φ) ≥ (1 -ε)Q θ (φ) -Ch 1/2-6η ε -1 φ 2 .
Optimizing in ε, we have:

q resc h (φ) ≥ (1 -h 1/4-3η )Q θ (φ) -Ch 1/4-3η φ 2 .
Moreover, when the support of φ avoids the boundary, we have:

Q θ (φ) ≥ φ 2 .

Localizations in ŝ and t

In this subsection, many localizations lemmas with respect to ŝ and t are proved.

Estimates with respect to ŝ and t We begin to prove estimates depending only on the variables ŝ and t.

Lemma 3.2 Let N ≥ 1. For all k, n, there exist h 0 > 0 and C(k, n) > 0 such that, for all h ∈ (0, h 0 ):

tk ŝn+1 v h ≤ C(k, n) v h , (3.2) tk D ŝ(ŝ n v h ) ≤ C(k, n) v h (3.3) tk D t(ŝ n v h ) ≤ C(k, n) v h ., (3.4 
)

for v h ∈ F N (h).
Proof: We prove the estimates when v h is the image of an eigenfunction associated to λ p (h) with p = 1, • • • , N .

Case n = 0 Let us analyze the case n = 0. (3.4) follows from the normal Agmon estimates. We have:

q Normal h ( tk v h ) ≤ λ resc p tk v h 2 + | [D 2 t , tk ]w h , tk v h | + O(h ∞ ) v h 2 .
The normal Agmon estimates provide:

| [D 2 t , tk ]v h , tk v h | ≤ C v h 2
and thus:

q Normal h ( tk v h ) ≤ C v h 2 .
We deduce (3.3). We also have:

tk (-ŝ sin θ + t cos θ + R h )v h 2 ≤ C v h 2 .
We use the basic lower bound:

tk (-ŝ sin θ + t cos θ + R h )v h 2 ≥ 1 2 tk ŝ sin θv h 2 -2 ( tk+1 cos θ + tk R h )v h 2 .
Moreover, we have (using the support of χ resc h ):

tk R h v h ≤ Ch(h -3/8-η ) 2 tk+1 v h ≤ Ch(h -3/8-η ) 2 v h ,
the last inequality coming from the normal Agmon estimates. Thus, we get:

tk ŝv h 2 ≤ C v h 2 .
Recursion We apply tk ŝn+1 to (2.7), take the scalar product with t k ŝn+1 v h and it follows:

q Normal h ( tk ŝn+1 v h ) ≤ λ resc p (h) tk ŝn+1 v h 2 + C tk-2 ŝn+1 v h tk ŝn+1 v h + C tk-1 D t ŝn v h tk ŝn+1 v h + C tk D ŝ ŝn w h tk ŝn+1 v h + C tk ŝn-1 v h tk ŝn+1 v h + | tk [ŝ n+1 , (-ŝ sin θ + t cos θ + R h ) 2 ]v h , tk ŝn+1 |, where R h = hα t D τ -(sin θ) -1 D ŝ 2 + ŝ + (sin θ) -1 τ 2 . (3.5) 
We have:

[ŝ n+1 , (-ŝ sin θ + t cos θ + R h ) 2 ] = [ŝ n+1 , R h ](-ŝ sin θ + t cos θ + R h ) + (-ŝ sin θ + t cos θ + R h )[ŝ n+1 , R h ].
Let us analyze the commutator [ŝ n+1 , R h ]. We can write:

[ŝ n+1 , R h ] = αh t[ŝ n+1 , D τ -(sin θ) -1 D ŝ 2 ]
and:

[ D τ -(sin θ) -1 D ŝ 2 , ŝn+1 ] = (sin θ) -2 n(n + 1)ŝ n-1 + 2i(sin θ) -1 (n + 1)(D τ -(sin θ) -1 D ŝ)ŝ n
we infer:

[ŝ n+1 , (-ŝ sin θ + t cos θ + R h ) 2 ] = αh t(sin θ) -2 n(n + 1)ŝ n-1 + 2iαh t(sin θ) -1 (n + 1)(D τ -(sin θ) -1 D ŝ)ŝ n (V θ + R h ) + (V θ + R h ) αh t(sin θ) -2 n(n + 1)ŝ n-1 + 2iαh t(sin θ) -1 (n + 1)(D τ -(sin θ) -1 D ŝ)ŝ n
After having computed a few more commutators, the terms of [ŝ n+1 , (-ŝ sin θ + t cos θ + R h ) 2 ] are in the form:

tl ŝm , h tl (D τ -(sin θ) -1 D ŝ)ŝ m , h 2 tl (D τ -(sin θ) -1 D ŝ) 3 ŝm , h 2 tl (ŝ + (sin θ) -1 τ ) 2 (D τ + (sin θ) -1 D ŝ)ŝ m
with m ≤ n + 1 and l = 0,

Let us examine for instance the term h 2 tl (ŝ + (sin θ) -1 τ ) 2 (D τ + (sin θ) -1 D ŝ)ŝ m . We have, after the inverse Fourier transform and translation:

h 2 tl (ŝ + (sin θ) -1 τ ) 2 (D τ + (sin θ) -1 D ŝ)ŝ m v h ≤ Ch 2 (h -3/8-η ) 3 tl ŝm v h
where we have used the support of χ resc h (see (2.6)). We get:

| tk [ŝ n+1 , (-ŝ sin θ + t cos θ + R h ) 2 ]v h , tk ŝn+1 v h | ≤ C tk ŝn+1 v h n+1 j=0 k+2 l=0 tl ŝj v h .
We deduce by the recursion assumption:

q Normal h ( tk ŝn+1 v h ) ≤ C v h 2 .
We infer that, for all k:

D t( tk ŝn+1 )v h ≤ C v h and D ŝ( tk ŝn+1 )v h ≤ C v h .
Moreover, we also deduce:

(V θ + R h ) tk ŝn+1 v h ≤ C v h ,
from which we find:

tk ŝn+2 v h ≤ C v h .
We will also need a control of the derivatives with respect to ŝ.

Lemma 3.3 For all m, n, k, there exist h 0 > 0 and C(m, n, k) > 0 such that for h ∈ (0, h 0 ):

tk D m+1 ŝ ŝn v h ≤ C(k, m, n) v h (3.6) tk D m ŝ D t ŝn v h ≤ C(k, m, n) v h , (3.7) 
for v h ∈ F N (h).

Proof: For m = 0, this is done in Lemma 3.2.

Let us assume that the assumptions are true for all l ≤ m and all k and n. We apply tk D m+1 ŝ ŝn to (2.7) and take the scalar product with tk D m+1 ŝ ŝn v h . We shall estimate commutators. We get:

| [D 2 t , tk D m+1 ŝ ŝn ]v h , tk D m+1 ŝ ŝn v h | ≤ C tk D tD m+1 ŝ ŝn v h tk-1 D m+1 ŝ ŝn v h + C tk-2 D m+1 ŝ ŝn v h tk D m+1 ŝ ŝn v h ≤ C D tt k D m+1 ŝ ŝn v h tk-1 D m+1 ŝ ŝn v h + C tk-2 D m+1 ŝ ŝn v h tk D m+1 ŝ ŝn v h + C tk-1 D m+1 ŝ ŝn v h 2
and we deduce, with the recursion assumption, for all ε > 0, the existence of C ε > 0 such that:

| [D 2 t , tk D m+1 ŝ ŝn ]v h , tk D m+1 ŝ ŝn v h | ≤ C(k, m, n)εq Normal h ( tk D m+1 ŝ ŝn v h ) + C ε v h 2 .
Moreover, we have in the same way:

| [D 2 ŝ , tk D m+1 ŝ ŝn ]v h , tk D m+1 ŝ ŝn v h | ≤ C(k, m, n)εq Normal h ( tk D m+1 ŝ ŝn v h ) + C ε v h 2 .
Finally, we shall analyze:

[(V θ (ŝ, t) + R h ) 2 , tk D m+1 ŝ ŝn ].
We have:

[(V θ (ŝ, t) + R h ) 2 , D m+1 ŝ ŝn ] = (V θ (ŝ, t) + R h )[(V θ (ŝ, t) + R h ), D m+1 ŝ ŝn ] + [(V θ (ŝ, t) + R h ), D m+1 ŝ ŝn ](V θ (ŝ, t) + R h ) The worst term is h t[(D ŝ -(sin θ) -1 D τ ) 2 , D m+1
ŝ ŝn ] but it can be dealt by using the support of w h (see (2.6) and the proof of Lemma 3.2). We deduce:

|[(V θ (ŝ, t) + R h ) 2 , tk D m+1 ŝ ŝn ]v h , tk D m+1 ŝ ŝn v h | ≤ C(k, m, n) v h 2 .
We infer the existence of C(k, m, n) > 0 such that:

(1 -C(k, m, n)ε)q Normal h ( tk D m+1 ŝ ŝn ) ≤ C(k, m, n) v h 2 .
and the conclusion follows by choosing ε small enough..

In the next paragraph, we establish partial Agmon estimates with respect to ŝ and t. Roughly speaking, we can write the previous lemmas with τ v h and D τ v h instead of v h .

Partial estimates involving τ

We now aim at adding τ and D τ in the previous estimates. For instance, let us begin to prove that: Lemma 3.4 For all k ≥ 0, there exist h 0 > 0 and C(k) > 0 such that, for h ∈ (0, h 0 ):

tk τ v h ≤ C( τ v h + v h ), tk D t τ v h ≤ C( τ v h + v h ),
and tk D ŝ τ v h ≤ C( τ v h + v h ), for v h ∈ F N (h).
Proof: For k = 0, we multiply (2.7) by τ and take the scalar product with τ v h . There is only one commutator to analyze:

[(V θ + R h ) 2 , τ ] = [(V θ + R h ), τ ](V θ + R h ) + (V θ + R h )[(V θ + R h ), τ ]
so that:

[(V θ + R h ) 2 , τ ] = [R h , τ ](V θ + R h ) + (V θ + R h )[R h , τ ].
We deduce, thanks to the support of w h :

| [(V θ + R h ) 2 , τ ]v h , τ v h | ≤ C v h τ v h ≤ C( τ v h 2 + v h 2 )
and we infer:

q Normal h (τ v h ) ≤ C( τ v h 2 + v h 2 ).
We get:

D t τ v h ≤ C( τ v h + v h ) and D ŝ τ v h ≤ C( τ v h + v h ).
Recursion We assume that the property is true for all 0 ≤ l ≤ k. We now multiply (2.7) by tk+1 τ and take the scalar product with tk+1 τ v h . We have:

| [D 2 t , tk+1 τ ]v h , tk+1 τ v h | ≤ C( tk D t τ v h + tk-1 τ v h ) t k+1 τ v h ≤ Cε tk+1 τ v h 2 + C ε ( τ v h 2 + v h 2 ).
We have:

| tk+1 [(V θ + R h ) 2 , τ ]v h , tk+1 τ v h | ≤ Cεq Normal h ( tk+1 τ v h ) + C ε tk+1 τ v h 2 .
We deduce:

(

1 -Cε)q Normal h ( tk+1 τ v h ) ≤ (σ(θ) + Cε) tk+1 τ v h 2 + C τ v h 2 + C v h 2 
It remains to apply Remark 3.1 and to use σ(θ) < 1 to deduce the control of tk+1 τ v h and thus the one of tk+1 D t and tk+1 D ŝ.

As an easy consequence of the analysis of Lemma 3.4, we have:

Approximation of v h

Let us state the approximation result of this subsection: Proposition 3.9 There exists C > 0 and h 0 > 0 such that, if 0 < h ≤ h 0 and v h ∈ F N (h):

v h -Πv h + V θ v h -V θ Πv h + ∇ ŝ,t (v h -Πv h ) ≤ Ch 1/4-2η v h ,
where Π is the projection on u θ defined by: Πψ(τ , ŝ, t) = ψ, u θ ŝ, tu θ (ŝ, t).

In particular, Π :

F N (h) → Π(F N (h)
) is an isomorphism (sometimes called Feshbach-Grushin projection).

Proof: As usual we start to prove the inequality when v h is the image of an eigenfunction associated with λ p (h), the extension to v h ∈ F N (h) being standard. We want to estimate

(H Neu (θ) -σ(θ))v h .
We have:

(H Neu (θ) -σ(θ))v h ≤ (H Neu (θ) -λ p (h))v h + Ch 1/4 v h .
With the definition of v h and with Corollary 2.7, we have:

(H Neu (θ) -λ p (h))v h ≤ h H 1 v h + h 2 H 2 v h + O(h ∞ ) v h .
Then, we can write:

H 1 v h ≤ C tV θ D τ - D ŝ sin θ 2 v h +C t D τ - D ŝ sin θ 2 V θ v h +C tV θ ŝ + τ sin θ 2 v h
With Lemma 3.2 and the support of u h , we infer:

h H 1 v h ≤ Ch 1/4-2η v h .
In the same way, we get:

h 2 H 2 v h ≤ Ch 1/2-4η v h .
We deduce:

(H Neu (θ) -σ(θ))v h ≤ Ch 1/4-2η v h .

Let us write

v h = v ⊥ h + Πv h We have: (H Neu (θ) -σ(θ))v ⊥ h ≤ Ch 1/4-2η v h .
The resolvent, valued in the form domain, being bounded, the result follows.

Harmonic oscillator and last refinements

In this section, we prove Theorem 1.4. In order to do that, we first prove a localization with respect to τ and then use it to improve the approximation of Proposition 3.9.

Control of v h with respect to τ

This subsection is devoted to the reduction to a model operator involving an harmonic oscillator.

Proposition 4.1 There exist h 0 > 0 and C > 0 such that for all C 0 > 0 and h ∈ (0, h 0 ):

q h (v h ) ≥ (1 -C 0 h) D tv h 2 + D ŝv h 2 + V θ (ŝ, t) + αh tH harm v h 2 - C C 0 h H harm v h , v h -Ch v h 2 , for v h ∈ F N (h). Proof: Let us consider q h (v h ) = D tv h 2 + D ŝv h 2 + V θ (ŝ, t) + αh t {H harm + L(τ , D τ , ŝ, D ŝ)} v h 2 .
where L(τ , D τ , ŝ, D ŝ) = (sin θ) -2 (-2 sin θD ŝD τ + 2 sin θŝτ + D 2 ŝ + ŝ2 ). For all ε > 0, we have:

q h (v h ) ≥ (1 -ε) D tv h 2 + D ŝv h 2 + V θ (ŝ, t) + αh tH harm v h 2 -ε -1 α 2 h 2 tL(τ , D τ , ŝ, D ŝ)v h 2 
We take ε = C 0 h. We apply Lemmas 3.3, 3.7 and 3.8 to get:

tL(τ , D τ , ŝ, D ŝ)v h 2 ≤ C( D τ v h 2 + τ v h 2 + v h 2 ).
A model operator From the last proposition, we are led to study the model operator:

M h = D 2 ŝ + D 2 t + (V θ (ŝ, t) + αh tH harm ) 2 .
We can write M h as a direct sum:

M h = n≥1 M n h ,
Then, we get:

hH 1 D τ v h ≤ Ch 1/4-2η v h and: h 2 H 2 D τ v h ≤ Ch 1/2-4η v h .
We deduce:

(H Neu (θ) -σ(θ))D τ v h ≤ Ch 1/4-η v h .
The conclusion is the same as for the proof of Proposition 3.9.

Control with respect to τ The analysis for τ can be done exactly in the same way.

Conclusion: proof of Theorem 1.4 We recall that: 

q Normal h (v h ) = D tv h 2 + D ŝv h 2 + V θ (ŝ,
tV θ (ŝ, t)D τ v h , D τ v h = tD τ v h , V θ D τ v h .
We have:

tD τ v h ≤ C v h
and thus, with Proposition 4.3:

tD τ v h , V θ D τ v h = tD τ v h , V θ ΠD τ v h + o(1) v h 2 .
We can write:

tV θ ΠD τ v h ≤ C v h
and it follows:

tD τ v h , V θ ΠD τ v h = ΠD τ v h , tV θ ΠD τ v h + o(1) v h 2 .
We deduce that:

tV θ (ŝ, t)D τ v h , D τ v h = tV θ (ŝ, t)D τ Πv h D τ Πv h + o(1) v h 2 .
Let us consider: tV θ (ŝ, t)τ v h , τ v h = tτ v h , V θ τ v h .

In order to treat this term, we use:

tτ v h ≤ C v h .
Approximations of the other terms Another term we should approximate is:

tV θ (ŝ, t)D ŝv h , D τ v h = tD ŝv h , V θ (ŝ, t)D τ v h .

We can notice that: tD ŝv h ≤ C v h so that:

tD ŝv h , V θ (ŝ, t)D τ v h = tD ŝv h , V θ (ŝ, t)ΠD τ v h + o(1) v h 2 .
We write: tD ŝv h , V θ (ŝ, t)ΠD τ v h = D ŝv h , tV θ (ŝ, t)ΠD τ v h and use: tV θ (ŝ, t)ΠD τ v h ≤ C v h to find:

D ŝv h , tV θ (ŝ, t)ΠD τ v h = D ŝΠv h , tV θ (ŝ, t)ΠD τ v h + o(1) v h 2 .
In the same way, we find:

tŝv h , V θ τ v h = tŝΠv h , V θ τ Πv h + o(1) v h 2 , tŝ 2 v h , V θ v h = tŝ 2 Πv h , V θ Πv h + o(1) v h 2 , tD 2 ŝ v h , V θ v h = tD 2 ŝ Πv h , V θ Πv h + o(1) v h 2 .
We infer:

q Normal h (v h ) ≥ σ(θ) v h 2
+ αh 2 tV θ (ŝ, t)H harm + tV θ L(τ , D τ , ŝ, D ŝ) + tL(τ , D τ , ŝ, D ŝ)V θ (ŝ, t)Πv h , Πv h + o(h) v h 2 .

This implies:

q Normal h (v h ) ≥ σ(θ) v h 2 + αh S θ (D τ , τ )φ h , φ h τ + o(h) v h 2 ,
where φ h = v h , u θ ŝ, t and v h ∈ F N (h). We infer:

h -1 (λ N (h) -σ(θ) + o(h)) v h 2 ≥ α S θ (D τ , τ )φ h , φ h τ .
With Proposition 3.9 and the min-max principle, we deduce that:

λ N (h) ≥ σ(θ) + αhν N (S θ (D τ , τ )) + o(h).

This provides the spectral gap between the lowest eigenvalues. Jointly with Theorem 1.3, we deduce Theorem 1.4.

  t) + αh t {H harm + L(τ , D τ , ŝ, D ŝ)} v hIt remains to approximate v h by Πv h modulo a lower order term.Approximation of the terms involving H harm Let us examine first:

	2
	so that we get:
	q Normal

h (v h ) ≥ H(θ)v h , v h + αh 2 tV θ (ŝ, t)H harm + tV θ L(τ , D τ , ŝ, D ŝ) + tL(τ , D τ , ŝ, D ŝ)V θ (ŝ, t)v h , v h
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We can now prove the following lemma: Lemma 3.6 For all k, n, there exist h 0 > 0 and C(k, n) > 0 such that, for all h ∈ (0, h 0 ):

)

Proof: The proof is based on a recursion with respect to n. For n = 0, this is a consequence of Lemmas 3.4 and 3.5. We refer to the proof of Lemma 3.2. The only difference appears in the computation of the commutator

] provides an additional term in ŝn+1 but this one is controlled by Lemma 3.2.

From this lemma, we deduce a stronger control with respect to the derivative with respect to ŝ: Lemma 3.7 For all m, n, k, there exist h 0 > 0 and C(m, n, k) > 0 such that for h ∈ (0, h 0 ):

)

Proof: The proof can be done by recursion on m. The case m = 0 comes from the previous lemma. Then, the recursion is the same as for the proof of Lemma 3.3 and uses Lemma 3.3 to control the additional commutators.

By the same arguments (symmetry between τ and D τ ), we have: Lemma 3.8 For all m, n, k, there exist h 0 > 0 and C(m, n, k) > 0 such that for h ∈ (0, h 0 ):

for v h ∈ F N (h).

In the next subsection, we prove that v h behaves like u θ (ŝ, t) with respect to ŝ and t.

with

, so that, we shall analyze:

From [5, Proposition 5.1], we deduce the existence of c > 0 such that, for all γ ≥ 0:

Taking C 0 large enough in Proposition 4.1, we deduce the proposition: Proposition 4.2 There exist C > 0 and h 0 > 0 such that:

and:

Refined approximation of v h

The control of v h with respect to τ provided by Proposition 4.2 permits to improve the approximation of v h .

Proposition 4.3 There exist C > 0, h 0 > 0 and γ > 0 such that, if h ∈ (0, h 0 ):

Proof:

Control with respect to D τ Let us apply D τ to (2.7). We have the existence of γ > 0 such that:

We can write: