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Semiclassical 3D Neumann Laplacian with variable
magnetic field : a Toy Model

Nicolas Raymond

October 24, 2011

Abstract

In this paper we investigate the semiclassical behavior of the lowest eigenvalues
of a model Schrödinger operator with variable magnetic field. This work aims at
proving an accurate lower bound for these eigenvalues, the corresponding upper bound
being already proved in the general case. The present work also aims at establishing
localization estimates for the attached eigenfunctions.

1 Motivation and main results

1.1 Motivation

In this paper we are interested in a toy model of Schrödinger operator with variable mag-
netic field (with Dirichlet and Neumann conditions on the boundary) in the bounded region

Ω0 = {(x, y, z) ∈ R3 : |x| ≤ x0, |y| ≤ y0 and 0 < z ≤ z0},

where x0, y0, z0 > 0. We will need the following notation for the part of the boundary
carrying the Dirichlet condition:

∂DirΩ0 = {(x, y, z) ∈ Ω0 : |x| = x0 or |y| = y0 or z = z0}.

Definition of the operator For h > 0, α ≥ 0 and θ ∈
(
0, π

2

)
, we consider the self-adjoint

operator:

L(h, α, θ) = h2D2
y + h2D2

z + (hDx + z cos θ − y sin θ + αz(x2 + y2))2, (1.1)

with domain:

Dom(L(h, α, θ)) = {ψ ∈ L2(Ω0) : L(h, α, θ)ψ ∈ L2(Ω0),

ψ = 0 on ∂DirΩ0 and ∂zψ = 0 on z = 0}.
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We will denote by (λ(h), uh) an eigenpair (we omit the dependence on α and θ). The
vector potential is expressed as:

A(x, y, z) = (Vθ(y, z) + αz(x2 + y2), 0, 0)

where
Vθ(y, z) = z cos θ − y sin θ. (1.2)

The associated magnetic field is given by:

∇× A = β = (0, cos θ + α(x2 + y2), sin θ − 2αyz). (1.3)

Constant magnetic field case (α = 0) Let us examine the important case when α = 0:

L(h, 0, θ) = h2D2
y + h2D2

z + (hDx + Vθ(y, z))
2,

viewed as an operator on L2(R3
+). We perform the rescaling:

x = h1/2r, y = h1/2s, z = h1/2t (1.4)

and the operator becomes (after division by h):

H(θ) = D2
s +D2

t + (Dr + Vθ(s, t))
2.

Making a Fourier transform in the variable r denoted by F , we get:

FH(θ)F−1 = D2
s +D2

t + (τ + Vθ(s, t))
2. (1.5)

Then, we use a change of coordinates:

Uθ(τ, s, t) =
(
τ̂ , ŝ, t̂

)
=
(
τ, s− τ

sin θ
, t
)

(1.6)

and we obtain:

HNeu(θ) = UθFH(θ)F−1U−1
θ = D2

ŝ +D2
t̂ + Vθ(ŝ, t̂)

2.

Notation 1.1 We denote by Qθ the quadratic form associated withHNeu(θ).

The operator HNeu(θ) We can consider HNeu(θ) as an operator acting on L2(R2
+) ; we

denote the realization HNeu(θ). The bottom of its spectrum is denoted by σ(θ). In [9] (see
the references therein, in particular [12, 15]), it is proved that σ is analytic and strictly in-
creasing on

]
0, π

2

[
, that σ(0) ∈ (0, 1), σ

(
π
2

)
= 1 and σess(H

Neu(θ)) = [1,+∞[. Therefore,
σ(θ) is a simple eigenvalue.
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Notation 1.2 We denote by uθ the positive and L2-normalized eigenfunction (which is in
the Schwartz class, see [18]) associated with σ(θ).

Let us also recall that the lower bound of the essential spectrum is related, through the
Persson’s theorem (see [16]), to the following estimate:

qNeu
θ (χRu) ≥ (1− ε(R))‖χRu‖, ∀u ∈ Dom(qNeu

θ ),

where qNeu
θ is the quadratic form associated with HNeu(θ), where χR is a cutoff function

away from the ballB(0, R) and ε(R) is tending to zero whenR tends to infinity. Moreover,
if we consider the Dirichlet realization HDir(θ), we have:

qDir
θ (u) ≥ ‖u‖2, ∀u ∈ Dom(qDir

θ ). (1.7)

Let us finally mention that an accurate analysis of the eigenpairs of HNeu(θ) is done in [5]
in the regime θ → 0.

Motivations Let us explain why we are led to consider this model.

The reason comes from the theory of superconductivity. As much in 2D as in 3D,
the magnetic Laplacian appears in this theory when studying the third critical field HC3

(which distinguish between normal and superconducting states) after the linearization of
the Ginzburg-Landau functional (see for instance [14, 15] and also the book of Fournais and
Helffer [9]). It turns out that HC3 can be related to the lowest eigenvalue of the magnetic
Laplacian in the regime h → 0. Many properties of the eigenpairs are investigated when
the magnetic field is constant (see [3, 4, 7, 11, 8] for the 2D and [13] for the 3D), but less
are known when the magnetic field is variable (see [14, 17] for the 2D and [15, 18] for the
3D).

Let us introduce the fundamental invariant in the case of variable magnetic field and
our generic assumptions. We let:

β̂(x, y) = σ(θ(x, y))‖β(x, y, 0)‖,

where θ(x, y) is the angle of β(x, y, 0) with the boundary z = 0:

‖β(x, y, 0)‖ sin θ(x, y) = β(x, y, 0) · ν(x, y),

where ν(x, y) is the inward normal at (x, y, 0). It is proved in [15] that the semiclassical
asymptotics of the lowest eigenvalue is:

λ1(h) = min(inf
z=0

β̂, inf
Ω0

‖β‖)h+ o(h).

In this paper (like in [18]), we are interested in the case when the following generic as-
sumptions are satisfied:

inf
z=0

β̂ < inf
Ω0

‖β‖ (1.8)
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β̂ admits a unique and non degenerate minimum. (1.9)

Under these assumptions, a three terms upper bound is proved for λ1(h) in [18] and the
corresponding lower bound, for a general domain, is still an open problem. The aim of
this paper is to establish such a lower bound for an example. For α > 0, the toy operator
(1.1) is the simplest example of a generic Schrödinger operator with variable magnetic field
satisfying Assumptions (1.8) and (1.9). Let us explain in which sense. In the general case
studied in [18] and after using Taylor formulas near (0, 0, 0) at the order 3, we are reduced,
in the case of a flat metrics, to an operator in the form:

h2D2
z + (hDy + A(3)

y )2 + (hDx + A(3)
x )2.

It turns out that the terms A(3)
y and the terms of order 2 of A(3)

x are not crucial in order
to satisfy the generic assumptions: the most important come from the terms of order 3 in
A

(3)
x . Then, we cancel a few more terms to get a diagonal matrix for the Hessian of β̂. Thus,

this model is the one with the less terms and so that the Hessian matrix of β̂ is diagonal.
Let us now verify the assumptions. Using the computations of [18], we have the Taylor
expansion:

β̂(x, y) = σ(θ) + αC(θ)(x2 + y2) +O(|x|3 + |y|3). (1.10)

with:
C(θ) = cos θσ(θ)− sin θσ′(θ).

Moreover, it is proved in [5, Proposition 5.1] that C(θ) > 0, for θ ∈
(
0, π

2

)
. Thus, As-

sumption (1.9) is verified if x0, y0 and z0 are fixed small enough. Using σ(θ) < 1 when
θ ∈

(
0, π

2

)
and ‖β(0, 0, 0)‖ = 1, we get Assumption (1.8).

Finally, we can briefly compare to what is done in [13] in the case of the constant
magnetic field. In their paper, the authors establish many localizations properties through
Agmon estimates and reduce the general operator to simplest models. By doing this, they
refine the localization properties and are led to a normal form involving an harmonic os-
cillator (see [13, Subsection 13.8]). This will be the main philosophy of this paper, even if
we already start from a simplest operator.

Remark on the function β̂ Using the explicit expression of the magnetic field, we have:

β̂(x, y) = β̂rad(R), R = α(x2 + y2)

and an easy computation gives:

β̂rad(R) = ‖βrad(R)‖σ
(

arctan

(
sin θ

cos θ +R

))
,

with
‖βrad(R)‖ =

√
(cos θ +R)2 + sin2 θ.
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The computations of [5, Proposition 5.1] imply that β̂rad is strictly increasing and

∂Rβ̂rad(R = 0) = C(θ) > 0.

Consequently, β̂ admits a unique and non degenerate minimum on R3
+ and tends to infinity

far from 0. This is easy to see that:

inf
R3

+

‖β‖ = cos θ.

We deduce that, as long as σ(θ) < cos θ, the generic assumptions of [18] are satisfied with
Ω0 = R3

+.

1.2 Improvement of [18] and statement of the main result

Let us recall and improve the main result of [18] in our simplified case. We perform the
scaling (1.4) and, after division by h, L(h, α, θ) becomes:

Lresc(h, α, θ) = D2
s +D2

t + (Dr + t cos θ − s sin θ + hαt(r2 + s2)).

Using the Fourier transform F (see (1.5)) and the translation Uθ (see (1.6)), we have:

UθFLresc(h, α, θ)F−1U−1
θ = D2

ŝ+D
2
t̂+

(
Vθ(ŝ, t̂) + hαt̂

((
Dτ̂ −

Dŝ

sin θ

)2

+

(
ŝ+

τ̂

sin θ

)2
))2

.

This operator will be shortly denoted by LNormal(h) and the corresponding quadratic form
qNormal
h . We write:

LNormal(h) = HNeu(θ) + hH1 + h2H2,

where:

H1 = αt̂

{(
Dτ̂ −

Dŝ

sin θ

)2

Vθ + Vθ

(
Dτ̂ −

Dŝ

sin θ

)2

+ 2Vθ

(
ŝ+

τ̂

sin θ

)2
}
,

H2 = α2t̂2

{(
Dτ̂ −

Dŝ

sin θ

)2

+
(
ŝ+

τ

sin θ

)2
}2

≥ 0.

We look for quasi-eigenpairs in the form:

µ ∼
∑
j≥0

µjh
j

and
ψ ∼

∑
j≥0

ψjh
j.

We solve the following problem in the sense of formal series:

LNormal(h)ψ ∼ µψ.
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Term in h0 We solve:
H(θ)ψ0 = µ0ψ0.

We take: µ0 = σ(θ) and:
ψ0(τ̂ , ŝ, t̂) = uθ(ŝ, t̂)f0(τ̂),

f0 being to be determined.

Term in h Then, we must solve:

(H(θ)− σ(θ))ψ1 = (µ1 −H1)ψ0.

We apply the Fredholm alternative and we write:

〈(µ1 −H1)ψ0, uθ〉ŝ,t̂ = 0.

Let us introduce a fundamental operator involved in the asymptotics. We let:

Sθ(Dτ̂ , τ̂) =

(
2

∫
t̂Vθu

2
θ dŝdt̂

)
Hharm +

(
2

sin θ

∫
t̂Vθu

2
θ dŝdt̂

)
τ̂ + d(θ),

where

Hharm = D2
τ̂ +

τ̂ 2

sin2 θ

and
d(θ) = sin−2 θ〈t̂(D2

ŝVθ + VθD
2
ŝ)uθ, uθ〉+ 2

∫
t̂ŝ2Vθu

2
θ dŝdt̂.

We recall the important fact that (see [18, Formula (2.31)]):

2

∫
tVθu

2
θ dsdt = C(θ) > 0,

so that Sθ(Dτ̂ , τ̂) can be viewed as the harmonic oscillator up to dilation and translations.
We denote νn(Sθ(Dτ̂ , τ̂)) the n-th eigenvalue of Sθ(Dτ̂ , τ̂). The compatibility equation
rewrites:

Sθ(Dτ̂ , τ̂)f0 = µ1f0

and we take µ1 = νn(Sθ(Dτ̂ , τ̂)) and for f0 the corresponding L2-normalized eigenfunc-
tion. Then, we can write the solution ψ1 in the form:

ψ1 = ψ⊥1 + f1(τ̂)uθ(ŝ, t̂)

where ψ⊥1 is the unique solution orthogonal to uθ. We notice that it is in the Schwarz class.
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Further terms We perform a recursion to get the next terms. We assume that ψk is
determined in the Schwarz class for k = 0, · · · , n− 1 and that ψn is written in the form:

ψn = ψ⊥n + fn(τ̂)uθ(ŝ, t̂),

where ψ⊥n is determined in the Schwarz class and where fn is to be determined. We also
assume that µk is determined for k = 0, · · · , n. The equation for hn+1 is in the form:

(H(θ)− σ(θ))ψn+1 = (µ1 −H1)(fnuθ) + µn+1ψ0 +Rn(τ̂ , ŝ, t̂),

where Rn(τ̂ , ŝ, t̂) is determined and in the Schwarz class. The Fredholm alternative pro-
vides:

(Sθ(Dτ̂ , τ̂)− µ1)fn = µn+1f0(τ̂) + rn(τ̂), with rn = 〈Rn, uθ〉ŝ,t̂
Applying again the Fredholm alternative, we deduce that µn+1 = −〈rn, f0〉τ̂ permits to
determine a unique solution fn in the Schwarz class which is orthogonal to f0. As a con-
sequence, we can write:

ψn+1 = ψ⊥n+1 + fn+1(τ̂)uθ(ŝ, t̂).

Thus, we have determined (µj)j≥0 and (ψj)j≥0. To emphasize the dependence on n, we
shall write (µj,n)j≥0 and (ψj,n)j≥0. Thanks to the spectral theorem, we deduce:

Theorem 1.3 For all α > 0, θ ∈
(
0, π

2

)
, there exists a sequence (µj,n)j≥0 and there exist

positive constants C, h0 such that for h ∈ (0, h0):

d

(
σ(L(α, θ, h)), h

J∑
j=0

µj,nh
j

)
≤ ChJ+2

and we have µ0,n = σ(θ), µ1,n = νn(Sθ(Dτ̂ , τ̂)).

Main result The aim of this paper is to establish the following accurate estimate for
λn(h):

Theorem 1.4 For all α > 0, θ ∈
(
0, π

2

)
, there exists a sequence (µj,n)j≥0 and ε0 > 0 s. t.

for |x0|+ |y0|+ |z0| ≤ ε0,
λn(h) ∼ h

∑
j≥0

µj,nh
j

and we have µ0,n = σ(θ), µ1,n = νn(Sθ(Dτ̂ , τ̂)).

Organization of the paper The paper is organized as follows. In Section 2, we recall a
first rough lower bound for λn(h) and provide the corresponding normal Agmon estimates
for the eigenfunctions. In particular, we will see that the first eigenfunctions are living in
a neighborhood of the boundary of size h1/2. In Section 3, we use these rough results to
improve the localization of the eigenfunctions with respect to the variables (ŝ, t̂). In Section
4, we use those localizations estimates to reduce the problem to the study of a normal
form (similarly as in [13]) involving an harmonic oscillator operating in τ̂ to improve the
approximation of the eigenfunctions and deduce Theorem 1.4.
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2 First lower bound and localization estimates

In this section, we are concerned by Agmon estimates (with respect to (x, y)) satisfied by
an eigenfunction uh associated to λn(h).

2.1 Agmon estimates

We shall prove the following tangential localization:

Proposition 2.1 For all δ > 0, there exist C > 0 and h0 > 0 such that for h ∈ (0, h0):∫
Ω0

eδ(x
2+y2)/h1/4|uh|2 dxdydz ≤ C‖uh‖2,∫

Ω0

eδ(x
2+y2)/h1/4‖∇uh‖2 dxdydz ≤ Ch−1‖uh‖2.

Before starting the proof, let us recall a rough lower bound for λ1(h) first obtained in [15]
(see also [9, Theorem 9.1.1]):

Proposition 2.2 There exist C > 0 and h0 > 0 such that, for h ∈ (0, h0) :

λn(h) ≥ σ(θ)h− Ch5/4.

Combining the upper and lower bounds of λn(h), this is standard to deduce the following
normal Agmon estimates (see [12]):

Proposition 2.3 There exist δ > 0, C > 0 and h0 > 0 such that for all h ∈ (0, h0), we
have : ∫

Ω0

eδh
−1/2z(|uh|2 + h−1|(ih∇+ A)uh|2) dxdydz ≤ C‖uh‖2.

Let us now deal with the proof of Proposition 2.1.

Proof of Proposition 2.1 We begin by writing the Agmon identity (see [1, 2]):

λn(h)‖ exp(Φ)uh‖2 = qh(exp(Φ)uh)− h2‖|∇Φ| exp(Φ)uh‖2, (2.1)

for Φ a Lipschitzian function (depending on h) to be determined. We estimate qh(exp(Φ)uh)
thanks to a localization technique. We use the following partition of unity :∑

j

χ2
j,h = 1, (2.2)∑

j

‖∇χj,h‖2 ≤ Ch−2ρ, (2.3)
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where the χj,h are smooth cutoff functions supported in balls of size hρ. The IMS formula
(cf. [6]) provides:

qh(exp(Φ)uh) ≥
∑
j

qh(χj,h exp(Φ)uh)− Ch2−2ρ
∑
j

‖χj,h exp(Φ)uh‖2.

We let: φj,h = χj,h exp(Φ)uh. We now perform the approximation by the constant mag-
netic field case to give a lower bound for qh(φj,h). We introduce the linear approximation
of A in the ball Bj:

Alin
j (x, y, z) = A(xj, yj, zj)+2αzjxj(x−xj)+(2αzjyj−sin θ)(y−yj)+(cos θ+α(x2

j+y
2
j ))(z−zj).

It satisfies:

|A(x, y, z)− Alin
j (x, y, z)| ≤ C(|x− xj|2 + |y − yj|2 + |z − zj|2).

Then, we have, with the Cauchy-Schwarz inequality, for all ε > 0 :

qh(φj,h) ≥ (1− ε)(‖hDyφj,h‖2 + ‖hDzφj,h‖2 + ‖(hDx + Alin
j )φj,h‖2)− ε−1Ch4ρ‖φj,h‖2.

For the balls intersecting the boundary, we have:

‖hDyφj,h‖2 + ‖hDzφj,h‖2 + ‖(hDx + Alin
j )φj,h‖2 ≥ β̂(xj, yj)h‖φj,h‖2 ≥ h‖φj,h‖2σ(θ)

(2.4)
and for the other balls:

‖hDyφj,h‖2+‖hDzφj,h‖2+‖(hDx+A
lin
j )φj,h‖2 ≥ ‖β(xj, yj)‖h‖φj,h‖2 ≥ h‖φj,h‖2 inf

Ω0

‖β‖.
(2.5)

The optimization of ε provides: ε = h2ρ−1/2 and the optimization of ρ leads to: ρ = 3
8
.

With this choice and (2.1), we get:∑
j

(
qh(φj,h)− Ch5/4‖φj,h‖2 − h2‖φj,h∇Φ‖2 − λ1(h)‖φj,h‖2

)
≤ 0.

We recall the rough upper bound (cf. Theorem 1.3):

λ1(h) ≤ σ(θ)h+ Ch2.

We split the sum into two parts:

∑
j

=
bnd∑
j

+
int∑
j

.

We choose Φ = δh−1/4(x2 + y2), so that, on the one hand, there exists c > 0 (cf. (2.5))
such that:

int∑
j

(
qh(φj,h)− Ch5/4‖φj,h‖2 − h2‖φj,h∇Φ‖2 − λ1(h)‖φj,h‖2

)
≥ ch

int∑
j

‖φj,h‖2 ≥ 0
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and on the other hand (cf. (2.4)):
bnd∑
j

(
qh(φj,h)− Ch5/4‖φj,h‖2 − h2‖φj,h∇Φ‖2 − λ1(h)‖φj,h‖2

)
≥

bnd∑
j

∫
Ω0

(
β̂(xj, yj)h− σ(θ)h− C(δ)h5/4)

)
|φj,h|2 dxdydz.

Therefore, we deduce:

ch

int∑
j

‖φj,h‖2 +
bnd∑
j

∫
Ω0

(
β̂(xj, yj)h− σ(θ)h− C(δ)h5/4)

)
|φj,h|2 dxdydz ≤ 0.

By non degeneracy of the minimum of β̂ (see (1.10)), we get the existence of c1 > 0 and
c2 > 0 such that for all j:

c2(x2
j + y2

j ) ≥ β̂(xj, yj)− σ(θ) ≥ c1(x2
j + y2

j ).

We now split the sum on the boundary into two parts: the j’s such that x2
j + y2

j ≥ 2h1/4c−1
1 C(δ)

and the j’s such that: x2
j + y2

j < 2h1/4c−1
1 C(δ). We infer:

c
int∑
j

∫
Ω0

|χj,h exp(Φ)uh|2 dxdydz +
bnd∑
j

∫
Ω0

|χj,h exp(Φ)uh|2 dxdydz ≤ C‖uh‖2.

Corollary 2.4 For all η > 0, we have:∫
|x|+|y|≥h1/8−η

|x|k|y|l|z|m(|uh|2 + |Dxuh|2 + |Dyuh|2 + |Dzuh|2) dxdydz = O(h∞)‖uh‖2.∫
z≥h1/2−η

|x|k|y|l|z|m(|uh|2 + |Dxuh|2 + |Dyuh|2 + |Dzuh|2) dxdydz = O(h∞)‖uh‖2.

Let us consider η > 0 small enough and introduce the cutoff function defined by:

χh(x, y) = χ0

(
h−1/8+ηx, h−1/8+ηy, h−1/2+ηz

)
,

where χ0 is a smooth cutoff function being 1 near (0, 0, 0). We can notice, by elliptic
regularity, that χhuh is smooth (as it is supported away from the vertices).

Let us consider N ≥ 1. For n = 1, · · · , N , let us consider un,h a L2-normalized
eigenfunction associated with λn(h) so that 〈un,h, um,h〉 = 0 for n 6= m. We let:

EN(h) = span
n=1,··· ,N

un,h.

We notice that Propositions 2.3 and 2.1 hold for the elements of EN(h). As a consequence
of Propositions 2.3 and 2.1, we have:

Corollary 2.5 We have:

qh(ũh) ≤ λN(h) +O(h∞), with ũh = χhuh,

where uh ∈ EN(h).
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Agmon estimates of higher order In the last paragraph we proved Agmon estimates for
uh and its first derivatives. We will also need estimates for the higher derivatives. This is
the aim of the following proposition (this kind of higher order estimates can be found for
instance in [10]):

Proposition 2.6 For all ν ∈ N3, there exists δ > 0, γ ≥ 0, h0 > 0 and C > 0 such that,
for h ∈ (0, h0): ∫

eδh
−1/2z|Dν ũh|2 dxdydz ≤ Ch−γ‖ũh‖2.∫

eδh
−1/4(x2+y2)|Dν ũh|2 dxdydz ≤ Ch−γ‖ũh‖2,

where uh ∈ EN(h).

Proof: For |ν| = 1, this is already proved. Let ν such that |ν| ≥ 1 and assume that the
inequality is proved for all multi-indices with length smaller than |ν|. We recall that, when
uh is an eigenfunction:

L(h)ũh = λn(h)ũh + [L(h), χh]uh.

Let us apply Dν to the equation. We get:

L(h)Dν ũh = λn(h)Dν ũh +Dν [L(h), χh]uh + [L(h), Dν ]ũh.

It follows, for Φ = δh−1/2z or Φ = δh−1/4(x2 + y2):

L(h)eΦDν ũh = λn(h)eΦDν ũh + eΦDν [L(h), χh]uh + eΦ[L(h), Dν ]ũh + [L(h), eΦ]Dν ũh.

Then, we take the scalar product with eΦDν ũh. From the recursion assumption and up to
choose δ smaller to absorbe polynomials, we deduce the existence of γ1 > 0 and γ2 > 0
such that:

〈[L(h), eΦ]Dν ũh, e
ΦDν ũh〉 = h2‖∇ΦeΦDν ũh‖2 ≤ Ch−γ1‖ũh‖2,

|〈eΦ[L(h), Dν ]ũh, e
ΦDν ũh〉| ≤ Ch−γ1‖ũh‖2,

|〈eΦDν [L(h), χh]uh, e
ΦDν ũh〉| ≤ Ch−γ1‖ũh‖2 + Chγ2qh(e

ΦDν ũh).

We infer:
qh(e

ΦDν ũh) ≤ Ch−γ1‖ũh‖2.

In particular, we get the control of DtD
ν , DsD

ν and, up to loose again some negative
power of h, we get the control of DrD

ν . The extension to uh ∈ EN(h) is then standard. �

In particular, we infer:
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Corollary 2.7 For all η > 0, we have, for all ν ∈ N3:∫
|x|+|y|≥h1/8−η

|x|k|y|l|z|m|Dν ũh|2 dxdydz = O(h∞)‖ũh‖2,

∫
z≥h1/2−η

|x|k|y|l|z|m|Dν ũh|2 dxdydz = O(h∞)‖ũh‖2,

where uh ∈ EN(h).

2.2 Toward a normal form

For uh ∈ EN(h), we let:

wh(r, s, t) = χresc
h (r, s, t)uresc

h (r, s, t) = χ0(h3/8+ηr, h3/8+ηs, hηt)uh(h
1/2r, h1/2s, h1/2t)

(2.6)
and

vh(τ̂ , ŝ, t̂) = UθFwh.
We consider FN(h) the image of EN(h) by these transformations. We can reformulate
Corollary 2.5.

Corollary 2.8 With the previous notation, we have the lower bound, for vh ∈ FN(h):

qNormal
h (vh) ≤ λresc

N (h) +O(h∞),

where λresc
N (h) = h−1λN(h).

We can also notice that, when uh is an eigenfunction associated with λp(h):

LNormal(h)vh = λresc
p vh + rh, (2.7)

where the remainder rh is O(h∞) in the sense of Corollary 2.7.

In the following, we aim at proving localization and approximation estimates for vh
rather that uh. Moreover, these approximations will allow us to estimate the energy qNormal

h (vh).

3 Approximation and refined localizations in the phase
space

This section aims at estimating momenta of vh with respect to polynoms in the phase space.
Before starting the analysis, let us recall the link (cf. (1.6)) between the variables (τ, s, t)
and (τ̂ , ŝ, t̂):

Dτ̂ = Dτ +
1

sin θ
Ds, Dŝ = Ds, Dt̂ = Dt. (3.1)

We will use the following obvious remark:

12



Remark 3.1 We can notice that if φ is supported in supp(χh), we have:

qresc
h (φ) ≥ (1− ε)Qθ(φ)− Ch1/2−6ηε−1‖φ‖2.

Optimizing in ε, we have:

qresc
h (φ) ≥ (1− h1/4−3η)Qθ(φ)− Ch1/4−3η‖φ‖2.

Moreover, when the support of φ avoids the boundary, we have:

Qθ(φ) ≥ ‖φ‖2.

3.1 Localizations in ŝ and t̂

In this subsection, many localizations lemmas with respect to ŝ and t̂ are proved.

Estimates with respect to ŝ and t̂ We begin to prove estimates depending only on the
variables ŝ and t̂.

Lemma 3.2 Let N ≥ 1. For all k, n, there exist h0 > 0 and C(k, n) > 0 such that, for all
h ∈ (0, h0):

‖t̂kŝn+1vh‖ ≤ C(k, n)‖vh‖, (3.2)

‖t̂kDŝ(ŝ
nvh)‖ ≤ C(k, n)‖vh‖ (3.3)

‖t̂kDt̂(ŝ
nvh)‖ ≤ C(k, n)‖vh‖., (3.4)

for vh ∈ FN(h).

Proof: We prove the estimates when vh is the image of an eigenfunction associated to
λp(h) with p = 1, · · · , N .

Case n = 0 Let us analyze the case n = 0. (3.4) follows from the normal Agmon
estimates. We have:

qNormal
h (t̂kvh) ≤ λresc

p ‖t̂kvh‖2 + |〈[D2
t̂ , t̂

k]wh, t̂
kvh〉|+O(h∞)‖vh‖2.

The normal Agmon estimates provide:

|〈[D2
t̂ , t̂

k]vh, t̂
kvh〉| ≤ C‖vh‖2

and thus:
qNormal
h (t̂kvh) ≤ C‖vh‖2.
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We deduce (3.3). We also have:

‖t̂k(−ŝ sin θ + t̂ cos θ +Rh)vh‖2 ≤ C‖vh‖2.

We use the basic lower bound:

‖t̂k(−ŝ sin θ + t̂ cos θ +Rh)vh‖2 ≥ 1

2
‖t̂kŝ sin θvh‖2 − 2‖(t̂k+1 cos θ + t̂kRh)vh‖2.

Moreover, we have (using the support of χresc
h ):

‖t̂kRhvh‖ ≤ Ch(h−3/8−η)2‖t̂k+1vh‖ ≤ Ch(h−3/8−η)2‖vh‖,

the last inequality coming from the normal Agmon estimates. Thus, we get:

‖t̂kŝvh‖2 ≤ C‖vh‖2.

Recursion We apply t̂kŝn+1 to (2.7), take the scalar product with tkŝn+1vh and it follows:

qNormal
h (t̂kŝn+1vh) ≤ λresc

p (h)‖t̂kŝn+1vh‖2 + C‖t̂k−2ŝn+1vh‖‖t̂kŝn+1vh‖
+ C‖t̂k−1Dt̂ŝ

nvh‖‖t̂kŝn+1vh‖+ C‖t̂kDŝŝ
nwh‖‖t̂kŝn+1vh‖

+ C‖t̂kŝn−1vh‖‖t̂kŝn+1vh‖+ |〈t̂k[ŝn+1, (−ŝ sin θ + t̂ cos θ +Rh)
2]vh, t̂

kŝn+1〉|,

where
Rh = hαt̂

{(
Dτ̂ − (sin θ)−1Dŝ

)2
+
(
ŝ+ (sin θ)−1τ̂

)2
}
. (3.5)

We have:

[ŝn+1, (−ŝ sin θ + t̂ cos θ +Rh)
2]

= [ŝn+1, Rh](−ŝ sin θ + t̂ cos θ +Rh) + (−ŝ sin θ + t̂ cos θ +Rh)[ŝ
n+1, Rh].

Let us analyze the commutator [ŝn+1, Rh]. We can write:

[ŝn+1, Rh] = αht̂[ŝn+1,
(
Dτ̂ − (sin θ)−1Dŝ

)2
]

and:

[
(
Dτ̂ − (sin θ)−1Dŝ

)2
, ŝn+1] = (sin θ)−2n(n+ 1)ŝn−1

+ 2i(sin θ)−1(n+ 1)(Dτ̂ − (sin θ)−1Dŝ)ŝ
n

we infer:

[ŝn+1, (−ŝ sin θ + t̂ cos θ +Rh)
2]

=
(
αht̂(sin θ)−2n(n+ 1)ŝn−1 + 2iαht̂(sin θ)−1(n+ 1)(Dτ̂ − (sin θ)−1Dŝ)ŝ

n
)

(Vθ +Rh)

+ (Vθ +Rh)
(
αht̂(sin θ)−2n(n+ 1)ŝn−1 + 2iαht̂(sin θ)−1(n+ 1)(Dτ̂ − (sin θ)−1Dŝ)ŝ

n
)
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After having computed a few more commutators, the terms of [ŝn+1, (−ŝ sin θ + t̂ cos θ +Rh)
2]

are in the form:

t̂lŝm, ht̂l(Dτ̂ − (sin θ)−1Dŝ)ŝ
m, h2t̂l(Dτ̂ − (sin θ)−1Dŝ)

3ŝm,

h2t̂l(ŝ+ (sin θ)−1τ̂)2(Dτ̂ + (sin θ)−1Dŝ)ŝ
m

with m ≤ n+ 1 and l = 0, 1, 2.

Let us examine for instance the term h2t̂l(ŝ + (sin θ)−1τ̂)2(Dτ̂ + (sin θ)−1Dŝ)ŝ
m. We

have, after the inverse Fourier transform and translation:

h2‖t̂l(ŝ+ (sin θ)−1τ̂)2(Dτ̂ + (sin θ)−1Dŝ)ŝ
mvh‖ ≤ Ch2(h−3/8−η)3‖t̂lŝmvh‖

where we have used the support of χresc
h (see (2.6)). We get:

|〈t̂k[ŝn+1, (−ŝ sin θ + t̂ cos θ +Rh)
2]vh, t̂

kŝn+1vh〉| ≤ C‖t̂kŝn+1vh‖
n+1∑
j=0

k+2∑
l=0

‖t̂lŝjvh‖.

We deduce by the recursion assumption:

qNormal
h (t̂kŝn+1vh) ≤ C‖vh‖2.

We infer that, for all k:

‖Dt̂(t̂
kŝn+1)vh‖ ≤ C‖vh‖ and ‖Dŝ(t̂

kŝn+1)vh‖ ≤ C‖vh‖.

Moreover, we also deduce:

‖(Vθ +Rh)t̂
kŝn+1vh‖ ≤ C‖vh‖,

from which we find:
‖t̂kŝn+2vh‖ ≤ C‖vh‖.

�

We will also need a control of the derivatives with respect to ŝ.

Lemma 3.3 For allm,n, k, there exist h0 > 0 andC(m,n, k) > 0 such that for h ∈ (0, h0):

‖t̂kDm+1
ŝ ŝnvh‖ ≤ C(k,m, n)‖vh‖ (3.6)

‖t̂kDm
ŝ Dt̂ŝ

nvh‖ ≤ C(k,m, n)‖vh‖, (3.7)

for vh ∈ FN(h).
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Proof: For m = 0, this is done in Lemma 3.2.

Let us assume that the assumptions are true for all l ≤ m and all k and n. We ap-
ply t̂kDm+1

ŝ ŝn to (2.7) and take the scalar product with t̂kDm+1
ŝ ŝnvh. We shall estimate

commutators. We get:

|〈[D2
t̂ , t̂

kDm+1
ŝ ŝn]vh, t̂

kDm+1
ŝ ŝnvh〉|

≤ C‖t̂kDt̂D
m+1
ŝ ŝnvh‖‖t̂k−1Dm+1

ŝ ŝnvh‖+ C‖t̂k−2Dm+1
ŝ ŝnvh‖‖t̂kDm+1

ŝ ŝnvh‖
≤ C‖Dt̂t̂

kDm+1
ŝ ŝnvh‖‖t̂k−1Dm+1

ŝ ŝnvh‖+ C‖t̂k−2Dm+1
ŝ ŝnvh‖‖t̂kDm+1

ŝ ŝnvh‖
+ C‖t̂k−1Dm+1

ŝ ŝnvh‖2

and we deduce, with the recursion assumption, for all ε > 0, the existence of Cε > 0 such
that:

|〈[D2
t̂ , t̂

kDm+1
ŝ ŝn]vh, t̂

kDm+1
ŝ ŝnvh〉| ≤ C(k,m, n)εqNormal

h (t̂kDm+1
ŝ ŝnvh) + Cε‖vh‖2.

Moreover, we have in the same way:

|〈[D2
ŝ , t̂

kDm+1
ŝ ŝn]vh, t̂

kDm+1
ŝ ŝnvh〉| ≤ C(k,m, n)εqNormal

h (t̂kDm+1
ŝ ŝnvh) + Cε‖vh‖2.

Finally, we shall analyze:

[(Vθ(ŝ, t̂) +Rh)
2, t̂kDm+1

ŝ ŝn].

We have:

[(Vθ(ŝ, t̂) +Rh)
2, Dm+1

ŝ ŝn]

= (Vθ(ŝ, t̂) +Rh)[(Vθ(ŝ, t̂) +Rh), D
m+1
ŝ ŝn] + [(Vθ(ŝ, t̂) +Rh), D

m+1
ŝ ŝn](Vθ(ŝ, t̂) +Rh)

The worst term is ht̂[(Dŝ − (sin θ)−1Dτ̂ )
2
, Dm+1

ŝ ŝn] but it can be dealt by using the support
of wh (see (2.6) and the proof of Lemma 3.2). We deduce:

〈|[(Vθ(ŝ, t̂) +Rh)
2, t̂kDm+1

ŝ ŝn]vh, t̂
kDm+1

ŝ ŝnvh〉| ≤ C(k,m, n)‖vh‖2.

We infer the existence of C(k,m, n) > 0 such that:

(1− C(k,m, n)ε)qNormal
h (t̂kDm+1

ŝ ŝn) ≤ C(k,m, n)‖vh‖2.

and the conclusion follows by choosing ε small enough..

�

In the next paragraph, we establish partial Agmon estimates with respect to ŝ and t̂.
Roughly speaking, we can write the previous lemmas with τ̂ vh and Dτ̂vh instead of vh.
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Partial estimates involving τ̂ We now aim at adding τ̂ and Dτ̂ in the previous estimates.
For instance, let us begin to prove that:

Lemma 3.4 For all k ≥ 0, there exist h0 > 0 and C(k) > 0 such that, for h ∈ (0, h0):

‖t̂kτ̂ vh‖ ≤ C(‖τ̂ vh‖+ ‖vh‖), ‖t̂kDt̂τ̂ vh‖ ≤ C(‖τ̂ vh‖+ ‖vh‖),
and ‖t̂kDŝτ̂ vh‖ ≤ C(‖τ̂ vh‖+ ‖vh‖),

for vh ∈ FN(h).

Proof: For k = 0, we multiply (2.7) by τ̂ and take the scalar product with τ̂ vh. There is
only one commutator to analyze:

[(Vθ +Rh)
2, τ̂ ] = [(Vθ +Rh), τ̂ ](Vθ +Rh) + (Vθ +Rh)[(Vθ +Rh), τ̂ ]

so that:
[(Vθ +Rh)

2, τ̂ ] = [Rh, τ̂ ](Vθ +Rh) + (Vθ +Rh)[Rh, τ̂ ].

We deduce, thanks to the support of wh:

|〈[(Vθ +Rh)
2, τ̂ ]vh, τ̂ vh〉| ≤ C‖vh‖‖τ̂ vh‖ ≤ C(‖τ̂ vh‖2 + ‖vh‖2)

and we infer:
qNormal
h (τ̂ vh) ≤ C(‖τ̂ vh‖2 + ‖vh‖2).

We get:

‖Dt̂τ̂ vh‖ ≤ C(‖τ̂ vh‖+ ‖vh‖) and ‖Dŝτ̂ vh‖ ≤ C(‖τ̂ vh‖+ ‖vh‖).

Recursion We assume that the property is true for all 0 ≤ l ≤ k. We now multiply (2.7)
by t̂k+1τ̂ and take the scalar product with t̂k+1τ̂ vh. We have:

|〈[D2
t̂ , t̂

k+1τ̂ ]vh, t̂
k+1τ̂ vh〉| ≤ C(‖t̂kDt̂τ̂ vh‖+ ‖t̂k−1τ̂ vh‖)‖tk+1τ̂ vh‖

≤ Cε‖t̂k+1τ̂ vh‖2 + Cε(‖τ̂ vh‖2 + ‖vh‖2).

We have:

|〈t̂k+1[(Vθ +Rh)
2, τ̂ ]vh, t̂

k+1τ̂ vh〉| ≤ CεqNormal
h (t̂k+1τ̂ vh) + Cε‖t̂k+1τ̂ vh‖2.

We deduce:

(1− Cε)qNormal
h (t̂k+1τ̂ vh) ≤ (σ(θ) + Cε)‖t̂k+1τ̂ vh‖2 + C‖τ̂ vh‖2 + C‖vh‖2

It remains to apply Remark 3.1 and to use σ(θ) < 1 to deduce the control of t̂k+1τ̂ vh and
thus the one of t̂k+1Dt̂ and t̂k+1Dŝ. �

As an easy consequence of the analysis of Lemma 3.4, we have:
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Lemma 3.5 For all k ≥ 0, there exist h0 > 0 and C(k) > 0 such that, for h ∈ (0, h0):

‖t̂kŝτ̂ vh‖ ≤ C(k)(‖τ̂ vh‖+ ‖vh‖),

for vh ∈ FN(h).

We can now prove the following lemma:

Lemma 3.6 For all k, n, there exist h0 > 0 and C(k, n) > 0 such that, for all h ∈ (0, h0):

‖τ̂ tkŝn+1vh‖ ≤ C(k, n)(‖τ̂ vh‖+ ‖vh‖), (3.8)

‖τ̂ tkDŝ(ŝ
nvh)‖ ≤ C(k, n)(‖τ̂ vh‖+ ‖vh‖) (3.9)

‖τ̂ tkDt̂(ŝ
nvh)‖ ≤ C(k, n)(‖τ̂ vh‖+ ‖vh‖), (3.10)

for vh ∈ FN(h).

Proof: The proof is based on a recursion with respect to n. For n = 0, this is a
consequence of Lemmas 3.4 and 3.5. We refer to the proof of Lemma 3.2. The only
difference appears in the computation of the commutator [(Vθ + Rh)

2, τ̂ ŝn+1]. Indeed,
[(Dτ̂ − (sin θ)−1Dŝ)

2, τ̂ ŝn+1] provides an additional term in ŝn+1 but this one is controlled
by Lemma 3.2. �

From this lemma, we deduce a stronger control with respect to the derivative with respect
to ŝ:

Lemma 3.7 For allm,n, k, there exist h0 > 0 andC(m,n, k) > 0 such that for h ∈ (0, h0):

‖τ̂ t̂kDm+1
ŝ ŝnvh‖ ≤ C(k,m, n)(‖τ̂ vh‖+ ‖vh‖), (3.11)

‖τ̂ t̂kDm
ŝ Dt̂ŝ

nvh‖ ≤ C(k,m, n)(‖τ̂ vh‖+ ‖vh‖), (3.12)

for vh ∈ FN(h).

Proof: The proof can be done by recursion onm. The casem = 0 comes from the previous
lemma. Then, the recursion is the same as for the proof of Lemma 3.3 and uses Lemma
3.3 to control the additional commutators. �

By the same arguments (symmetry between τ̂ and Dτ̂ ), we have:

Lemma 3.8 For allm,n, k, there exist h0 > 0 andC(m,n, k) > 0 such that for h ∈ (0, h0):

‖Dτ̂ t̂
kDm+1

ŝ ŝnvh‖ ≤ C(k,m, n)(‖Dτ̂vh‖+ ‖vh‖), (3.13)

‖Dτ̂ t̂
kDm

ŝ Dt̂ŝ
nvh‖ ≤ C(k,m, n)(‖Dτ̂vh‖+ ‖vh‖), (3.14)

for vh ∈ FN(h).

In the next subsection, we prove that vh behaves like uθ(ŝ, t̂) with respect to ŝ and t̂.
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3.2 Approximation of vh

Let us state the approximation result of this subsection :

Proposition 3.9 There exists C > 0 and h0 > 0 such that, if 0 < h ≤ h0 :

‖vh − Πvh‖+ ‖Vθvh − VθΠvh‖+ ‖∇ŝ,t(vh − Πvh)‖ ≤ Ch1/4−2η‖vh‖,

where Π is the projection on uθ and vh ∈ FN(h).

Proof: As usual, we start to prove the inequality when vh is the image of an eigenfunction
associated with λp(h), the extension to vh ∈ FN(h) being standard. We want to estimate

‖(HNeu(θ)− σ(θ))vh‖.

We have:

‖(HNeu(θ)− σ(θ))vh‖ ≤ ‖(HNeu(θ)− λp(h))vh‖+ Ch1/4‖vh‖.

With the definition of vh and with Corollary 2.7, we have:

‖(HNeu(θ)− λp(h))vh‖ ≤ h‖H1vh‖+ h2‖H2vh‖+O(h∞)‖vh‖.

Then, we can write:

‖H1vh‖ ≤ C

∥∥∥∥∥t̂Vθ
(
Dτ̂ −

Dŝ

sin θ

)2

vh

∥∥∥∥∥+C

∥∥∥∥∥t̂
(
Dτ̂ −

Dŝ

sin θ

)2

Vθvh

∥∥∥∥∥+C

∥∥∥∥∥t̂Vθ
(
ŝ+

τ̂

sin θ

)2

vh

∥∥∥∥∥
With Lemma 3.2 and the support of uh, we infer:

h‖H1vh‖ ≤ Ch1/4−2η‖vh‖.

In the same way, we get:
h2‖H2vh‖ ≤ Ch1/2−4η‖vh‖.

We deduce:
‖(HNeu(θ)− σ(θ))vh‖ ≤ Ch1/4−2η‖vh‖.

Let us write
vh = v⊥h + Πvh

We have:
‖(HNeu(θ)− σ(θ))v⊥h ‖ ≤ Ch1/4−2η‖vh‖.

The resolvent, valued in the form domain, being bounded, the result follows.

�
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4 Harmonic oscillator and last refinements

In this section, we prove Theorem 1.4. In order to do that, we first prove a localization with
respect to τ̂ and then use it to improve the approximation of Proposition 3.9.

4.1 Control of vh with respect to τ̂

This subsection is devoted to the reduction to a model operator involving an harmonic
oscillator.

Proposition 4.1 There exist h0 > 0 and C > 0 such that for all C0 > 0 and h ∈ (0, h0):

qh(vh) ≥ (1− C0h)
(
‖Dt̂vh‖2 + ‖Dŝvh‖2 +

∥∥(Vθ(ŝ, t̂) + αht̂Hharm

)
vh
∥∥2
)

− C
C0

h〈Hharmvh, vh〉 − Ch‖vh‖2,

for vh ∈ FN(h).

Proof: Let us consider

qh(vh) = ‖Dt̂vh‖2 + ‖Dŝvh‖2 +
∥∥(Vθ(ŝ, t̂) + αht̂ {Hharm + L(τ̂ , Dτ̂ , ŝ, Dŝ)}

)
vh
∥∥2
.

where
L(τ̂ , Dτ̂ , ŝ, Dŝ) = (sin θ)−2(−2 sin θDŝDτ̂ + 2 sin θŝτ̂ +D2

ŝ + ŝ2).

For all ε > 0, we have:

qh(vh) ≥ (1− ε)
(
‖Dt̂vh‖2 + ‖Dŝvh‖2 +

∥∥(Vθ(ŝ, t̂) + αht̂Hharm

)
vh
∥∥2
)

−ε−1α2h2‖t̂L(τ̂ , Dτ̂ , ŝ, Dŝ)vh‖2

We take ε = C0h. We apply Lemmas 3.3, 3.7 and 3.8 to get:

‖t̂L(τ̂ , Dτ̂ , ŝ, Dŝ)vh‖2 ≤ C(‖Dτ̂vh‖2 + ‖τ̂ vh‖2 + ‖vh‖2).

�

A model operator From the last proposition, we are led to study the model operator:

Mh = D2
ŝ +D2

t̂ + (Vθ(ŝ, t̂) + αht̂Hharm)2.

We can write Mh as a direct sum:

Mh =
⊕
n≥1

Mn
h ,
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with
Mn

h = D2
ŝ +D2

t̂ + (Vθ(ŝ, t̂) + αht̂µn)2,

so that, we shall analyze:

H(θ, γ) = D2
ŝ +D2

t̂ + (Vθ(ŝ, t̂) + γt̂)2.

From [5, Proposition 5.1], we deduce the existence of c > 0 such that, for all γ ≥ 0:

σ(θ, γ) ≥ σ(θ) + cγ.

Taking C0 large enough in Proposition 4.1, we deduce the proposition:

Proposition 4.2 There exist C > 0 and h0 > 0 such that:

〈Hharmvh, vh〉 ≤ C‖vh‖2, for vh ∈ FN(h)

and:
λresc
N (h) ≥ σ(θ)− Ch.

4.2 Refined approximation of vh

The control of vh with respect to τ̂ provided by Proposition 4.2 permits to improve the
approximation of vh.

Proposition 4.3 There exist C > 0, h0 > 0 and γ > 0 such that, if h ∈ (0, h0) :

‖VθDτ̂vh − VθDτ̂Πvh‖+ ‖Dτ̂vh −Dτ̂Πvh‖+ ‖∇ŝ,t̂(Dτ̂vh −Dτ̂Πvh)‖ ≤ Chγ‖vh‖,
‖Vθτ̂ vh − Vθτ̂Πvh‖+ ‖τ̂ vh − τ̂Πvh‖+ ‖∇ŝ,t̂(τ̂ vh − τ̂Πvh)‖ ≤ Chγ‖vh‖,

for vh ∈ FN(h).

Proof:

Control with respect to Dτ̂ Let us apply Dτ̂ to (2.7). We have the existence of γ > 0
such that:

‖[LNormal(h), Dτ̂ ]vh‖ ≤ Chγ‖vh‖.

We can write:

‖(HNeu(θ)− σ(θ))Dτ̂vh‖ ≤ ‖(HNeu(θ)− λresc
p (h))Dτ̂vh‖+ Ch1/4‖Dτ̂vh‖.

Proposition 4.2 provides:

‖(HNeu(θ)− σ(θ))Dτ̂vh‖ ≤ ‖(HNeu(θ)− λresc
p (h))Dτ̂vh‖+ Ch1/4‖vh‖.
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Then, we get:
‖hH1Dτ̂vh‖ ≤ Ch1/4−2η‖vh‖

and:
‖h2H2Dτ̂vh‖ ≤ Ch1/2−4η‖vh‖.

We deduce:
‖(HNeu(θ)− σ(θ))Dτ̂vh‖ ≤ Ch1/4−η‖vh‖.

The conclusion is the same as for the proof of Proposition 3.9.

Control with respect to τ̂ The analysis for τ̂ can be done exactly in the same way. �

Conclusion: proof of Theorem 1.4 We recall that:

qNormal
h (vh) = ‖Dt̂vh‖2 + ‖Dŝvh‖2 +

∥∥(Vθ(ŝ, t̂) + αht̂ {Hharm + L(τ̂ , Dτ̂ , ŝ, Dŝ)}
)
vh
∥∥2

so that we get:

qNormal
h (vh) ≥ σ(θ)‖vh‖2

+ αh〈2t̂Vθ(ŝ, t̂)Hharm + t̂VθL(τ̂ , Dτ̂ , ŝ, Dŝ) + t̂L(τ̂ , Dτ̂ , ŝ, Dŝ)Vθ(ŝ, t̂)vh, vh〉

It remains to approximate vh by Πvh modulo a lower order remainder.

Approximation of the terms involving Hharm Let us examine first:

〈t̂Vθ(ŝ, t̂)Dτ̂vh, Dτ̂vh〉 = 〈t̂Dτ̂vh, VθDτ̂vh〉.

We have:
‖t̂Dτ̂vh‖ ≤ C‖vh‖

and thus, with Proposition 4.3:

〈t̂Dτ̂vh, VθDτ̂vh〉 = 〈t̂Dτ̂vh, VθΠDτ̂vh〉+ o(1)‖vh‖2.

We can write:
‖t̂VθΠDτ̂vh‖ ≤ C‖vh‖

and it follows:

〈t̂Dτ̂vh, VθΠDτ̂vh〉 = 〈ΠDτ̂vh, t̂VθΠDτ̂vh〉+ o(1)‖vh‖2.

We deduce that:

〈t̂Vθ(ŝ, t̂)Dτ̂vh, Dτ̂vh〉 = 〈t̂Vθ(ŝ, t̂)Dτ̂ΠvhDτ̂Πvh〉+ o(1)‖vh‖2.

Let us consider:
〈t̂Vθ(ŝ, t̂)τ̂ vh, τ̂ vh〉 = 〈t̂τ̂ vh, Vθτ̂ vh〉.

In order to treat this term, we use:

‖t̂τ̂ vh‖ ≤ C‖vh‖.
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Approximations of the other terms Another term we should approximate is:

〈t̂Vθ(ŝ, t̂)Dŝvh, Dτ̂vh〉 = 〈t̂Dŝvh, Vθ(ŝ, t̂)Dτ̂vh〉.

We can notice that:
‖t̂Dŝvh‖ ≤ C‖vh‖

so that:
〈t̂Dŝvh, Vθ(ŝ, t̂)Dτ̂vh〉 = 〈t̂Dŝvh, Vθ(ŝ, t̂)ΠDτ̂vh〉+ o(1)‖vh‖2.

We write:
〈t̂Dŝvh, Vθ(ŝ, t̂)ΠDτ̂vh〉 = 〈Dŝvh, t̂Vθ(ŝ, t̂)ΠDτ̂vh〉

and use:
‖t̂Vθ(ŝ, t̂)ΠDτ̂vh‖ ≤ C‖vh‖

to find:

〈Dŝvh, t̂Vθ(ŝ, t̂)ΠDτ̂vh〉 = 〈DŝΠvh, t̂Vθ(ŝ, t̂)ΠDτ̂vh〉+ o(1)‖vh‖2.

In the same way, we find:

〈t̂ŝvh, Vθτ̂ vh〉 = 〈t̂ŝΠvh, Vθτ̂Πvh〉+ o(1)‖vh‖2,

〈t̂ŝ2vh, Vθvh〉 = 〈t̂ŝ2Πvh, VθΠvh〉+ o(1)‖vh‖2,

〈t̂D2
ŝvh, Vθvh〉 = 〈t̂D2

ŝΠvh, VθΠvh〉+ o(1)‖vh‖2.

We infer:

qNormal
h (vh) ≥ σ(θ)‖vh‖2

+ αh〈2t̂Vθ(ŝ, t̂)Hharm + t̂VθL(τ̂ , Dτ̂ , ŝ, Dŝ) + t̂L(τ̂ , Dτ̂ , ŝ, Dŝ)Vθ(ŝ, t̂)Πvh,Πvh〉
+ o(h)‖vh‖2.

This implies:

qNormal
h (vh) ≥ σ(θ)‖vh‖2 + αh〈Sθ(Dτ̂ , τ̂)φh, φh〉τ̂ + o(h)‖vh‖2,

where φh = 〈vh, uθ〉ŝ,t̂ and vh ∈ FN(h). With the min-max principle, we deduce that:

λN(h) ≥ σ(θ) + αhνN (Sθ(Dτ̂ , τ̂)) + o(h2).

This provides the spectral gap between the lowest eigenvalues and it remains to use Propo-
sition 3.9 .
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