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Abstract

We consider a non compact, complete manifold M of finite area
with cuspidal ends. The generic cusp is isomorphic to X x|1, +oo[ with
metric ds? = (h+dy?)/y?. X is a compact manifold with nonzero first
Betti number equipped with the metric h. For a one-form A on M such
that in each cusp A is a non exact one-form on the boundary at infinity,
we prove that the magnetic Laplacian —A 4 = (id+A)*(id+A) satisfies
the Weyl asymptotic formula with sharp remainder. We deduce an
upper bound for the counting function of the embedded eigenvalues
of the Laplace-Beltrami operator —A = —Ag. !

1 Introduction

We consider a smooth, connected n-dimensional Riemannian manifold (M, g),
(n > 2), such that

M= JM (J>1), (1.1)

where the M; are open sets of M. We assume that the closure of M, is
compact and that the other M; are cuspidal ends of M.

! Keywords : spectral asymptotics, magnetic Laplacian, embedded eigenvalues, cuspidal
manifold.



This means that M;NM,, = 0, if 1 < j < k, and that there exists, for any
Jj, 1 <7< .J,aclosed compact (n — 1)-dimensional Riemannian manifold
(X;, h;) such that M is isometric to X;x]a?, +oo[, (a; > 0) equipped with
the metric

ds? =y Pi(h; + dy*); (1/n<d; <1). (1.2)
So there exists a smooth real one-form A; € T*(X;), non exact, such that
i) dA; #0
or (1.3)

i1) dA; = 0 and [A;] is not integer.

In i7) we mean that there exists a smooth closed curve v in X; such that

[4 ¢ 2z,

o

Then one can always find a smooth real one-form A € T*(M) such that
Vij,1<j<J A=A on M. (1.4)
We define the magnetic Laplacian, the Bochner Laplacian
Ay = (id+A) (i d+ A), (1.5)

(i=+v—-1, (id+Au=1idu+uA,Vu € C®M;C), the upper star, *,
stands for the adjoint in L*(M)) .

As M is a complete metric space, by Hopf-Rinow theorem M is geodesi-
cally complete, so it is well known, (see [Shu] ), that —A,4 has a unique
self-adjoint extension on L?*(M) , containing in its domain C§°(M;C) , the
space of smooth and compactly supported functions. The spectrum of —A 4
is gauge invariant : for any f € C'(M;R), —A,4 and —A 4,4 are unitary
equivalent, hence they have the same spectrum.

For a self-adjoint operator P on a Hilbert space H, sp(P), spes(P), sp,(P)
and sp,(P) will denote respectively the spectrum, the essential spectrum,
the point spectrum and the discrete spectrum of P. We recall that sp(P) =
SPess (1) U sPg(P), spg(P) C sp,(P) and speg(P) Nspy(P) = 0.

Theorem 1.1 Under the above assumptions on M, the essential spectrum
of the Laplace-Beltrami operator on M, —A = —/A is given by

{ SPess(—A) = [0, +00], if I/n<déi<l1

SPess(—A) = [P foo], if 5=1

(1.6)
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When (1.3) and (1.4) are satisfied, the magnetic Laplacian —A 4 has a com-

pact resolvent. The spectrum sp(—Ay4) = spy(—Aa) is a sequence of non-

decreasing eigenvalues (A;)jens , Aj < Aji1, .ligl Aj = +o0, such that the
j——+o0

sequence of normalized eigenfunctions (¢;);en= is a Hilbert basis of L*(M).

Moreover Ay > 0.

For any self-adjoint operator P with compact resolvent, and for any real
A, N(A, P) will denote the number of eigenvalues, (repeated according to
their multiplicity), of P less then A,

N(AP) = trace (\-oen(P)) . (L.7)

(forany I C R, xs(z) =1ifx € I and x;(z) =0if x € R\ I).
The asymptotic behavior of N(A, —A,) satisfies the Weyl formula with
the following sharp remainder.

Theorem 1.2 Under the above assumptions on M and on A, we have the
Weyl formula with remainder as X — +o0,

N\, =A4) = M2 22 4+ 0(x(\) (1.8)
(2m)"
" DRI, 1 1) <5
A=), it 1/(n—1) <
r) { AL/(20) if 1/n<dé<1/(n—1)" (1.9)
0= 121% d; , M| is the Riemannian measure of M and wq is the euclidian
- /2
volume of the unit ball of RY, wy = —
I(1+5%)

The asymptotic formula (1.8) without remainder is given in [Go-Mo], and
with remainder but only for n = 2 (and §; = 1 for any 1 < j < J) in
[Mo-Tt].

The Laplace-Beltrami operator —A = —Aj may have embedded eigenval-
ues in its essential spectrum sp.(—A). Let Nes(A, —A) denote the number
of eigenvalues of —A, (counted according to their multiplicity), less then .

Theorem 1.3 There exists a constant Cyy such that, for any X >> 1,

Ness(A, =A) < [M|-=2- X2 + Cpro(N) (1.10)

(2m)"
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with ro(\) defined by

n—(nd—1)
2

" i <6<
ro(A) = A7z In(A), ?f 2/n<6<1 ; (1.11)
ATz, if 1/n<éd<2/n

0 is the one defined in Theorem 1.2 .

The above upper bound proves that any eigenvalue of —A has finite
multiplicity.

The estimate (1.10) is sharp when n = 2. There exist hyperbolic surfaces
M of finite area so that

Negs(\, =A) = |[M|—2-X 4+ Ty A2 In(A) + O(AY?)

w
(2m)?
for some constant I'yg. See [Mul] for such examples.

Still in the case of surfaces, a compact perturbation of the metric of
non compact hyperbolic surface M of finite area can destroy all embedded
eigenvalues, see [Coll].

2 Proof

2.1 Proof of Theorem 1.1

Since the essential spectrum of an elliptic operator on a manifold is invariant
by compact perturbation of the manifold, (see for example [Do-Li|, Proposi-
tion 2.1 ), we can write

J
Spess<_AA> = U Spess<_A,lXIj7D> ) (21)
j=1

where —Az/lj P denotes the self-adjoint operator on L?(M;) associated to
—A 4 with Dirichlet boundary conditions on the boundary OM; of M;.

Let us consider a cusp M; = X; x]a?,+oo[ equipped with the metric
(1.2). Then for any u € C*(M,),

—Agu = =y AU — Y0,y 0,u) | (2.2)



where Ail(j is the magnetic Laplacian on X; : if for local coordinates h; =

n—1

ZGM dxpdx, and A; = Zaj,k dxy, then
—1

X
A

\/W Z i0n, + a,) (VAHGIGH (i, +a,))

We perform the change of variables y = €', and define the unitary operator
U : L*(X;x]2In(a;),+oo[) — L*(Mj;) , where |2In(a;),+o0] is equipped
with the standard euclidian metric dt2, by U(f) = y™%~Y/2f. Thus L*(M;)
is unitary equivalent to L*(X;x]21In(a;), +oc[), and

(nd; — 1)[34 0,(n

. -4
_U*AAUf — _625th§; f+ )] e2t(5j71)f_8t<e2t(5jfl)atf) )

4

(2.3)
Let us denote by (1(j))een the increasing sequence of eigenvalues of
—Afj , each eigenvalue repeated according to its multiplicity. Then —AIXIJ’D

is unitary equivalent to EB Lf 0

=0
M;,D

sp(—A77) = sp( @ LY (2.4)

where L, is the Dirichlet operator on L*(]21n(a;), +-00[) associated to

(nd; — 1)

4

If p1e(5) > O thensp(L7,) = spa(L7y) = {pe(5); k € N}, where (e x(5))ren
is the increasing sequence of eigenvalues of L] e Hm g4 (j) = +o0.

k—+o00

If p1(j) = 0 then sp(LY)) = spe (LY, = [, +ool, with oy, = 0 if §; < 1,
and o, = (n — 1)?/4if 6; = 1.

Since we have 19(j) = 0 when A = 0, we get that sp.(—Ag) = [y, +00].

If A satisfies assumptions (1.3) and (1.4), then 0 < po(j) < pe(j) for

all j and ¢, (see for example [Hel]), so sp(—AIXI"’D) = {wer(j); (LK) €
N} As glim per(j) = +oo, each upr(y) is an eigenvalue of —AE{IJ’D of
—+o00

Lio = *'u(5) + [34-0;(n—4)]e*% =1 — 9,(e*=Dg,) . (2.5)

finite multiplicity, so sp(—AZIj ’D) = spd(—Alej ’D). Therefore, we get that
Spess<_AA) = (Z) U



2.2 Proof of Theorem 1.2

We proceed as in [Mo-Tr].

We begin by establishing formula (1.8) for M;, with —AIXIj P defined in
(2.1), instead of —A,4. When §; = 1 we make the same change of variables
and functions as in the proof of Theorem 1.1, but when 1/n < §; < 1, we set
y = [(1 —6;)t)/%) and define the unitary operator

—55)

U LA(X;x] 2 +o0l) = LA(M,), by U(f) =y,
Y

Then when 1/n < §; < 1,

(n —1)d;[(n — 3)d; + 2]

0 (20

2 e
—UALUf = =[(1=6) ™5 AL f+

As a matter of fact,
_U*ynéjay [y(Q—n)(Sj 8yU<f)] — _y(n+1)6j/28y [y(?,—n)éj/Qayf] . (n—21)6j y26j—1ayf 4
(=18, [(n-3)8,+2] _(1-6,)
I Y f,
then using that y% 9, = 9, and that t?9, = 9,(t.) — pt’~1, we get easily (2.6).
Equality (2.4 ) still holds when L7, is the Dirichlet operator on L(] 2

1—-35;
associated to

- 07, (2.7)

From now on, any constant depending only on J; and on min p(j) will
j

be invariably denoted by C' .
As in [Mo-Tr|, we will follow Titchmarsh’s method. Using Theorem 7.4
in [Tit] page 146, we prove the following Lemma.

Lemma 2.1 There exists C' > 1 so that for any A >> 1
and any { € Ky ={l € N; p,(j) € [0,\/ mina3[},
j

1

INOLLE) = Zugu)] < Clnl. )
. ee 1/2 Tiw) 1/2
with wie) = [ = V0t = [ = Vol e
g g

oo()



The potential V;, is defined as following:

if 5, =1 Vie(t) = pe(j)e® + B0
26‘j — [(n— . b
i 1/n < 8, <1 Vielt) = ue()[(1 — 5,75 + Ul
(2.9)
and
. 1 .
if 6, = 1 a5 = 2In(a;),  Ty() = 510 (/i)
5 (2.10)

¢ / 5 o270 T( ) 1 ( M ) 20,
iftl/n<d; <l o =-L——, ; = -
j j 1-9; J\H 1- 06, \0(j)

Proof of Lemma 2.1

When 1/n < §; < 1, by enlarging M, and reducing M;, we can take
a; large enough so that Vj,(¢) is an increasing function on [a;, +o00[ and
M pe(j) >> 1 when £ € K. Then, if a; <Y < X(A) = V;}()), following
the proof of Theorem 7.4 in [Tit] pages 146-147, we get that

INOWLE) — gV < (2.11)
Ol — Vi) ~ (A = Viu(Y)) + (X(0) = Y)Y (A= Vyol¥)) + 1]

When 6; = 1, we choose Y = X (\) — \/\1/?

1-6.

In A A 15;
When 1/n < d; < 1, we choose Y = X () — 7\ ;
¢

1—6j

o5
(X~ 5 () )0
Let us recall the sharp asymptotic Weyl formula of L. Hérmander [Horl]
(see also [Hor2]).

Theorem 2.2 There exists C' > 0 so that for any p >> 1

X Wn—1 n— n—
IN(u, =A%) — <27r)n_lp{jm( L2 < opn=22 (2.12)

Lemma 2.3 There exists C' > 0 such that for any A >> 1
Wn

(2m)"

AP=D21n(N), if 1/(n—1)<6; <1
A/(295) if 1/n<d;<1/(n—1)

N, AN P) - P v < (2.13)



Proof of Lemma 2.3 By the formula (2.4),
+oo
N, —ART) = S N LY. (2.14)
As N(X\, L)) =0when ( ¢ K, (Ky is defined in Lemma 2.1), the estimates

(2.8), (2.12) and formula (2.14) prove that

+

8

_ 1
IN( =AY N7 2, (V)] < OAPTD2In()) . (2.15)
=0 T
Let us denote
+o00 1 +00 s
0;(N) = > —wi(N) and Ri(w) = D [n— @ (216)
{=0 =0

—+00

1 _ .
As Ry =5 [ = o7V s -,

0
the Hormander estimate (2.12) entails the following one.
There exists a constant C' > 0 such that, for any p >> 1,

400
Ri) = gritlXol [ o= o700 < et
2(2m)n- 0

Writing in (2.9 )

Vie(t) = pe(3)V5(t) + W;(t) , (2.18)

1[G, A — W(t)
t that ©,(\) = — V() Ry (A dt
we et that 0, = [V R (G

So according to (2.17)

oy wnTG)T % Wi (6)2
0,00 ~ Gy X / V(”1/2() i < (219)
(A= W)
o[ e,



From the definitions (2.9) and (2.18) we get that

))"/2 /2 1 12
dt — A" — | < oXD2 0 (2.20)
and () (n—1)/2
/ A ‘(4:](223 dt < (2.21)
a v (t)
An=1/2 if 1/(n—1)<4;<1
C{ A= D2Inx if 1/(n—1)=9;
A1/(285) if 1/n<dé<1/(n—1)
X
As|M;| = X1 — we get (2.13) from (2.15), (2.16) and (2.19)—
’ (0;m — 1)&2(6’n_1)
J
(2.21) O

To achieve the proof of Theorem 1.2, we proceed as in [Mo-Tt].

We denote M) =M \ (U M,) , then

M = Mj| J <LJJ E) . (2.22)

Let us denote respectively by —A’, 2D and by AQ’N the Dirichlet operator
and the Neumann-like operator on an open set 2 of M associated to —Ay4 .
—AQ N'is the Friedrichs extension defined by the associated quadratic form

¢ (u /|zdu + AulPdm |, u € C=(€;C), u with compact support in
Q. (dm is the n-form volume of M).

The minimax principle and (2.22) imply that

N =AY 3T N A S N AL (229

1<j<J

NOAT) 37 N Al )

1<j<J



The Weyl formula with remainder, (see [Hor2] for Dirichlet boundary
condition and [Sa-Va] p. 9 for Neumann-like boundary condition), gives that

N()\, —AIXI&Z) — <;n)n‘M8|)‘n/2+o<)‘(nl)/2) : (forZ = Dand for Z = N) )
T
(2.24)
For 1 < j < J, the asymptotic formula for N (A, —AIXIJ' NV ),
N()\,—AZ/IJWN) — (;75”|M]|)\n/2_'_0<r<)\)) : (225>

is obtained as for the Dirichlet case (2.13) by noticing that N(X,L7,) <
N(A LY,) < N(A, LY) 4+ 1, where L, and L}), are Dirichlet and Neumann-
like operators on a half-line I =|a;, +00] , associated to the same differential
Schrédinger operator Lj, defined by (2.5) when 6; = 1, and by (2.7) oth-
erwise. (The Neumann-like boundary condition is of the form dyu(c;) +
Bju(aj) = 0 because of the change of functions performed by U*).

We get (1.8) from (2.13) and (2.23)— (2.25) O

2.3 Proof of Theorem 1.3

Lemma 2.4 For any j € {1,...,J}, there exists a one-form A; satisfying
(1.3) and the following property.
There ezists 19 = 10(A;) > 0 and C = C(A;) > 0 such that for any

. . . . 2
A>> 1, ife(r,j) = ueCOO(Xj)}rhE||L2(XJ_):1 lidu + Tud;l[72x ) denotes the first

eigenvalue of —Ai{j, then
e(r,j) > Cr*; V7€)0,7). (2.26)

Proof of Lemma 2.4. When n = 2, we can take A4; = w;dx;, (dx; is

the (n — 1)-form volume of X;), for some constant w; € R\ %Z, then
J
e(r,§) = T2w? for small |7|.
When n > 3, we have ¢(0,j) =0, d.e(0,7) =0 and

02¢(0,5) = / [|Aj|2—(—Aé(j)’l(d*Aj)-(d*AJ-)]dxj-

X,
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(d* is the adjoint of d defined on functions, and (—A7)~! is the inverse of the
Laplace-Beltrami operator on functions, which is well-defined on the space
{f € L*(X)); Jx, fdx; =0}).

To the non-negative quadratic form A; — 92e(0, j), we associate a self-
adjoint operator P on T*(X,), which is a pseudodifferential operator of order
0 with principal symbol, the square matrix po(z,&) = (pi(x,&))1<ir<n—1
defined as follows. In local coordinates, if h; = Gy (z)dx;dzy, then

S (= SO @)

po(r,€) = G*() — ZG"m(w)G%(fma@?

lm

As the non-negative symmetric matrix po(x,§) is not the zero matrix, there
exists A such that P(A;) # 0 and by the positivity of P, 9%e(0,7) =
fx Aj)Aj)dx; > 00

Lemma 2.5 For a one-form A satisfying (1.4), there exists a constant Cy >
0 such that, if u is a function in L*(M) such that du € L*(M) and

Vi=1,...,J / u(zj,y)dx; =0, Yy E]a?, +oo[, (2.27)
X
then V7 €]0, 1],
||lidu + TUAH%Q(M) < (14 TCA)HiduHiz(M) + CA”U/”%Q(M) . (2.28)

Proof of Lemma 2.5. First we remark that the inequality
lidu + TuA|* < (1 + p)|dul® + (14 p~Y)|TuA|? (2.29)

is satisfied for any p > 0.
For p = 7 we get that there exists a constant C'Y > 0, depending only on

A/My, such that
lidu+ TuA|fomn,) < (14 7)llidullog) + TCHlIul 200 - (2:30)

We get also for p = 7 that for any j € {1,...,J},

+oo
/ lidu + TuA|72x,)y* " dy < (2.31)

@
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+oo .
/2 <<1 T T>HiduHi2(Xj) + TCﬁl”“”%?(xj)) y(27")5]dy ,

@

for some constant Cﬁx depending only on A/X;.
But (2.27) implies that

1
2 2
[ullz2x,) < Ml—@llszIlL2(xj> : (2.32)

with (1(7))een the sequence of eigenvalues of Laplace-Beltrami operator on
X, wo(g) =0 < p1(j) < pa(y) < ....So0if (2.27) is satisfied then (2.31) and
(2.32) imply that

lidu + TuAl|Fame,) < (147l |lidu] 0, - (2.33)

for some constant Ci‘ depending only on A/X;.
The existence of a constant C'y > 0 satisfying the inequality (2.28) follows

from (2.30) and (2.33) for j=1,...J O

Lemma 2.6 When A satisfies (1.3), (1.4) and Lemma 2.4 , then as A —
+00, the following Weyl formula is satisfied.

Wn

NOL=Bocn) = IMIGEEX 4 Ofro() (2.34)

with

_f1)2, if 2/n<d<1
P=\ m6—1)/2, if 1/n<d<2/n’
0 and wq are as in Theorem 1.2, and the function ro(\) is the one defined by

(1.11) .

Proof of Lemma 2.6. Since A satisfies Lemma 2.4, we have

(2.35)

C/N* < po(j) and  C < u(j),

X;
APA;
Hence we can mimick the proof of Theorem 1.2. More precisely Lemma 2.1
holds for any ¢ € K),,¢ # 0, and to get the result it only remains to prove
that we have, for L;, defined by (2.5) if §; = 1, and by (2.7) otherwise,

where (1(7))een denotes now the increasing sequence of eigenvalues of —A

N\, Ljy) = O(ro(N)) -

12



This can easily be done as follows.
When 6; =1, (p=1/2), it is easy to see that

N LE) < N(A+C,LPY) < CAVIn(N)

C
where L is the Dirichlet operator on |0, +-00[ associated to —e* — 92 .

A
When 0 < §; < 1, by scaling we have that
N(A, Lfo) < N((A+ C)1+2p(1*51), LD) < O \(1+20(1-5)))/(25))

)

26 ;
where LP is the Dirichlet operator on ]0, +-00[ associated to %tlgﬂ — 7.
When 2/n <6 <1, as 2/n < § < §;, then

A(H20(1-05))/(20;) — \(2-0)/(205) < \2=0)/(20) < \(=1)/2 — OQ(r((N)).

When 1/n < < 2/n, as 6 < §;, then

A1420(1-03))/(207) < \(+20(1=0))/(20) — \(n=(n3-1))/2 — Q(1(N)) O

To achieve the proof of Theorem 1.3, we take a one-form A satisfying the
assumptions of Lemma 2.6.

We remark that any eigenfunction u of the Laplace-Beltrami operator —A
on M associated to an eigenvalue in |inf sp . (—A), +o0], satisfies (2.27). So
if H, is the subspace of L?(M) spanned by eigenfunctions of —A associated
to eigenvalues in |0, 4+00], then, by (2.28) of Lemma 2.5 with 7 = 1/\?, with
p defined by (2.35), we have

. 1 Ca
Vue Hy, lidutZudlfzoan < (L S2)dulzzm +Callullzza (2.36)
So o
dim(H,) < N(<1+A—j)A+0A,—A(A_pA>). (2.37)

The estimates (2.34) and (2.37) prove (1.10), by noticing that A\"/2/\° =
O(ro(A)) U
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