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Abstract

We consider a non compact, complete manifold M of finite area
with cuspidal ends. The generic cusp is isomorphic toX×]1,+∞[ with
metric ds2 = (h+dy2)/y2δ. X is a compact manifold with nonzero first
Betti number equipped with the metric h. For a one-form A on M such
that in each cusp A is a non exact one-form on the boundary at infinity,
we prove that the magnetic Laplacian −∆A = (id+A)⋆(id+A) satisfies
the Weyl asymptotic formula with sharp remainder. We deduce an
upper bound for the counting function of the embedded eigenvalues
of the Laplace-Beltrami operator −∆ = −∆0.

1

1 Introduction

We consider a smooth, connected n-dimensional Riemannian manifold (M, g),
(n ≥ 2), such that

M =

J
⋃

j=0

Mj (J ≥ 1) , (1.1)

where the Mj are open sets of M. We assume that the closure of M0 is
compact and that the other Mj are cuspidal ends of M.

1Keywords : spectral asymptotics, magnetic Laplacian, embedded eigenvalues, cuspidal
manifold.
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This means that Mj∩Mk = ∅, if 1 ≤ j < k, and that there exists, for any
j, 1 ≤ j ≤ J , a closed compact (n − 1)-dimensional Riemannian manifold
(Xj,hj) such that Mj is isometric to Xj×]a2j ,+∞[ , (aj > 0) equipped with
the metric

ds2j = y−2δj (hj + dy2 ) ; (1/n < δj ≤ 1). (1.2)

So there exists a smooth real one-form Aj ∈ T ⋆(Xj), non exact, such that






i) dAj 6= 0
or
ii) dAj = 0 and [Aj ] is not integer.

(1.3)

In ii) we mean that there exists a smooth closed curve γ in Xj such that
∫

γ

Aj /∈ 2πZ .

Then one can always find a smooth real one-form A ∈ T ⋆(M) such that

∀ j, 1 ≤ j ≤ J, A = Aj on Mj . (1.4)

We define the magnetic Laplacian, the Bochner Laplacian

−∆A = (i d+ A)⋆(i d+ A) , (1.5)

(i =
√
−1 , (i d + A)u = i du + uA , ∀ u ∈ C∞

0 (M;C), the upper star, ⋆,
stands for the adjoint in L2(M) ) .

As M is a complete metric space, by Hopf-Rinow theorem M is geodesi-
cally complete, so it is well known, (see [Shu] ), that −∆A has a unique
self-adjoint extension on L2(M) , containing in its domain C∞

0 (M;C) , the
space of smooth and compactly supported functions. The spectrum of −∆A

is gauge invariant : for any f ∈ C1(M;R) , −∆A and −∆A+df are unitary
equivalent, hence they have the same spectrum.

For a self-adjoint operator P on a Hilbert spaceH, sp(P ), spess(P ), spp(P )
and spd(P ) will denote respectively the spectrum, the essential spectrum,
the point spectrum and the discrete spectrum of P. We recall that sp(P ) =
spess(P ) ∪ spd(P ), spd(P ) ⊂ spp(P ) and spess(P ) ∩ spd(P ) = ∅.

Theorem 1.1 Under the above assumptions on M, the essential spectrum
of the Laplace-Beltrami operator on M, −∆ = −∆0 is given by

{

spess(−∆) = [0,+∞[, if 1/n < δ < 1

spess(−∆) = [ (n−1)2

4
,+∞[, if δ = 1

. (1.6)
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When (1.3) and (1.4) are satisfied, the magnetic Laplacian −∆A has a com-
pact resolvent. The spectrum sp(−∆A) = spd(−∆A) is a sequence of non-
decreasing eigenvalues (λj)j∈N⋆ , λj ≤ λj+1, lim

j→+∞
λj = +∞, such that the

sequence of normalized eigenfunctions (ϕj)j∈N⋆ is a Hilbert basis of L2(M).
Moreover λ0 > 0.

For any self-adjoint operator P with compact resolvent, and for any real
λ, N(λ, P ) will denote the number of eigenvalues, (repeated according to
their multiplicity), of P less then λ,

N(λ, P ) = trace (χ]−∞,λ[(P )) , (1.7)

(for any I ⊂ R, χI(x) = 1 if x ∈ I and χI(x) = 0 if x ∈ R \ I).
The asymptotic behavior of N(λ,−∆A) satisfies the Weyl formula with

the following sharp remainder.

Theorem 1.2 Under the above assumptions on M and on A, we have the
Weyl formula with remainder as λ → +∞,

N(λ,−∆A) = |M| ωn

(2π)n
λn/2 + O(r(λ)) , (1.8)

with

r(λ) =

{

λ(n−1)/2 ln(λ), if 1/(n− 1) ≤ δ
λ1/(2δ), if 1/n < δ < 1/(n− 1)

, (1.9)

δ = min
1≤j≤J

δj , |M| is the Riemannian measure of M and ωd is the euclidian

volume of the unit ball of Rd, ωd =
πd/2

Γ(1 + d
2
)
.

The asymptotic formula (1.8) without remainder is given in [Go-Mo], and
with remainder but only for n = 2 (and δj = 1 for any 1 ≤ j ≤ J) in
[Mo-Tr].

The Laplace-Beltrami operator −∆ = −∆0 may have embedded eigenval-
ues in its essential spectrum spess(−∆). Let Ness(λ,−∆) denote the number
of eigenvalues of −∆, (counted according to their multiplicity), less then λ.

Theorem 1.3 There exists a constant CM such that, for any λ >> 1,

Ness(λ,−∆) ≤ |M| ωn

(2π)n
λn/2 + CMr0(λ) , (1.10)
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with r0(λ) defined by

r0(λ) =

{

λ
n−1
2 ln(λ), if 2/n ≤ δ ≤ 1

λ
n−(nδ−1)

2 , if 1/n < δ < 2/n
; (1.11)

δ is the one defined in Theorem 1.2 .

The above upper bound proves that any eigenvalue of −∆ has finite
multiplicity.

The estimate (1.10) is sharp when n = 2. There exist hyperbolic surfaces
M of finite area so that

Ness(λ,−∆) = |M| ω2

(2π)2
λ+ ΓMλ1/2 ln(λ) +O(λ1/2) ,

for some constant ΓM. See [Mul] for such examples.
Still in the case of surfaces, a compact perturbation of the metric of

non compact hyperbolic surface M of finite area can destroy all embedded
eigenvalues, see [Col1].

2 Proof

2.1 Proof of Theorem 1.1

Since the essential spectrum of an elliptic operator on a manifold is invariant
by compact perturbation of the manifold, (see for example [Do-Li], Proposi-
tion 2.1 ), we can write

spess(−∆A) =
J
⋃

j=1

spess(−∆
Mj ,D
A ) , (2.1)

where −∆
Mj ,D
A denotes the self-adjoint operator on L2(Mj) associated to

−∆A with Dirichlet boundary conditions on the boundary ∂Mj of Mj .
Let us consider a cusp Mj = Xj×]a2j ,+∞[ equipped with the metric

(1.2). Then for any u ∈ C2(Mj),

−∆Au = −y2δj∆
Xj

Aj
u − ynδj∂y(y

(2−n)δj∂yu) , (2.2)
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where ∆
Xj

Aj
is the magnetic Laplacian on Xj : if for local coordinates hj =

∑

k,ℓ

Gkℓ dxkdxℓ and Aj =
n−1
∑

k=1

aj,k dxk, then

−∆
Xj

Aj
=

1
√

det(G)

∑

k,ℓ

(i∂xk
+ aj,k)

(

√

det(G)Gkℓ(i∂xℓ
+ aj,ℓ)

)

.

We perform the change of variables y = et, and define the unitary operator
U : L2(Xj×]2 ln(aj),+∞[) → L2(Mj) , where ]2 ln(aj),+∞[ is equipped
with the standard euclidian metric dt2, by U(f) = y(nδj−1)/2f. Thus L2(Mj)
is unitary equivalent to L2(Xj×]2 ln(aj),+∞[), and

−U⋆∆AUf = −e2δj t∆
Xj

Aj
f+

(nδj − 1)[3 + δj(n− 4)]

4
e2t(δj−1)f−∂t(e

2t(δj−1)∂tf) .

(2.3)
Let us denote by (µℓ(j))ℓ∈N the increasing sequence of eigenvalues of

−∆
Xj

Aj
, each eigenvalue repeated according to its multiplicity. Then −∆

Mj ,D
A

is unitary equivalent to

+∞
⊕

ℓ=0

LD
j,ℓ,

sp(−∆
Mj ,D
A ) = sp(

+∞
⊕

ℓ=0

LD
j,ℓ) , (2.4)

where LD
j,ℓ is the Dirichlet operator on L2(]2 ln(aj),+∞[) associated to

Lj,ℓ = e2δjtµℓ(j) +
(nδj − 1)

4
[3+δj(n−4)]e2t(δj−1) − ∂t(e

2t(δj−1)∂t) . (2.5)

If µℓ(j) > 0 then sp(LD
j,ℓ) = spd(L

D
j,ℓ) = {µℓ,k(j); k ∈ N},where (µℓ,k(j))k∈N

is the increasing sequence of eigenvalues of LD
j,ℓ, lim

k→+∞
µℓ,k(j) = +∞.

If µℓ(j) = 0 then sp(LD
j,ℓ) = spess(L

D
j,ℓ) = [αn,+∞[, with αn = 0 if δj < 1,

and αn = (n− 1)2/4 if δj = 1.
Since we have µ0(j) = 0 when A = 0, we get that spess(−∆0) = [αn,+∞[.
If A satisfies assumptions (1.3) and (1.4), then 0 < µ0(j) ≤ µℓ(j) for

all j and ℓ, (see for example [Hel]), so sp(−∆
Mj ,D
A ) = {µℓ,k(j); (ℓ, k) ∈

N2}. As lim
ℓ→+∞

µℓ,k(j) = +∞, each µℓ,k(j) is an eigenvalue of −∆
Mj ,D
A of

finite multiplicity, so sp(−∆
Mj ,D
A ) = spd(−∆

Mj ,D
A ). Therefore, we get that

spess(−∆A) = ∅ �
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2.2 Proof of Theorem 1.2

We proceed as in [Mo-Tr].

We begin by establishing formula (1.8) for Mj , with −∆
Mj ,D
A defined in

(2.1), instead of −∆A. When δj = 1 we make the same change of variables
and functions as in the proof of Theorem 1.1, but when 1/n < δj < 1, we set
y = [(1− δj)t]

1/(1−δj ), and define the unitary operator

U : L2(Xj×]
a
2(1−δj )
j

1− δj
,+∞[) → L2(Mj), by U(f) = y(n−1)δj/2f.

Then when 1/n < δj < 1,

−U⋆∆AUf = −[(1−δj)t]
2δj
1−δj ∆

Xj

Aj
f+

(n− 1)δj[(n− 3)δj + 2]

4(1− δj)2t2
f−∂2

t f . (2.6)

As a matter of fact,
−U⋆ynδj∂y[y

(2−n)δj∂yU(f)] = −y(n+1)δj/2∂y[y
(3−n)δj/2∂yf ]− (n−1)δj

2
y2δj−1∂yf +

(n−1)δj [(n−3)δj+2]

4
y−2(1−δj)f,

then using that yδj∂y = ∂t and that tρ∂t = ∂t(t
ρ.)−ρtρ−1, we get easily (2.6).

Equality (2.4 ) still holds when LD
j,ℓ is the Dirichlet operator on L2(]a

2(1−δj )

1−δj
,+∞[)

associated to

Lj,ℓ = µℓ(j)[(1− δj)t]
2δj
1−δj +

(n− 1)δj [(n− 3)δj + 2]

4(1− δj)2t2
− ∂2

t . (2.7)

From now on, any constant depending only on δj and on min
j

µ0(j) will

be invariably denoted by C .
As in [Mo-Tr], we will follow Titchmarsh’s method. Using Theorem 7.4

in [Tit] page 146, we prove the following Lemma.

Lemma 2.1 There exists C > 1 so that for any λ >> 1
and any ℓ ∈ Kλ = {l ∈ N; µℓ(j) ∈ [0, λ/min

j
a2j [} ,

|N(λ, LD
j,ℓ) − 1

π
wj,ℓ(λ)| ≤ C ln(λ) , (2.8)

with wj,ℓ(µ) =

∫ +∞

αj

[µ− Vj,ℓ(t)]
1/2
+ dt =

∫ Tj(µ)

αj

[µ− Vj,ℓ(t)]
1/2
+ dt.
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The potential Vj,ℓ is defined as following:






if δj = 1 Vj,ℓ(t) = µℓ(j)e
2t + (n−1)2

4

if 1/n < δj < 1 Vj,ℓ(t) = µℓ(j)[(1− δj)t]
2δj
1−δj +

(n−1)δj [(n−3)δj+2]

4(1−δj)2
t−2

,

(2.9)
and














if δj = 1 αj = 2 ln(aj), Tj(µ) =
1

2
ln (µ/µ0(j))

if 1/n < δj < 1 αj =
a
2(1−δj )

j

1−δj
, Tj(µ) =

1

1− δj

(

µ

µ0(j)

)

1−δj
2δj

. (2.10)

Proof of Lemma 2.1

When 1/n < δj < 1, by enlarging M0 and reducing Mj, we can take
αj large enough so that Vj,ℓ(t) is an increasing function on [αj ,+∞[ and
λ/µℓ(j) >> 1 when ℓ ∈ Kλ. Then, if αj ≤ Y < X(λ) = V −1

j,ℓ (λ), following
the proof of Theorem 7.4 in [Tit] pages 146-147, we get that

|N(λ, LD
j,ℓ)−

1

π
wj,ℓ(λ)| ≤ (2.11)

C[ln(λ− Vj,ℓ(αj))− ln(λ− Vj,ℓ(Y )) + (X(λ)− Y )(λ− Vj,ℓ(Y )) + 1].

When δj = 1, we choose Y = X(λ)−
√
lnλ√
λ
.

When 1/n < δj < 1, we choose Y = X(λ)−
√
lnλ√
λ

(

λ

µℓ(j)

)

1−δj
4δj

;

(X(λ) ∼ 1
1−δj

(

λ
µℓ(j)

)

1−δj
2δj ) �

Let us recall the sharp asymptotic Weyl formula of L. Hörmander [Hor1]
(see also [Hor2]).

Theorem 2.2 There exists C > 0 so that for any µ >> 1

|N(µ,−∆
Xj

Aj
) − ωn−1

(2π)n−1
|Xj|µ(n−1)/2| ≤ Cµ(n−2)/2 . (2.12)

Lemma 2.3 There exists C > 0 such that for any λ >> 1

|N(λ,−∆
Mj ,D
A )− ωn

(2π)n
|Mj|λn/2| ≤ (2.13)

C

{

λ(n−1)/2 ln(λ), if 1/(n− 1) ≤ δj ≤ 1
λ1/(2δj), if 1/n < δj < 1/(n− 1)

.
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Proof of Lemma 2.3 By the formula (2.4),

N(λ,−∆
Mj ,D
A ) =

+∞
∑

ℓ=0

N(λ, LD
j,ℓ) . (2.14)

As N(λ, LD
j,ℓ) = 0 when ℓ /∈ Kλ, (Kλ is defined in Lemma 2.1), the estimates

(2.8), (2.12) and formula (2.14) prove that

|N(λ,−∆
Mj ,D
A ) −

+∞
∑

ℓ=0

1

π
wj,ℓ(λ)| ≤ Cλ(n−1)/2 ln(λ) . (2.15)

Let us denote

Θj(λ) =
+∞
∑

ℓ=0

1

π
wj,ℓ(λ) and Rj(µ) =

+∞
∑

ℓ=0

[µ− µℓ(j)]
1/2
+ . (2.16)

As Rj(µ) =
1

2

∫ +∞

0

[µ− s]
−1/2
+ N(s,−∆

Xj

Aj
)ds,

the Hörmander estimate (2.12) entails the following one.
There exists a constant C > 0 such that, for any µ >> 1,

|Rj(µ) − ωn−1

2(2π)n−1
|Xj|

∫ +∞

0

[µ− s]
−1/2
+ s(n−1)/2ds| ≤ Cµ(n−1)/2 . (2.17)

Writing in (2.9 )

Vj,ℓ(t) = µℓ(j)Vj(t) + Wj(t) , (2.18)

we get that Θj(λ) =
1

π

∫ Tj(λ)

αj

V
1/2
j (t)Rj(

λ−Wj(t)

Vj(t)
)dt .

So according to (2.17)

|Θj(λ) − ωn−1Γ(
1
2
)Γ(n+1

2
)

(2π)nΓ(1 + n
2
)
|Xj|

∫ Tj(λ)

αj

(λ−Wj(t))
n/2

V
(n−1)/2
j (t)

dt| ≤ (2.19)

C

∫ Tj(λ)

αj

(λ−Wj(t))
(n−1)/2

V
(n−2)/2
j (t)

dt .
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From the definitions (2.9) and (2.18) we get that

|
∫ Tj(λ)

αj

(λ−Wj(t))
n/2

V
(n−1)/2
j (t)

dt − λn/2 1

(δjn− 1)a
2(δjn−1)
j

| ≤ Cλ(n−1)/2 , (2.20)

and
∫ Tj(λ)

αj

(λ−Wj(t))
(n−1)/2

V
(n−2)/2
j (t)

dt ≤ (2.21)

C







λ(n−1)/2 if 1/(n− 1) < δj ≤ 1
λ(n−1)/2 lnλ if 1/(n− 1) = δj
λ1/(2δj ) if 1/n < δ ≤ 1/(n− 1)

.

As |Mj | =
|Xj|

(δjn− 1)a
2(δjn−1)
j

, we get (2.13) from (2.15), (2.16) and (2.19)—

(2.21) �

To achieve the proof of Theorem 1.2, we proceed as in [Mo-Tr].

We denote M0
0 = M \ (

J
⋃

j=1

Mj) , then

M = M0
0

⋃

(

J
⋃

j=1

Mj

)

. (2.22)

Let us denote respectively by −∆Ω,D
A and by −∆Ω,N

A the Dirichlet operator
and the Neumann-like operator on an open set Ω of M associated to −∆A .
−∆Ω,N

A is the Friedrichs extension defined by the associated quadratic form

qΩA(u) =

∫

Ω

|idu + Au|2dm , u ∈ C∞(Ω;C), u with compact support in

Ω. (dm is the n-form volume of M).
The minimax principle and (2.22) imply that

N(λ,−∆
M0

0,D
A ) +

∑

1≤j≤J

N(λ,−∆
Mj ,D
A ) ≤ N(λ,−∆A) (2.23)

≤ N(λ,−∆
M0

0,N
A ) +

∑

1≤j≤J

N(λ,−∆
Mj ,N
A )
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The Weyl formula with remainder, (see [Hor2] for Dirichlet boundary
condition and [Sa-Va] p. 9 for Neumann-like boundary condition), gives that

N(λ,−∆
M

0
0,Z

A ) =
ωn

(2π)n
|M0

0|λn/2+O(λ(n−1)/2) ; (for Z = D and for Z = N) .

(2.24)

For 1 ≤ j ≤ J, the asymptotic formula for N(λ,−∆
Mj ,N
A ) ,

N(λ,−∆
Mj ,N
A ) =

ωn

(2π)n
|Mj|λn/2 +O(r(λ)) , (2.25)

is obtained as for the Dirichlet case (2.13) by noticing that N(λ, LD
j,ℓ) ≤

N(λ, LN
j,ℓ) ≤ N(λ, LD

j,ℓ) + 1 , where LD
j,ℓ and LN

j,ℓ are Dirichlet and Neumann-
like operators on a half-line I =]αj,+∞[ , associated to the same differential
Schrödinger operator Lj,ℓ defined by (2.5) when δj = 1, and by (2.7) oth-
erwise. (The Neumann-like boundary condition is of the form ∂tu(αj) +
βju(αj) = 0 because of the change of functions performed by U⋆).

We get (1.8) from (2.13) and (2.23)— (2.25) �

2.3 Proof of Theorem 1.3

Lemma 2.4 For any j ∈ {1, . . . , J}, there exists a one-form Aj satisfying
(1.3) and the following property.

There exists τ0 = τ0(Aj) > 0 and C = C(Aj) > 0 such that for any
λ >> 1, if e(τ, j) = inf

u∈C∞(Xj), ‖u‖
L2(Xj )

=1
‖idu+ τuAj‖2L2(Xj)

denotes the first

eigenvalue of −∆
Xj

τAj
, then

e(τ, j) ≥ Cτ 2 ; ∀ τ ∈]0, τ0] . (2.26)

Proof of Lemma 2.4. When n = 2, we can take Aj = ωjdxj, (dxj is

the (n − 1)-form volume of Xj), for some constant ωj ∈ R \ 2π

|Xj|
Z, then

e(τ, j) = τ 2ω2
j for small |τ |.

When n ≥ 3, we have e(0, j) = 0, ∂τe(0, j) = 0 and

∂2
τ e(0, j) =

∫

Xj

[

|Aj |2 − (−∆
Xj

0 )−1(d⋆Aj).(d
⋆Aj)

]

dxj .
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(d⋆ is the adjoint of d defined on functions, and (−∆
Xj

0 )−1 is the inverse of the
Laplace-Beltrami operator on functions, which is well-defined on the space
{f ∈ L2(Xj);

∫

Xj
fdxj = 0}).

To the non-negative quadratic form Aj → ∂2
τ e(0, j), we associate a self-

adjoint operator P on T ⋆(Xj), which is a pseudodifferential operator of order
0 with principal symbol, the square matrix p0(x, ξ) = (pik0 (x, ξ))1≤i,k≤n−1

defined as follows. In local coordinates, if hj = Gik(x)dxidxk, then

pik0 (x, ξ) = Gik(x) −
∑

ℓ,m

Gim(x)Gℓk(x)
ξm
|ξ|

ξℓ
|ξ| ; (|ξ|2 =

∑

ℓ,m

Gmℓ(x)ξmξℓ) .

As the non-negative symmetric matrix p0(x, ξ) is not the zero matrix, there
exists Aj such that P (Aj) 6= 0 and by the positivity of P, ∂2

τ e(0, j) =
∫

Xj
〈P (Aj)|Aj〉dxj > 0 �

Lemma 2.5 For a one-form A satisfying (1.4), there exists a constant CA >
0 such that, if u is a function in L2(M) such that du ∈ L2(M) and

∀j = 1, . . . , J,

∫

Xj

u(xj , y)dxj = 0 , ∀y ∈]a2j ,+∞[ , (2.27)

then ∀τ ∈]0, 1],

‖idu+ τuA‖2L2(M) ≤ (1 + τCA)‖idu‖2L2(M) + CA‖u‖2L2(M) . (2.28)

Proof of Lemma 2.5. First we remark that the inequality

|idu+ τuA|2 ≤ (1 + ρ)|du|2 + (1 + ρ−1)|τuA|2 (2.29)

is satisfied for any ρ > 0.
For ρ = τ we get that there exists a constant C0

A > 0, depending only on
A/M0, such that

‖idu+ τuA‖2L2(M0)
≤ (1 + τ)‖idu‖2L2(M0)

+ τC0
A‖u‖2L2(M0)

. (2.30)

We get also for ρ = τ that for any j ∈ {1, . . . , J},
∫ +∞

a2j

‖idu+ τuA‖2L2(Xj)
y(2−n)δjdy ≤ (2.31)
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∫ +∞

a2j

(

(1 + τ)‖idu‖2L2(Xj)
+ τCj

A‖u‖2L2(Xj)

)

y(2−n)δjdy ,

for some constant Cj
A depending only on A/Xj .

But (2.27) implies that

‖u‖2L2(Xj)
≤ 1

µ1(j)
‖idu‖2L2(Xj )

, (2.32)

with (µℓ(j))ℓ∈N the sequence of eigenvalues of Laplace-Beltrami operator on
Xj, µ0(j) = 0 < µ1(j) ≤ µ2(j) ≤ . . . . So if (2.27) is satisfied then (2.31) and
(2.32) imply that

‖idu+ τuA‖2L2(Mj)
≤ (1 + τcjA)‖idu‖2L2(Mj)

, (2.33)

for some constant cjA depending only on A/Xj.
The existence of a constant CA > 0 satisfying the inequality (2.28) follows

from (2.30) and (2.33) for j = 1, . . . J �

Lemma 2.6 When A satisfies (1.3), (1.4) and Lemma 2.4 , then as λ →
+∞, the following Weyl formula is satisfied.

N(λ,−∆(λ−ρA)) = |M| ωn

(2π)n
λn/2 + O(r0(λ)) , (2.34)

with

ρ =

{

1/2, if 2/n ≤ δ ≤ 1
(nδ − 1)/2, if 1/n < δ < 2/n

, (2.35)

δ and ωd are as in Theorem 1.2, and the function r0(λ) is the one defined by
(1.11) .

Proof of Lemma 2.6. Since A satisfies Lemma 2.4, we have

C/λ2ρ ≤ µ0(j) and C ≤ µ1(j) ,

where (µℓ(j))ℓ∈N denotes now the increasing sequence of eigenvalues of−∆
Xj

λ−ρAj
.

Hence we can mimick the proof of Theorem 1.2. More precisely Lemma 2.1
holds for any ℓ ∈ Kλ, ℓ 6= 0, and to get the result it only remains to prove
that we have, for Lj,0 defined by (2.5) if δj = 1, and by (2.7) otherwise,

N(λ, LD
j,0) = O(r0(λ)) .

12



This can easily be done as follows.
When δj = 1, (ρ = 1/2), it is easy to see that

N(λ, LD
j,0) ≤ N(λ+ C,LD,λ) ≤ Cλ1/2 ln(λ) ,

where LD,λ is the Dirichlet operator on ]0,+∞[ associated to
C

λ
e2t − ∂2

t .

When 0 < δj < 1, by scaling we have that

N(λ, LD
j,0) ≤ N((λ+ C)1+2ρ(1−δj), LD) ≤ Cλ(1+2ρ(1−δj ))/(2δj ) ,

where LD is the Dirichlet operator on ]0,+∞[ associated to
1

C2
t

2δj
1−δj − ∂2

t .

When 2/n ≤ δ < 1, as 2/n ≤ δ ≤ δj, then
λ(1+2ρ(1−δj ))/(2δj ) = λ(2−δj)/(2δj ) ≤ λ(2−δ)/(2δ) ≤ λ(n−1)/2 = O(r0(λ)).
When 1/n < δ < 2/n, as δ ≤ δj , then
λ(1+2ρ(1−δj ))/(2δj ) ≤ λ(1+2ρ(1−δ))/(2δ) = λ(n−(nδ−1))/2 = O(r0(λ)) �

To achieve the proof of Theorem 1.3, we take a one-form A satisfying the
assumptions of Lemma 2.6.

We remark that any eigenfunction u of the Laplace-Beltrami operator−∆
on M associated to an eigenvalue in ] inf spess(−∆),+∞[, satisfies (2.27). So
if Hλ is the subspace of L2(M) spanned by eigenfunctions of −∆ associated
to eigenvalues in ]0,+∞[, then, by (2.28) of Lemma 2.5 with τ = 1/λρ, with
ρ defined by (2.35), we have

∀u ∈ Hλ, ‖idu+ 1

λρ
uA‖2L2(M) ≤ (1+

CA

λρ
)‖du‖2L2(M)+CA‖u‖2L2(M) (2.36)

So

dim(Hλ) ≤ N((1 +
CA

λρ
)λ+ CA,−∆(λ−ρA)) . (2.37)

The estimates (2.34) and (2.37) prove (1.10), by noticing that λn/2/λρ =
O(r0(λ)) �
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