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Abstract

We consider a non compact, complete manifold M of finite area
with cuspidal ends. The generic cusp is isomorphic to Xx]1,400]
with metric ds®> = (h + dy?)/y?°. X is a compact manifold equipped
with the metric h. For a one-form A on M such that in each cusp A
is a non exact one-form on the boundary at infinity, we prove that
the magnetic Laplacian —A 4 = (id + A)*(id + A) satisfies the Weyl
asymptotic formula with sharp remainder. We deduce an upper bound
for the counting function of the embedded eigenvalues of the Laplace-
Beltrami operator —A = —Ag. !

1 Introduction

We consider a smooth, connected n-dimensional Riemannian manifold (M, g),
(n > 2), such that

M= JM, (J>1), (1.1)

where the M; are open sets of M. We assume that the closure of M, is
compact and that the other M; are cuspidal ends of M.

! Keywords : spectral asymptotics, magnetic Laplacian, embedded eigenvalues, cuspidal
manifold.



This means that M;NM,, = 0, if 1 < j < k, and that there exists, for any
Jj, 1 <7< .J,aclosed compact (n — 1)-dimensional Riemannian manifold
(X;, h;) such that M is isometric to X;x]a?, +o0o[, (a; > 0) equipped with
the metric

ds? = y_%f(hj +dy*); (I/n< 9; <1). (1.2)
So there exists a smooth real one-form A; € T*(X;), non exact, such that
i) dA; #0
or (1.3)

i1) dA; = 0 and [A;] is not integer.

In i7) we mean that there exists a smooth closed curve v in X; such that

[ ¢ 2z,

o

Then one can always find a smooth real one-form A € T*(M) such that
Vi,1<;<J A=A on M. (1.4)
We define the magnetic Laplacian, the Bochner Laplacian
—Ay = (1d+A)*(id+ A), (1.5)

(i=+v-1, (id+Au=idu+uA, Vu € C&PM;C), the upper star, *,
stands for the adjoint between the square-integrable 1-forms and L?*(M)) ,
so d*(Z) is the usual Hodge-de Rham coodifferential, and

ANZ) =< A; Z >pem, VZ € AY(M), where Aj(M) denotes the vector space
of smooth one-forms with compact support.

As M is a complete metric space, by Hopf-Rinow theorem M is geodesi-
cally complete, so it is well known, (see [Shu] ), that —A4 has a unique
self-adjoint extension on L?*(M) , containing in its domain C§°(M;C) , the
space of smooth and compactly supported functions. The spectrum of —A 4
is gauge invariant : for any f € C'(M;R), —A4 and —A 4,4 are unitary
equivalent, hence they have the same spectrum.

For a self-adjoint operator P on a Hilbert space H,

Sp<P)7 Spess(P)7 Spp<P)7 Spd(P)
will denote respectively the spectrum, the essential spectrum, the point spec-
trum and the discrete spectrum of P. We recall that

SP(P) = 8Pess (P) Usp4(P), spg(P) C sp,(P) and spe(P) Nspy(P) = 0.



Theorem 1.1 Under the above assumptions on M, the essential spectrum
of the Laplace-Beltrami operator on M, —A = —/Ay is given by

{ SPess (—A) = [0, 00/, if 1/n<d<1 (1.6)

SPess(—A) = [P 400, if 5=1
(6 = min §; )

1<5<J
When (1.3) and (1.4) are satisfied, the magnetic Laplacian —A4 has a
compact resolvent. The spectrum sp(—Aa) = spy(—A4) is a sequence of non-
decreasing eigenvalues (Aj)jen , Aj < Aji1, ,liin A;j = +o0, such that the
]H o0

sequence of normalized eigenfunctions (p;)jen is a Hilbert basis of L*(M).
Moreover Ay > 0. (N denotes the set of natural numbers).

This theorem is not new. The case A = 0 was proved in [Don2|, and the
other case in [Go-Mol, but in the two cases, for a wider class of Riemann
metric. We will give a short proof for our simple class of Riemann metric,
by following the classical method used in [Donl], [Don2] and [Do-Li|.

For any self-adjoint operator P with compact resolvent, and for any real
A, N(A, P) will denote the number of eigenvalues, (repeated according to
their multiplicity), of P less then A,

N\ P) = trace (xj-oen(P)) | (1.7)

(forany I C R, xs(x)=1ifx € and x;(x) =0if x € R\ I).
The asymptotic behavior of N(A, —A,) satisfies the Weyl formula with
the following sharp remainder.

Theorem 1.2 Under the above assumptions on M and on A, we have the
Weyl formula with remainder as A — +o0,

N =A4) = [MIZZ2A? 4 O(r(Y). (18)
(2m)"
" DRI, 1/ 1) <6
A=Y 0n(N), it 1/(n—1) <
M) { A/(29) if 1/n<d<1/(n—1)" (1.9)
0= 11<r1j£1J d; , |M] is the Riemannian measure of M and wy is the euclidian
- /2
volume of the unit ball of RY, wy = m.
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The asymptotic formula (1.8) without remainder is given in [Go-Mo]|, and
with remainder but only for n = 2 (and §; = 1 for any 1 < j < J) in
[Mo-Tr].

The Laplace-Beltrami operator —A = —Ay may have embedded eigenval-
ues in its essential spectrum sp,(—A). Let Nes(A, —A) denote the number
of eigenvalues of —A, (counted according to their multiplicity), less then A.

Theorem 1.3 There exists a constant Cyy such that, for any X >> 1,

NeSSO‘v_A) < |M|(;7S”An/2 + CMTO()‘)a (1'10)
with ro(\) defined by
n—1
2] if 2/n<d<1
ro(\) = AZ m(d), df 2/nsos : (1.11)
Az, if 1/n<dé<2/n

0 is the one defined in Theorem 1.2 .

The above upper bound proves that any eigenvalue of —A has finite
multiplicity. There exist shorter proofs of the multiplicity, see for example
[Donl] or Lemma B1 in [Go-Mo].

The estimate (1.10) is sharp when n = 2. There exist hyperbolic surfaces
M of finite area so that

Nuw(, —A) = \M\QMTQ)Q)\ + T A2 In(A) + O(AY2)
for some constant I'yg. See [Mul] for such examples.

Still in the case of surfaces, a compact perturbation of the metric of
non compact hyperbolic surface M of finite area can destroy all embedded
eigenvalues, see [Coll].

For the proof of Theorem 1.2, we will follow the standard method of parti-
tioning M and using min-max principle to estimate the number of eigenvalues
by the sum of the ones of the Dirichlet operators and Neumann operators
associated to the partition. In a cusp partition, we will diagonalize —A 4
to an infinite sum of Schrodinger operators in a half-line, and then we can
use standard estimates of the number of eigenvalues for those Schrodinger
operators.

For the proof of Theorem 1.3, we will prove that Theorem 1.2 is still valid
when one changes A into A" A, for some one-form A. Then we will show that
the number of embedded eigenvalues of —A less than A is bounded above by
the number of eigenvalues of —A\-»4) less than .
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2 Proofs

Since by the Persson [Per] argument used in [Do-Li], the essential spectrum
of an elliptic operator on a manifold is invariant by compact perturbation of
the manifold, ( see also Prop C3 in [Go-Mo]), we can write

J
Spess<_AA> = U Spess<_A,lXIj7D> ) (21)
j=1

where —Az/lj P denotes the self-adjoint operator on L?(M;) associated to
—A 4 with Dirichlet boundary conditions on the boundary OM; of M;.

2.1 Diagonalization of the magnetic Laplacian

Let us consider a cusp M = X;x]a3, +-00[ equipped with the metric (1.2).
Then for any u € C*(M;),

—Ayu = _y%inl(ju — "0,y 9,u) (2:2)

where Ail(j is the magnetic Laplacian on X; : if for local coordinates h; =

n—1

ZGM dxpdz, and A; = Zaﬂ?k dxy,, then
¢ =1

X;

A; WZ

We perform the change of variables y = €', and define the unitary operator
U : L*(X;x]2In(a;),+oo[) — L*(Mj;) , where |2In(a;),+o0] is equipped
with the standard euclidian metric dt?, by U(f) = y"%~Y/2f. Thus L*(M;)
is unitarily equivalent to L?(X;x]21n(a;), +oo[), and

10y, + Q) ( det(G)GM(i@M + aj,é)) )

U ALUSf = (2.3)

(nd; = DB +;(n —
4

Let us denote by (ue(j))een the increasing sequence of eigenvalues of

25 tA ]f )] 2t(5j71)f . 8t<e2t(5j71)8tf) )

—Afj , each eigenvalue repeated according to its multiplicity.
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—+o0
Then —AIXI”D is unitarily equivalent to @ Lfb
£=0

+oo
M;,D
sp(—A47) = sp(ED L7 - (24)
=0

where L7, is the Dirichlet operator on L?*(]2In(a;), 400[) associated to

(nd; —1)

1 [346;(n—4)]e*=1 — 9,(2%=D9,) . (2.5)

Lie = €*'u(j) +
The operator Lfg depends on A; since p(j) depends on A; but we skip this
dependence in notations for the sake of simplicity,

0 < pe(j) < presa(j) and - lim gu(j) = F-o0.

L—00

It is well-known that assumption (1.3) implies that

0 < po(y) -

As a matter of fact, if uo(j) = 0 and u, is an associated eigenfunction, then
idug = —upAj, so Re(tpdug) = 0, and then |ug| is constant. We can assume
that up = e with ¢ a real function. Then locally dp = A; , which yields
dA; = 0, so for any xp € X;, and for any regular curve I'; , joining z¢ to z,
we have ¢(z) = szo,z A;. Therefore €’ will be a well-defined function on X;
iff part i7) of (1.3) is satisfied, (see for example [Hel]).

When 1/n < ¢; < 1, another change of variables can be done. Precisely
we set y = [(1 — §;)t]/(17%) and define the unitary operator

2(1-4;)
a’
U LX)~ 5 tool) = L*(My), by U(f) =y D% f,
—0;

Then we compute
_U*yn5j8y [y(Qin)(sjayU(f)] =

2

—y("+1)6j/26y [y(3—n)6j/28yf]_ y26j—1ayf+
so using that y%9, = 9, and that t*0, = 9,(t".) — pt*~!, we get easily that

* _ b AXy o, (n=1)05[(n = 3)d; + 2]
—UALUf = —[(1=4;)t] ' AAjf+ 41— 5;)22

f=0if. (2:6)

y 200 f,



Thus, in the case 1/n < §; < 1, equality (2.4 ) holds also when L%, is the
220-85)
175; 7

Dirichlet operator on L?(]

+oo[) associated to

— 9. (@20)

2.2 Proof of Theorem 1.1

To study the spectrum, we use the first diagonalization given by (2.4) and
(2.5).
If p14(j) > 0 then sp(sz) = spd(sz) = {per(j); k € N}, where (p(7))ken

is the increasing sequence of eigenvalues of Lf s kETm fe () = +oo.

If p1(j) = 0 then sp(LY) = spe (LY, = [, +oo, with oy, = 0 if §; < 1,
and o, = (n —1)?/4if §; =1,
(by (25), if 6; = 1, LPu = —0fu + (n — 1)*/4u, and by (2.5), if 1/n < §; <
1, LPu = —0}u + V(t)u with tlgélo V(t) =0).

Since we have 19(j) = 0 when A = 0, we get that sp..(—2Ao) = [a, +00].

If A satisfies assumptions (1.3) and (1.4), we have seen that 0 < pug(j),
then 0 < p(7) for all j and ¢, and then

sp(—AN") = {uen(h); (6, k) € N2}

As pe(j) < per(y) < pps1(y) with lim p,(j) = +oo and  lim pugr(j) =
l—+o00 k—+00

+00, each 11g,(j) is an eigenvalue of —A'Y7"” of finite multiplicity, so sp(—AN ") =
spd(—Alej’D). Therefore, we get that sp.(—A4) =00

2.3 Proof of Theorem 1.2

We proceed as in [Mo-Tr].

We begin by establishing for M;, 1 < j < J, formula (1.8) with —AIXI”D
defined in (2.1) instead of —A 4. When 6; = 1 we use the decomposition given
by (2.4) and (2.5), but when 1/n < §; < 1, we use the decomposition given
by (2.4) and (2.7).

From now on, any constant depending only on ¢, and on min jo(j) will
be invariably denoted by C'. !

As in [Mo-Tr|, we will follow Titchmarsh’s method. Using Theorem 7.4
in [Tit] page 146, we prove the following Lemma.
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Lemma 2.1 There exists C' > 1 so that for any A >> 1
and any L € Ky ={l € N; u,(j) € [O,A/minaj ",
j

1
INOLER) — —wpN] < (), (2.8)
+oo T5(w)
with wie) = [ = Va0t = [ = Vil e
The potential V; is defined as following: ’
if §; =1
Vielt) = pelj)e” + 5
if 1/n<d; <1 ) : (2.9)
—= n—1)6;[(n—3)d; —
Vie(t) = pe(G)[(1 = ;) =+ Ltlpl=fntsly—
and
1 4
0y =2Mn(as), Ty(n) = 5 (/0 ()
if 1/n<d;<1 : (2.10)
1-4;
22175 1 m )
o = -1 . Ti(p) = ,
L J 1—5j ](lu) 1 — 5]' (NO(,])

Proof of Lemma 2.1

When 1/n < §; < 1, by enlarging M, and reducing M;, we can take
a; large enough so that Vj,(¢) is an increasing function on [a;, +o00[ and
M pe(j) >> 1 when £ € K. Then, if a; <Y < X(A) = V;}(}), following
the proof of Theorem 7.4 in [Tit] pages 146-147, we get that

1
N LE) = —wy(V)] < (2.11)

Cln(A = Vj(ay)) = In(A = Vie(Y)) + (X(A) = Y)(A = Viu(Y)) + 1
When §; = 1, we choose Y = X (\) — VIn

\/X 1-6
=9
In A A 45;
When 1/n < 0; < 1, we choose Y = X () — - < ‘ ) "
VA \e(d)

1—6j

(X0~ 5 () ™) O




Let us apply to —AX , the magnetic Laplacian which lies on X, on a
"boundary at infinity”, the sharp asymptotic Weyl formula of L. Hormander
[Horl] (see also [Hor2]),

Theorem 2.2 There exists C > 0 so that for any p >> 1

Wn;l . |X]‘,u(n_1)/2| S C,u(n—Q)/Z ) (212)

(2m)"=

Lemma 2.3 There exists C' > 0 such that for any A >> 1

‘N<:u7 _Ai(;) -

(2"

A=D21n(N), if 1/(n—1)<6; <1
A/(205) if 1/n<d;<1/(n—1)

M;,D n
INOA, =447 = M A2 < (2.13)

Proof of Lemma 2.3 By formula (2.4),
+o0
N, =AYy = Y N LP) . (2.14)

When ¢ ¢ K, (K, is defined in Lemma 2.1), and thanks to formula (2.9)
we have V , > ,ug(j)a?éj > Aso N(X, LY,) = 0. Therefore the estimates (2.8),
(2.12) and formula (2.14) prove that

+oo
, 1
IN(A =AY N7 2, (V)] < CAPTD2n()) (2.15)
{=0 T
Let us denote
400 1 +o0 Lo
0;(N) = D —wiu(\) and Rj(u) = ) [~ m()lY (2.16)
£=0 =0
Y —1/2 X;
As R;(p) = 5 v —s].""N(s, —AAj )ds,

0
the Hormander estimate (2.12) entails the following one.
There exists a constant C' > 0 such that, for any p >> 1,

+o0o
[Ri(1) — Li_JXﬂ/ = 8] 25 2ds| < Cplnh2 o (2.17)
2(2m) 0
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Writing in (2.9 )

Vie(t) = me()Vi(t) + W;(t) (2.18)
we get that ©;(\) = %/Tj()\) \/jl/Q(t)Rj()‘_‘/%I?g@))dt .

So according to (2.17)

Wh 1 l i >\) n/2
|©;(\) — @ )FFQ % |X |/ V(" 1 )()) dt| < (2.19)

C’/Tj(/\) (A — Wj(t))(”*l)md
22 t
o v g

J
From the definitions (2.9) and (2.18) we get that

| / aa )>n/2dt /2 ! | < CAD2 0 (2.20)
V(n 1/2() (5%—1) 2(511 Hnt — ’ ’

and

/TM (A= W) dt < (2.21)

; V}(n*2)/2 (t)

An=1)/2 if 1/(n—1)<4;<1
C{ A= D2In)x if 1/(n—1)=9;

AL/(285) if 1/n<d<1/(n—1)
X.
As M| = % | )J‘Q(é,_n_l) , we get (2.13) from (2.15), (2.16) and (2.19)—
jn—1a; ™
(2.21) O

To achieve the proof of Theorem 1.2, we proceed as in [Mo-Tt].

We denote M) =M \ (U M,) , then

M = Mj| J <LJJ E) . (2.22)

Let us denote respectively by —A’, 2D and by AQ’N the Dirichlet operator
and the Neumann-like operator on an open set 2 of M associated to —Ay4 .

10



—AQ N'is the Friedrichs extension defined by the associated quadratic form

¢ (u /|zdu + AulPdm |, u € C=(€;C), u with compact support in

Q. (dm is the n-form volume of M and |Z|* =< Z; Z >r+«(ar) for any complex
one-form Z on M).
The min-max principle and (2.22) imply that

N =AY 1 3T N A S N AL (229

1<j<J

< NOL-AYSY) 57 N, Al

1<j<J

The Weyl formula with remainder, (see [Hor2] for Dirichlet boundary
condition and [Sa-Va] p. 9 for Neumann-like boundary condition), gives that

N, —AMSZ) = (2“") IMOAY24+O(A™D/2) . (for Z = D and for Z = N) .
m n
(2.24)
For 1 < j < J, the asymptotic formula for N (A, AM N)
NOL =AY = G M+ 06 () (2.25)
T n

is obtained as for the Dirichlet case (2.13) by noticing that

where Lfg and L?fz are Dirichlet and Neumann-like operators on a half-line
I =]a;,+o0o[ , associated to the same differential Schrodinger operator L,
defined by (2.5) when 6; = 1, and by (2.7) otherwise.

(The Neumann-like boundary condition is of the form d,u(c;) + fu(cy;) =0
because of the change of functions performed by U*).

The above inequality is well-known. It comes from the fact that the eigen-
values of LDZ and LNZ are of multiplicity one and there is no common eigen-
value, (we ‘have used Theorem 2.1. page 225 of [Co-Le]). If (uf;(j))ken

is the sequence of non-decreasing eigenvalues of LZZ, (Z = D or D =
N), and (cpz w)een an associated orthonormal basis of eigenfunctions, then
ppo(d) < W,o( ). As in Ey1(Z), the subspace of dimension k + 1 spanned

by @0, 971, 0l there exists, in Ep1(Z), a subspace of dimension
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included in the domain of Lfe, for (Z,Z) = (N, D) and for (Z,Z) = (D, N),

the min-max principle involves sz,kq(j) < ,uzzk(]) (For any Fk, gpé\fkﬂ —
N D

P k—l—l(&j) N . . . D D 815()04 k+1(aj) D . -

— is in the domain of L%, and - is in
ohlas) 7 P T DR (o) T

the domain of LY,).
We get (1.8) from (2.13) and (2.23)— (2.25) O

2.4 Proof of Theorem 1.3

Lemma 2.4 For any j € {1,...,J}, there exists a one-form A; satisfying
(1.3) and the following property.
There exists 1o = 19(A4;) > 0 and C' = C(A;) > 0 such that, if po(j, 7) =

inf ||idu+7‘uAj||%2(X,) denotes the first eigenvalue of—Afi{ :
ueC(X;), ”u”LQ(xj):l J J

then
po(d,7) > Cr%: VY 7€)0,7). (2.26)

(lidu + TuA; ||L2(X ) = ij < idu + TuAj;idu + TuA; >rex;) dX; ).

Proof of Lemma 2.4. When n = 2, we can take A; = w]dxj, (dx; is

the (n — 1)-form volume of X;), for some constant w; € R\ be |Z then
po(j, 7) = Tw? for small |7|.
When n > 3 we have £49(j,0) =0, 0r10(j,0) = 0 and

02103, 0) |X|/ 1A — (-3 (@A) (d*4) | dx;

(d* is the Hodge-de Rham codifferential on X, and (—A39)~1 is the inverse
of the Laplace-Beltrami operator on functions, which is well-defined on the
orthogonal of the first eigenspace, on the space { f € L*(X;); [x fdx; = 0}).

The proof is standard. One writes —Ai{ =Py + 7P, + 1P,
Py = —Ap and for all u € CY(X), Pi(u) =i < du; Aj >p-x, —id*(uA;) and
Py(u) = ulA;]* = u < Aj; Aj >pex, . The first eigenvalue of Py, po(j,0) =
0 is of multiplicity one. The associated normalized eigenfuction is ug =
1/4/1X;]. Then 7 — po(j,7) is an analytic function, and there exists an
associated eigenfunction ug , analytic in 7. Then, as 7 — 0, po(j,7) = 7¢1 +

12



T2co + O(73) and ug, = ug + Tv1 + 7209 + O(73), with

fX Pl Uo) uOdX]
vr = — By [Py(ug) — crug)
C2 = ij [P (ug) + Py (v1)].Todx;

The operator P is formally self-adjoint and P, is self-adjoint.

i
We have Pj(ug) =

VXl

function uy and then ¢; = 0.

To the non-negative quadratic form A; —  92u(j,0), we associate a

self-adjoint operator P on A'(X;), 92(4,0) = / < P(A;); Aj >pex; dx;,

X,
which is a pseudodifferential operator of order 0 with principal symbol, the
square matrix po(z, &) = (piF(x,€))1<ir<n_1 defined as follows. In local coor-

dinates, if h; = Z Gk (x)dx;dzy, then

(A;) so Py(ug) is orthogonal to the constant

ik
Xi| . . .
Tt = 6% - L@t @i (6 = X 6wt
lm lm
). . 2
so for any ¢ € B, 3 Plpka 06, = =l - %J > 0
ik 7

(<&C>=) G ().
ik

Thus we get 92p0(7,0) = .

X, < P(Aj),A] >T*Xj de > 00O

Lemma 2.5 For a one-form A satisfying (1.4), there ezists a constant Cy >
0 such that, if u is a function in L?*(M) such that du € L*(M) and

Vi=1,...,J, / u(z;,y)dx; =0, Vy €laZ,+ool, (2.27)
X,
then V7 €]0, 1],
lidu + TuAlZogy < (14 7Ca)|lidul| 22 + CallullZ2 v - (2.28)

Proof of Lemma 2.5. First we remark that the inequality
lidu + TuA|* < (1 + p)|dul® + (1 + p~H)|TuAl? (2.29)
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is satisfied for any p > 0.
For p = 7 we get that there exists a constant C9 > 0, depending only on
A/My, such that

We get also for p = 7 that for any j € {1,...,J},

+o0
/2 lidu + TuA|72x, )y dy < (2.31)

J

+00 A
/2 <<1 + T>HiduHi2(Xj) + TCA”“”%%XJ-)) yE oy

@

for some constant Cﬁx depending only on A/X;.
But (2.27) implies that

1
2 a2
[ullZ2ex;) < e O)HZdUHm(xj) : (2.32)

with (ue(7,0))een the sequence of eigenvalues of Laplace-Beltrami operator
on X, 1o(7,0) =0 < p1(4,0) < p2(4,0) < .... Soif (2.27) is satisfied then
(2.31) and (2.32) imply that

lidu + TuA| 2,y < (14 7)) [lidull 72, - (2.33)
for some constant Ci‘ depending only on A/X;.
The existence of a constant C'y > 0 satisfying the inequality (2.28) follows
from (2.30) and (2.33) for j=1,...J O

Lemma 2.6 When A satisfies (1.3), (1.4) and Lemma 2.4 , then as A —
+00, the following Weyl formula is satisfied.

Wn, n
NOL=Bpory) = Ml 5A™ + O(ro(Y) (2.34)
with / ) 5
1/2, if 2/n<6<1
o { (nd—1)/2, if 1/n<é<2/n’ (2.35)

d and wq are as in Theorem 1.2, and the function ro(\) is the one defined by

(1.11) .
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Proof of Lemma 2.6. We follow the proof of Theorem 1.2.

Since A satisfies Lemma 2.4, we have for A >> 1 large enough that
—Ap-ray — (—4y) is in My a partial differential operator of order 1 with
bounded coefficients, so the part of the proof of Theorem 1.2 in My remains
valid for the estimate of N(\,—AM>? ). (Z = D or Z = N), because for

(A\—rA

any A >> 1, N(A, —AY"? + C(— A)MO AL C) < N, -ARY) <
N(A, ~AY7 — C(-aYe)12 - 0)
and |[N(A, —AY7 £ C(=AYO)Y2 £ C) — |M0|( e _A"2) < CACY

For the part of the proof of Theorem 1.2 in M;, 1 < 7, we have also
for any A >> 1, N(A, =AY + C(=AJ)1/2 +C) < N(A, A(A pA)) <
N(A, =AY — C(—Ag")lﬂ C)
and [N(A, =AY + C(=AFY? £ 0) — |X; |(
But the crucial step of the proof of Theorem 1.2 is Lemma 2.1, where we
used, (with p,(7) to be replaced by p(j, 1) in our new notations), that

Wn—1

A(n—l)/2| S CA(n—Z)/Z

0<C < po(g) < pe(j) < presr(y) and Zg?mﬂé(j) = +00.

Here in M, (1 < j) if (pe(J, A™°))een denotes the increasing sequence of

eigenvalues of N we have

A— PA )
C/)\2p < M(](ju )‘7[)) and C < :u1<j7 )‘7[)) < M1+5(j7 Aip) < :u2+5<j7 )‘7[))
with Hm pe(j, A\™") = 400 .
{—+00
More precisely  lim 4i(j,A™") = pe(5,0) and 0 = 4io(5,0) < pu14(5, 0) for
—+00

any ¢ € N. It follows that Lemma 2.1 holds for any ¢ € K,,¢ # 0. So
taking (2.14) into account, the proof of Theorem 1.2 will remain valid if we
can prove, (for Lfo as in Lemma 2.1, excepted that po(j) is replaced by

Mo(ja Aip))? that
N(X, Ljy) = O(ro(N)) -

This can easily be done as follows.
When 6, =1, (p=1/2), it is easy to see that

N\ LP)) < N(A+C,LPY) < CAVIn(N)
where L is the Dirichlet operator on |0, +-00[ associated to ~—e* — 92 .
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When 0 < d; < 1, by scaling we have that

)

N(A, Lfo) < N(()\+C>1+2p(175j)’LD> < O )\(1+20(1-87))/(28))

26,
where LP is the Dirichlet operator on ]0, 400 associated to %tl‘sﬂ' — 7.
When 2/n <6 <1, as 2/n < § < §;, then
A(H20(1-65))/(20;) — \(2-0)/(20;) < \2=0)/(20) < \(=1)/2 — OQ(r((N)).
When 1/n < < 2/n, as 6 < §;, then
A(+20(1-05))/(20;) < \(14+2p(1-0))/(260) — \(n=(n0-1))/2 — Q(r((\)) O

To achieve the proof of Theorem 1.3, we take a one-form A satisfying the
assumptions of Lemma 2.6.

We remark that any eigenfunction u of the Laplace-Beltrami operator —A
on M associated to an eigenvalue in |inf sp.(—A), +o0], satisfies (2.27). So
if H, is the subspace of L?(M) spanned by eigenfunctions of —A associated
to eigenvalues in |0, A[, then, by (2.28) of Lemma 2.5 with 7 = 1/\?, with p
defined by (2.35), we have

. 1 Ca
Vu € Hy, |idu+ VUAH%%M) < (1+ V)W“”%%M) + CallullZ2 )

c
< ((1 + A+ CA) lullZo -

But if (A;) ey is the non decreasing sequence of eigenvalues of —A (-, 4, then
by max-min principle one must have

k:<dim(H)\) = )\k < (1+%))\+CA;

SO
Ca

dim(H,) < N <(1 + V>

A+ Cly, _A()\—pA)) + 1. (2.36)
The estimates (2.34) and (2.36) prove (1.10), by noticing that A\"/2/\* =
O(ro(A)) O
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