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A FINITE VOLUME PRESERVING SCHEME ON NONUNIFORM

MESHES AND FOR MULTIDIMENSIONAL COALESCENCE∗

L. FORESTIER-COSTE†AND S. MANCINI†

Abstract. In this paper we present a deterministic numerical approximation of the coalescence
or Smoluchowski equation. Our numerical scheme conserves the first order momentum and deals
with nonuniform grids. The generalization to a multidimensional framework is also described. We
validate the scheme considering some classical tests both in one and two dimensions and discuss its
behavior when gelation occurs. Our numerical results and code are compared with those already
existent in the literature.

Key words. finite volume method, nonuniform mesh, coalescence eqaution

AMS subject classifications. 65R20, 82C05

1. Introduction. In the last years, the resolution of the coalescence or Smolu-
chowski equation (see [18]) has been largely studied both form the theoretical and
numerical points of view. In fact the successive merging of particles occurs in various
physical phenomena spreading from planetary science to aerosols, or polymers (see
[14] and references therein). From the numerical point of view, several methods has
been proposed for solving the coalescence equation, either starting from the discrete
form (see for example [12] and [13]) or considering the continuous form (see [4], [7],
[10], [17] and [13] for deterministic methods, or [1], [3], [5], [6] for stochastic ones).
More recently, works concerning the numerical resolution of the multidimensional
coalescence problem has been proposed (see [17], [11] and references therein).

Our work has been suggested by the study of the growth of gas bubbles in magma,
for which a two dimensional framework is needed, since the perfect gas law doesn’t
holds during the bubbles growth, i.e. bubbles mass and volumes are independent
variables. Moreover, recent results in volcanology (see [2] and [8]) highlight that
coalescence of gas bubbles growing by decompression and exsolution in the volcano
conduit is an important phenomena and may heavily influence the kind of eruption
(effusive or explosive). Finally, bubbles coalescence implies that bubbles dimensions
may growth of several orders of magnitude and therefore nonuniform meshes are more
suitable in order to approximate the domain.

Before entering the details of our study, we first recall the one dimensional con-
tinuous and homogeneous in space Smoluchowski equation, we shall refer to as the
coalescence equation. Let f(x, t) denote the distribution function of a set of particles
at time t and with dimension x ≥ 0. Note that, the dimension x usually represents
the mass or the volume of a particle. Then the coalescence equation reads:

∂tf =
1

2

∫ x

0

H(x′, x − x′)f(x′)f(x − x′) dx′ − f(x)

∫

∞

0

H(x, x′)f(x′) dx′ (1.1)

where the coalescence kernel H(x, x′) represents the rate of merging particles of
dimension x and x′; it is assumed to be positive, H(x, x′) > 0, and symmetric,
H(x, x′) = H(x′, x). The first term on the right-hand side of equation (1.1), repre-
sents the gain term and it accounts for those particles of dimension x′ merging with
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particles of dimension x − x′ and giving particles of dimension x. In other words,
when two particles merge their dimensions just sum up, so that coalescence process
conserves the total dimension of the particles involved with. The second term on the
left-hand side of equation (1.1) is the loss term and accounts for those particles of
dimension x which disappear by coalescing with particles of dimension x′. The more
general formulation for the coalescence kernel reads, see for example [7]:

H(x, x′) = xµ(x′)ν + xν(x′)µ , 0 ≤ µ ≤ ν ≤ 1. (1.2)

As we are interested here on the numerical validation of our scheme, we restrict
our study to the following coalescence kernels which are interesting for mathematical
aspects, since the coalescence equation (1.1) admits explicit solutions for them, but
which aren’t physically relevant. Choosing in (1.2), µ = ν = 0 or µ = ν = 1,
we respectively obtain, up to a factor 2, the constant kernel H(x, x′) = 1 and the
multiplicative one H(x, x′) = xx′. We shall also consider the kernel H(x, x′) = x + x′

obtained by choosing in (1.2) µ = 1 and ν = 0, or vice versa. Finally we note that
all these coalescence kernels are independent on time, but it is easy to generalize our
numerical scheme to time dependent kernels.

Let us now denote by Mp(t), the pth order moments associated to the distribution
function f(t, x):

Mp(t) =

∫

∞

0

xp f(x, t) dx. (1.3)

For instance, when p = 0, 1, the zero and the first order moments, M0 and M1,
respectively represent the density number of particles and their total dimension (total
mass or volume). It is well known that, when considering the constant coalescence
kernel H(x, x′) = 1 or the additive one H(x, x′) = x + x′, the first order moment
conserved in time. Whereas, the zero and second order moments are respectively
decreasing and increasing in time. On the other hand, when considering the multi-
plicative coalescence kernel, H(x, x′) = xx′, the gelation phenomena occurs, as was
proved in [15]. This means that, due to the fast increment of the coalescence kernel,
a runaway growth leads to the formation of particles with infinite dimension in finite
time. Briefly, some matter escape from the system of particles, so that the first order
moment M1 is not conserved, but decreases in time, see for example [7].

We finally recall that equation (1.1) can be written in the following conservative
form, see for example [19] and [7]:

x∂tf = −∂x

∫ x

0

∫

∞

x−u

u H(u, v)f(v)f(u) dv du. (1.4)

Many numerical schemes dealing with the discretisation of equation (1.1) or (1.4)
have been proposed in recent years, and it would be not possible to give an exhaustive
list. In this paper, we will compare and validate our numerical scheme with respect to
[7] and [17] concerning the one dimensional case, and with respect to [17] concerning
the multidimensional case. In particular, in [7] the numerical scheme is based on
a finite volume discretization of (1.4), which is robust for nonuniform meshes, the
conservation of the first order moment being implicitly given by the conservative form
(1.4). The multidimensional numerical scheme described in [17] is the generalization of
the one proposed in [12] and is also based on a finite volume method. The conservation
of the first order moment and the handling of nonuniform meshes are thus ensured
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for discrete particles, but their solutions in the two dimensional framework show
singularities.

In this paper, we propose a numerical scheme based on a finite volume approach
for equation (1.1), which deals with nonuniform meshes and the overlaps of the created
particles with the defined mesh, and which conserves the discrete first order moment.
Moreover, our scheme is second order accurate and thus consistent. Finally, the gen-
eralisation to the multidimensional framework is straight forward. The discretisation
itself, will be detailed in the one dimensional framework, but, as said, the numerical
validation will be done both for the one dimensional and the two dimensional cases.

This paper is organised as follows. In section 2 we detail the numerical approxima-
tion in the one dimensional framework. Section 3 is devoted to the multidimensional
generalization of the given numerical scheme. Numerical results and the validation of
the code are presented and discussed both for the one and two dimensional problems
in section 4. Finally, section 5 resumes our results and presents research axes for
future works.

2. One dimensional scheme. Let us first write the one dimensional numerical
scheme we will apply in our simulations. How to obtain it as well as how to handle
the overlap and the first order moment conservation will be described in sections 2.1
and 2.2.

We choose to discretize the coalescence equation (1.1) applying a finite volume
approximation, since this method seems to be the more natural when having to deal
with nonuniform meshes. Let us split R

+ in the cells i = [xi−1/2, xi+1/2], for i ∈ N,
with the usual definition x−1/2 = 0, see for example [7], and let us define the grid
points by:

xi =
xi−1/2 + xi+1/2

2
,

and the mesh step by:

∆xi = xi+1/2 − xi−1/2.

We shall denote in the sequel the merging of two cells j and k giving a cell i by
i = (j+k), so that the bounds of the created cell are given by xi−1/2 = xj−1/2+xk−1/2

and xi+1/2 = xj+1/2 + xk+1/2.
Moreover, for n ∈ N, let us consider the discrete time tn+1 = tn + ∆tn. Hence,

the discrete distribution function fn
i defined at the iteration n on the cell i is given

by fn
i = f(xi, t

n) and the discrete coalescence kernel Hi,j by Hi,j = H(xi, xj), for i
and j ∈ N. With this notations, our finite volume numerical approximation will read:

fn+1
i = fn

i + ∆tn





1

2

∑

(j,k)∈Si

H̃j,kfn
j fn

k λi
j,k

∆xj∆xk

∆xi
−

∞
∑

j=0

Hi,jf
n
i fn

j ∆xj



 (2.1)

where H̃j,k is a modified kernel ensuring the first order moment conservation. More-
over, defining the set Si by:

Si = {(j, k) ∈ N × N : (j + k) ∩ i 6= Ø},

the term
∑

(j,k)∈Si represents, for a fixed cell i, the sum over all possible cells k and j
such that the intersection of their sum with the cell i isn’t empty. We finally remark
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that if, for example, given a constant h, the mesh is of the form xi = i3h (as it is the
case in our volcanology problem), then from the Fermat theorem it follows that, given
a cell j and a cell k, it doesn’t exist a cell i such that we exactly have i = (j + k),
see [21]. Hence the cell i must overlap one or more cells, and the proportionality
parameter λi

j,k, defined by (2.5), accounts for this overlap.

2.1. Cells overlap. In this section we explain how we handle the cells overlap,
that is how we compute the term

∑

(j,k)∈Si . Let us first write the finite volume

discretization for (1.1). Integrating it over a cell i, we have:

∂t

∫ xi+1/2

xi−1/2

f dx =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

H(x − x′, x′)f(x − x′)f(x′) dx′ dx − (2.2)

∫ xi+1/2

xi−1/2

∫

∞

0

H(x, x′)f(x)f(x′) dx′ dx.

Then applying a midpoint quadrature formula, the term on the left-hand side of (2.2)
easily reads as:

∂tfi(t)∆xi, (2.3)

and the last term on the right-hand side of (2.2), that is the loss term, becomes:

∞
∑

j=0

Hi,jfifj∆xi∆xj . (2.4)

Concerning the gain term, that is the first term on the right hand side in (2.2), some
work is needed in order to handle the x − x′ variable.

Before dealing with the discretization of the gain term in (2.2), let us introduce
and define some elements we will need. When considering nonuniform grids, the sum
of two cells, say j and k, may give a cell, say i, overlapping various cells and which
extrema do not coincide with the extrema of the cell j + k. In figure 2.1 we show the
three basic configuration of overlaps, but we may have any combination of them.

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.1. Three basic configurations for overlaps

Let us introduce mi
j,k and mi

j,k respectively denoting the maximum and minimum

bounds of the intersection of the cell j + k with a given cell i:

mi
j,k = max(xi−1/2, xj−1/2 + xk−1/2)

mi
j,k = min(xi+1/2, xj+1/2 + xk+1/2),

and let us define the proportionality factor λi
j,k, for a given cell i, as follows:

λi
j,k =





mi
j,k − mi

j,k

∆xj + ∆xk





+

. (2.5)
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We note that the proportionality parameter is such that: 0 ≤ λi
j,k ≤ 1, the equality

sign holding either when the intersection is empty (λi
j,k = 0) or when the sum of the

cells j + k is entirely contained in the cell i (λi
j,k = 1). We also remark that it is

symmetric: λi
j,k = λi

k,j , and that fixing j and k, and denoting by Rj,k, the set of all
cells i such that the intersection of i with j + k isn’t empty, that is:

Rj,k = {i ∈ N : i ∩ (j + k) 6= Ø},

then:
∑

i∈Rj,k

λi
j,k = 1.

Proposition 2.1. If we consider the uniform mesh xi−1/2 = i∆x, for i ∈ N,

then:

λi
j,k =

{

1/2 if i = {j + k, j + k + 1}
0 otherwise.

Proof: Let us consider the sum of the two cells indexed by j and k and giving a cell
i, then the new cell i will have bounds:

xi−1/2 = xj−1/2 + xk−1/2 = (j + k)∆x,

xi+1/2 = xj+1/2 + xk+1/2 = (j + k + 2)∆x,

Hence, the dimension of the new cell i is 2∆x, and since its centre xi is given by:

xi = (j + k + 1)∆x,

it exists s ∈ N such that, by definition of the uniform mesh, xs−1/2 = xi. In other
words, the centre of the new cell i fall on the lower border of the mesh indexed by
s = j + k + 1. Therefore it seems reasonable that the created cell i with centre in
s and dimension 2∆x just covers the cells s and s − 1. Finally, computing λs

j,k and

λs−1
j,k by means of (2.5), we get: λs

j,k = λs−1
j,k = 1/2. �

We now come back to the discretization of the gain term in (2.2). We omit
for simplicity the time dependence of the distribution function f(x, t). Inverting the
order of integration, applying the change of variable z = x − x′, inverting again the
order of integration and replacing z by x, the gain term in (2.2) splits in the sum
of two integrals defined respectively on the intervals [0, xi+1/2] × [0, xi+1/2 − x′] and
[0, xi−1/2] × [0, xi−1/2 − x′]:

∫ xi+1/2

xi−1/2

∫ x

0

H(x − x′, x′)f(x − x′)f(x′) dx′ dx = (2.6)

∫ xi+1/2

0

∫ xi+1/2−x′

0

H(x′, x)f(x′)f(x) dx dx′ −
∫ xi−1/2

0

∫ xi−1/2−x′

0

H(x′, x)f(x′)f(x) dx dx′.
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The two integrals on the right-hand side of (2.6) are approximated by means of the
same technique. We thus detail only the first one. It can be splitted in the sum of
the integrals defined on each cell j, with j ≤ i. That is:

i
∑

j=0

∫ xj+1/2

xj−1/2

∫ xi+1/2−x′

0

H(x′, x)f(x′)f(x) dx dx′. (2.7)

In order to take into account the overlap, let us define the indexes Ii(j) and Ji(j)
such that they are the largest integers verifying:

xIi(j)+1/2 + xj+1/2 < xi+1/2 and xJi(j)−1/2 + xj−1/2 < xi+1/2,

where the first condition says that the integer Ii(j) is such that the upper bound of
the created cell Ii(j) + j must be smaller than the one of the cell i; and the second
condition says that the integer Ji(j) is such that the lower bound of the created cell
Ji(j) + j must be smaller than the upper bound of the cell i. Moreover, note that for
all j ≥ i the indexes Ii(j) and Ji(j) doesn’t exists.

The overlap then appears in between Ii(j) and Ji(j). In other words, in (2.7) the
second integral can be splitted in the sum of all the integrals defined on the cells such
that, when summed with the cell j, they have the upper bound smaller than Ii(j)
and those for which the summed lower bound is bigger than Ii(j) and smaller than
Ji(j). This gives:

i
∑

j=0

∫ xj+1/2

xj−1/2





Ii(j)
∑

k=0

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x) dx + (2.8)

Ji(j)
∑

k=Ii(j)+1

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x)λi
j,k dx



 dx′.

Note that the proportionality coefficient λi
j,k appears only in the second sum, since in

the first one it is equal to 1, being the summed cells entirely contained in the cell i.
Analogously, the second integral on the right-hand side of (2.6) writes:

i−1
∑

j=0

∫ xj+1/2

xj−1/2





Ii−1(j)
∑

k=0

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x) dx + (2.9)

Ji−1(j)
∑

k=Ii−1(j)+1

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x)λi−1
j,k dx



 dx′.

We can now apply a quadrature formula to (2.8) and (2.9) and arrange their sum as
follows:

i
∑

j=0





Ii(j)
∑

k=Ii−1(j)+1

Hj,kfjfk∆xj∆xk +

Ji(j)
∑

k=Ii(j)+1

Hj,kfjfkλi
j,k∆xj∆xk − (2.10)

Ji−1(j)
∑

k=Ii−1(j)+1

Hj,kfjfkλi−1
j,k ∆xj∆xk



+

Ii−1(i)
∑

k=0

Hi,kfifk∆xi∆xk +

Ji−1(i)
∑

k=Ii−1(i)+1

Hi,kfifkλi−1
i,k ∆xi∆xk.
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Concerning the last two terms in (2.10), since Ii−1(i) and Ji−1(i) do not exist, these
sums are null. Therefore, the numerical approximation of the gain term in (2.2) reads:

i
∑

j=0





Ii(j)
∑

k=Ii−1(j)+1

Hj,kfjfk∆xj∆xk +

Ji(j)
∑

k=Ii(j)+1

Hj,kfjfkλi
j,k∆xj∆xk − (2.11)

−
Ji−1(j)
∑

k=Ii−1(j)+1

Hj,kfjfkλi−1
j,k ∆xj∆xk



 ,

which we write in a compact form as:

∑

(j+k)∈Si

Hj,kfjfkλi
j,k∆xj∆xk. (2.12)

We now detail the three sums appearing in (2.11). The portion of cells over which
each sum is computed is represented in figures 2.2 to 2.4 by the dashed lines:

1. The first sum is the integral over the cells j and k such that:

(j, k) ∈ Si and xj+1/2 + xk+1/2 < xi+1/2

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.2. first sum representation

2. The second sum is the integral on the cells j and k such that:

(j, k) ∈ Si and xj+1/2 + xk+1/2 > xi+1/2

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.3. second sum representation

3. The third sum is the integral on the cells j and k such that:

(j, k) ∈ Si−1 and xj+1/2 + xk+1/2 > x(i−1)+1/2 = xi−1/2

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.4. third sum representation
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Finally, collecting together (2.3), (2.4) and (2.12), the finite volume discretization
of equation (1.1) becomes:

fn+1
i = fn

i + ∆tn





1

2

∑

(j,k)∈Si

Hj,kfn
j fn

k λi
j,k

∆xj∆xk

∆xi
−

∞
∑

j=0

Hi,jf
n
i fn

j ∆xj



 (2.13)

While (2.13) is constructed in order to take care of the overlaps in the nonuniform
mesh framework, the conservation of the first order moment at a numerical level is
not ensured, and we shall deal with it in the next section.

2.2. First order moment conservation. We want to give a numerical approx-
imation of the coalescence equation (1.1) conserving the discrete first order moment,
since we know that the first order moment is conserved at the continuous level. In or-
der ensure this conservation, we choose to modify the discrete coalescence kernel Hj,k

in the gain term by defining a kernel H̃j,k in such a way that the previous property
holds true for every discrete time tn.

Let us first define the discrete moment of order p. Considering the definition (1.3)
at the continuum level, the discrete momentum of order p at time tn, Mn

p = Mp(t
n),

is given by:

Mn
p =

∞
∑

i=0

xp
i f

n
i ∆xi. (2.14)

Hence, the first order moment conservation reads, for p = 1 and n ∈ N:

∞
∑

i=0

fn+1
i xi∆xi =

∞
∑

i=0

fn
i xi∆xi.

Therefore, replacing in (2.13) Hj,k by H̃j,k, multiplying it by xi and summing over
all i we must have:

1

2

∞
∑

i=0

∑

(j,k)∈Si

H̃j,kfn
j fn

k λi
j,kxi∆xj∆xk =

∞
∑

i=0

∞
∑

j=0

Hi,jf
n
i fn

j xi∆xj∆xi (2.15)

Proposition 2.2. The discrete first order moment (2.14) is conserved if and

only if the modified kernel H̃j,k is defined by:

H̃j,k = Hj,k
xj + xk

∑

i∈Rj,k
xiλi

j,k

. (2.16)

Proof: Let us first remark that equation (2.15) con be written using tensors algebra
as follows:

H̃ : F = H : F, (2.17)

where F, H and H̃ respectively are the following tensors:

F =
∑

i,j

FijEij , H =
∑

i,j

HijEij , H̃ =
∑

jk

H̃jkEjk
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with Eij = δij , the base of the matrix set M(R), and with Fij = fn
i fn

j , Hij =
Hi,jxi∆xi∆xj and

H̃jk =
1

2
H̃j,k

(

∞
∑

i=0

xiλ
i
jk✶i∈Rj,k

)

∆xj∆xk,

the respective coefficients matrix. Therefore, solving (2.17) is equivalent to determine
the coefficients H̃j,k. Note that (2.17) is linear in F, so that we will verify it only for
the basis elements Eij .
Hence, let us assume that Fij = Eij that is fn

i = fn
j = 1 and fn

k = 0 for all k 6= i, j.
Then the right-hand side in (2.17), or equivalently in (2.15), gives:

(xi + xj)Hi,jf
n
i fn

j ∆xi∆xj .

Concerning the left-hand side of (2.17), or equivalently of (2.15), since the first sum is
done for all i, we surely find one (or more) index s such that (j, i) ∈ Ss, then choosing
j = j and k = i in the left-hand side of (2.15), we have:

∑

s∈Ri,j

H̃i,jf
n
i fn

j λs
i,jxs∆xi∆xj .

Hence, recalling the first moment conservation given by (2.15), the two above quantites
must be equal:

∑

s∈Ri,j

H̃i,jf
n
i fn

j λs
i,jxs∆xi∆xj = (xi + xj)Hi,jf

n
i fn

j ∆xi∆xj .

Finally, it is easily seen that the above relation holds if and only if the coefficients
H̃i,j are defined by (2.16). �

Proposition 2.3. In the uniform grid framework the modified kernel H̃j,k re-

duces to Hj,k.

Proof: As proved in Proposition 2.1, the only cells i for which the λi
j,k in (2.16)

are not zero are i = j + k + 1 and i = j + k. Hence from relation (2.16), recalling the
definition of xi and of λi

j,k, and simplifying, we get:

H̃j,k = Hj,k
xj + xk

(xj+k+1 + xj+k)/2
= Hj,k

2(j + k + 1)

2j + 2k + 2
= Hj,k,

concluding the proof. �

We finally give the CFL condition on the time step needed to ensure the positivity
of the numerical solution fn

i . Denoting respectively by Gn
i and Ln

i the gain and loss
integrals in (2.1), we have the following:

Proposition 2.4. If the initial condition f0
i is non-negative, then under the

following stability condition on the time step:

∆tn < min
i

(∣

∣

∣

∣

fn
i

Gn
i − Ln

i

∣

∣

∣

∣

)

. (2.18)

the solution fn
i remains positive for each time tn.

9



We finally remark that our scheme is consistent . In fact, considering a constant
distribution function f(x, t), then the loss term (2.4) corresponds to the rectangle
approximation of

∫

H(x, x′)dx′. Concerning the gain term, consistency may be proved
repeating the same procedure applied to deduce (2.11), but with f(x, t) constant.
Nevertheless, from the numerical results, we deduce that our scheme is second order
accurate and thus it is consistent.

3. Multidimensional discretization. Before dealing with the validation of
the numerical scheme (2.1), we give in this section the generalization to the multi-
dimensional case. In fact, as explained in the introduction, our study is suggested
by an application in volcanology concerning two dimensional distribution functions
f(t, x, y). In the sequel we will detail the multidimensional generalization of our
scheme, although the numerical simulations are performed in the two dimensional
framework.

For d > 1, let ~x ∈ R
d
+ and t > 0, let also f(~x, t) denote the distribution function of

particles of dimensions ~x = {xr}, r = 1...d, at time t. Then the coalescence equation
reads:

∂tf =
1

2

∫ ~x

0

H(~x′, ~x − ~x′) f(~x′)f(~x − ~x′) d~x′ −
∫

∞

0

H(~x, ~x′)f(~x)f(~x′) d~x′, (3.1)

where

d~x′ =

d
∏

r=1

dx′

r,

and H(~x, ~x′) is the coalescence kernel. Like in the one dimensional case the kernel
will be here independent on time and we will consider, in the numerical simulations,
only the constant case: H(~x, ~x′) = 1.

Let us define the multidimensional moment of order p, Mp(t), by:

Mp(t) =

∫

∞

0

d
∏

r=1

xαr
r f(~x, t) d~x (3.2)

where the powers αr are such that:

d
∑

r=1

αr = p.

It is easily seen that, choosing αr = 0 for each r, we obtain the zero order moment:

M0(t) =

∫

∞

0

f(~x, t) d~x,

which represents the density number of particles and is decreasing in time.
Concerning the first order moment, we may choose one particular dimension r̂ for
which the power αr̂ is equal to 1, and fix all the other powers to zero:

αr =

{

1 r = r̂

0 otherwise.

10



Then the first order moment given by:

M1(t) =

∫

∞

0

xr̂f(~x, t) d~x,

represents the total size in the r̂ dimension and is constant in time. Moreover, from
the conservation of each first order moment for r = 1, ..., d, we can easily obtain the
conservation of

∫

∞

0

Φ(~x)f(~x, t) d~x,

for all linear combination Φ(~x) of xr, and in particular for the sum over all xr: Φ(~x) =
∑

r=1d xr. We will see that while at a continuous level all (with respect to each
dimension r) first order moments are conserved, this will not be the case at the
discrete level.
We finally recall that in the multidimensional framework too, the moments of order
larger than p = 1 are increasing in time.

We now detail the numerical scheme. Applying the same arguments as in the
one-dimensional case, we can consider the finite volume scheme approximating (3.1)
and involving the overlap of created cells with the existing mesh. Whereas, concerning
the conservation of the discrete first moment, it is possible to conserve only one of
the first order moments.

Let us split R
d
+ in the cells Ir = [xIr−1/2, xIr+1/2], for each dimension r = 1, ..., d

and with as usual x−1/2 = 0. Moreover, let us define the grid points, for each r = 1...d,
by:

xIr =
xIr−1/2 + xIr+1/2

2
,

and the mesh step along each dimension by:

∆xIr
= xIr+1/2 − xIr−1/2,

so that the whole mesh step is given by:

∆~xI =

d
∏

r=1

∆xIr .

Moreover, let us define the discrete distribution function on the cell I at the iteration
n by fn

I = f(xI1
, ..., xId

, tn). Then the numerical scheme reads:

fn+1
I = fn

I + ∆tn





1

2

∑

(K,J)∈SI

H̃J,KfKfJλI
J,K

∆~xJ∆~xK

∆~xI
−

∞
∑

J=0

HI,JfIfJ∆~xJ



 (3.3)

where the
∑

(J,K)∈SI is now the product of all the sums for r = 1, ..., d:

∑

(J,K)∈SI

=

d
∏

r=1

∑

(Jr,Kr)∈SIr

11



and the set SIr are defined analogously as in the one dimensional case:

SIr = {(Jr, Kr) ∈ N × N : (Jr + Kr) ∩ Ir 6= Ø},

and represent, for each dimension r, the sum over all cells Kr such that the intersection
between the cell Jr + Kr and Ir is not empty.
Moreover, in (3.3), λI

J,K is the proportionality factor and is generalized as follows.
Let us define, for r = 1, ...d the following minimum and maximum:

mIr

Jr,Kr
= max(~xIr−1/2, ~xJr−1/2 + ~xKr−1/2)

mIr

Jr,Kr
= min(~xIr+1/2, ~xJr+1/2 + ~xKr+1/2),

then the multi-dimensional parameter λI
J,K is given by:

λI
J,K =

d
∏

r=1





mIr

Jr,Kr
− mIr

Jr,Kr

∆~xJr
+ ∆~xKr





+

. (3.4)

As announced, all the first order moments are conserved at a continuous level,
so that we have several possibilities for defining the modified kernel H̃J,K , but we
cannot conserve at the discrete level all the first order moments, see also [17] in which
for the two dimensional case, the authors conserve the first moment associated to the
linear combination Φ(x, y) = x+y. Generalizing the proof of section 2.2, the modified
kernel H̃J,K preserving the first moment associated to a general linear combination
Φ(~x), is given by:

H̃J,K = HJ,K
(ΦJ + ΦK)

∑

I∈RJ,K
ΦIλI

J,K

, (3.5)

where the sets RJ,K are defined by:

RJ,K =

d
∏

r=1

RJr,Kr

with:

RJr,Kr = {Ir ∈ N : Ir ∩ Jr + Kr 6= Ø}.

4. Numerical results. In order to validate our scheme, we perform some of the
numerical tests done in [7] and [12] for the one dimensional problem and the gelation
phenomena, and those in [17], for the two dimensional case.

Before detailing the tests, we recall that the sum in the loss term is defined up to
infinity, see (2.4), and when performing numerical computing we must to truncate it,
see also [7]. The choice of the truncation value xmax, corresponding to the maximum
value for the x dimension, has to be evaluated accurately, as it will be shown in the
sequel.

We choose to apply our numerical scheme with the following uniform (1, 2, 3 and
4) and nonuniform (5, 6 and 7) meshes:

1. ∆x = 0.1, xmax = 50

12



2. ∆x = 0.5, xmax = 50
3. ∆x = 0.01, xmax = 50
4. ∆x = 0.5, xmax = 2500
5. xi = xmax 2(i−N)/3, xmax = 5000, N = 150 points
6. xi = xmax 2(i−N)/3, xmax = 500000, N = 165 points
7. xi = xmax 2(i−N)/6, xmax = 5000, N = 300 points

Since we want to save about a thousand values in time for our numerical solutions, at
each time iteration we choose the time step as the minimum between the one defined
by the CFL condition (2.18) and 10−3. Finally, we stop computations either when
time is equal to t = 1.5 or when 2% of the mass is lost.

4.1. One dimensional case: H(x, x′) = 1. We now consider the one dimen-
sional case with the constant kernel H(x, x′) = 1 and compare our results with those
in [7]. We define the following initial condition:

f0(x) = e−x.

We recall that in this case, see [7] and references therein, the coalescence equation
admits the following analytic solution:

f(x, t) =

(

2

2 + t

)2

exp

( −2x

2 + t

)

, (4.1)

with the zero and first moments respectively given by:

M0(t) =
2

2 + t
, M1(t) = 1.

In figure 4.1 we trace the zero (left) and first (right) order moments against the
analytical solution (blue line). While for the zero order moment we can barely see the
difference between the various mesh choices, concerning the first order moment, we
note that each mesh choice is constant in time, but the staring value is not the good
one when applying nonuniform meshes. This error is due to the quadrature formula
we apply to compute the initial first order moment. Moreover, the better fit seems
to be given by test number 3, that is the uniform mesh with the smallest space step.
Nevertheless, we must recall that nonuniform meshes allow us to compute solutions
on bigger domains, i.e. for larger values of xmax, than uniform ones, with still an
acceptable error.
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Fig. 4.1. H(x, x′) = 1: zero (left) and first (right) order moments.
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We also consider, as done in [7], the discrete L1 error defined by:

ǫ =
N
∑

i=0

∆xi|f(xi, tn) − fn
i |, (4.2)

and we compute it for the uniform mesh with N = 125, 250, 500 and truncation
xmax=50. The result is shown in figure 4.2 both in normal (left) and logarithmic
(right) scale. We can see that our scheme is second order accurate, as we may expect
since all integrals in our discretization are approximated by the midpoint quadrature
formula.
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Fig. 4.2. H(x, x′) = 1: ǫ in normal (left) and logarithmic (right) scale.

4.2. One dimensional case: H(x, x′) = x + x′. We now consider one of the
one dimensional tests performed in [17]. We define the initial condition

f0(x) = e−x,

then the analytical solution reads:

f(x, t) =
1 − α

x
√

α
I1(2x

√
α)e−x(1+α) ,with α = 1 − e−t

and the moments of order zero, one and two are given by:

M0(t) = e−t, M1(t) = 1, M2(t) = e2t

We compute the numerical solution applying the nonuniform mesh of test 5, but
with N = 40 and xmax = 2000, as done in [17]. We stop the computation once the
first order moment begin to decrease, because of the truncation value. The results
are shown in figure 4.3 where we have traced, in logarithmic scale, the analytical
moments up to the second order and the numerical one up to the third order. We
can see that our third order moment is always increasing, while the one given in [17]
is not monotone.
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Fig. 4.3. H(x, x′) = x + x′: zero, first, second and third order moments.

4.3. One dimensional case: H(x, x′) = xx′. We consider now the one dimen-
sional case with multiplicative kernel H(x, x′) = xx′ which is well known to yield to
gelation. Following [7], we choose the following initial condition:

f0(x) =
e−x

x

for which the coalescence problem admits the analytical solution:

f(x, t) = e−Tx I1

(

2x
√

t
)

x2
√

t
, (4.3)

with the value T defined by:

T =

{

1 + t if t ≤ 1

2
√

t otherwise
(4.4)

and I1 the modified Bessel function at order one:

I1(z) =
1

π

∫ π

0

exp(z cos(θ)) cos(θ) dθ. (4.5)

Again the first order moment can be computed and is given by:

M1(t) =

{

1 if t < 1

t−1/2 otherwise

We note that when t = 1 the gelation phenomena takes place: the first order moment
is no more conserved.

In figure 4.4, we compare the normalized first order moment obtained by our
numerical simulation applying the uniform meshes 1, 2 and 3 (left) or the nonuniform
meshes 5 and 7 (right) to the analytical solution truncated respectively at xmax = 50
(red line) or xmax = 5000 (cyan line). We also trace the exact analytical solution
(blue line). The results given by 1, 2 and 3 fit well the red line, but we observe a
little overestimation once the gelation phenomena takes place. This may be due to
the very small truncation value we choose. Concerning the nonuniform meshes, we
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note that, as expected, the finest mesh given by test 7 has a better fit with the cyan
line. Finally, we remark that nonuniform meshes allow us to compute solutions with
a larger truncation value xmax.
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Fig. 4.4. H(x, x′) = xx′: uniform meshes 1, 2, 3 (left) and nonuniform meshes 5 and 7 (right).

Moreover, as done for the constant kernel and as done in [7], we compute the
discrete L1 error defined by (4.2) for the uniform mesh with N = 125, 250, 500 and
truncation xmax=50. The result is shown in figure 4.5 both in normal (left) and
logarithmic (right) scale. As expected the scheme is second order accurate.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

t

L
1
¡
d
is
cr
et
e
er
ro
r

nx= 125
nx= 250
nx= 500

10

10

10

-4

-3

-2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

t

L
1
¡
d
is
cr
et
e
er
ro
r

nx= 125
nx= 250
nx= 500

Fig. 4.5. H(x, x′) = 1: ǫ in normal (left) and logarithmic (right) scale.

We finally remark that when computing moments of order bigger than 1, we
obtain the same behavior as in [7], that is, as time approach the gelation time, the
moments of order p ≥ 3/2 blow up.

4.4. Two dimensional validation. In this section, we compare our numerical
results with those obtained in [17]. Before entering the details, let us write the general
formula for a moment of order p = r + s, in two dimensions:

Mr,s(t) =

∫

∞

0

∫

∞

0

xrysf(t, x, y)dxdy.

Following [17], we assume a constant coalescence kernel H(~x, ~x′) = 1 and we
compute the solution up to a final time t = 100. We consider the following initial
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condition:

f0(x, y) = e−x−y.

The analytical solution reads, see also [16] :

f(t, x, y) =
4 e−x−y

(t + 2)2
I0(θ) , with θ =

√

4t

t + 2

and I0 the modified Bessel function of first kind of order zero. The zero and first
order moments associated with this solution are given by, see [17]:

M0,0(t) =
2

2 + t
, M1,0(t) = M0,1(t) = 1 , M1,1(t) = 1 + t.

In figure 4.6 we plot in logarithmic scale the analytical solution at time t = 100
defined for the nonuniform mesh 5 where we have fixed the number of discretization
points to N = Nx = Ny = 40, and choose a truncation value xmax = ymax = 1000.

103

103102

102
101

y¡ component
101

100 100

10¡1 10¡1 x¡ co
mpo

nen
t

10¡20

n
u
m
be
r
d
en
si
ty

10¡10

1

Fig. 4.6. f0(x, y) = e−x−y: analytical solution at t = 100

We now remark, figure 4.7 (right), that all our numerical moments fit well all the
analytical one (red lines). Moreover, concerning our the numerical solution f(t, x, y),
figure 4.7 (left), is smooth, but has a little diffused with respect to the analytical
one. We recall that the numerical results in [17], has a good fit for the moments too,
whereas the numerical solution f(t, x, y) has singularities, but has less diffused.
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We now consider a final test also performed in [17]. As for the previous test, we
choose the nonuniform mesh given by 5, with N = Nx = Ny = 40 and xmax = ymax =
1000, the constant coalescence kernel H(~x, ~x′) = 1 and the final computational time
t = 100. But now the initial condition is defined by:

f0(x, y) = 16xy e−2(x+y).

In this case the analytical solution is given by, see [9]:

f(t, x, y) =
8

√

t(t + 2)3
e−2(x+y)[I0(θ) − J0(θ)],

where

θ = 4
√

xy

(

t

t + 2

)1/4

Here J0 and I0 are respectively, the Bessel function and the modified Bessel function
of first kind of order zero. For this solution [17] gives as [20], the analytical solution
for the following moments :

M0,0(t) =
2

2 + t
,

M1,0(t) = M0,1(t) = 1 ,

M2,0(t) =
3 + 2t

2
, M1,1(t) = 1 + t ,

M3,0(t) =
3(1 + t)(2 + t)

2
, M2,1(t) =

(3 + 7t + 3t2)

2
.

The exact solution at t = 100 is traced in figure 4.8, where again the graph is in
logarithmic scale:
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Fig. 4.8. f0(x, y) = 16 xy e−2(x+y): analytical solution at t = 100

In figure 4.9 we trace the numerical moments we compute and the analytical
one given by the previous formula (right). We note a better agreement than those
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obtained in [17], in particular for the higher order moments. Moreover, concerning
our numerical solution (left), we still have slightly diffused, but we have a smooth
solution, whereas in [17] the numerical solution still have singularities, but seems to
have not diffused.
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Fig. 4.9. f0(x, y) = 16 xy e−2(x+y): Computed solution (left). Computed moments (right).

5. Conclusion. In this paper we have described a finite volume discretization of
the coalescence equation (1.1) which conserves the first order moment. Moreover, this
numerical scheme is suitable both for uniform and nonuniform meshes, and deal with
the overlaps of created cells proportionally distributing it over the defined meshes. The
scheme is second order accurate and consistent with the continuous formulation of the
coalescence problem. Finally, the generalization to a multidimensional framework has
been detailed, too.
The code has been validate considering the following classical tests: H(x, x′) = 1, x+
x′, xx′, for which analytical solutions to (1.1) as well as their moments have been
recalled. We also have compared our numerical results with those already existing
in the literature, in particular with those pubblished in [7] and [17]. Our numerical
scheme shows a good agreement with all the considerd tests, and seems to behave
better than the one in [17], at least concerning the smoothness of the analytical
solution and the computation of higher order moments. Still some work may be done
in order to reduce the observed numerical diffusion, for example, refining the way the
created cells are distributed over the existing mesh.

REFERENCES

[1] H. Babovsky, On a Monte Carlo scheme for Smoluchowski’s coagulation equation, Monte Carlo
Methods Appl., 5,1–18, (1999).

[2] A. Burgisser and J.E. Gardner, Experimental constraints on degassing and permeability in
volcanic conduit flow, Bull. Volcanol. 67 (2005) 42–56
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