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A FINITE VOLUME PRESERVING SCHEME ON NON-UNIFORM

MESHES AND FOR MULTIDIMENSIONAL COALESCENCE∗

L. FORESTIER-COSTE†AND S. MANCINI†

Abstract. In this paper we present a deterministic numerical approximation of the coalescence
or Smoluchowski equation. The proposed numerical scheme conserves the first order momentum and
deals with non-uniform grids. The generalization to a multidimensional framework is also described.
We validate the scheme considering some classical tests both in one and two dimensions and discuss
its behavior when gelation occurs. Our numerical results and code are compared with those already
existent in literature.
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1. Introduction. In the last years, the resolution of the coalescence or Smolu-
chowski equation (see [24]) has been largely studied both form the theoretical and
numerical points of view. In fact the successive merging of particles occurs in various
physical phenomena spreading from planetary science to aerosols, polymers (see [18]
and references therein) and bio-mathematics (see for example [4], [5] and [6]). From
the numerical point of view, several methods has been proposed for solving the co-
alescence equation, either starting from the discrete form (see for example [16] and
[17]) or considering the continuous form (see [7], [10], [14], [21], [22] and [17] for de-
terministic methods, or [1], [3], [8] and [9] for stochastic ones). More recently, some
works concerning the numerical resolution of the multidimensional coalescence prob-
lem have been proposed (see for example [15], [21] and [23], ). In particular, [21] and
[23] concern a numerical approach based on the conservative form of the coalescence
equation discussed in the one-dimensional framework in [10] and [21]. We underline
here that the numerical discretization we propose is based on the original coalescence
equation and not on the conservative form introduced in [10].

Before entering the details of our study, we first recall the one-dimensional con-
tinuous and homogeneous in space Smoluchowski equation, we shall refer to as the
coalescence equation. Let f(x, t) denote the distribution function of a set of particles
at time t and with size x ≥ 0. Note that, the size x usually represents the mass or
the volume of a particle. Then the coalescence equation reads

∂tf =
1

2

∫ x

0

H(x′, x − x′)f(x′)f(x − x′) dx′ − f(x)

∫

∞

0

H(x, x′)f(x′) dx′, (1.1)

where the coalescence kernel H(x, x′) represents the merging rate of particles of size x
and x′; it is assumed to be positive, H(x, x′) > 0, and symmetric, H(x, x′) = H(x′, x).
The first term on the right-hand side of equation (1.1), represents the gain term and
it accounts for those particles of size x′ merging with particles of size x−x′ and giving
particles of size x. In other words, when two particles merge their size just sum up, so
that coalescence process conserves the total size of the particles involved with. The
second term on the right-hand side of equation (1.1) is the loss term and accounts for
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those particles of size x which disappear by coalescing with particles of size x′. The
more general formulation for the coalescence kernel reads, see for example [10],

H(x, x′) = xµ(x′)ν + xν(x′)µ , 0 ≤ µ ≤ ν ≤ 1. (1.2)

In this paper we are concerned with the numerical validation of the proposed scheme,
we restrict the study to the following academic coalescence kernels, for which the coa-
lescence equation (1.1) admits explicit solutions, but which aren’t physically relevant.
Choosing in (1.2), µ = ν = 0 or µ = ν = 1, we respectively obtain, up to a factor
2, the constant kernel H(x, x′) = 1 or the multiplication one H(x, x′) = xx′. We
shall also consider the kernel H(x, x′) = x + x′ obtained by choosing in (1.2) µ = 1
and ν = 0, or vice versa. We consider here only time independent kernels, but the
proposed numerical scheme can be easily generalized to time dependent ones.

Let us now denote by Mp(t), the pth order moments associated to the distribution
function f(t, x):

Mp(t) =

∫

∞

0

xp f(x, t) dx. (1.3)

We recall that M0 and M1, the zero and first order moments, respectively represent
the density number of particles and their total size (total mass or volume). It is well
known that, when considering for example the constant coalescence kernel H(x, x′) =
1 or the additive one H(x, x′) = x+x′, the first order moment is conserved in time. On
the other hand, the zero and second order moments are respectively decreasing and
increasing in time. When considering the multiplicative coalescence kernel, H(x, x′) =
xx′, the gelation phenomena occurs, as was proved in [19]. This means that, due to the
fast increment of the coalescence kernel, a runaway growth leads to the formation of
particles with infinite size in finite time. Briefly, some matter escape from the system
of particles, so that the first order moment M1 is not conserved, but decreases in
time, see for example [10].

We finally recall that equation (1.1) can be written in the following conservative
form, see for example [10], [21] and [25]:

x∂tf = −∂x

∫ x

0

∫

∞

x−u

u H(u, v)f(v)f(u) dv du. (1.4)

Many numerical schemes dealing with the discretization of equation (1.1) or (1.4)
have been proposed in recent years, and it would be not possible to give an exhaustive
list. In this paper, we will compare and validate our numerical scheme with respect to
[10] and [21] concerning the one-dimensional case, and with respect to [21] concerning
the multidimensional case. In particular, in [10] the numerical scheme is based on
a finite volume discretization of (1.4), which is robust for non-uniform meshes, the
conservation of the first order moment being given by the conservative form (1.4) and
by the choice of the way to truncate the infinite integral appearing in (1.4). The
multidimensional numerical scheme described in [21] is also based on a finite volume
method and on the conservative form (1.4). We note that it is very efficient in terms
of CPU times, but solutions in the two dimensional framework show singularities.

Our work has been suggested by the study of gas bubbles growth in magmas.
Recent results in volcanology (see [2] and [12]) highlight that bubbles coalescence
growing by decompression and exsolution in a volcano conduit is a relevant phenomena
and may heavily affect the kind of eruption (effusive or explosive). The growth and
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merging process of bubbles can be modeled at a statistical level by means of an
expansion-coalescence equation, see [11]. Gas bubbles are described in terms of their
volume and mass, which are in this framework independent variables (i.e. the perfect
gas law doesn’t holds during the bubbles growth), so that the bubble distribution
function f = f(v, m, t) is defined on a bidimensional phase space and on time. The
study of the expansion term is rather classical, it is governed by the volumes and
masses growth rates and is described by a conservative equation. Whereas, defining
and solving the coalescence term on a bidimensional domain is a novelty and need to
be studied more in details, see [11]. We underline here that that bubbles coalescence
implies that bubbles volumes and masses may growth of several orders of magnitude.
Using a uniform mesh implies to have a huge number of discretization points in order
to accurately capture the evolution of smaller and bigger bubbles and so very long
CPU times. Moreover, bigger bubbles do not need to be discretized on a thin mesh.
Therefore, a numerical scheme defined for non-uniform meshes seems a good choice.

In this paper, we propose a numerical scheme based on a finite volume approach
for equation (1.1), which can be used with non-uniform meshes and the overlaps of
the created particles with the defined mesh, and which conserves the discrete first
order moment, at least until the gelation time is reached. We note that, the use of
non-uniform meshes allows to consider bigger domains than uniform ones and to get
smaller CPU times, for instance, when considering a non-uniform mesh with half of
the discretizations points with respect to the uniform one, the CPU time diminishes
of one order of magnitude. Moreover, the first order moment conservation is an es-
sential requirement for the volcanology problem because the mass conservation of two
merging bubbles must be verified. The numerical scheme we propose is second order
accurate and consistent with the continuous equation. The numerical discretization
will be detailed in the one-dimensional framework, being its generalization to the
multidimensional case straight forward. The numerical validation will be done both
for the one-dimensional and the two-dimensional cases.

This paper is organized as follows. In section 2 we detail the one-dimensional
numerical approximation. Section 3 is devoted to its multidimensional generalization.
Numerical results and the validation of the code are presented and discussed both for
the one and two dimensional problems in section 4. Finally, section 5 resumes our
results and presents research axes for future works.

2. One-dimensional scheme. Let us first introduce the one-dimensional nu-
merical scheme we will apply in our simulations. How to obtain it as well as how
to handle the overlap and the first order moment conservation will be described in
sections 2.1 and 2.2.

We choose to discretize the coalescence equation (1.1) applying a finite volume
approximation. Let us split R

+ in the cells i = [xi−1/2, xi+1/2], for i ∈ N, with the
usual assumption x−1/2 = 0, see for example [10], and let us define the grid points
and the mesh step by:

xi =
xi−1/2 + xi+1/2

2
, ∆xi = xi+1/2 − xi−1/2.

We shall denote in the sequel the merging of two cells j and k giving a cell i by
i = (j + k), so that the bounds of the created cell are: xi−1/2 = xj−1/2 + xk−1/2 and
xi+1/2 = xj+1/2 + xk+1/2.

For n ∈ N, let us consider the discrete time tn+1 = tn + ∆tn. For i and j ∈ N, we
denote by fn

i the average value of f at time tn on the cell i, which is an approximation
of f(xi, t

n) and by Hi,j the discrete coalescence kernel, Hi,j = H(xi, xj).
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Let us define the sets Si and Rj,k by

Si = {(j, k) ∈ N × N : (j + k) ∩ i 6= ∅}, (2.1)

Rj,k = {i ∈ N : i ∩ (j + k) 6= ∅}, (2.2)

They respectively represent the set of mesh couples (j, k) such that their sum intersect
the mesh i, and the set of meshes i intersecting the sum of the meshes j and k.

With this notations, our finite volume numerical approximation reads

fn+1
i = fn

i + ∆tn





1

2

∑

(j,k)∈Si

H̃j,kfn
j fn

k λi
j,k

∆xj∆xk

∆xi
−

∞
∑

j=0

Hi,jf
n
i fn

j ∆xj



 , (2.3)

where H̃j,k is a modified kernel ensuring the first order moment conservation, see
section 2.2, and λi

j,k is a proportionality coefficient arising when considering overlaps,
see section 2.1.

2.1. Cells overlap. In this section we explain how we handle the cells overlap,
that is how we compute the term

∑

(j,k)∈Si .

Let us write the finite volume discretization for (1.1). Integrating over a cell i, we
have:

∂t

∫ xi+1/2

xi−1/2

f dx =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

H(x − x′, x′)f(x − x′)f(x′) dx′ dx − (2.4)

∫ xi+1/2

xi−1/2

∫

∞

0

H(x, x′)f(x)f(x′) dx′ dx.

Applying a midpoint quadrature formula, the term on the left-hand side of (2.4) reads

∂tfi(t)∆xi, (2.5)

and the last term on the right-hand side of (2.4), that is the loss term, becomes

∞
∑

j=0

Hi,jfifj∆xi∆xj . (2.6)

Before dealing with the discretization of the gain term in (2.4), let us introduce and
define some elements we will need. When considering non-uniform grids, the sum
of two cells, say j and k, may give a cell, say i, overlapping various cells and which
extrema do not coincide with those of the cell (j +k). For instance in the volcanology
problem, given a constant h, we define the non-uniform mesh as: xi = i3h. Fermat’s
theorem, see [27], ensures that given a cell j and a cell k, it doesn’t exist a cell i such
that we exactly have i = (j + k). Hence the cell i intersects one or more cells. Figure
2.1 shows the three basic overlaps configurations, but we may have any their linear
combination. In order to take into account the overlap, let us define the indexes Ii(j)
and Ji(j) such that they are the largest integers verifying:

xIi(j)+1/2 + xj+1/2 < xi+1/2 , xJi(j)−1/2 + xj−1/2 < xi+1/2, (2.7)
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xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.1. Three basic configurations for overlaps.

where the first condition imposes that the integer Ii(j) is such that the upper bound
of the created cell Ii(j) + j must be smaller than the one of the cell i; and the second
condition imposes that the integer Ji(j) is such that the lower bound of the created
cell Ji(j)+ j must be smaller than the upper bound of the cell i. We note that for all
j ≥ i the indexes Ii(j) and Ji(j) don’t exists. The overlap appears in between Ii(j)
and Ji(j) so that we have to consider only a portion of it.

We now detail the three situations which will be considered in the sequel, see
(2.17). The portion of cells over which each sum is computed is represented in figures
2.2 to 2.4 by the dashed lines.
The first sum is the integral over the cells j and k such that (j, k) ∈ Si and xj+1/2 +

xk+1/2 < xi+1/2. It corresponds to
∑Ii(j)

k=Ii−1(j)+1.

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.2. First sum representation.

The second sum is the integral on the cells j and k such that (j, k) ∈ Si and xj+1/2 +

xk+1/2 > xi+1/2. It corresponds to
∑Ji(j)

k=Ii(j)+1.

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.3. Second sum representation.

The third sum is the integral on the cells j and k such that (j, k) ∈ Si−1 and xj+1/2 +

xk+1/2 > x(i−1)+1/2 = xi−1/2. It corresponds to
∑Ji−1(j)

k=Ii−1(j)+1.

xi-1/2 xi+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

xk-1/2+xj-1/2
xk+1/2+xj+1/2

Fig. 2.4. Third sum representation.

Let us introduce mi
j,k and mi

j,k respectively denoting the maximum and minimum
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bounds of the intersection of the cell (j + k) with a given cell i:

mi
j,k = min(xi+1/2, xj+1/2 + xk+1/2), (2.8)

mi
j,k = max(xi−1/2, xj−1/2 + xk−1/2), (2.9)

and let us define the proportionality factor λi
j,k, for a given cell i, as

λi
j,k =





mi
j,k − mi

j,k

∆xj + ∆xk





+

. (2.10)

Note that the proportionality coefficient λi
j,k is such that 0 ≤ λi

j,k ≤ 1, the equality

sign holding either when the intersection is empty (λi
j,k = 0) or when the sum of the

cells (j + k) is entirely contained in the cell i (λi
j,k = 1). We also note that it is

symmetric, λi
j,k = λi

k,j .

Omitting for simplicity the time dependence of the distribution function f , we
now consider the discretization of the gain term in (2.4) and prove that

Proposition 2.1. Let Si and λi
j,k be respectively defined by (2.1) and (2.10).

Then the gain term on the right-hand side of equation (2.4) is approximated by

∑

(j+k)∈Si

Hj,kfjfkλi
j,k∆xj∆xk. (2.11)

Proof. Inverting the order of integration, applying the change of variable z =
x− x′, inverting again the order of integration and replacing z by x, the gain term in
(2.4) splits in the sum of two integrals respectively defined on the intervals [0, xi+1/2]×
[0, xi+1/2 − x′] and [0, xi−1/2] × [0, xi−1/2 − x′]:

∫ xi+1/2

xi−1/2

∫ x

0

H(x − x′, x′)f(x − x′)f(x′) dx′ dx = (2.12)

∫ xi+1/2

0

∫ xi+1/2−x′

0

H(x′, x)f(x′)f(x) dx dx′ −
∫ xi−1/2

0

∫ xi−1/2−x′

0

H(x′, x)f(x′)f(x) dx dx′.

The two integrals on the right-hand side of (2.12) are treated by means of the same
technique, we detail here only the first one. It can be split in the sum of the integrals
defined on each cell j, with j ≤ i. That is:

i
∑

j=0

∫ xj+1/2

xj−1/2

∫ xi+1/2−x′

0

H(x′, x)f(x′)f(x) dx dx′. (2.13)

The overlap then appears in between Ii(j) and Ji(j). In other words, in (2.13) the
second integral can be split in the sum of all the integrals defined on the cells k such
that, when summed with the cell j, they have the upper bound smaller than Ii(j)
and those such that the summed lower bound is bigger than Ii(j) and smaller than



PRESERVING SCHEME FOR THE COALESCENCE EQUATION 7

Ji(j). This gives:

i
∑

j=0

∫ xj+1/2

xj−1/2





Ii(j)
∑

k=0

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x) dx + (2.14)

Ji(j)
∑

k=Ii(j)+1

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x)Λi
j,k dx



 dx′.

Note that we have introduced the weight Λi
j,k which represents the portion of the

cell i overlapping with (j + k) and that we need only for theoretical aspects, but
not for the implementation of the numerical scheme which is based on (2.11). This
coefficient appears only in the second sum, since in the first one it is equal to 1, being
the summed cells entirely contained in the cell i.
Analogously, the second integral on the right-hand side of (2.12) writes

i−1
∑

j=0

∫ xj+1/2

xj−1/2





Ii−1(j)
∑

k=0

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x) dx + (2.15)

Ji−1(j)
∑

k=Ii−1(j)+1

∫ xk+1/2

xk−1/2

H(x′, x)f(x′)f(x)Λi−1
j,k dx



 dx′.

We can now apply a quadrature formula to (2.14) and (2.15) and arrange their sum
as follows:

i
∑

j=0





Ii(j)
∑

k=Ii−1(j)+1

Hj,kfjfk∆xj∆xk +

Ji(j)
∑

k=Ii(j)+1

Hj,kfjfkΛi
j,k∆xj∆xk −

Ji−1(j)
∑

k=Ii−1(j)+1

Hj,kfjfkΛi−1
j,k ∆xj∆xk



+ (2.16)

Ii−1(i)
∑

k=0

Hi,kfifk∆xi∆xk +

Ji−1(i)
∑

k=Ii−1(i)+1

Hi,kfifkΛi−1
i,k ∆xi∆xk.

Since Ii−1(i) and Ji−1(i) don’t exists, the last two sums in (2.16) are null. Therefore,
the numerical approximation of the gain term in (2.4) reads

i
∑

j=0





Ii(j)
∑

k=Ii−1(j)+1

Hj,kfjfk∆xj∆xk +

Ji(j)
∑

k=Ii(j)+1

Hj,kfjfkΛi
j,k∆xj∆xk − (2.17)

−
Ji−1(j)
∑

k=Ii−1(j)+1

Hj,kfjfkΛi−1
j,k ∆xj∆xk



 ,

where each sum corresponds to one of the sums represented in figures 2.2 to 2.4.
Considering definition (2.1), and defining λi

j,k as a combination of 1, Λi
j,k and −Λi−1

j,k

we can collect the three sums in (2.17), obtaining (2.11).
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Considering (2.5), (2.6), (2.11) and discretizing the time derivative, the finite
volume discretization of equation (1.1) reads

fn+1
i = fn

i + ∆tn





1

2

∑

(j,k)∈Si

Hj,kfn
j fn

k λi
j,k

∆xj∆xk

∆xi
−

∞
∑

j=0

Hi,jf
n
i fn

j ∆xj



 . (2.18)

This discretization is constructed in order to take care of the overlaps in the non-
uniform mesh framework, but the conservation of the first order moment at a numer-
ical level is not ensured. We shall deal with it in the next section.

We end this section with a remark concerning uniform meshes, showing that the
proposed discretization works in this framework too.

Proposition 2.2. Let the mesh be defined by xi−1/2 = i∆x, for i ∈ N, then the

proportionality coefficients λi
j,k are given by:

λi
j,k =

{

1/2 if i = {j + k, j + k + 1},
0 otherwise.

Proof. Consider the sum (j + k) = i. Then the cell i has bounds:

xi−1/2 = (j + k)∆x , xi+1/2 = (j + k + 2)∆x,

its size is 2∆x, and its centre xi is given by xi = (j +k+1)∆x. Choosing s = j +k+1
then by definition xi = xs−1/2, that is: the centre of the new cell i fall on the lower
border of the mesh indexed by s = j + k + 1. Since the lower bound of the cell s
coincides with the upper bound of the cell s − 1, the created cell i with centre in s
and dimension 2∆x covers both cells s and s − 1.
Finally, computing λs

j,k and λs−1
j,k by means of (2.10) gives λs

j,k = λs−1
j,k = 1/2.

2.2. First order moment conservation. We want to give a numerical approx-
imation of the coalescence equation (1.1) conserving the discrete first order moment,
since we know that the first order moment is conserved at the continuous level, at
least until the gelation time is reached. As it is shown later on, see figure 4.5, for
the multiplication kernel H(x, x′) = xx′, the conservation of the first order moment
is assured until the gelation time is reached, the proposed discretization is consistent
with the conservation property of the continuous equation. In order ensure this con-
servation, we choose to modify the discrete coalescence kernel Hj,k in the gain term

by defining a kernel H̃j,k in such a way that the previous property holds true for every
discrete time tn.

Consider definition (1.3) and define the discrete momentum of order p at time tn

Mn
p =

∞
∑

i=0

xp
i f

n
i ∆xi. (2.19)

Then, for p = 1 and n ∈ N, the discrete first order moment conservation reads

∞
∑

i=0

fn+1
i xi∆xi =

∞
∑

i=0

fn
i xi∆xi.

Therefore, replacing in (2.18) Hj,k by H̃j,k, multiplying it by xi and summing over
all i we must have:

1

2

∞
∑

i=0

∑

(j,k)∈Si

H̃j,kfn
j fn

k λi
j,kxi∆xj∆xk =

∞
∑

i=0

∞
∑

j=0

Hi,jf
n
i fn

j xi∆xj∆xi. (2.20)
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Proposition 2.3. The discrete first order moment (2.19) is conserved if and

only if the modified kernel H̃j,k is defined by:

H̃j,k = Hj,k
2(xj + xk)

∑

i∈Rj,k
xi(λi

j,k + λi
k,j)

. (2.21)

Proof. Let us first prove that (2.21) is necessary by considering a particular
discrete distribution function fn

i of discrete Dirac type. For any index j and k,
assume that fn

i = 1 if i = j, k and that fn
i = 0 otherwise. This is equivalent to

consider only those terms in the sums that act on Hj,j , Hj,k and Hk,k. Then the
right-hand side of (2.20), gives

(xj + xk)Hj,kfn
j fn

k ∆xj∆xk.

Concerning the left-hand side of (2.20), since the first sum is done over all i, it must
exist at least one index s such that (j, k) ∈ Ss. Then the left-hand side of (2.20)
becomes

∑

s∈Rj,k

H̃j,kfn
j fn

k λs
j,kxs∆xj∆xi.

Recalling the first moment conservation given by (2.20), it must be:
∑

s∈Rj,k

H̃j,kfn
j fn

k λs
j,kxs∆xj∆xk = (xj + xk)Hj,kfn

j fn
k ∆xj∆xk.

Hence, (2.20) implies (2.21) at least for discrete Dirac type distributions.
We now prove that (2.21) implies (2.20) for any function fn

i , fn
j . Let us consider

the canonical basis Ejk of the set of matrix with real coefficients, which is Ejk is the
matrix with all coefficient equal to zero except at the jth line and kth column. Then,
equation (2.20) can be written using tensors algebra as:

H̃ : F = H : F, (2.22)

where F, H and H̃ respectively are the following tensors:

F =
∑

j,k

fn
j fn

k Ejk , H = 2
∑

j,k

Hj,k(xj + xk)∆xj∆xkEjk ,

and

H̃ =
∑

jk

H̃j,k

(

∞
∑

i=0

xiλ
i
jk1i∈Rj,k

)

∆xj∆xkEjk.

Since (2.22) is linear in F, and it holds for the basis elements Ejk then it holds for
any function fn

i .
Proposition 2.4. In the uniform grid case H̃j,k is equivalent to Hj,k.

Proof. As proved in Proposition 2.2, the only cells i for which the λi
j,k in (2.21)

are not zero are i = j + k + 1 and i = j + k. Hence from relation (2.21), recalling the
definition of xi and of λi

j,k, and simplifying, we get:

H̃j,k = Hj,k
xj + xk

(xj+k+1 + xj+k)/2
= Hj,k

2(j + k + 1)

2j + 2k + 2
= Hj,k,
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concluding the proof.
Consider a positive initial data f0

i > 0 for all i. Since we are dealing with an
explicit in time scheme, the solution fn

i may become negative. In order to ensure
its positivity we must define a stability (CFL) condition for the time step. Denoting
respectively by Gn

i and Ln
i the gain and loss integrals in (2.3), the condition reads

∆tn < min
i

(∣

∣

∣

∣

fn
i

Gn
i − Ln

i

∣

∣

∣

∣

)

. (2.23)

We note that our scheme is consistent. In fact, considering a constant distribu-
tion function f(x, t), then the loss term (2.6) corresponds to the approximation of
∫

H(x, x′)dx′. Concerning the gain term, consistency may be proved repeating the
same procedure applied to deduce (2.17), but with f(x, t) constant. Moreover, from
the numerical results (see Figures 4.2 and 4.3), we observe that our scheme is second
order accurate and thus that it is consistent.

3. Multidimensional discretization. Before dealing with the validation of
the numerical scheme (2.3), we give in this section the generalization to the multi-
dimensional case. In fact, as explained in the introduction, our study is suggested
by an application in volcanology concerning two dimensional distribution functions
f(t, x, y). In the sequel we will detail the multidimensional generalization of our
scheme, although the numerical simulations are performed in the two-dimensional
framework.

For d > 1, define R
d
+ the space of vectors ~x = {xr}, r = 1, . . . , d, such that

xr ≥ 0 for all r, let ~x ∈ R
d
+ and t > 0, let also f(~x, t) denote the particle density

function representing the distribution of particles which at time t have sizes ~x. Then
the coalescence equation reads

∂tf =
1

2

∫ ~x

0

H(~x′, ~x − ~x′) f(~x′)f(~x − ~x′) d~x′ −
∫ ~∞

0

H(~x, ~x′)f(~x)f(~x′) d~x′, (3.1)

where H(~x, ~x′) is the coalescence kernel and

d~x′ =

d
∏

r=1

dx′

r.

Like in the one-dimensional case the kernel will be here independent on time and we
will consider, in the numerical simulations, only the constant case: H(~x, ~x′) = 1.

Given p =
∑d

r=1 αr, with αr ≥ 0, let us define the multidimensional moment of
order p, Mp(t), by:

Mp(t) =

∫ ~∞

0

d
∏

r=1

xαr
r f(~x, t) d~x. (3.2)

Choosing αr = 0 for each r, we obtain the zero order moment

M0(t) =

∫ ~∞

0

f(~x, t) d~x,
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which represents the density number of particles and is decreasing in time.
Concerning the first order moment, we choose one particular value r̂ for which αr̂ = 1,
and fix all the other values r to zero:

αr =

{

1 r = r̂

0 otherwise.

Then the first order moment with respect to the size xr̂,

∫ ~∞

0

xr̂f(~x, t) d~x,

represents the total size in the xr̂ component and, for the constant kernel H(~x, ~x′) = 1,
is constant in time. Moreover, from the conservation of each first order moment for
r = 1, ..., d, we can easily deduce the conservation of

M1(t) =

∫ ~∞

0

Φ(~x)f(~x, t) d~x, (3.3)

for all linear combination Φ(~x) of xr, and in particular for the sum over all sizes:

Φ(~x) =
∑d

r=1 xr. We will see that while at a continuous level the first order moments
are conserved for each component xr̂, this will not be the case at the discrete level.
We finally recall that in the multidimensional case too, the moments of order p > 1
are increasing in time.

We now detail the numerical scheme. For each r = 1, . . . d, let us split R
d
+ in the

cells Ir = [xIr−1/2, xIr+1/2], with as usual x−1/2 = 0, and define the discretization
points and the mesh step for each r as:

xIr
=

xIr−1/2 + xIr+1/2

2
, ∆xIr

= xIr+1/2 − xIr−1/2,

so that the vectorial mesh size is given by:

∆~xI =

d
∏

r=1

∆xIr
.

Defining the discrete distribution function on the cell I at the iteration n, fn
I , by

means of a cell average of f at time tn on the cell I, the numerical scheme reads

fn+1
I = fn

I +∆tn





1

2

∑

(K,J)∈SI

H̃J,KfKfJλI
J,K

∆~xJ∆~xK

∆~xI
−

~∞
∑

J=0

HI,JfIfJ∆~xJ



 , (3.4)

where
∑ ~∞

J=0 and
∑

(J,K)∈SI are now the product of all the sums for r = 1, ..., d:

~∞
∑

J=0

=

d
∏

r=1

∞
∑

Jr=0

,
∑

(K,J)∈SI

=

d
∏

r=1

∑

(Kr,Jr)∈SIr

,

the sets SIr , analogously as in the one-dimensional case, are defined by:

SIr = {(Kr, Jr) ∈ N × N : (Kr + Jr) ∩ Ir 6= ∅},
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and the first sum in (3.4) represents the sum over all cells Kr such that the intersection
between the cell (Jr + Kr) and Ir is not empty.

In order to define λI
J,K , let us introduce, for r = 1, ...d the following minimum

and maximum, generalizing the one-dimensional ones (2.8) and(2.9) and respectively
denoting the maximum and minimum bounds of the intersection of the cell (Jr +Kr)
with a given cell Ir:

mIr

Jr,Kr
= min(~xIr+1/2, ~xJr+1/2 + ~xKr+1/2),

mIr

Jr,Kr
= max(~xIr−1/2, ~xJr−1/2 + ~xKr−1/2).

The proportionality factor λI
J,K in (3.4), is then defined by

λI
J,K =

d
∏

r=1

λIr

Jr,Kr
, λIr

Jr,Kr
=





mIr

Jr,Kr
− mIr

Jr,Kr

∆~xJr + ∆~xKr





+

, (3.5)

which is a direct generalization of (2.10). We remark that, as in the one-dimensional
case, for each r = 1, . . . d, λIr

Jr,Kr
is symmetric (λIr

Jr,Kr
= λIr

Kr,Jr
) and that 0 ≤

λIr

Jr,Kr
≤ 1, the equality sign holding either when the intersection is empty (λIr

Jr,Kr
=

0) or when (Jr + Kr) is completely contained in the cell Ir (λIr

Jr,Kr
= 1).

Generalizing Proposition 2.3, and defining the set RJ,K as the product of the sets:

RJr,Kr
= {Ir ∈ N : Ir ∩ Jr + Kr 6= ∅},

the modified kernel H̃J,K satisfies:
Proposition 3.1. Let ΦJ = Φ(~xJ), ΦK = Φ(~xK) and ΦI = Φ(~xI) respectively

be linear combinations of the vectors ~xJ , ~xK and ~xI . Then the discrete first order

moment defined by (3.3) is conserved if and only if the modified kernel H̃J,K verifies

H̃J,K = HJ,K
(ΦJ + ΦK)

∑

I∈RJ,K
ΦIλI

J,K

. (3.6)

Proof. The proof is similar to the one of Proposition 2.3.
Note that, in the one-dimensional case there exists only one first order moment,

whereas in the multidimensional framework we can define various first order moments.
At a continuous level and for H(~x, ~x′) = 1, each first order moment as well as any
their linear combination is conserved. On the other hand, concerning discrete first
order moments, since the modified kernel H̃J,K depends on the linear combination Φ
we choose, only one of them is conserved, see also [21] in which for the two dimensional
case the authors choose the linear combination Φ(x, y) = x + y.

4. Numerical results. In order to validate our scheme, we perform some of the
numerical tests done in [10] and [16] for the one-dimensional problem and the gelation
phenomena, and those in [21], for the two-dimensional case.

Before detailing the considered numerical tests, we recall that the sum in the loss
term is defined up to infinity, see (2.6), and when performing numerical simulations
we have to truncate it. In [10] there is the choice between a truncated formula for the
right-hand side of (1.4) which conserves the first order moment and one which doesn’t
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conserve it. Here we have to choose the value xmax corresponding to the maximum
value for the x domain. This implies that particles will exit the computational domain.
However, we are able to quantify when particles exit the domain and the corresponding
mass. Note also that, constructing the numerical scheme for non-uniform meshes
permits to consider larger xmax values.

We validate the numerical scheme considering the following uniform (1, 2, 3 and
4) and non-uniform (5, 6, 7 and 8) meshes:

1. ∆x = 0.1, xmax = 50,
2. ∆x = 0.5, xmax = 50,
3. ∆x = 0.01, xmax = 50,
4. ∆x = 0.5, xmax = 2500,
5. xi = xmax 2(i−N)/3, xmax = 5000, N = 150 points,
6. xi = xmax 2(i−N)/3, xmax = 500000, N = 165 points,
7. xi = xmax 2(i−N)/6, xmax = 5000, N = 300 points,
8. xi = xmax 2(i−N)/1.5, xmax = 5000, N = 75.

Since we want to save about a thousand values in time for our numerical solutions, at
each time iteration we choose the time step as the minimum between the one defined
by the CFL condition (2.23) and 10−3. Computations are stopped either when time
is equal to t = 1.5 or when 2% of the mass exits the computational domain, for the
one-dimensional tests, and at time t = 100 for the two-dimensional ones.

We note that non-uniform meshes are more suitable than uniform ones concerning
CPU times aspects. For instance, fixing the maximum size of the domain at xmax =
100, we have performed numerical simulations for both the coalescence kernels H = 1
and H = xx′ and the uniform mesh with N = 500, that is ∆x = 0.2, and the non-
uniform mesh with N = 250, that gives meshes varying from the order 10−5 to the
order 1. In both cases, we gain one order of magnitude for the CPU time when using
the non-uniform mesh with respect to the uniform one. We also note that, in the
two dimensional case, our computations are much more costly in terms of CPU times
with respect to those given in [21]: the CPU times for tests 5, 6 and 7 are of the order
of 100 min, whereas in [21] CPU times for the same tests are of the order of 5 min.
Nevertheless, , see section 4.4, our numerical solutions in the two dimensional case
are smooth and show a smaller diffusion away from the diagonal x = y than those
traced in [21] (figures 6 and 7).

4.1. One-dimensional case: H(x, x′) = 1. We consider the one-dimensional
case with the constant kernel H(x, x′) = 1 and compare our results with those in [10].
We define the following initial condition

f0(x) = e−x.

We recall that in this case, see [10] and references therein, the coalescence equation
admits the solution

f(x, t) =

(

2

2 + t

)2

exp

( −2x

2 + t

)

, (4.1)

with zero and first moments

M0(t) =
2

2 + t
, M1(t) = 1.

In figure 4.1 we trace the zero (left) and first (right) order moments against the
analytical solution (continuous line). While for the zero order moment we can barely
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see the difference between the various mesh choices, concerning the first order moment,
we note that each mesh choice is constant in time, but the staring value is not the good
one when applying non-uniform meshes. This error is due to the quadrature formula
we apply to compute the initial first order moment. Note that the numerical result of
test 4 coincides with the result of test 2. Moreover, the better fit seems to be given by
test number 3, that is the uniform mesh with the smallest space step. Nevertheless,
we note that non-uniform meshes allow us to compute solutions on bigger domains,
i.e. for larger values of xmax, than uniform ones, with still an acceptable error.

Fig. 4.1. H(x, x′) = 1: zero (left) and first (right) order moments.

We also compute, as done in [10], the discrete L1 error defined by:

ǫ =

N
∑

i=0

∆xi|f(xi, tn) − fn
i |, (4.2)

for the uniform meshes with N = 125, 250, 500 and truncation xmax = 50, as well as for
the non-uniform tests 5, 7 and 8. The results in normal (left) and logarithmic (right)
scale are traced in figures 4.2 and 4.3 and they numerically show that the scheme is
second order accurate, as it was expected since all integrals in our discretization are
approximated by midpoint quadrature formulas.

Fig. 4.2. H(x, x′) = 1: uniform mesh, ǫ in normal (left) and logarithmic (right) scale.
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Fig. 4.3. H(x, x′) = 1: non-uniform mesh, ǫ in normal (left) and logarithmic (right) scale.

4.2. One-dimensional case: H(x, x′) = x + x′. We now consider one of the
one-dimensional tests performed in [21]. We define the initial condition

f0(x) = e−x,

defining α = 1 − e−t, the analytical solution reads

f(x, t) =
1 − α

x
√

α
I1(2x

√
α)e−x(1+α) ,with,

with I1 the modified Bessel function at order one

I1(z) =
1

π

∫ π

0

exp(z cos(θ)) cos(θ) dθ. (4.3)

The moments of order zero, one, two and three are respectively given by

M0(t) = e−t, M1(t) = 1, M2(t) = 2e2t, M3(t) = 6e3t
(

2et − 1
)

.

We compute the numerical solution applying the non-uniform mesh of test 5, but
with N = 40 and xmax = 2000, as done in [21]. We stop the computation once
the first order moment begin to decrease, because part of the density has reached
the boundary of the truncated domain. The results are shown in figure 4.4 where
we have traced, in logarithmic scale, the analytical and discrete moments up to the
third order. Figure 4.4 shows that the third order moment is always increasing, as
it is expected by theoretical results. The overestimation of the discrete moments of
order bigger than one may be explained by the quadrature formula applied in order
to compute the integrals. Compared with the numerical results published in [21], the
third order moment we compute are totally different. In particular, the one traced
in [21] is non-monotone, and we don’t have any way of comparison since the authors
don’t give any formula for the third order moment.

4.3. One-dimensional case: H(x, x′) = xx′. Consider the one-dimensional
case with multiplicative kernel H(x, x′) = xx′ which is well known to yield to gelation.
Following [10], we choose the initial condition

f0(x) =
e−x

x
,
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Fig. 4.4. H(x, x′) = x + x′: zero, first, second and third order moments.

for which the coalescence problem admits the solution

f(x, t) = e−Tx I1

(

2x
√

t
)

x2
√

t
, (4.4)

with the time T given by:

T =

{

1 + t if t ≤ 1,

2
√

t otherwise,
(4.5)

and I1 the modified Bessel function at order one defined by (4.3).
The first order moment can be computed:

M1(t) =

{

1 if t < 1,

t−1/2 otherwise.

Note that for t > 1 the first order moment is decreasing, the gelation time being t = 1.
In figure 4.5, we compare the normalized first order moment obtained by our

numerical simulation applying the uniform meshes 1, 2 and 3 (left) or the non-uniform
meshes 5 and 7 (right) to the analytical solution truncated respectively at xmax = 50
(dotted line, left graph) or xmax = 5000 (dotted line, right graph). We also plot
the exact analytical solution (continuous line, both graphs). The numerical results
given by 1, 2 and 3 well fit the truncated solution (dotted line), but we observe a
little overestimation once the gelation phenomena takes place. This may be due to
the very small truncation value we choose. Concerning the non-uniform meshes, we
note that, as expected, the numerical result for the finest mesh (test 7) has a better
fit with the truncated solution (dotted line). Note that the truncation value xmax

for test 7 is larger than for the uniform tests: non-uniform meshes allow to compute
solutions with a larger truncation value xmax and give more accurate results.

Moreover, as done for the constant kernel, we compute the discrete L1 error
defined by (4.2) for the uniform mesh with N = 125, 250, 500 and truncation xmax =
50. The result is shown in figure 4.6 both in normal (left) and logarithmic (right) scale.
As expected the scheme is second order accurate. Note that, since the truncation value
is small and that the kernel is multiplicatif, particles rapidly exit the computational
domain, yielding to small oscillations in the computation of the L1 error, which are
more visible for the test N = 500. The L1 error for non-uniform meshes can’t be
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Fig. 4.5. H(x, x′) = xx′: uniform meshes 1, 2, 3 (left) and non-uniform meshes 5 and 7 (right).

Fig. 4.6. H(x, x′) = xx′: ǫ in normal (left) and logarithmic (right) scale.

computed since the values of the analytical solution are too close to zero and its
computation on the smaller cells is impossible.

We finally remark that when computing moments of order bigger than 1, we
obtain the same behavior as in [10], that is, as time approach the gelation time, the
moments of order p ≥ 3/2 blow up.

4.4. Two dimensional validation. In this section, we compare our numerical
results with those obtained in [21] for the two-dimensional case. Before entering the
details, let us write the general formula for a moment of order p = r + s, in two
dimensions

Mr,s(t) =

∫

∞

0

∫

∞

0

xrysf(t, x, y)dxdy.

Following [21], we assume a constant coalescence kernel H(~x, ~x′) = 1 and we
compute the solution up to a final time t = 100. In both problems we shall consider,
we choose the test 5 where we have fixed the number of discretization points to
N = Nx = Ny = 40, and choose a truncation value xmax = ymax = 1000.

First, we consider the initial condition:

f0(x, y) = e−x−y.



18 L. FORESTIER-COSTE AND S. MANCINI

The analytical solution reads, see also [20],

f(t, x, y) =
4 e−x−y

(t + 2)2
I0(θ) , with θ =

√

4t

t + 2

and I0 the modified Bessel function of first kind of order zero

I0(z) =
1

π

∫ π

0

exp(z cos(θ)) dθ. (4.6)

The zero, first and second order moments associated with this solution are, see [21],

M0,0(t) =
2

2 + t
, M1,0(t) = M0,1(t) = 1 , M1,1(t) = 1 + t.

In figure 4.7 we trace in logarithmic scale the analytical solution.
Figure 4.8 shows the numerical results. Note that the zero, first and second order
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Fig. 4.7. f0(x, y) = e−x−y: analytical solution at t = 100

numerical moments well fit the analytical ones (continuous lines, right graph). More-
over (left graph), the computed solution is smooth, but has a diffused with respect
to the analytical one in particular around the diagonal x = y. This diffusion dimin-
ishes when considering the extrema of the computational domain. We note that the
numerical results (figure 6) in [21], have a good fit for the moments too, and that
the computed solution shows singularities and has a larger diffusion away from the
diagonal x = y.

We now consider a final test also performed in [21]. The initial condition reads

f0(x, y) = 16xy e−2(x+y).

In this case the analytical solution is given by, see [13],

f(t, x, y) =
8

√

t(t + 2)3
e−2(x+y)[I0(θ) − J0(θ)],

where

θ = 4
√

xy

(

t

t + 2

)1/4

.
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Fig. 4.8. f0(x, y) = e−x−y: Computed solution (left). Zero, first and second order moments
(right).

and J0 and I0 respectively are, the Bessel function

J0(z) =
1

π

∫ π

0

cos(z sin(θ)) dθ

and the modified Bessel function of first kind of order zero, defined by (4.6). We
consider the same moments as in [21] (see also [26]):

M0,0(t) =
2

2 + t
,

M1,0(t) = M0,1(t) = 1 ,

M2,0(t) =
3 + 2t

2
, M1,1(t) = 1 + t ,

M3,0(t) =
3(1 + t)(2 + t)

2
, M2,1(t) =

(3 + 7t + 3t2)

2
.

The analytical solution at t = 100 is traced in logarithmic scale in figure 4.9.
In figure 4.10 we trace the computed moments and the analytical ones (right

graph). Concerning the moments, we note a better agreement than the one obtained
in [21] (figure 7). Moreover (left), diffusion of the numerical solution away from the
diagonal x = y is smaller than the one showed in [21], and we still have more diffused
along the diagonal. Again, the two-dimensional solution in [21] shows singularities.

5. Conclusion. In this paper we have described a finite volume discretization
of the coalescence equation (1.1) which conserves the first order moment, at least
until the gelation time is reached. The proposed numerical scheme is suitable both
for uniform and non-uniform meshes, and deal with the overlaps of created cells
proportionally distributing it over the defined meshes. The scheme is second order
accurate and consistent with the continuous formulation of the coalescence problem.
We emphasize the use of non-uniform meshes for CPU time aspects as well as for a
better description of distribution functions with dimensions varying over several order
of magnitude, as it will be the case in our volcanology problem. The generalization
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Fig. 4.9. f0(x, y) = 16 xy e−2(x+y): analytical solution at t = 100.
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Fig. 4.10. f0(x, y) = 16 xy e−2(x+y): Computed solution (left). Computed moments (right).

to a multidimensional framework has been detailed, too.
The code has been validate considering the following classical kernels: H(x, x′) =
1, x + x′, xx′, for which analytical solutions to (1.1) as well as their moments have
been recalled. The numerical results are compared with those already published, in
particular with those of [10] and [21]. Our numerical scheme shows a good agreement
with all the considered tests, and seems to behave better than the one in [21], at
least concerning the smoothness of the numerical solution and the computation of
higher order moments. Still some work may be done in order to reduce the observed
numerical diffusion, for example, modifying the way the created cells are distributed
over the existing mesh.
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