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yLaboratoire de Mathématiques Appliquées aux Systèmes,
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This article and the companion paper aim at reviewing recent empirical and theoretical
developments usually grouped under the term Econophysics. Since the name was coined
in 1995 by merging the words ‘Economics’ and ‘Physics’, this new interdisciplinary field has
grown in various directions: theoretical macroeconomics (wealth distribution), microstructure
of financial markets (order book modeling), econometrics of financial bubbles and crashes,
etc. We discuss the interactions between Physics, Mathematics, Economics and Finance that
led to the emergence of Econophysics. We then present empirical studies revealing the
statistical properties of financial time series. We begin the presentation with the widely
acknowledged ‘stylized facts’, which describe the returns of financial assets—fat tails,
volatility clustering, autocorrelation, etc.—and recall that some of these properties are directly
linked to the way ‘time’ is taken into account. We continue with the statistical properties
observed on order books in financial markets. For the sake of illustrating this review, (nearly)
all the stated facts are reproduced using our own high-frequency financial database. Finally,
contributions to the study of correlations of assets such as random matrix theory and
graph theory are presented. The companion paper will review models in Econophysics from
the point of view of agent-based modeling.

Keywords: Computational finance; Correlation; Econophysics; Empirical finance

1. Introduction

What is Econophysics? Fifteen years after the word

‘Econophysics’ was coined by H.E. Stanley by merging

the words ‘Economics’ and ‘Physics’ at an international

conference on Statistical Physics held in Kolkata in 1995,

this is still a commonly asked question. Many still wonder

how theories aimed at explaining the physical world in

terms of particles could be applied to understand complex

structures, such as those found in the social and economic

behavior of human beings. In fact, physics as a natural

science is supposed to be precise or specific; its predictive

powers are based on the use of a few but universal

properties of matter that are sufficient to explain many

physical phenomena. But in social sciences, are there

analogous precise universal properties known for human

beings, who, in contrast to fundamental particles, are

certainly not identical to each other in any respect? And

what little amount of information would be sufficient

to infer some of their complex behavior? There exists

a positive drive to answer these questions. In the 1940s,

Majorana took scientific interest in financial and eco-

nomic systems. He wrote a pioneering paper on the

essential analogy between statistical laws in physics and in

social sciences (di Ettore Majorana 1942, Mantegna 2005,

2006). However, during the following decades, only a few

physicists, such as Kadanoff (1971) and Montroll and

Badger (1974), had an interest in research into social

or economic systems. It was not until the 1990s that

physicists started turning to this interdisciplinary subject,

and in the last few years they have made many successful

attempts at approaching problems in various fields of

social sciences (e.g., de Oliveira et al. (1999), Chakrabarti

et al. (2006) and Stauffer et al. (2006)). In particular, in
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has begun to be complementary to the most traditional
approaches such as mathematical (stochastic) finance.
These various investigations, based on methods imported
from (or also used in) physics, are the subject of the
present paper.

1.1. Bridging physics and economics

Economics deals with how societies efficiently use their
resources to produce valuable commodities and distribute
them among different people or economic agents (Keynes
1973, Samuelson 1998). It is a discipline related to almost
everything around us, starting from the marketplace
through the environment to the fate of nations. At first
sight this may seem a very different situation from that of
physics, whose birth as a well-defined scientific theory is
usually associated with the study of particular mechanical
objects moving with negligible friction, such as falling
bodies and planets. However, a deeper comparison shows
many more analogies than differences. On a general level,
both economics and physics deal with ‘everything around
us’, but from different perspectives. On a practical level,
the goals of both disciplines can be either purely theoret-
ical in nature or strongly oriented towards the improve-
ment of the quality of life. On a more technical side,
analogies often become equivalences. Let us give some
examples.

Statistical mechanics has been defined as the

‘‘branch of physics that combines the principles and
procedures of statistics with the laws of both classical
and quantum mechanics, particularly with respect to
the field of thermodynamics. It aims to predict and
explain the measurable properties of macroscopic
systems on the basis of the properties and behaviour
of the microscopic constituents of those systems.’’y

The tools of statistical mechanics or statistical physics
(Landau 1965, Reif 1985, Pathria 1996), which include
extracting the average properties of a macroscopic system
from the microscopic dynamics of the system, are believed
will prove useful for an economic system. Indeed, even
though it is difficult or almost impossible to write down
the ‘microscopic equations of motion’ for an economic
system with all the interacting entities, economic systems
may be investigated on various size scales. Therefore, an
understanding of the global behavior of economic systems
seems to need concepts such as stochastic dynamics,
correlation effects, self-organization, self-similarity and
scaling, and for their application we do not have to
go into the detailed ‘microscopic’ description of the
economic system.

Chaos theory has had some impact on Economics
modeling (e.g., in the work of Brock and Hommes (1998)
and Chiarella et al. (2006)). The theory of disordered
systems has also played a key role in Econophysics
and the study of ‘complex systems’. The term ‘complex

systems’ was coined to cover the great variety of such

systems that include examples from physics, chemistry,
biology and also social sciences. The concepts and

methods of statistical physics turned out to be extremely

useful when applied to these diverse complex systems,

including economic systems. Many complex systems in
natural and social environments share the characteristics

of competition among interacting agents for resources

and their adaptation to a dynamically changing environ-

ment (Arthur 1999, Parisi 1999). Hence, the concept of
disordered systems helps, for instance, to go beyond the

concept of a representative agent, an approach prevailing

in much of (macro)economics and criticized by many

economists (see, e.g., Kirman (1992) and Gallegati and

Kirman (1999)). Minority games and their physical
formulations have been exemplary.

Physics models have also helped to develop new

theories to explain older observations in Economics.

The Italian social economist Pareto investigated a century
ago the wealth of individuals in a stable economy (Pareto

1897) by modeling them with the distribution P(4x)�

x��, where P(4x) is the number of people having an

income greater than or equal to x and � is an exponent

(now known as the Pareto exponent) which he estimated
to be 1.5. To explain such empirical findings, physicists

have come up with some very elegant and intriguing

kinetic exchange models in recent times, and we review

these developments in the companion article. Although
the economic activities of the agents are driven by various

considerations such as ‘utility maximization’, the eventual

exchanges of money in any trade can be simply viewed as

money/wealth conserving two-body scattering, as in the
entropy maximization based kinetic theory of gases.

This qualitative analogy seems to be quite old and both

economists and natural scientists have already noted it

in various contexts (Saha and Srivastava 1950). Recently,
the equivalence between the two maximization principles

has been established quantitatively (Chakrabarti and

Chakrabarti 2010).
Let us discuss another example of the similarities

of interest and tools in Physics and Economics. The
frictionless systems that mark the early history of physics

were soon recognized to be rare cases: not only on the

microscopic scale—where they obviously represent an

exception due to the unavoidable interactions with the
environment—but also on the macroscopic scale, where

fluctuations of internal or external origin make prediction

of their time evolution impossible. Thus equilibrium

and non-equilibrium statistical mechanics, the theory of

stochastic processes, and the theory of chaos became
the main tools for studying real systems as well as an

important part of the theoretical framework of modern

physics. Very interestingly, the same mathematical tools

have presided over the growth of classic modeling in
Economics and more particularly in modern Finance.

Following the work of Mandelbrot and Fama in the

1960s, physicists from 1990 onwards have studied the

yEncyclopædia Britannica. Retrieved June 11, 2010, from Encyclopædia Britannica Online.
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fluctuation of prices and universalities in the context
of scaling theories, etc. These links open the way for the
use of a physics approach in Finance, complementary
to the widespread mathematical approach.

1.2. Econophysics and finance

Mathematical finance has benefited considerably in the
past 30 years from modern probability theory—Brownian
motion, martingale theory, etc. Financial mathematicians
are often proud to recall the most well-known source
of the interactions between Mathematics and Finance:
five years before Einstein’s seminal work, the theory of
Brownian motion was first formulated by the French
mathematician Bachelier in his doctoral thesis (Bachelier
1900, Boness 1964, Haberman and Sibbett 1995), in which
he used this model to describe price fluctuations at the
Paris Bourse. Bachelier had even given a course as a ‘free
professor’ at the Sorbonne University with the title:
‘Probability calculus with applications to financial oper-
ations and analogies with certain questions from physics’
(see the historical articles of Courtault et al. (2000),
Taqqu (2001) and Forfar (2002)).

Then It �o, following the works of Bachelier, Wiener,
and Kolmogorov, among many others, formulated the
presently known It �o calculus (It �o and McKean 1996).
Geometric Brownian motion, belonging to the class of
It �o processes, later became an important ingredient of
models in Economics (Osborne 1959, Samuelson 1965),
and in the well-known theory of option pricing (Black and
Scholes 1973, Merton 1973). In fact, stochastic calculus
of diffusion processes combined with classical hypotheses
in Economics led to the development of the arbitrage
pricing theory (Duffie 1996, Follmer and Schied 2004).
The deregulation of financial markets at the end of the
1980s led to the exponential growth of the financial
industry. Mathematical finance followed the trend: sto-
chastic finance with diffusion processes and exponential
growth of financial derivatives have had intertwined
developments. Finally, this relationship was carved in
stone when the Nobel prize was presented to M.S. Scholes
and R.C. Merton in 1997 (F. Black died in 1995) for their
contribution to the theory of option pricing and their
celebrated ‘Black–Scholes’ formula.

However, this whole theory is closely linked to classical
economics hypotheses and has not been sufficiently
grounded with empirical studies of financial time series.
The Black–Scholes hypothesis of Gaussian log-returns of
prices is in strong disagreement with empirical evidence.
Mandelbrot (1960, 1963) was one of the first to observe
a clear departure from Gaussian behavior for these
fluctuations. It is true that, within the framework of
stochastic finance and martingale modeling, more com-
plex processes have been considered in order to take into
account certain empirical observations: jump processes
(see, e.g., Cont and Tankov (2004) for a textbook
treatment) and stochastic volatility (e.g., Heston (1993)
and Gatheral (2006)), in particular. But recent events
in financial markets and the succession of financial
crashes (see, e.g., Kindleberger and Aliber (2005) for a

historical perspective) should lead scientists to re-
think the basic concepts of modeling. This is where
Econophysics is expected to come into play. During the
past decades, the financial landscape has been changing
dramatically: deregulation of markets and the growing
complexity of products. From a technical point of view,
the ever increasing speed and decreasing cost of compu-
tational power and networks have lead to the emergence
of huge databases that record all transactions and order
book movements up to the millisecond. The availability of
these data should lead to models that are better founded
empirically. Statistical facts and empirical models will be
reviewed in this article and the companion paper.
The recent turmoil on financial markets and the 2008
crash seem to plead for new models and approaches.
The Econophysics community thus has an important role
to play in future financial market modeling, as suggested
by contributions from Bouchaud (2008), Farmer and
Foley (2009), and Lux and Westerhoff (2009).

1.3. A growing interdisciplinary field

The chronological development of Econophysics has been
well covered in the book of Roehner (2002). Here it is
worth mentioning a few landmarks. The first article on
the analysis of finance data that appeared in a physics
journal was that of Mantegna (1991). The first conference
on Econophysics was held in Budapest in 1997 and has
since been followed by numerous schools, workshops and
regular series of meetings: APFA (Application of Physics
to Financial Analysis), WEHIA (Workshop on Economic
Heterogeneous Interacting Agents), and Econophys-
Kolkata, amongst others. In recent years the number
of papers has increased dramatically; the community has
grown rapidly and several new directions of research have
opened up. Renowned physics journals such as The
Reviews of Modern Physics, Physical Review Letters,
Physical Review E, Physica A, Europhysics Letters,
European Physical Journal B, International Journal of
Modern Physics C, etc. now publish papers in this
interdisciplinary area. Economics and mathematical
finance journals, especially Quantitative Finance, receive
contributions from many physicists. The interested
reader can also follow the developments quite well
from the preprint server www.arxiv.org. In fact, recently
a new section called quantitative finance has been
added to it. One could also visit the web sites of the
Econophysics Forum (www.unifr.ch/econophysics) and
Econophysics.Org (www.econophysics.org). Previous
texts addressing Econophysics issues, such as those of
Bouchaud and Potters (2000, Mantegna and Stanley
(2007) and Gabaix (2009), may be complementary to the
present review. The first textbook in Econophysics
(Sinha et al. 2010) has been published.

1.4. Organization of the review

This article reviews recent empirical and theoretical
developments that use tools from Physics in the fields of
Economics and Finance. In section 2, empirical studies
revealing the statistical properties of financial time series
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are reviewed. We present the widely acknowledged
‘stylized facts’ describing the distribution of the returns
of financial assets. In section 3 we continue with the
statistical properties observed on order books in financial
markets. We reproduce most of the stated facts using
our own high-frequency financial database. In the last
part of this article (section 4), we review contributions
on correlation on financial markets, among which are the
computation of correlations using high-frequency data,
analyses based on random matrix theory and the use
of correlations to build economics taxonomies. In the
companion paper, Econophysics models are reviewed
from the point of view of agent-based modeling. Using
previous work originally presented in the fields of
behavioral finance and market microstructure theory,
econophysicists have developed agent-based models of
order-driven markets that have been extensively reviewed.
We then turn to models of wealth distribution where an
agent-based approach also prevails. As mentioned above,
Econophysics models help bring a new look at certain
Economics observations, and advances based on kinetic
theory models are presented. Finally, a detailed review of
game theory models and the now classic minority games
composes the final part.

2. Statistics of financial time series: Price, returns,

volumes, volatility

Recording a sequence of prices of commodities or assets
produces what is called a time series. The analysis of
financial time series has been of great interest, not only to
practitioners (an empirical discipline), but also to theore-
ticians for making inferences and predictions. The inher-
ent uncertainty in financial time series and the theory
makes it especially interesting to economists, statisticians
and physicists (Tsay 2005).

Different kinds of financial time series have been
recorded and studied for decades, but the scale changed
20 years ago. The computerization of stock exchanges
that took place all over the world in the mid 1980s and
early 1990s has lead to an explosion in the amount of data
recorded. Nowadays, all transactions on financial mar-
kets are recorded tick-by-tick, i.e. every event on a stock is
recorded with a time stamp defined up to the millisecond,
leading to huge amounts of data. For example, as of
today (2010), the Reuters Datascope Tick History
(RDTH) database records roughly 25 gigabytes of data
every trading day.

Prior to this improvement in recording market activity,
statistics could only be computed using daily data at best.
Now scientists can compute intra-day statistics with high
frequency. This allows us to check known properties on
new time scales (see, e.g., section 2.2), but also implies
that special care needs to be taken in the treatment
(see, for example, the computation of correlation at high
frequency in section 4.1).

It is a formidable task to present an exhaustive review
on this topic, but we try to give a flavor of some of the
aspects in this section.

2.1. ‘Stylized facts’ of financial time series

The concept of ‘stylized facts’ was introduced in macro-
economics by Kaldor (1961), who advocated that a
scientist studying a phenomenon ‘‘should be free to start
off with a stylized view of the facts’’. In his work, Kaldor
isolated several statistical facts characterizing macroeco-
nomic growth over long periods and in several countries,
and took these robust patterns as a starting point for
theoretical modeling.

This expression has thus been adopted to describe the
empirical facts that arose in statistical studies of financial
time series and that seem to be persistent across various
time periods, places, markets, assets, etc. One can find
many different lists of these facts in several reviews
(e.g., Bollerslev et al. (1994), Pagan (1996), Guillaume
et al. (1997) and Cont (2001)). We choose in this article to
present a minimum set of facts now widely acknowledged,
at least for the prices of equities.

2.1.1. Fat-tailed empirical distribution of returns. Let pt
be the price of a financial asset at time t. We define its
return over a period of time � to be

r�ðtÞ ¼
pðtþ �Þ � pðtÞ

pðtÞ
� logð pðtþ �ÞÞ � logð pðtÞÞ: ð1Þ

It has been largely observed—starting with Mandelbrot
(1963) (see, e.g., Gopikrishnan et al. (1999) for tests
on more recent data)—and it is the first stylized fact, that
the empirical distributions of financial returns and log-
returns are fat-tailed. In figure 1 we reproduce the
empirical density function of normalized log-returns
from Gopikrishnan et al. (1999) computed on the S&P
500 index. In addition, we plot similar distributions
for normalized returns on a liquid French stock
(BNP Paribas) with �¼ 5 minutes. This graph is com-
puted by sampling a set of tick-by-tick data from 9:05
a.m. to 5:20 p.m. between 1 January 2007 and 30 May
2008, i.e. 356 days of trading. Except where mentioned
otherwise, this data set will be used for all empirical
graphs in this section. Figure 2 reproduces the cumulative
distribution on a log–log scale from Gopikrishnan et al.
(1999). We also show the same distribution on a linear–
log scale computed on our data for a larger time scale
of �¼ 1 day, showing similar behavior.

Many studies report similar observations on different
sets of data. For example, using two years of data on
more than 1000 US stocks, Gopikrishnan et al. (1998)
find that the cumulative distribution of returns asymp-
totically follows the power law F(r�)� jrtj

�� with �42
(�� 2.8–3). With �42, the second moment (the variance)
is well-defined, excluding stable laws with infinite vari-
ance. There have been various suggestions for the form
of the distribution: generalized hyperbolic Student-t,
normal inverse Gaussian, exponentially truncated stable,
and others, but no general consensus exists on the exact
form of the tails. Although being the most widely
acknowledged and the most elementary, this stylized
fact is not easily met by all financial modeling. Gabaix et
al. (2006) and Wyart and Bouchaud (2007) recall that
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efficient market theory has difficulties in explaining fat
tails. Lux and Sornette (2002) have shown that models
known as ‘rational expectation bubbles’, popular in
economics, produce very fat-tailed distributions (�51)
that are in disagreement with the statistical evidence.

2.1.2. Absence of autocorrelations of returns. Figure 3
plots the autocorrelation of log-returns defined as �(T )�
hr�(tþT )r�(t)i with �¼ 1 minute and 5 minutes. We
observe here, as is widely known (see, e.g., Pagan (1996)
and Cont et al. (1997)), that there is no evidence of
a correlation between successive returns, which is the
second ‘stylized fact’. The autocorrelation function decays
very rapidly to zero, even for a few lags of 1 minute.

2.1.3. Volatility clustering. The third ‘stylized fact’ that
we present here is of primary importance. The absence
of a correlation between returns must not be mistaken for
a property of independence and identical distribution:
price fluctuations are not identically distributed and
the properties of the distribution change with time.
In particular, absolute returns or squared returns exhibit
a long-range slowly decaying autocorrelation function.
This phenomenon is widely known as ‘volatility clus-
tering’, and was formulated by Mandelbrot (1963) as

‘‘large changes tend to be followed by large changes—of
either sign—and small changes tend to be followed by
small changes’’.

Figure 4 plots the autocorrelation function of absolute
returns for �¼ 1 minute and 5 minutes. The levels of
autocorrelation at the first lags vary wildly with the
parameter �. For our data, it is found to be maximum
(more than 70% at the first lag) for returns sampled every
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five minutes. However, whatever the sampling frequency,

autocorrelation is still above 10% after several hours
of trading. For these data, we can grossly fit a power law

decay with exponent 0.4. Other empirical tests report

exponents between 0.1 and 0.3 (Cizeau et al. 1997, Cont

et al. 1997, Liu et al. 1997).

2.1.4. Aggregational normality. It has been observed
that as one increases the time scale over which the returns
are calculated, the fat-tail property becomes less pro-

nounced, and the distribution approaches the Gaussian

form, which is the fourth ‘stylized-fact’. This cross-over

phenomenon is documented by Kullmann et al. (1999),

who study the evolution of the Pareto exponent of the
distribution with the time scale. Figure 5 plots these

standardized distributions for the S&P 500 index between

1 January 1950 and 15 June 2009. It is clear that the

more the time scale increases, the more Gaussian

the distribution becomes. The fact that the shape of the
distribution changes with � makes it clear that the random

process underlying prices must have a non-trivial tempo-

ral structure.

2.2. Getting the right ‘time’

2.2.1. Four ways to measure ‘time’. In the previous
section, all the ‘stylized facts’ have been presented in
physical time, or calendar time, i.e. the time series were
indexed, as we expect them to be, in hours, minutes,
seconds, milliseconds. Let us recall here that the tick-
by-tick data available on financial markets all over the
world is time-stamped up to the millisecond, but the order
of magnitude of the guaranteed precision is much larger,
usually one second or a few hundred milliseconds.

Calendar time is the time usually used to compute the
statistical properties of financial time series. This means
that computing these statistics involves sampling, which
might be a delicate thing to do when dealing, for example,
with several stocks with different liquidity. Therefore,
three other ways to keep track of time may be used.

Let us first introduce event time. Using this count, time
is increased by one unit each time one order is submitted
to the observed market. This framework is natural when
dealing with the simulation of financial markets, as will be
shown in the companion paper. The main outcome
of event time is its ‘smoothing’ of the data. In event
time, intra-day seasonality (lunch break) or an outburst of
activity consequent to some news are smoothed in the
time series, since we always have one event per time unit.

Now, when dealing with time series of prices, another
count of time might be relevant, and we call it trade time
or transaction time. Using this count, time is increased by
one unit each time a transaction occurs. The advantage of
this count is that limit orders submitted far away in the
order book, and that may thus be of lesser importance
with respect to the price series, do not increase the clock
by one unit.

Finally, proceeding with focusing on important events
to increase the clock, we can use tick time. Using this
count, time is increased by one unit each time the price
changes. Thus consecutive market orders that progres-
sively ‘eat’ liquidity until the first best limit is removed
in an order book are counted as one unit time.

Let us finish by noting that, with these definitions,
when dealing with mid prices, or bid and ask prices,
a time series in event time can easily be extracted from a
time series in calendar time. Furthermore, one can always
extract a time series in trade time or in price time from
a time series in event time. However, one cannot extract a
series in price time from a series in trade time, as the latter
ignores limit orders that are submitted inside the spread,
and thus change mid, bid or ask prices without any
transaction taking place.

2.2.2. Revisiting ‘stylized facts’ with a new clock. Using
the right clock might be of primary importance when
dealing with statistical properties and estimators. For
example, Griffin and Oomen (2008) investigate the
standard realized variance estimator (see section 4.1) in
trade time and tick time. Muni Toke (2010) also recalls
that the differences observed on a spread distribution
in trade time and physical time are meaningful. In this
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section we compute some statistics complementary to
those presented in the previous section 2.1 and show the
role of the clock in the studied properties.

Aggregational normality in trade time. We have seen
above that when the sampling size increases, the distri-
bution of the log-returns tends to be more Gaussian. This
property is much better seen using trade time. Figure 6
plots the distributions of the log-returns for BNP Paribas
stock using 2-month-long data in calendar time and trade
time. Over this period, the average number of trades per
day is 8562, so that 17 trades (respectively 1049 trades)
corresponds to an average calendar time step of 1 minute
(respectively 1 hour). We observe that the distribution of
returns sampled every 1049 trades is much more Gaussian
than that sampled every 17 trades (aggregational normal-
ity), and that it is also more Gaussian that that sampled
every 1 hour (faster convergence in trade time). Note that
this property appears to be valid in a multi-dimensional
setting (Huth and Abergel 2009).

Autocorrelation of trade signs in tick time. It is well
known that the series of signs of the trades on a given
stock (usual convention: þ1 for a transaction at the ask
price, �1 for a transaction at the bid price) exhibit a large
autocorrelation. It was observed by Lillo and Farmer
(2004), for example, that the autocorrelation function of
the signs of trades (�n) was a slowly decaying function in
n��, with �� 0.5. We compute this statistics for the trades
on BNP Paribas stock from 1 January 2007 to 31 May
2008. We plot the result in figure 7. We find that the first
values for short lags are about 0.3, and that the log–log
plot clearly shows some power-law decay with �� 0.7.

A very plausible explanation for this phenomenon relies
on the execution strategies of certain major brokers in a
given market. These brokers have large transactions to
execute for certain clients. In order to avoid the market
moving because of a large order (see section 3.6 on market
impact), they tend to split large orders into small orders.
We believe that this strategy explains, at least partly, the
large autocorrelation observed. Using data on markets
where orders are publicly identified and linked to a given

broker, it can be shown that the autocorrelation function
of the order signs of a given broker is even higher.
See Bouchaud et al. (2009) for a review of these facts
and associated theories.

We present here further evidence supporting this
explanation. We compute the autocorrelation function
of order signs in tick time, i.e. taking into account only
transactions that make the price change. The results are
plotted in figure 7. We find that the first values for short
lags are about 0.10, which is much smaller than the values
observed with the previous time series. This supports
the idea that many small transactions progressively ‘eat’
the available liquidity at the best quotes. Note however
that, even in tick time, the correlation also remains
positive for large lags.

2.2.3. Correlation between volume and volatility.

Investigating time series of cotton prices, Clark (1973)
noted that ‘‘trading volume and price change variance
seem to have a curvilinear relationship’’. Trade time
allows us to obtain a better view of this property: Plerou
et al. (2000) and Silva and Yakovenko (2007), among
others, show that the variance of log-returns after N
trades, i.e. over a time period of N in trade time, is
proportional to N. We confirm this observation by
plotting the second moment of the distribution of log-
returns after N trades as a function of N for our data, as
well as the average number of trades and the average
volatility in a given time interval. The results are shown
in figures 8 and 9.

These results should be placed in relation to those
presented by Gopikrishnan et al. (2000b), who studied the
statistical properties of the number of shares traded QDt

for a given stock in a fixed time interval Dt. They analysed
transaction data for the largest 1000 stocks for the two-
year period 1994–95, using a database that recorded every
transaction for all securities in three major US stock
markets. They found that the distribution P(QDt) dis-
played a power-law decay, as shown in figure 10, and that
the time correlations in QDt displayed long-range persis-
tence. Further, they investigated the relation between QDt
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Figure 6. Distribution of log-returns of stock BNPP.PA. This
empirical distribution is computed using data from 1 April 2007
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and the number of transactions NDt in time interval Dt
and found that the long-range correlations in QDt were
largely due to those of NDt. Their results are consistent
with the interpretation that the large equal-time correla-
tions previously found between QDt and the absolute

value of the price change jGDtj (related to volatility) are
largely due to NDt. Therefore, studying the variance
of price changes in trade time suggests that the number
of trades is a good proxy for the unobserved volatility.

2.2.4. A link with stochastic processes: Subordination.

These empirical facts (aggregational normality in trade
time, relationship between volume and volatility) rein-
force the interest in models based on the subordination
of stochastic processes, which was introduced to financial
modeling by Clark (1973).

Let us introduce it here. Assuming proportionality
between the variance hxi2� of the centered returns x and
the number of trades N� over time period �, we can write

hxi2� ¼ �N�: ð2Þ

Therefore, assuming normality in trade time, we can write
the density function of the log-returns after N trades as

fNðxÞ ¼
e�x

2=2�Nffiffiffiffiffiffiffiffiffiffiffiffi
2p�N
p : ð3Þ

Finally, denoting K�(N) as the probability density func-
tion of having N trades in time period �, the distribution
of log-returns in calendar time can be written as

P�ðxÞ ¼

Z 1
0

e�x
2=2�Nffiffiffiffiffiffiffiffiffiffiffiffi
2p�N
p K�ðNÞdN: ð4Þ

This is subordination of the Gaussian process xN using
the number of trades N� as the directing process, i.e. as the
new clock. With this kind of modelization, it is expected,
since PN is Gaussian, that the observed non-Gaussian
behavior will come from K�(N). For example, specific
choices of the directing processes may lead to a symmetric
stable distribution (Feller 1968). Clark (1973) tested
empirically a log-normal subordination with time series
of cotton prices. In a similar way, Silva and Yakovenko
(2007) find that exponential subordination with a kernel,

K�ðNÞ ¼
1

��
e�N=��, ð5Þ

is in good agreement with empirical data. If the orders
were submitted to the market in an independent way and
at a constant rate �, then the distribution of the number of
trades per time period � should be a Poisson process with
intensity ��. Therefore, the empirical fit of equation (5) is
inconsistent with such a simplistic hypothesis of the
distribution of the time of arrivals of orders. We will
suggest in the next section possible distributions that fit
our empirical data.

3. Statistics of order books

The computerization of financial markets in the second
half of the 1980s provided empirical scientists with
easier access to extensive data on order books. Biais
et al. (1995) is an early study of the new data flows on
the newly (at that time) computerized Paris Bourse.
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Variables crucial to a fine modeling of order flows and
dynamics of order books are studied: time of arrival of
orders, placement of orders, size of orders, shape of order
book, etc. Many subsequent papers offer complementary
empirical findings and modeling (e.g., Gopikrishnan
et al. (2000a), Challet and Stinchcombe (2001), Maslov
and Mills (2001), Bouchaud et al. (2002) and Potters
and Bouchaud (2003)). Before going further into our
review of available models, we summarize some of these
empirical facts.

For each of the enumerated properties, we present new
empirical plots. We use Reuters tick-by-tick data on the
Paris Bourse. We select four stocks: France Telecom
(FTE.PA), BNP Paribas (BNPP.PA), Societe Générale
(SOGN.PA) and Renault (RENA.PA). For any given
stock, the data display time-stamps, traded quantities,
traded prices, the first five best-bid limits and the first five
best-ask limits. From now on, we will denote by ai(t)
(respectively (bj(t)) the price of the ith limit at the ask
(respectively the jth limit at the bid). Except where stated
otherwise, all statistics are computed using all trading
days from 1 October 2007 to 30 May 2008, i.e. 168 trading
days. On a given day, orders submitted between 9:05 a.m.
and 5:20 p.m. are taken into account, i.e. the first and last
minutes of each trading day are removed.

Note that we do not deal in this section with the
correlations of the signs of trades, since statistical results
on this have already been treated in section 2.2.2.
Note also that although most of these facts are widely
acknowledged, we will not describe them as new ‘stylized
facts for order books’, since their ranges of validity are
still to be checked among various products/stocks,
markets and epochs, and strong properties need to be
properly extracted and formalized from these observa-
tions. However, we will keep them in mind as we go
through the new trend of ‘empirical modeling’ of order
books.

Finally, let us recall that the markets we are dealing
with are electronic order books with no official market
maker, in which orders are submitted in a double auction
and executions follow price/time priority. This type of
exchange has now been adopted nearly all over the world,
but this was not obvious when computerization was
incomplete. Different market mechanisms have been
widely studied in the microstructure literature (see, e.g.,
Garman (1976), Kyle (1985), Glosten (1994), Biais et al.
(1997), O’Hara (1997) and Hasbrouck (2007)). We will
not review this literature here (except for Garman (1976)
in our companion paper), as this would be too large a
digression. However, such literature is linked in many
respects to the problems reviewed in this paper.

3.1. Time of arrival of orders

As explained in the previous section, the choice of the
time count might be of prime importance when dealing
with ‘stylized facts’ of empirical financial time series.
When reviewing the subordination of stochastic processes
(Clark 1973, Silva and Yakovenko 2007), we have seen

that the Poisson hypothesis for the arrival times of orders
is not empirically verified.

We compute the empirical distribution for inter-arrival
times—or durations—of market orders on the stock BNP
Paribas using the data set described in the previous
section. The results are plotted in figures 11 and 12, both
on linear and log scales. It is clearly observed that the
exponential fit is not a good one. We checked, however,
that the Weibull distribution fit is potentially a very good
one. Weibull distributions were suggested, for example,
by Ivanov et al. (2004). Politi and Scalas (2008) also
obtain good fits with q-exponential distributions.

In the Econometrics literature, these observations of
non-Poissonian arrival times have given rise to a large
trend of modeling irregular financial data. Engle and
Russell (1997) and Engle (2000) introduced autoregressive
condition duration or intensity models that may help
model these processes of order submission (see Hautsch
(2004) for a textbook treatment).

Using the same data, we compute the empirical
distribution of the number of transactions in a given
time period �. The results are plotted in figure 13. It seems
that the log-normal and gamma distributions are both
good candidates, however neither really describes the
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Figure 11. Distribution of inter-arrival times for stock
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empirical result, suggesting a complex structure for the
arrival of orders. A similar result for Russian stocks was
presented by Dremin and Leonidov (2005).

3.2. Volume of orders

Empirical studies show that the unconditional distribu-
tion of order size is very complex to characterize.
Gopikrishnan et al. (2000a) and Maslov and Mills
(2001) observe a power-law decay with exponent
1þ�� 2.3–2.7 for market orders and 1þ�� 2.0 for
limit orders. Challet and Stinchcombe (2001) report a
clustering property: orders tend to have a ‘round’ size
in packages of shares, and clusters are observed around
the 100s and 1000s. At the time of writing, no consensus
has emerged with respect to the proposed models, and it is
plausible that such a distribution varies very widely with
the product and market.

Figure 14 plots the distribution of the volume of market
orders for the four stocks composing our benchmark.
Quantities are normalized by their mean. A power-law

coefficient is estimated by a Hill estimator (see, e.g., Hill

(1975) and de Haan et al. (2000)). We find a power law

with exponent 1þ�� 2.7, which confirms the studies

previously cited. Figure 15 displays the same distribution

for limit orders (of all available limits). We find an

average value of 1þ�� 2.1, consistent with previous

studies. However, we note that the power law is a poorer

fit in the case of limit orders: data normalized by their

mean collapse badly on a single curve, and computed

coefficients vary with the stock.

3.3. Placement of orders

3.3.1. Placement of arriving limit orders. Bouchaud et al.
(2002) observe a broad power-law placement around the

best quotes on French stocks, confirmed by Potters and

Bouchaud (2003) for US stocks. The observed exponents

are quite stable across stocks, but exchange dependent:

1þ�� 1.6 on the Paris Bourse, 1þ�� 2.0 on the

New York Stock Exchange, and 1þ�� 2.5 on the

London Stock Exchange. Mike and Farmer (2008)

propose fitting the empirical distribution with a Student

distribution with 1.3 degree of freedom.
We plot the distribution of the following quantity

computed on our data set, i.e. using only the first five

limits of the order book: Dp¼ b0(t�)� b(t) (respectively

{a(t)� a0(t�)) if a bid (respectively an ask) order arrives

at price b(t) (respectively a(t)), where b0(t�) (respectively

a0(t�)) is the best bid (respectively ask) before the arrival

of this order. The results are plotted in figures 16 (on a

semi-log scale) and 17 (on a linear scale).
These graphs are computed with incomplete data

(five best limits), therefore we do not observe a placement

as broad as in Bouchaud et al. (2002). However, our data

make it clear that fat tails are observed. We also observe

an asymmetry in the empirical distribution: the left side

is less broad than the right side. Since the left side

represents limit orders submitted inside the spread, this is

expected. Thus, the empirical distribution of the place-

ment of arriving limit orders is maximum at zero
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(same best quote). We then ask the question: How is this
translated in terms of the shape of the order book?

3.3.2. Average shape of the order book. Contrary to
what one might expect, it seems that the maximum of the
average offered volume in an order book is located away
from the best quotes (see, e.g., Bouchaud et al. (2002)).
Our data confirm this observation: the average quantity
offered on the five best quotes increases with the level.
This result is presented in figure 18. We also compute the
average price of these levels in order to plot a cross-
sectional graph similar to those presented by Biais et al.
(1995). Our result is presented for stock BNP.PA in
figure 19 and displays the expected shape. The results
for the other stocks are similar. We find that the average
gap between two levels is constant among the five
best bids and asks (less than one tick for FTE.PA, 1.5
ticks for BNPP.PA, 2.0 ticks for SOGN.PA, and 2.5 ticks
for RENA.PA). We also find that the average spread is

roughly twice as big as the average gap (a factor of 1.5
for FTE.PA, 2 for BNPP.PA, 2.2 for SOGN.PA, and 2.4
for RENA.PA).

3.4. Cancelation of orders

Challet and Stinchcombe (2001) show that the distribu-
tion of the average lifetime of limit orders fits a power
law with exponent 1þ�� 2.1 for canceled limit orders
and 1þ�� 1.5 for executed limit orders. Mike and
Farmer (2008) find that, in either case, the exponential
hypothesis (Poisson process) is not satisfied in the market.

We compute the average lifetime of canceled and
executed orders on our data set. Since our data does not
include a unique identifier of a given order, we reconstruct
lifetime orders as follows: each time a cancelation is
detected, we go back through the history of the limit order
submissions and look for a matching order with the same
price and same quantity. If an order is not matched,
we discard the cancelation from our lifetime data. The
results are presented in figures 20 and 21. We observe
a power-law decay with coefficients 1þ�� 1.3–1.6 for
both canceled and executed limit orders, with little
variation among stocks. These results are slightly differ-
ent from those presented in previous studies: similar for
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tion are from the BNP Paribas order book from 1 September
2007 to 31 May 2008.
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executed limit orders, but our data exhibit a lower decay
as for canceled orders. Note that the observed cut-off in
the distribution for lifetimes greater than 20,000 seconds
is due to the fact that we do not take into account
the execution or cancelation of orders submitted on the
previous day.

3.5. Intra-day seasonality

The activity on financial markets is of course not constant
throughout the day. Figure 22 (respectively figure 23)
plots the (normalized) number of market (respectively
limit) orders arriving in a five-minute interval. It is clear
that a U-shape is observed (an ordinary least-square
quadratic fit is plotted): the observed market activity is
larger at the beginning and at the end of the day, and
quieter around mid-day. Such a U-shaped curve is well-
known (see Biais et al. (1995), for example). For our data,
we observe that the number of orders in a five-minute
interval can vary by a factor of 10 throughout the day.

Challet and Stinchcombe (2001) note that the average
number of orders submitted to the market in a period DT

varies widely during the day. They also observe that these
quantities for market orders and limit orders are highly
correlated. Such a type of intra-day variation of global
market activity is a well-known fact, already observed by
Biais et al. (1995), for example.

3.6. Market impact

The statistics we have presented may help one to
understand a phenomenon of primary importance for
any financial market practitioner: the market impact,
i.e. the relationship between the volume traded and the
expected price shift once the order has been executed.
To a first approximation, one can understand that it is
closely linked to many of the items described above: the
volume of market orders submitted, the shape of the
order book (how many pending limit orders are hit by
one large market order), the correlation of trade signs
(one may assume that large orders are split in order to
avoid a large market impact), etc.

Many empirical studies are available. An empirical
study of the price impact of individual transactions on
1000 stocks on the NYSE was conducted by Lillo et al.
(2003). It was found that proper re-scaling makes all the
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curves collapse onto a single concave master curve. This
function increases as a power that is of the order 1/2 for
small volumes, but then increases more slowly for large
volumes. They obtain similar results in each year for the
period 1995 to 1998.

We will not review the large literature on market
impact any further, but rather refer the reader to the
recent exhaustive synthesis of Bouchaud et al. (2009),
where different types of impacts, as well as some
theoretical models, are discussed.

4. Correlations of assets

The word ‘correlation’ is defined as ‘‘a relation existing
between phenomena or things or between mathematical
or statistical variables which tend to vary, be associated,
or occur together in a way not expected on the basis
of chance alone’’.y When we talk about correlations in
stock prices, what we are really interested in are relations
between variables such as stock prices, order signs,
transaction volumes, etc. and, more importantly, how
these relations affect the nature of the statistical distribu-
tions and laws that govern the price time series. This
section deals with several topics concerning the linear
correlation observed in financial data. The first part deals
with the important issue of computing correlations in
high-frequency data. As mentioned earlier, the comput-
erization of financial exchanges has lead to the availabil-
ity of a huge amount of tick-by-tick data, and computing
correlations using these intra-day data raises many issues
concerning the usual estimators. The second and third
parts deal with the use of correlation in order to cluster
assets with potential applications in risk management
problems.

4.1. Estimating covariance on high-frequency data

Let us assume that we observe d time series of prices
or log-prices pi, i¼ 1, . . . , d, at times tm, m¼ 0, . . . ,M.
The usual estimator of the covariance of prices i and j is
the realized covariance estimator, which is computed as

�̂RV
ij ðtÞ ¼

XM
m¼1

ð piðtmÞ � piðtm�1ÞÞð pjðtmÞ � pjðtm�1ÞÞ: ð6Þ

The problem is that high-frequency tick-by-tick data
record changes in prices when they occur, i.e. at random
times. Tick-by-tick data are thus asynchronous, contrary
to daily close prices, for example, that are recorded at the
same time for all the assets on a given exchange. Using
standard estimators without caution could be one cause
for the ‘Epps effect’, first observed by Epps (1979), who
stated that ‘‘[c]orrelations among price changes in
common stocks of companies in one industry are found
to decrease with the length of the interval for which the
price changes are measured’’. This has since largely been
verified by, for example, Bonanno et al. (2001) and

Reno (2003). Hayashi and Yoshida (2005) showed that
the non-synchronicity of tick-by-tick data and the neces-
sary sampling of time series in order to compute the
usual realized covariance estimator partially explain this
phenomenon. We very briefly review here two covariance
estimators that do not need any synchronicity (hence,
sampling) in order to be computed.

4.1.1. The Fourier estimator. The Fourier estimator
was introduced by Malliavin and Mancino (2002). Let
us assume that we have d time series of log-prices that
are observations of Brownian semi-martingales pi:

dpi ¼
XK
j¼1

�ijdWj þ �idt, i ¼ 1, . . . , d: ð7Þ

The coefficients of the covariance matrix are then written
as �ijðtÞ ¼

PK
k¼1 �ikðtÞ�jkðtÞ. Malliavin and Mancino

(2002) show that the Fourier coefficients of �ij(t) are,
with n0 a given integer,

akð�ijÞ ¼ lim
N!1

p
Nþ 1� n0

XN
s¼n0

1

2
½asðdpiÞasþkðdpj Þ

þ bsþkðdpiÞbsðdpj Þ�, ð8Þ

bkð�ijÞ ¼ lim
N!1

p
Nþ 1� n0

XN
s¼n0

1

2
½asðdpiÞbsþkðdpj Þ

� bsðdpiÞasþkðdpj Þ�, ð9Þ

where the Fourier coefficients ak(dpi) and bk(dpi) of dpi
can be directly computed on the time series. Indeed,
re-scaling the time window on [0, 2	] and using integra-
tion by parts, we have

akðdpiÞ ¼
pð2pÞ � pð0Þ

p
�

k

p

Z 2p

0

sinðktÞ piðtÞdt: ð10Þ

This latter integral can be discretized and computed
approximately using the times tim of observations of the
process pi. Therefore, fixing a sufficiently large N, one
can compute an estimator �F

ij of the covariance of the
processes i and j (see Reno (2003) and Iori and Precup
(2007) for examples of empirical studies using this
estimator).

4.1.2. The Hayashi–Yoshida estimator. Hayashi and
Yoshida (2005) proposed a simple estimator in order to
compute covariance/correlation without any need for
synchronicity of time series. As for the Fourier estimator,
it is assumed that the observed process is a Brownian
semi-martingale. The time window of observation is easily
partitioned into d families of intervals �i ¼ ðUi

mÞ,
i¼ 1, . . . , d, where tim ¼ inffUi

mþ1g is the time of the mth
observation of process i. Let DpiðUi

mÞ ¼ piðt
i
mÞ � piðt

i
m�1Þ.

The cumulative covariance estimator, as the authors called

yMerriam–Webster Online Dictionary. Retrieved 14 June 2010 from http://www.merriam-webster.com/dictionary/correlations
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it, or the Hayashi–Yoshida estimator, as it is largely
referred to, is then built as follows:

�̂HY
ij ðtÞ ¼

X
m,n

DpiðUi
mÞDpj ðU

j
nÞ1fUi

m\U
j
n 6¼ ;g

: ð11Þ

There is an extensive literature in Econometrics that
tackles the new challenges posed by high-frequency data.
For readers wishing to go beyond this brief presentation,
we refer to the econometrics reviews of Barndorff-Nielsen
and Shephard (2007) and McAleer and Medeiros (2008),
for example.

4.2. Correlation matrix and random matrix theory

With stock market data being essentially multivariate time
series data, we construct a correlation matrix to study the
spectra and contrast them with the random multivariate
data from a coupled map lattice. It is known from
previous studies that the empirical spectra of correlation
matrices drawn from time series data for most part follow
random matrix theory (RMT; see, e.g., Gopikrishnan
et al. (2001)).

4.2.1. Correlation matrix and eigenvalue density.

Correlation matrix. If there are N assets with price Pi(t)
for asset i at time t, then the logarithmic return of stock i
is ri(t)¼ ln Pi(t)� ln Pi(t� 1), which for a certain consec-
utive sequence of trading days forms the return vector r}i.
In order to characterize the synchronous time evolution
of stocks, the equal time correlation coefficients between
stocks i and j is defined as

�ij ¼
hrirji � hriihrjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½hr2i i � hrii
2�½hr2j i � hrji

2�

q , ð12Þ

where h. . .i indicates a time average over the trading days
included in the return vectors. These correlation coeffi-
cients form an N�N matrix with �1� �ij� 1. If �ij¼ 1,
the stock price changes are completely correlated; if
�ij¼ 0, the stock price changes are uncorrelated; and
if �ij¼�1, then the stock price changes are completely
anti-correlated.

Correlation matrix of the spatio-temporal series from
coupled map lattices. Consider a time series of the form
z0(x, t), where x¼ 1, 2, . . . , n and t¼ 1, 2, . . . , p denote the
discrete space and time, respectively. Here, the time
series at every spatial point is treated as a different
variable. We define the normalized variable as

zðx, tÞ ¼
z0ðx, tÞ � hz0ðxÞi

�ðxÞ
, ð13Þ

where h. . .i represent temporal averages and �(x) the
standard deviation of z0 at position x. Then, the equal-
time cross-correlation matrix that represents the spatial
correlations can be written as

Sx,x0 ¼ hzðx, tÞzðx
0, tÞi, x,x0 ¼ 1, 2, . . . , n: ð14Þ

The correlation matrix is symmetric by construction.
In addition, a large class of processes are translation

invariant and the correlation matrix can also contain that
additional symmetry. We will use this property for our
correlation models in the context of the coupled map
lattice. In time series analysis, the averages h. . .i have to
be replaced by estimates obtained from finite samples. As
usual, we will use the maximum likelihood estimates,
haðtÞi � ð1=pÞ

Pp
t¼1 aðtÞ. These estimates contain statistical

uncertainties that disappear for p!1. Ideally, one
requires p� n in order to obtain reasonably correct
correlation estimates (see Chakraborti et al. (2007) for
details of the parameters).

Eigenvalue density. The interpretation of the spectra of
empirical correlation matrices should be done carefully
if one wants to be able to distinguish between system-
specific signatures and universal features. The former
express themselves in the smoothed level density, whereas
the latter are usually represented by the fluctuations
on top of this smooth curve. In time series analysis, the
matrix elements are not only prone to uncertainty such
as measurement noise on the time series data, but also
statistical fluctuations due to finite-sample effects. When
characterizing time series data in terms of random matrix
theory, one is not interested in these trivial sources of
fluctuations that are present in every data set, but one
would like to identify the significant features that would
be shared, in principle, by an ‘infinite’ amount of data
without measurement noise. The eigenfunctions of the
correlation matrices constructed from such empirical time
series carry the information contained in the original time
series data in a ‘graded’ manner and they also provide
a compact representation for it. Thus, by applying
an approach based on random matrix theory, one tries
to identify non-random components of the correlation
matrix spectra as deviations from random matrix theory
predictions (Gopikrishnan et al. 2001).

We will look at the eigenvalue density that has been
studied in the context of applying random matrix theory
methods to time series correlations. Let N (
) be the
integrated eigenvalue density that gives the number of
eigenvalues less than a given value 
. Then, the eigenvalue
or level density is given by �(
)¼ dN (
)/d
. This can be
obtained by assuming a random correlation matrix and is
found to be in good agreement with the empirical time
series data from stock market fluctuations. From random
matrix theory considerations, the eigenvalue density for
random correlations is given by

�rmtð
Þ ¼
Q

2p


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
max � 
Þð
� 
minÞ

p
, ð15Þ

where Q¼N/T is the ratio of the number of variables to
the length of each time series. Here, 
max and 
min,
representing the maximum and minimum eigenvalues of
the random correlation matrix, respectively, are given by

max,min ¼ 1þ 1=Q	 2

ffiffiffiffiffiffiffiffiffi
1=Q
p

. However, due to the pres-
ence of correlations in the empirical correlation matrix,
this eigenvalue density is often violated for a certain
number of dominant eigenvalues. They often correspond
to system-specific information in the data. Figure 24
shows the eigenvalue density for S&P 500 data and
also for the chaotic data from the coupled map lattice.
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Clearly, both curves are qualitatively different. Thus, the
presence or absence of correlations in the data is manifest
in the spectrum of the corresponding correlation matrices.

4.2.2. Earlier estimates and studies using random matrix

theory. Laloux et al. (1999) showed that results from
random matrix theory were useful for understanding the
statistical structure of the empirical correlation matrices
appearing in the study of price fluctuations. The empirical
determination of a correlation matrix is a difficult task.
If one considers N assets, the correlation matrix contains
N(N� 1)/2 mathematically independent elements that
must be determined from N time series of length T. If T
is not very large compared with N, then, generally, the
determination of the covariances is noisy, and therefore
the empirical correlation matrix is, to a large extent,
random. The smallest eigenvalues of the matrix are the
most sensitive to this ‘noise’. But the eigenvectors
corresponding to these smallest eigenvalues determine
the minimum risk portfolios in Markowitz theory. It is
thus important to distinguish ‘signal’ from ‘noise’ or, in
other words, to extract the eigenvectors and eigenvalues
of the correlation matrix containing real information
(those important for risk control) from those that do not
contain any useful information and are unstable in time.
It is useful to compare the properties of an empirical
correlation matrix with a ‘null hypothesis’—a random
matrix that arises, for example, from a finite time series of
strictly uncorrelated assets. Deviations from the random
matrix case might then suggest the presence of true
information. The main result of their study was the
remarkable agreement between the theoretical prediction

(based on the assumption that the correlation matrix
is random) and empirical data concerning the density
of the eigenvalues (shown in figure 25) associated with
the time series of the different stocks of the S&P 500
(or other stock markets).

Cross-correlations in financial data were also studied
by Plerou et al. (1999, 2002). They analysed cross-
correlations between price fluctuations of different
stocks using the methods of RMT. Using two large
databases, they calculated cross-correlation matrices of
returns constructed from (i) 30-min returns of 1000 US
stocks for the two-year period 1994–95, (ii) 30-min returns
of 881 US stocks for the two-year period 1996–97, and
(iii) one-day returns of 422 US stocks for the 35-year
period 1962–96. They also tested the statistics of the
eigenvalues 
i of cross-correlation matrices against a ‘null
hypothesis’. They found that a majority of the eigenvalues
of the cross-correlation matrices were within the RMT
bounds [
min, 
max], as defined above, for the eigenvalues
of random correlation matrices. They also tested the
eigenvalues of the cross-correlation matrices within the
RMT bounds for universal properties of random matrices
and found good agreement with the results for the
Gaussian orthogonal ensemble (GOE) of random matri-
ces—implying a large degree of randomness in the
measured cross-correlation coefficients. Furthermore,
they found that the distribution of eigenvector compo-
nents for the eigenvectors corresponding to the eigen-
values outside the RMT bounds displayed systematic
deviations from the RMT prediction and that these
‘deviating eigenvectors’ were stable in time. They analysed
the components of the deviating eigenvectors and found
that the largest eigenvalue corresponded to an influence
common to all stocks. Their analysis of the remaining
deviating eigenvectors showed distinct groups, the iden-
tities of which corresponded to conventionally identified
business sectors.
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Figure 24. (Upper panel) The spectral density for multivariate
spatio-temporal time series drawn from coupled map lattices.
(Lower panel) The eigenvalue density for the return time series
of the S&P 500 stock market data (8938 time steps). Reproduced
from Chakraborti et al. (2007).
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Figure 25. Eigenvalue spectrum of the correlation matrices.
Adapted from Laloux et al. (1999).
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4.3. Analyses of correlations and economic taxonomy

4.3.1. Models and theoretical studies of financial

correlations. Podobnik et al. (2000) studied how the
presence of correlations in physical variables contributes

to the form of the probability distributions. They inves-

tigated a process with correlations in the variance

generated by a Gaussian or a truncated Levy distribution.

For both Gaussian and truncated Levy distributions, they

found that, due to the correlations in the variance, the

process ‘dynamically’ generated power-law tails in the

distributions, the exponents of which could be controlled

through the way the correlations in the variance were

introduced. For a truncated Levy distribution, the pro-

cess could extend a truncated distribution beyond the

truncation cut-off, leading to a crossover between a

Levy stable power law and their ‘dynamically generated’

power law. It was also shown that the process could

explain the crossover behavior observed in the S&P 500

stock index.
Noh (2000) proposed a model for correlations in stock

markets in which the markets were composed of several

groups, within which the stock price fluctuations were

correlated. The spectral properties of empirical correla-

tion matrices (Laloux et al. 1999, Plerou et al. 1999) were

studied in relation to this model and the connection

between the spectral properties of the empirical correla-

tion matrix and the structure of correlations in stock

markets was established.
The correlation structure of extreme stock returns

were studied by Cizeau et al. (2001). It was commonly

believed that the correlations between stock returns

increased in high-volatility periods. They investigated

how much of these correlations could be explained

within a simple non-Gaussian one-factor description

with time-independent correlations. Using surrogate

data with the true market return as the dominant

factor, it was shown that most of these correlations,

measured using a variety of different indicators, could be

accounted for. In particular, their one-factor model

could explain the level and asymmetry of empirical

exceeding correlations. However, more subtle effects

required an extension of the one-factor model, where

the variance and skewness of the residuals also depended

on the market return.
Burda et al. (2001) provided a statistical analysis of

three S&P 500 covariances with evidence for raw tail

distributions. They studied the stability of these tails with

respect to reshuffling for the S&P 500 data and showed

that the covariance with the strongest tails was robust,

with a spectral density in remarkable agreement with

random Levy matrix theory. They also studied the inverse

participation ratio for the three covariances. The strong

localization observed at both ends of the spectral density

was analogous to the localization exhibited in the random

Levy matrix ensemble. They showed that the stocks with

the largest scattering were the least susceptible to corre-

lations and were the likely candidates for the localized

states.

4.3.2. Analyses using graph theory and economic

taxonomy. Mantegna (1999) introduced a method for
finding a hierarchical arrangement of stocks traded in
financial markets by studying the clustering of companies
using correlations of asset returns. With an appropriate
metric—based on the earlier explained correlation matrix
coefficients �ij between all pairs of stocks i and j of the
portfolio, computed using equation (12) by considering
the synchronous time evolution of the difference of the
logarithm of the daily stock price—a fully connected
graph was defined in which the nodes are companies,
or stocks, and the ‘distances’ between them are obtained
from the corresponding correlation coefficients. The
minimum spanning tree (MST) was generated from the
graph by selecting the most important correlations and
was used to identify clusters of companies. The hierar-
chical tree of the sub-dominant ultrametric space associ-
ated with the graph provided information useful for
investigating the number and nature of the common
economic factors affecting the time evolution of the
logarithm of price of well-defined groups of stocks.
Several other attempts have been made to obtain cluster-
ing from a huge correlation matrix.

Bonanno et al. (2001) studied the high-frequency cross-
correlation existing between pairs of stocks traded in a
financial market in a set of 100 stocks traded in US equity
markets. A hierarchical organization of the investigated
stocks was obtained by determining the metric distance
between stocks and by investigating the properties of the
sub-dominant ultrametric associated with it. A clear
modification of the hierarchical organization of the set
of stocks investigated was detected when the time horizon
used to determine stock returns was changed. The
hierarchical location of stocks of the energy sector
was investigated as a function of the time horizon. The
hierarchical structure explored by the minimum spanning
tree also seemed to give information about the influential
power of the companies.

It also turned out that the hierarchical structure of the
financial market could be identified in accordance with
the results obtained by an independent clustering method,
based on Potts super-paramagnetic transitions as studied
by Kullmann et al. (2000), where the spins correspond
to companies and the interactions are functions of the
correlation coefficients determined from the time depen-
dence of the companies’ individual stock prices. The
method is a generalization of the clustering algorithm
of Blatt et al. (1996) to the case of anti-ferromagnetic
interactions corresponding to anti-correlations. For the
Dow Jones Industrial Average, no anti-correlations were
observed in the investigated time period and the previous
results obtained by different tools were well reproduced.
For the S&P 500, where anti-correlations occur, repulsion
between stocks modified the cluster structure of the
N¼ 443 companies studied, as shown in figure 26.
The efficiency of the method is represented by the fact
that the figure matches well with the corresponding result
obtained by the minimal spanning tree method, including
the specific composition of the clusters. For example,
at the lowest level of the hierarchy (highest temperature
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in the super-paramagnetic phase) the different industrial
branches can clearly be identified: oil, electricity, gold
mining companies, etc. build separate clusters.

The network of influence was investigated by means of
the time-dependent correlation method of Kullmann et al.
(2000). They studied the correlations as a function of the
time shift between pairs of stock return time series of tick-
by-tick data of the NYSE. They investigated whether
or not any ‘pulling effect’ between stocks existed,
i.e. whether or not, at any given time, the return value
of one stock influenced that of another stock at a different
time. They found that, in general, two types of mecha-
nisms generated significant correlation between any
two given stocks. One was some kind of external effect
(say, economic or political news) that influenced both
stock prices simultaneously, and the change for both
prices appeared at the same time, such that the maximum
of the correlation was at zero time shift. The second effect
was that one of the companies had an influence on the
other company, indicating that one company’s operation
depended on the other, so that the price change of the
influenced stock appeared later because it required some
time to react to the price change of the first stock,
displaying a ‘pulling effect’. A weak but significant effect
with the real data set was found, showing that, in many
cases, the maximum correlation was at non-zero time
shift, indicating the direction of influence between the
companies, and the characteristic time was of the order of
a few minutes, which was compatible with the efficient
market hypothesis. In the pulling effect, they found that,
in general, more important companies (which were traded
more) pulled the relatively smaller companies.

The time-dependent properties of the minimum span-
ning tree (introduced by Mantegna), called a ‘dynamic
asset tree’, were studied by Onnela et al. (2003b).
The nodes of the tree were identified with stocks and
the distance between them was a unique function of the
corresponding element of the correlation matrix. Using
the concept of a central vertex, chosen as the most
strongly connected node of the tree, the mean occupation
layer was defined, which was an important characteristic
of the tree. During crashes, the strong global correlation

in the market manifested itself by a low value of the mean
occupation layer. The tree seemed to have a scale-free
structure, where the scaling exponent of the degree
distribution was different for ‘business as usual’ and
‘crash’ periods. The basic structure of the tree topology
was very robust with respect to time.

Financial correlation matrix and constructing asset trees.
Two different sets of financial data were used. The first set
was from the Standard & Poor’s 500 index (S&P 500) of
the New York Stock Exchange (NYSE) from 2 July 1962
to 31 December 1997 and contained 8939 daily closing
values. The second set recorded the split-adjusted daily
closure prices for a total of N¼ 477 stocks traded on the
New York Stock Exchange (NYSE) over the period of
20 years from 2 January 1980 to 31 December 1999. This
amounted to a total of 5056 prices per stock, indexed
by time variable �¼ 1, 2, . . . , 5056. For analysis and
smoothing purposes, the data were divided time-wise
into M windows t¼ 1, 2, . . . ,M of width T, where T
corresponds to the number of daily returns included in the
window. Note that several consecutive windows overlap
each other, the extent of which is dictated by the window
step length parameter �T, which describes the displace-
ment of the window and is also measured in trading days.
The choice of window width is a trade-off between too
noisy and too smoothed data for small and large window
widths, respectively. The results presented here were
calculated from monthly stepped four-year windows,
i.e. �T¼ 250/12� 21 days and T¼ 1000 days. A large
scale of different values for both parameters were
explored, and the cited values were found optimal
(Onnela 2000). With these choices, the overall number
of windows is M¼ 195.

The above definition of a correlation matrix given by
equation (12) is used. These correlation coefficients form
an N�N correlation matrix Ct, which serves as the basis
for the trees discussed below. An asset tree is then
constructed according to the methodology of Mantegna
(1999). For the purpose of constructing asset trees,
a distance is defined between a pair of stocks. This
distance is associated with the edge connecting the stocks
and it is expected to reflect the level at which the stocks

180
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0.014
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Figure 26. The hierarchical structure of clusters of S&P 500 companies in the ferromagnetic case. The number of elements of the
cluster are indicated in boxes. The clusters consisting of single companies are not indicated. Adapted from Kullmann et al. (2000).
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are correlated. A simple nonlinear transformation

dtij ¼ ½2ð1� �
t
ijÞ�

1=2 is used to obtain distances with the

property 2
 dij
 0, forming an N�N symmetric distance

matrix D
t. Therefore, if dij¼ 0, the stock price changes

are completely correlated, and if dij¼ 2, the stock price

changes are completely anti-uncorrelated. The trees for

different time windows are not independent of each

other, but form a series through time. Consequently, this
multitude of trees is interpreted as a sequence of evolu-

tionary steps of a single dynamic asset tree. An additional

hypothesis is required concerning the topology of the

metric space: the ultrametricity hypothesis. In practice,

this leads to determining the minimum spanning tree
(MST) of the distances, denoted Tt. The spanning tree is a

simply connected acyclic (no cycles) graph that connects

all N nodes (stocks) with N� 1 edges such that the sum

of all edge weights,
P

dt
ij
2Tt d t

ij, is minimum. We refer to

the minimum spanning tree at time t by the notation
Tt
¼ (V, Et), where V is a set of vertices and Et is the

corresponding set of unordered pairs of vertices, or edges.

Since the spanning tree criterion requires all N nodes

always to be present, the set of vertices V is time

independent, which is why the time superscript has been
dropped from the notation. The set of edges Et, however,

does depend on time, as it is expected that edge lengths in

the matrix Dt evolve over time, and thus different edges

are selected in the tree at different times.
Market characterization. We plot the distribution of (i)

distance elements dtij contained in the distance matrix Dt

(figure 27), and (ii) distance elements dij contained in the

asset (minimum spanning) tree Tt (figure 28). In both

plots, but most prominently in figure 27, there appears to

be a discontinuity in the distribution between roughly
1986 and 1990. The part that has been cut out, pushed to

the left and made flatter is a manifestation of Black

Monday (19 October 1987), and its length along the time

axis is related to the choice of window width T (Onnela

et al. 2003a, b).
Also, note that in the distribution of tree edges in

figure 28, most edges included in the tree seem to come

from the area to the right of the value 1.1 in figure 27, and

the largest distance element is dmax¼ 1.3549.

Tree occupation and central vertex. Let us focus on
characterizing the spread of nodes on the tree by
introducing the quantity the mean occupation layer,

l ðt, vcÞ ¼
1

N

XN
i¼1

levðvtiÞ, ð16Þ

where lev(vi) denotes the level of vertex vi. The levels, not
to be confused with the distances dij between nodes, are
measured in natural numbers in relation to the central
vertex vc, the level of which is taken to be zero. Here the

mean occupation layer indicates the layer on which the
mass of the tree, on average, is conceived to be located.
The central vertex is considered to be the parent of all
other nodes in the tree, and is also known as the root of
the tree. It is used as the reference point in the tree, against

which the locations of all other nodes are relative. Thus
all other nodes in the tree are children of the central
vertex. Although there is an arbitrariness in the choice of
the central vertex, it is proposed that the vertex is central,
in the sense that any change in its price strongly affects
the course of events in the market as a whole. Three

alternative definitions for the central vertex have been
proposed in studies, all yielding similar and, in most
cases, identical outcomes. The idea is to find the node
that is most strongly connected to its nearest neighbors.
For example, according to one definition, the central

node is the one with the highest vertex degree, i.e. the
number of edges that are incident with (neighbors of) the
vertex. Also, one may have either (i) a static (fixed at all
times) or (ii) a dynamic (updated at each time step) central
vertex, but again the results do not seem to vary

significantly. Studies of the variation of the topological
properties and nature of the trees with time have been
performed.

Economic taxonomy. Mantegna’s idea of linking stocks
in an ultrametric space was motivated a posteriori by the
property of such a space to provide a meaningful
economic taxonomy (Onnela et al. 2002). Mantegna
examined the meaningfulness of the taxonomy by com-

paring the grouping of stocks in the tree with a third-
party reference grouping of stocks, e.g. by their industry

Figure 27. Distribution of all N(N� 1)/2 distance elements dij
contained in the distance matrix Dt as a function of time.
Reproduced from Onnela et al. (2003c).

Figure 28. Distribution of the (N� 1) distance elements dij
contained in the asset (minimum spanning) tree Tt as a function
of time. Reproduced from Onnela et al. (2003c).
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classifications (Mantegna 1999). In this case, the reference
was provided by Forbes (www.forbes.com), which uses its
own classification system, assigning each stock a sector
(higher level) and industry (lower level) category. In order
to visualize the grouping of stocks, a sample asset tree was
constructed for a smaller dataset (shown in figure 29),
which consists of 116 S&P 500 stocks, extending from the
beginning of 1982 to the end of 2000, resulting in a total
of 4787 price quotes per stock (Onnela et al. 2003b).
The window width was set at T¼ 1000, and the shown
sample tree is located time-wise at t¼ t�, corresponding
to 1.1.1998. The stocks in this dataset fall into 12
sectors, which are Basic Materials, Capital Goods,
Conglomerates, Consumer/Cyclical, Consumer/Non-
Cyclical, Energy, Financial, Healthcare, Services,
Technology, Transportation and Utilities. The sectors
are indicated in the tree (see figure 29) by different
markers, while the industry classifications are omitted for
reasons of clarity. The term sector is used exclusively to
refer to the given third-party classification system of
stocks. The term branch refers to a subset of the tree, to
all the nodes that share the specified common parent.
In addition to the parent, it is required to have a reference
point to indicate the generational direction (i.e. who is
who’s parent) in order for a branch to be well-defined.
Without this reference there is absolutely no way to
determine where one branch ends and another begins.
In this case, the reference is the central node. There are
some branches in the tree in which most of the stocks
belong to just one sector, indicating that the branch
is fairly homogeneous with respect to business sectors.
This finding is in accordance with that of Mantegna
(1999), although there are branches that are fairly
heterogeneous, such as that extending directly downwards
from the central vertex (see figure 29).

5. Partial conclusion

This first part of our review has reported the statistical
properties of financial data (time series of prices, order
book structure, asset correlations). Some of these prop-
erties, such as fat tails of returns and volatility clustering,
are widely known and acknowledged as ‘financial stylized
facts’. They are now widely cited in order to compare
financial models, and reveal the insufficiency of many
classical stochastic models of financial assets. Some other
properties are newer findings that were obtained by
studying high-frequency data of the whole order book
structure. The volume of orders, interval time between
orders, intra-day seasonality, etc. are essential phenom-
ena to be understood when working in financial model-
ing. The important role of studies of correlations has been
emphasized. Besides the technical challenges raised by
high-frequency data, many studies based, for example,
on random matrix theory or clustering algorithms can
help to obtain a better grasp of certain economic
problems. It is our belief that future modeling in finance
will have to be partly based on Econophysics studies of
agent-based models in order to incorporate these ‘stylized
facts’ in a comprehensive way. Agent-based reasoning for
order book models, wealth exchange models and game
theoretic models will be reviewed in the following part of
the review (see companion paper).
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