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ABSTRACT

This paper investigates the use of musical priors for

sparse expansion of audio signals of music on overcom-

plete dictionaries taken from the union of two orthonor-

mal bases. More specifically, chord information is used

to build structured model that take into account dependen-

cies between coefficients of the decomposition. Evaluation

on various music signals shows that our approach provides

results whose quality measured by the signal-to-noise ratio

corresponds to state-of-the-art approaches, and shows that

our model is relevant to represent audio signals of Western

tonal music and opens new perspectives.

1. INTRODUCTION

We propose in this paper a new approach for structured

sparse decomposition of a music signal in an overcomplete

time-frequency dictionary. Starting from existing methods

that are based on physical signal properties, we propose to

incorporate musical priors in order to built signal represen-

tations that are more suitable to music. For this, we take

advantage of the recent works that have been done on chord

estimation in the context of music content processing.

The problem of representing an audio signal using a

time-frequency dictionary has been given a lot of atten-

tion these last few years. The specificity of music audio

signals is that, very often, several types of components are

superimposed, as for instance tonal components (the par-

tials of the notes) and transients (the attacks of the notes).

These various components may have significantly differ-

ent behaviors. For instance fast varying transient require

short analysis window whereas low varying tonals require

long windows. Thus, they cannot be represented within the

same basis. This is why hybrid models allowing a simul-

taneous representation of different components have been

proposed [4, 12, 17, 22].
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Among the various existing transforms, the modified

discrete cosine transform (MDCT) [15] is a standard choice

for the bases [6, 14]. Following these approaches, we con-

sider in this work a dictionary built as the union of two

MDCT bases with different time-frequency resolutions. The

narrow band basis - with long time resolution - is used to

estimate the tonal parts of the signal, and the wide band

basis - with short time resolution - is used to estimate the

transient parts. Such a dictionary is chosen overcomplete,

and thus the expansion of the signal with respect to the

dictionary is not unique. Sparsity may be used as a selec-

tion criterion for finding the expansion coefficients, in the

sense that only a few coefficients of the decomposition of

the signal on the bases are significantly nonzero. The sig-

nal can thus be well approximated by a limited number of

coefficients. This problem is often referred to as sparse

regression.

A common approach to find a sparse expansion of sig-

nals in overcomplete dictionaries consist of minimizing the

ℓ1 norm of the expansion, and is known as basis pursuit [1],

or LASSO [21]. Various methods have been also proposed:

they include variational approaches [13], probabilistic ap-

proaches [14], greedy methods, such as matching pursuit

algorithms [2,16], or Bayesian formulations as for instance

EM-based algorithms [9]. In the framework of Bayesian

variable selection, MCMC (Markov chain Monte Carlo)

type approaches that consider a dictionary constructed as

the union of two orthonormal bases have been proposed

[5, 7]. One of the main advantages of MCMC techniques

is their robustness because they scan the whole of the pos-

terior distribution and thus are unlikely to fall into local

minima. However, this is done at the expanse of high com-

putational cost.

In order to fully exploit the dual nature of audio music

signals mentioned above, some approaches consider de-

pendencies between significant coefficients. In the time-

frequency plane, partials of the note will generate hori-

zontal lines localized in frequency, whereas the attacks of

the notes and the percussive sounds will generate vertical

lines localized in time. Ideally, this structure should be re-

flected in the signal decomposition. This is why we are in-

terested in finding a signal approximation that is not only

sparse, but also structured. Previous approaches that use

unstructured priors, such as Bernoulli models have shown



that they generate isolated coefficients with high ampli-

tude in both bases [7, 14]. These components do not have

any musical meaning and are usually perceived as “musi-

cal artifacts” or “musical noise” in the reconstructed sig-

nal. Considering dependencies between atoms coefficients

and using structured priors allows reducing the number of

such undesirable components. Various approaches have

been proposed for introducing dependencies between co-

efficients in the time-frequency domain. Structures can

be modeled directly in the coefficients themselves, such as

in [13]. However, dependencies are often introduced in the

time-frequency indices, rather than directly in the coeffi-

cients themselves. Among existing approaches, frequency

persistency properties of the transient layer can be modeled

using structured Bernouilli models [14]; persistency along

the frequency axis is favored using Markov models [17];

in [8], structural constraints on the coefficients that rely

on physical properties of the signal are imposed for both

layers, using two types of Markov chains. It results in a

“horizontal structure” for the tonal layer and a “vertical

structure” for the transient layer. Up to now, additional

structure constraints that have been added rely on physi-

cal properties of the signal. The originality of our work is

that we propose to incorporate priors that are based on mu-

sical information. Relying on the model presented in [8]

within a Bayesian framework, we build a structured model

for sparse signal decomposition that incorporates musical

priors for tonal layer modeling. Our model is particularly

well adapted to the tonal structure of signals and fits the

intrinsic nature of Western tonal music.

Sparse representation of signals have recently proved to

be useful for a wide range of applications in signal process-

ing, such as denoising [6], coding and compression [3, 20]

or source separation [7]. Here, we focus on the task of

denoising an excerpt of musical audio. Our approach pro-

vides results whose quality in term of signal-to-noise ratio

(SNR) corresponds to state-of-the-art approaches, while

better reflecting the nature of music audio signal.

The structure of the paper is as follows. First, in Section

2, we present our model for sparse signal decomposition

on hybrid dictionaries that incorporates musical priors; our

main contribution is described in part 2.3. We briefly ad-

dress the problem of parameters estimation in Section 3. In

Section 4, we present and discuss the results of our model.

Conclusions and perspectives for future works are given in

Section 5.

2. SIGNAL MODEL

This section introduces first the mathematical model used

to represent the audio signal, and then defines the priors

chosen in a Bayesian context. Particularly, the new musical

prior based on the chromagram is exposed in section 2.3.

2.1 Model

In this part, we describe our model for signal decompo-

sition with sparse constraint on a hybrid dictionary of ele-

mentary waveforms or atoms. The dictionary is constructed

as the union of two orthonormal bases with different time-

frequency resolution that account respectively for the tonal

and the transient parts of the signal. We rely on the model

proposed in [8] and we consider a tree-layer signal model

of the form: signal = tonals + transients + residual.

Let V = {vn, n = 1, . . . , N} and U = {un, n =
1, . . . , N} be two MDCT bases of R

N with respectively

long frame ℓton to achieve good frequency resolution for

tonals and short frame ℓtran to achieve good time resolu-

tion for transients. The MDCT is a bijective linear trans-

form and we note nton = N
ℓton

and ntran = N
ℓtran

the

number of frames for each basis (see Fig. 2). Here, n is

a time-frequency index and will be denoted in the follow-

ing n = (q, ν) ∈ [1, ℓton] × [1, nton] or n = (q, ν) ∈
[1, ℓtran] × [1, ntran].

We denote D = V ∪U the dictionary made as the union

of these two bases. D is overcomplete in R
N , and any

x ∈ R
N admits infinitely many expansions in the form:

x =
X

n∈I

αnvn +
X

m∈I

βmum + r (1)

where I = {1, . . . , N}, αn and βn are the expansion coef-

ficients and r represents the noise term.

We are interested in sparse signals, i.e. signals that may

be written as:

x =
X

λ∈Λ

αλvλ +
X

δ∈∆

βδuδ + r (2)

where Λ and ∆ are small subsets of the index set I =
{1, . . . , N} that account for the significant coefficients. In

what follows, they will be referred to as significance maps.

We introduce two indicator random variables γton,n and

γtran,m corresponding to the significance maps Λ and ∆:

γton,n =



1 if n ∈ Λ
0 otherwise

γtran,m =



1 if m ∈ ∆
0 otherwise

(3)

We can therefore rewrite Eq. (2) as:

x =
X

n∈I

γton,nαnvn +
X

m∈I

γtran,mβmum + r (4)

2.2 Coefficient Priors

We assume that, conditional upon the significance maps Λ
and ∆ , the coefficients αn and βn are independent zero-

mean normal random variables:

p(αn|γton,n, σton,n) = (1 − γton,n)δ0(αn) + (5)

γton,nN (αn|0, σ2
ton,n)

p(βn|γtran,m, σtran,m) = (1 − γtran,m)δ0(βm) +

γtran,mN (βm|0, σ2
tran,m)

where δ0 is the Dirac delta function and the variances σton,n

and σtran,m are given a conjugate inverted-Gamma prior.

Sparsity is enforced when γn = 0 (resp. γm = 0). In this

case, the coefficients αn (resp. βn) are set to 0.



2.3 Indicator Variable Priors

The significance maps Λ and ∆ are given structured priors.

The one corresponding to the tonal basis encodes musical

information while the one corresponding to the transient

basis is based on physical properties of the signal. Both of

them are “vertical” structures.

2.3.1 Model for Tonals

For the significance map corresponding to the tonals, we

propose to model dependencies between indicator variables

using musical information. Let us assume that we know

the score corresponding to the musical excerpt and that,

for each frame q ∈ {1, . . . , nton}, we know which notes

the signal is composed of.

Here, we want to work directly on audio. However, the

symbolic transcription (the score) of a piece of music is

not always available, especially in music such as jazz mu-

sic where there is a large part devoted to improvisation. In

addition, algorithms that extract a transcription from an au-

dio signal, such as multi-f0 estimation algorithms [24], are

still limited and costly. However, numbers of recent works

have shown that it is possible to accurately extract robust

mid-level representation of the music, such as the chord

progression [18].

We propose to give musical prior to the indicator vari-

ables using musical information obtained from the chord

progression. The output of a chord estimation algorithm

consists in a progression of chords chosen among a given

chord lexicon. Each chord may be characterized by the

semitone pitch classes or chroma that corresponds to the

notes it is composed of. Since their introduction in 1999,

Pitch Class Profile [10] or chroma-based representations

[23] have become a common feature for estimating chords.

They are traditionally 12-dimensional vectors, with each

dimension corresponding to the intensity associated with

one of the 12 semitone pitch classes (chroma) of the West-

ern tonal music scale, regardless of octave. The succession

of chroma vectors over time is known as chromagram.

In general, the chord lexicon does not distinguish be-

tween any possible combination of simultaneous notes but

is typically reduced to a set of chords of 3 or 4 notes. The

number of notes composing the chords will be denoted by

Nc in the following. Here, we limit our chord lexicon to

the 24 major and minor triads (Nc = 3). The method we

propose could be extended to larger dictionaries.

The chord progression does not provide an exact tran-

scription of the music. For instance, passing notes are

in general ignored, missing notes in the harmony may be

added. Moreover, the chords are estimated regardless of

octave. However, experiments show that the provided mu-

sical information is sufficient enough to build musically

meaningful priors.

Given a fixed frame index q, let {pc
k}k=1,...,Nc

denote

the semitone pitch-classes (chroma) corresponding to the

estimated chord cq. Let also {pMDCT
ν }ν=1,...,ℓton

denote

the semitone pitch classes corresponding to each MDCT

bin.

Assuming a perfect tuning of A = 440Hz, a MDCT bin

of frequency fν is converted to a chroma pMDCT
ν by the

following equation:

pMDCT
ν = 12 log2

fν

440
+ 69 (mod 12) 1 (6)

The indicator variables {γton,(q,ν)}ν=1,...,ℓton
are given

the following membership probabilities:

PΛ{γton,(q,ν) = 1} (7)

=

{

pton if ∃k ∈ [1, Nc] | p
MDCT
ν = pc

k

1 − pton otherwise

where 0 ≤ pton ≤ 1. The significance maps correspond-

ing to the tonal layer should reflect the tonal content of the

audio signal. In practice, the value pton will be close to

1 (in our experiments, pton = 0.9) so that atoms corre-

sponding to the notes that are played are given high prior.

The significant map for the tonal layer corresponding to

the Glockenspiel audio signals of our test-set is illustrated

in Fig. 1. A set of atoms is selected at each frame accord-

ing note of the (chord) transcription, regardless of octave.

For instance all atoms {B1, B2, . . .} corresponding to the

semitone B are selected when the first B note of the Glock-

enspiel is sounded. The significance maps are given struc-

tures of “tubes” that have a musical meaning. Note that we

provide here a “vertical structure” for tonals.

Figure 1. Structured significance map for the Glockenspiel

using musical information. Left: only notes composing the

chord are considered. Right: higher harmonics are consid-

ered. The transcription is indicated in the bottom.

Two additional components may be added to improve

the model.

• First, the instruments may have been tuned according to

a reference pitch different from the standard A4 = 440Hz.

In this case it is necessary to estimate the tuning of the

track and Eq. (8) becomes:

pMDCT
ν = 12 log2

fν

Aest

+ 69 (mod 12) (8)

where Aest denotes the estimated tuning, here using the

method proposed in [19].

1 a (mod b) denotes the mathematical operator modulo, the remainder
when a is divided by b



• Secondly, higher harmonics may be considered in the

model. Each note produces a set of harmonics that results

in a mixture of non-zero values in the chroma vector corre-

sponding to the chord. For instance a C note will produce

the set of harmonics {C−C−G−C−E−G−. . .}. They

can be considered in the significance maps, as illustrated in

the right part of Fig. 1. Here we take into account the first

6 harmonics of the notes 2 .

2.3.2 Model for Transients

Following [8], persistency in frequency of time-frequency

coefficients corresponding to transient layer is modeled giv-

ing a vertical prior structure to the indicator variables in

the second basis. Given a frame index q, the sequence

{γtran,(q,ν)}ν=1,...,ℓtran
is modeled by a two-state first-

order Markov chain with probabilities Ptran,00 and Ptran,11,

assumed equal for all frames, and with learned initial prob-

ability πtran. The model is illustrated in Fig. 2.

Figure 2. Vertical model for transients. Adapted from [8].

2.4 Residual

The residual signal r is modeled as a Gaussian white noise,

with variance σ2, which is given an inverted-Gamma con-

jugate prior.

3. MCMC INFERENCE

Following [8], the posterior distribution of the set of pa-

rameters and hyperparameters of the model, denoted by θ,

is sampled from using a Gibbs sampler [11], which is a

standard Markov Chain Monte Carlo (MCMC) technique

that simply requires to iteratively sample from the poste-

rior distributions of each parameter upon data x and the

remaining parameters.

The Minimum Mean Square Estimates (MMSE) of the

parameters θ can then be computed from the Gibbs sam-

ples {θ(1), θ(2), . . . , θ(K)} of the posterior distribution p(θ|x):

θ̂MMSE =
∫

θp(θ|x)dθ (9)

≈ 1
K

∑K

k=1 θ(k) (10)

2 We limit the number of considered harmonics to 6 because many of
the higher harmonics, which are theoretically whole number multiples of
the fundamental frequency, are far from any note of the Western chro-
matic scale. This is especially true for the 7th and the 11th harmonics.

The MAP estimate can be computed by thresholding the

values of the MMSE. In [8], all the values of the MMSE

lower that 0.5 are threshold to 0 and all the values greater

than 0.5 are threshold to 1.

We do not detail here the expression for the update steps

of the parameters, details can be found in [8]. Time-domain

source estimates are reconstructed by inverse transform of

the estimated coefficients (inverse MDCT in our case). The

denoised estimation is constructed by x̂ = αV + βU .

4. RESULTS AND DISCUSSION

The aim of this section is to analyze the performances of

the proposed approach for the task of audio denoising. For

the sake of simplicity, we first focus in details on a mono-

phonic signal, the Glockenspiel. We also provide addi-

tional numerical results and examples on short extracts of

polyphonic music. The impact of the various parameters

(tuning, harmonics, and priors settings) is also studied.

4.1 Experimental Setup

In this article, we present results assuming that the tran-

scription is known (notes for the monophonic signal, chords

for the polyphonic signals). The 5 musical excerpts of

various music styles are described in Table 1. Our ap-

proach that incorporates musical priors for modeling the

tonal layer is compared with the one presented in [8].

Table 1. Sound excerpts used for evaluation of the model.

SR: sampling rate.
Name SR (Hz) Duration

Glockenspiel 44100 2s

Misery (Beatles) 11025 11s

Love Me Do (Beatles) 11025 5s

Beethoven String quartet Op.127 - 1 11025 11s

Mozart Piano Sonata KV310 - 1 11025 11s

Parameters: The length of the two MDCT bases are

set to 1024 samples for the tonal layer and 128 samples

for the transient layer, at a sampling rate of 44100Hz, and

respectively to 256 and 32 samples at a sampling rate of

11025Hz 3 . The MMSE and MAP estimates of the param-

eters are computed by averaging the last 100 samples of

the Gibbs sampler, run for 500 iterations.

Evaluation Measures: Artificial noisy signals are cre-

ated by adding Gaussian white noise to the clean signal

with various input SNRs. The case without additional noise

WN (without noise) corresponds to a separation into two

layers transient + tonal. Partials are expected to be recov-

ered in the tonal layer while attacks or percussive sounds

will be recovered in the transient layer. The results in terms

of output SNR are summarized in Table 2 and provide an

objective evaluation measure. However, although widely

used for assessing algorithm performances, the SNR is not

a completely relevant measure of distortion for audio sig-

nals. Subjective evaluation by listening to the signals is

also required. The audio excerpts are available at: http://

3 As underlined in [8,14], better results are obtained using a very short
window length for the transients (≈ 3ms). The two window lengths must
be significantly different enough to discriminate between tonals and tran-
sients



webpages.lss.supelec.fr/perso/kowalski/ismir11/ismir11.

html.

Table 2. Resulting values of output SNRs (dB) for various

input SNRs and without additional Gaussian noise (WN ).
Proposed approach [8] approach

SNR WN 0 10 20 WN 0 10 20

Glockenspiel 71.2 14.1 21.3 28.5 70.2 15.7 22.5 29.2

Misery 42.3 7.0 13.0 20.9 44.4 7.3 13.3 21.1

Love Me Do 28.6 6.8 12.5 19.3 29.6 6.9 12.7 19.4

Beethoven 54.5 8.5 13.6 21.6 54.6 8.9 14.0 21.9

Mozart 62.6 9.3 15.4 23.4 60.9 9.8 15.9 23.9

Computational Performances: The algorithms are im-

plemented in MATLAB and performed on a MacBook Pro

Intel Core 2 Duo clocked at 2.4GHz with 2GB RAM. The

computation time of the proposed method is similar to the

one obtained with [8], ≈ 447 s for processing the Glock-

enspiel signal. The use of MCMC schemes generates high

computational costs.

4.2 Results and Discussion

Concerning the quality of denoising, the results provided in

Table 2 show that our model provides results that are com-

parable to state-of-the-art algorithms in terms of SNR: the

difference between the presented method and the [8] are in

general lower than 1 dB. However, noticeable differences

may be perceived while listening to the sound files.

The main interest of the proposed model lies in the mod-

eling of the tonal layer. Fig. 3 shows significance maps of

the selected atoms (MAP estimates) for the Glockenspiel

signal, in the WN case. As can be seen, the use of musi-

cal priors yields to a structure that better reflects the music

content of the signal compared to the approach that use

physical priors. The resolution of the tonal significance

map is sharper. The partials of the notes clearly appear

as thin horizontal lines and the beginning of the notes is

very clear. One can also see that our method using musical

priors provides sparser estimates of the significance map.

It should be noticed that, especially under low-input

SNRs conditions, one may perceive some artifacts in the

reconstructed signal with the method we propose. They are

probably due to the fact that some high frequencies are cap-

tured by the transient basis rather than by the tonal basis.

Future works should concentrate on modeling structured

priors for the transient layer that are more adapted to the

one proposed here for the tonal layer. However, in spite of

these artifacts, one can find by listening to the signals that

the sound of the reconstructed signals relying on musical

priors is often “richer” than the one obtained with the ap-

proach used in [8]. Fig. 4 shows the significance maps of

the selected atoms (MMSE estimates) for the Mozart sig-

nal, in the case SNRin = 10dB. Again, the partials of the

notes are better discriminated using musical priors, espe-

cially in low frequencies.

Indicator Variable Prior Set-up: The value pton in

Eq. (7) has an effect on the above-mentioned artifacts pro-

duced by our model in low-input SNRs conditions. For

Figure 3. Significance maps of the tonal and transient

bases (MAP estimates) for the Glockenspiel excerpt, case

WN . Top: approach [8]. Bottom: proposed approach.

instance, setting pton to 0.99 instead of 0.9 in the case

of the Glockenspiel signal allows reducing the artifacts for

SNRin = 10dB. However, our experiments show that in-

dicator variables corresponding to atoms that do not be-

long to the chord must not be set to 0. Setting pton to 1
results in reconstructed signals of very “poor” sound, as it

can be assessed by listening tests. Output SNRs are also

degraded. Setting pton < 1 allows taking into account im-

perfections of the chromagram given as input of the hybrid

model (temporal imperfections due to windowing, discrep-

ancy between the ideal model and reality, etc.).

Impact of Tuning: Integrating tuning information in

the model does not lead to improvement in terms of output

SNR values, but yields to estimated significance maps that

are more coherent with our model. Indeed, the “tubes”

depend on the tuning and, even in case of ”bad” tuning, the

atoms are selected within the correct frequency regions.

Impact of Harmonics: We did not find any improve-

ment when adding harmonics in our model. This may be

partially explained by the fact that, in the polyphonic case,

the contribution of a large part of the first 6 higher harmon-

ics of a note is already taken into account in the signifi-

cance map by the other notes. For instance, let us consider

C major chord (C-E-G). The C note generates harmonics E

and G. E and G are thus both actual played notes and har-

monics. Their contribution is already partially taken into

account in the significance map in the case of the model

“without harmonics” already belong to the chord.



Figure 4. Significance maps of each basis (MMSE esti-

mates) for the Mozart excerpt, case SNRin = 10dB. Top:

approach [8]. Bottom: proposed approach.

5. CONCLUSION AND FUTURE WORKS

In this article, we have presented a method for sparse de-

composition of audio signals of music on overcomplete

dictionaries made as union of two MDCT bases. We rely

on previous works that consider dependencies between sig-

nificant coefficients of the expansion. The originality of

our approach is that we incorporate musical priors in the

model. Our approach provides results whose quality cor-

responds to state-of-the-art approaches for the denoising

task, and which show that our model that is adequate to

fairly represent audio signals of music. The main contri-

bution of the article is to show that the musical prior based

on musical knowledge performs as well as more sophisti-

cate prior as HMM and appears to be more “natural”. The

significance map corresponding to the tonal layer is coher-

ent with the intrinsic content of music audio.

Future work will concentrate on fully integrating in the

model chord estimation in an interactive fashion. The chro-

magram could be updated with the other parameters during

MCMC inference in order to possibly improve the chord

estimation. The prior we propose has a great potential of

improvement in the future (for example, by using a time

segmentation, a larger chord lexicon etc.)

As far as we know, the introduction of musical priors in

hybrid models for spare decomposition is novel. The use

of mid-level representation of audio - such as the chroma-

gram, as proposed in this paper - or scores, if available,

could be extended to many applications such as denoising,

source separation, compression, coding and many others.

Usually, only physical and mathematical criteria are taken

into account. We believe that the use of musical informa-

tion opens new interesting perspectives.
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