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MEG/EEG source reconstruction based on Gabor thresholding in the source space

Thanks to their high temporal resolution, source reconstruction based on Magnetoencephalography (MEG) and/or Electroencephalography (EEG) is an important tool for noninvasive functional brain imaging. Since the MEG/EEG inverse problem is ill-posed, inverse solvers employ priors on the sources. While priors are generally applied in the time domain, the time-frequency (TF) characteristics of brain signals are rarely employed as a spatio-temporal prior. In this work, we present an inverse solver which employs a structured sparse prior formed by the sum of 21 and 1 norms on the coefficients of the Gabor TF decomposition of the source activations. The resulting convex optimization problem is solved using a first-order scheme based on proximal operators. We provide empirical evidence based on EEG simulations that the proposed method is able to recover neural activations that are spatially sparse, temporally smooth and non-stationary. We compare our approach to alternative solvers based also on convex sparse priors, and demonstrate the benefit of promoting sparse Gabor decompositions via a mathematically principled iterative thresholding procedure.

I. INTRODUCTION

For both neuroscience research and clinical diagnosis, noninvasive measurements of the brain function are of major importance. Solving the bioelectromagnetic inverse problem of Magnetoencephalography (MEG) and/or Electroencephalography (EEG) (collectively M/EEG) is a way to achieve this. Due to the ill-posed nature of the M/EEG inverse problem, it is mandatory to impose suitable constraints on the solution. These constraints, also called priors, should reflect neurophysiologically motivated assumptions on the sources. Priors are typically related to the number of active sources, their amplitudes or their spatio-temporal characteristics.

During the past few years, several source reconstruction methods based on spatially sparse priors have been introduced, sparsity-inducing Bayesian formulations [START_REF] Trujillo-Barreto | Bayesian M/EEG source reconstruction with spatio-temporal priors[END_REF]- [START_REF] Wipf | A unified Bayesian framework for MEG/EEG source imaging[END_REF], and convex mixed norms [START_REF] Haufe | Combining sparsity and rotational invariance in EEG/MEG source reconstruction[END_REF]- [START_REF] Gramfort | Multi-condition M/EEG Inverse Modeling with Sparsity Assumptions: How to Estimate What Is Common and What Is Specific in Multiple Experimental Conditions[END_REF]. These approaches assume that only a limited number of focal sources is involved in a specific cognitive task. To do so, these imaging methods rely on sparsity inducing priors in the time domain. In contrast, the inverse solvers presented in [START_REF] Polonsky | MEG/EEG source localization using spatio-temporal sparse representations[END_REF], [START_REF] Model | Signal reconstruction in sensor arrays using sparse representations[END_REF] impose structured sparsity on the time-frequency (TF) decomposition of the source signals.

As will be illustrated in this work, this allows to perform source reconstruction and TF analysis in the source space simultaneously. While the TF decomposition in the sensor space is commonly applied as a preprocessing step to identify TF components, which can then be localized is a second step [START_REF] Geva | Spatio-temporal matching pursuit (SToMP) for multiple source estimation of evoked potentials[END_REF]- [START_REF] Lelic | Inverse modeling on decomposed electroencephalographic data: A way forward?[END_REF], the TF characteristics of the source signals are rarely employed directly as a prior to regularize the inverse problem. The relevant TF components are typically identified by looking at high coefficients in Wavelet or Gabor decompositions and denoising is then naturally done by thresholding [START_REF] Trujillo-Barreto | Bayesian M/EEG source reconstruction with spatio-temporal priors[END_REF]. This results in smooth time series which can also be obtained with an 1 regularization [START_REF] Donoho | De-noising by soft-thresholding[END_REF]. In order to obtain spatially sparse source estimates, Ou et al. [START_REF] Ou | A distributed spatio-temporal EEG/MEG inverse solver[END_REF] apply a 21 mixed norm prior, which promotes a dense block row structure on the matrix of the source estimates. The reconstructed sources are spatially sparse, but their activation time series are likely to be noisy since they are not regularized. In order to have spatially sparse and temporally smooth source estimates, we present a composite prior combining 21 mixed norm and 1 norm priors that is applied on the TF coefficients of the source signals. Such a prior promotes a block row structure with intra-row sparsity, see Fig. 1.

In a previous work [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF], we described the mathematical framework which applies structured sparsity of the TF decomposition coefficients to recover the spatial sparsity, temporal smoothness and non-stationarity of neural activations. In this contribution, we start by presenting some aspects of the convex optimization procedure detailed in [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF] and then extend this work by providing empirical evidence based on EEG simulations using isolated current dipoles and dipole patches that our method is able to recover the location as well as the TF characteristics of neuronal sources simultaneously. We compare our method to other inverse solvers based on convex sparse priors and show that the thresholding of TF decomposition coefficients in the source space as performed by our structured sparse prior improves the solution of the M/EEG inverse problem.

II. MATERIALS AND METHODS

A.

We denote vectors with bold letters, a ∈ R N (resp. C N ) and matrices with capital bold letters, A ∈ R N ×M (resp. C N ×M ). a i identifies the i th vector element and A i,j the matrix element with row index i and column index j. We indicate the 1 norm as A 1 = N i,j=1 |A i,j |, and the

21 mixed norm as A 21 = N i=1 N j=1 |A i,j | 2 . A Fro denotes the Frobenius norm with A 2 Fro = N i,j=1 |A i,j | 2 .
A T and A H denote a matrix transpose and a Hermitian transpose, respectively.

B. The inverse problem with sparse TF decompositions

Given a lead field matrix G ∈ R N ×P , where N is the number of sensors and P the number of sources, the measurements M ∈ R N ×T (T number of time instants) are related to the source amplitudes X ∈ R P ×T by M = GX. By applying a linear TF decomposition on X based on a dictionary of TF atoms Φ H ∈ C K×T , the forward model can be expressed as:

M = GX + E = GZΦ H + E , (1) 
where Z ∈ C P ×K is the coefficient matrix of the TF decomposition, and E is an additive white noise, E ∼ N (0, λI).

In order to solve the ill-posed M/EEG inverse problem, priors have to be imposed on the solution. As we assume that only a small number of focal sources with smooth activation time series are active during a cognitive task, we apply the composite prior proposed in [START_REF] Polonsky | MEG/EEG source localization using spatio-temporal sparse representations[END_REF] and [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF]. It is formed by the sum of the 1 and the 21 norms (cf. Equation ( 2)) applied on the coefficients of the TF decomposition Z. While the 21 mixed norm promotes spatially sparse solutions, the 1 norm denoises the reconstructed source signals by limiting the number of TF atoms used for the reconstruction. The maximum a posteriori estimate is obtained by solving:

Z = arg min Z 1 2 M -GZΦ H 2 Fro + λΩ(Z)
with

Ω(Z) = ρ Z 1 + (1 -ρ) Z 21 (2) 
where λ ∈ R + is the regularization parameter and ρ ∈ [0 1] is the trade-off parameter between the 21 and the 1 norms. Note that a Gabor transform as described here corresponds to a discrete short time Fourier transform (STFT) with a Gabor window.

For M/EEG inverse problems without orientation constraints, the composite prior needs to be adapted. We group the different orientations in a common 2 norm such as in [START_REF] Ou | A distributed spatio-temporal EEG/MEG inverse solver[END_REF]. Hence, assuming that each source is indexed by a spatial location i and an orientation o ∈ {1, 2, 3} and the TF atoms in the TF dictionary are indexed by k, the 1 and 21 norms read:

Z 1 = ik 3 o=1 |Z (i,o),k | 2 Z 21 = i k 3 o=1 |Z (i,o),k | 2 , (3) 
1) Implementation: The sparse regression problem in Eq. ( 2) is a convex optimization problem. This implies that the optimization cannot be trapped in local minima and that improper initialization does not cause problems. The structure and convexity of the cost function enables us to apply a firstorder scheme, known as FISTA, based on proximal operators [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. As detailed in [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF], the proximal operator of the composite prior

Z = prox λ(ρ . 1+(1-ρ) . 21 ) (Y) ∈ C P ×K is given by Z p,k = Y p,k |Y p,k | (|Y p,k | -λρ) + • • 1 - λ(1 -ρ) k ((|Y p,k | -λρ) + ) 2 + , (4) 
where p and k index the TF decomposition matrix, (x) + = max(x, 0) for x ∈ R, and by definition 0 0 = 0. This proximal operator is equivalent to applying the 1 and the 21 proximal operators successively [START_REF] Jenatton | Proximal methods for sparse hierarchical dictionary learning[END_REF], [START_REF] Kowalski | Sparse regression using mixed norms[END_REF]. The pseudocode for the optimization process is given in Algorithm 1. Note that contrary to previous contributions like [START_REF] Polonsky | MEG/EEG source localization using spatio-temporal sparse representations[END_REF] that use a truncated Newton method, which should be only applied to differentiable problems, this contribution provides a principled method to minimize the cost function in Equation ( 2 

Y = Z = Z, τ = 1, 0 < µ < L -1 4: for i = 1 to I do 5: Z o = Z 6: Z = prox µλΩ Y + µG T (M -GYΦ H )Φ 7: τ o = τ 8: τ = 1+ √ 1+4τ 2 2 
9:

Y = Z + τo-1 τ (Z -Z o ) 10: end for
We apply a Gabor transform with a Gabor frame based on the LTFAT toolbox [START_REF] Soendergard | The linear time frequency toolbox[END_REF] to compute the TF decomposition. This allows to recover stationary as well as nonstationary source signals x ∈ R T from their Gabor coefficients ( x, φ k,f ) = Φ H x. To reduce the computation time, we compute the Gabor transform only for active sources, i.e., sources with non-zero TF decomposition coefficients.

C. Simulation setup

In order to evaluate the performance of the sparse TF inverse algorithm, we performed simulations with isolated current dipoles and dipole patches as sources. The simulation setup consisted of a three shell boundary element model (BEM) which was computed with OpenMEEG [START_REF] Gramfort | OpenMEEG: opensource software for quasistatic bioelectromagnetics[END_REF] using skin, skull, and CSF surfaces segmented from a MRI scan using MNE 1 . The conductivities were chosen according to [START_REF] Geddes | The specific resistance of biological material -a compendium of data for the biomedical engineer and physiologist[END_REF]. The source space was built from 5000 triplets of orthogonal current dipoles placed on the boundary between white and gray matter, which was segmented using FreeSurfer [START_REF] Dale | Cortical surface-based analysis: I. segmentation and surface reconstruction[END_REF]. We used 128 EEG channels for spatially sampling of the simulated data. Finally, a common-average reference transform was applied to the leadfield matrix.

D. Simulation

1) Isolated current dipoles : We modeled 2 current dipoles located in Brodmann areas 3b and 1. The orientations are set perpendicular to the white matter surface. The geodesic 1 http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php distance between the simulated dipoles was 15.7 mm, and the angle between dipole moment vectors 101.4 • . The activation curves were modeled using synthetic, non-stationary chirp signals with an exponential decay (cf. Fig. 2). To evaluate the performance with different signal to noise ratios (SNR) (-6db, 0dB, and 6dB), which we define here as 20 log 10 ( M Fro / E Fro ), white noise was added to the forward simulation. By adding white noise, we assume that the data were spatially whitened based on a noise covariance matrix estimated during baseline.

We applied the sparse TF inverse approach with orientation constraint and a tight Gabor frame with time shift k = 4 samples and frequency shift f = 4 samples. In order to compensate the depth bias, the columns of the lead field matrix were normalized before solving the inverse problem. We compare our solution to inverse solvers based on 21 mixed norm priors [START_REF] Ou | A distributed spatio-temporal EEG/MEG inverse solver[END_REF] and a 1 norm priors, respectively. We imposed the 1 norm prior both on the source activations in the time domain and on the coefficients of the TF decomposition. In contrast, as the 21 mixed norm prior in the time and TF domain are mathematically equivalent when using tight Gabor frames, we chose to apply it in the time domain.

Although solving the inverse problem based on the composite prior is tractable for high dimensional data sets (see [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF] for a real MEG data set), we reduced the source space with regard to the complexity of the simulations in order to decrease the computation time. Faster optimization relies on an active set approach [START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF] and is further discussed in [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF]. As the application and evaluation of this method is beyond the scope of this contribution, we simulated the result of the active set approach by restricting the source space to patches with geodesic radii of 50 mm, which include the simulated sources. The restricted source space was applied for all inverse solvers making results comparable.

2) Patches: The presented inverse solver is based on the assumption that the neural activity can be modeled by spatially sparse isolated current-dipole sources. In order to analyze the performance of the proposed method in the case that this model assumption is violated, we performed a simulation study with spatially extended sources. It is based on three source patches with geodesic radii of 10 mm located in the left and right auditory cortices and the left motor cortex. A similar simulation is described in [START_REF] Bolstad | Space-time event sparse penalization for magneto-/electroencephalography[END_REF]. The sources were perpendicular to the white matter surface. The source activations are simulated as non-stationary, synthetic chirp signals with an exponential decay. The simulated patches as well as their activation curves are displayed in Fig. 4. Different SNRs (-6 dB, 0 dB, and 6 dB) are generated by adding white noise. The inverse problem was solved without orientation constraints. The regularization parameter λ and the trade-off parameter ρ were set to λ = 6 • 10 -5 and ρ = 0.1 respectively.

To compare the different priors, we calculate the root mean square error (RMSE) in the source space defined as RMSE = X sim -X est 2 Fro . For each prior and SNR, we analyze the RMSE as a function of the regularization parameter λ and determined the minimum. λ was chosen from 10 -6 to 10 -3 and ρ fixed to 0.1 for the composite prior. The results are presented in Table I. All values are normalized to the RMSE of the composite prior. The 1 norm based approaches led to the highest RMSE followed by the 21 mixed norm based method. The minimal RMSE was achieved by the composite prior based technique. Fig. 2 shows the simulated as well as the estimated source signals for SNR = 0 dB. Compared to the solutions obtained with the alternative priors, the composite prior led to the smoothest and spatially sparsest solution (cf. Fig. 2). This is particularly obvious in periods dominated by noise where the composite prior based approach benefits from the denoising based on Gabor TF thresholding. Besides the two simulated dipoles, at least two erroneous sources, located close to the simulated ones, are reconstructed with all priors which are located close to the simulated sources. Their amplitude is significantly smaller than the true sources and the time courses correlate primarily with the deep tangential source. This can be attributed to the applied depth compensation and the lower sensitivity of EEG to tangential sources.

Due to the TF resolution of the applied Gabor frame and the shape of the covered Gabor atoms, the composite prior based inverse solver was not able to reconstruct perfectly the abrupt changes at the signals onsets. This resulted in a transient oscillation at the signals onsets (cf. Fig. 2(b)). By decreasing the length of the Gabor atoms and increasing the TF resolution, the reconstruction of abrupt changes can be improved.

Besides the source location and activation time series, the proposed inverse solver also provides the time-frequency distribution (TFD) of the source signals. This is illustrated in Fig. 3. Thanks to the structured sparsity imposed by the composite prior, small TFD coefficients are discarded and the TF structure is well identified. The non-stationarity and the chirp appear clearly. Vertical components in the TFDs, at 100 ms and 200 ms respectively, reflect the steep slope at the onset of the chirps. In contrast, due to the unstructured sparsity pattern, the TFDs based on the 1 norm prior do not allow to identify correctly the TF characteristics. Note that the Gabor dictionary does not contain any chirp like atom, which suggests that the solver does not rely on a very accurate a priori knowledge of the temporal dynamics of the sources. 

B. Patches

Fig. 4 shows the simulated and the reconstructed source activations for SNR = 0 dB. The final active set contains 45 active dipoles. For visualization purposes, the dipoles were clustered into three groups based on the correlation of the simulated and reconstructed source activations. In order to compare the contribution of each group to the source estimates, source amplitudes within each group were normalized to have a unit Frobenius norm. Both the smoothness and nonstationarity of the simulated source signals is recovered. The sites of the estimated sources agree with the simulation.

IV. DISCUSSION AND CONCLUSION

In this work, we presented an M/EEG inverse solver based on a composite prior, formed by the sum of a 21 and a 1 norm priors, which is imposed on the TF decomposition of the source activations. We briefly described the mathematical framework, which is applied to formulate the convex optimization problem (for details see [START_REF] Gramfort | Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries[END_REF]), and provided further information on the implementation. We obtained empirical evidence by using isolated current dipoles and patches in EEG simulations that our approach is able to reconstruct the spatial sparsity, temporal smoothness, and nonstationarity of neural activations. We showed that the solver provides in one step, the locations and TF characteristics of the sources. The simulations indicated that the presented method is more robust to noise than alternative sparse inverse solvers due to the Gabor thresholding in the source space. Results of the patch simulation study for SNR = 0 dB. The reconstructed source activations were clustered in three groups based on the correlation of the simulated and reconstructed source activations. The activations within each group were normalized to have a unit Frobenius norm.

The results evidenced that the proposed inverse solver is a promising approach for M/EEG source analysis.

Further investigations are needed to study the impact of the choice of the time-frequency dictionary. To improve the signal reconstruction, a union of different Gabor dictionaries can be used to allow for different time-frequency resolutions. In addition, the application of TF decomposition algorithms, which are robust to outliers such as artifacts, is of interest.
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 1 Fig. 1. Sparsity patterns promoted by different priors in the TF domain: (a) 2 norm: no non-zero TF coefficients; (b) 1 norm: scattered and unstructured non-zero TF coefficients; (c) 21 mixed norm: block row structured non-zero TF coefficients; and (d) 21 mixed norm + 1 norm: block row structured non-zero TF coefficients with intra-row sparsity. In all panels, nonzero coefficients are shown in white.

Fig. 2 .

 2 Fig. 2. Simulated and estimated source signals based on sparse priors. The simulated dipoles, which are reconstucted in Brodmann area 3b and 1, are marked in green and blue, the erroneous dipoles in black. The erroneous dipole with the highest amplitude is colored in red. Note the different number of erroneous dipoles for the different priors.

  Fig. 3. Simulated and estimated source signals in Brodmann 3b (left column) and 1 (right column) in the TF domain for SNR = 0 dB. The TFDs of the simulated signals and the 1 norm prior solutions are computed using a Gabor transform. The TFDs of the composite prior solution are obtained from the inverse solution in the TF domain.

  Fig. 4.Results of the patch simulation study for SNR = 0 dB. The reconstructed source activations were clustered in three groups based on the correlation of the simulated and reconstructed source activations. The activations within each group were normalized to have a unit Frobenius norm.

  ). Measurements M, lead field matrix G, regularization parameter λ > 0 and I the number of iterations. Ensure: Z 1: Aux. variables: Y and Z o ∈ R P ×K , and τ and τ o ∈ R. 2: Estimate the Lipschitz constant L with the power iteration method.

	Algorithm 1 FISTA with TF dictionaries
	Require:

3: 

TABLE I NORMALIZED

 I RMSE IN THE SOURCE SPACE FOR DIFFERENT SPARSITY INDUCING PRIORS. THE BEST RMSE IS MARKED IN BOLD

	prior	normalized RMSE in the source space
		SNR = -6 dB	SNR = 0 dB	SNR = 6 dB
	21 + 1 norm	1	1	1
	(TF domain)			
	21 norm	1.66	1.32	1.22
	(time domain)			
	1 norm	2.10	1.71	1.77
	(time domain)			
	1 norm	2.12	1.86	2.26
	(TF domain)			
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