
HAL Id: hal-00621044
https://hal.science/hal-00621044v1

Submitted on 9 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

M/EEG source reconstruction based on Gabor
thresholding in the source space

Daniel Strohmeier, Alexandre Gramfort, Jens Haueisen, Matti Hämäläinen,
Matthieu Kowalski

To cite this version:
Daniel Strohmeier, Alexandre Gramfort, Jens Haueisen, Matti Hämäläinen, Matthieu Kowalski.
M/EEG source reconstruction based on Gabor thresholding in the source space. NFSI 2011, May
2011, Banff, Canada. �hal-00621044�

https://hal.science/hal-00621044v1
https://hal.archives-ouvertes.fr


MEG/EEG source reconstruction based on Gabor
thresholding in the source space

Daniel Strohmeier1, Alexandre Gramfort234, Jens Haueisen156, Matti Hämäläinen2 and Matthieu Kowalski7
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Abstract—Thanks to their high temporal resolution, source
reconstruction based on Magnetoencephalography (MEG) and/or
Electroencephalography (EEG) is an important tool for nonin-
vasive functional brain imaging. Since the MEG/EEG inverse
problem is ill-posed, inverse solvers employ priors on the sources.
While priors are generally applied in the time domain, the
time-frequency (TF) characteristics of brain signals are rarely
employed as a spatio-temporal prior. In this work, we present an
inverse solver which employs a structured sparse prior formed
by the sum of `21 and `1 norms on the coefficients of the Gabor
TF decomposition of the source activations. The resulting convex
optimization problem is solved using a first-order scheme based
on proximal operators. We provide empirical evidence based on
EEG simulations that the proposed method is able to recover
neural activations that are spatially sparse, temporally smooth
and non-stationary. We compare our approach to alternative
solvers based also on convex sparse priors, and demonstrate
the benefit of promoting sparse Gabor decompositions via a
mathematically principled iterative thresholding procedure.

I. INTRODUCTION

For both neuroscience research and clinical diagnosis, non-
invasive measurements of the brain function are of major
importance. Solving the bioelectromagnetic inverse problem of
Magnetoencephalography (MEG) and/or Electroencephalogra-
phy (EEG) (collectively M/EEG) is a way to achieve this.
Due to the ill-posed nature of the M/EEG inverse problem, it
is mandatory to impose suitable constraints on the solution.
These constraints, also called priors, should reflect neuro-
physiologically motivated assumptions on the sources. Priors
are typically related to the number of active sources, their
amplitudes or their spatio-temporal characteristics.

During the past few years, several source reconstruction
methods based on spatially sparse priors have been introduced,
sparsity-inducing Bayesian formulations [1]–[3], and convex
mixed norms [4]–[6]. These approaches assume that only a
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limited number of focal sources is involved in a specific cog-
nitive task. To do so, these imaging methods rely on sparsity
inducing priors in the time domain. In contrast, the inverse
solvers presented in [7], [8] impose structured sparsity on
the time-frequency (TF) decomposition of the source signals.
As will be illustrated in this work, this allows to perform
source reconstruction and TF analysis in the source space
simultaneously. While the TF decomposition in the sensor
space is commonly applied as a preprocessing step to identify
TF components, which can then be localized is a second step
[9]–[11], the TF characteristics of the source signals are rarely
employed directly as a prior to regularize the inverse problem.
The relevant TF components are typically identified by looking
at high coefficients in Wavelet or Gabor decompositions and
denoising is then naturally done by thresholding [1]. This
results in smooth time series which can also be obtained
with an `1 regularization [12]. In order to obtain spatially
sparse source estimates, Ou et al. [5] apply a `21 mixed norm
prior, which promotes a dense block row structure on the
matrix of the source estimates. The reconstructed sources are
spatially sparse, but their activation time series are likely to be
noisy since they are not regularized. In order to have spatially
sparse and temporally smooth source estimates, we present a
composite prior combining `21 mixed norm and `1 norm priors
that is applied on the TF coefficients of the source signals.
Such a prior promotes a block row structure with intra-row
sparsity, see Fig. 1.

In a previous work [13], we described the mathematical
framework which applies structured sparsity of the TF de-
composition coefficients to recover the spatial sparsity, tem-
poral smoothness and non-stationarity of neural activations.
In this contribution, we start by presenting some aspects of
the convex optimization procedure detailed in [13] and then
extend this work by providing empirical evidence based on
EEG simulations using isolated current dipoles and dipole
patches that our method is able to recover the location as well
as the TF characteristics of neuronal sources simultaneously.
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Fig. 1. Sparsity patterns promoted by different priors in the TF domain:
(a) `2 norm: no non-zero TF coefficients; (b) `1 norm: scattered and unstruc-
tured non-zero TF coefficients; (c) `21 mixed norm: block row structured
non-zero TF coefficients; and (d) `21 mixed norm + `1 norm: block row
structured non-zero TF coefficients with intra-row sparsity. In all panels, non-
zero coefficients are shown in white.

We compare our method to other inverse solvers based on
convex sparse priors and show that the thresholding of TF
decomposition coefficients in the source space as performed
by our structured sparse prior improves the solution of the
M/EEG inverse problem.

II. MATERIALS AND METHODS

A. Notation

We denote vectors with bold letters, a ∈ RN (resp. CN )
and matrices with capital bold letters, A ∈ RN×M (resp.
CN×M ). ai identifies the ith vector element and Ai,j the
matrix element with row index i and column index j. We
indicate the `1 norm as ‖A‖1 =

∑N
i,j=1 |Ai,j |, and the

`21 mixed norm as ‖A‖21 =
∑N
i=1

√∑N
j=1 |Ai,j |2. ‖A‖Fro

denotes the Frobenius norm with ‖A‖2Fro =
∑N
i,j=1 |Ai,j |2.

AT and AH denote a matrix transpose and a Hermitian
transpose, respectively.

B. The inverse problem with sparse TF decompositions

Given a lead field matrix G ∈ RN×P , where N is the num-
ber of sensors and P the number of sources, the measurements
M ∈ RN×T (T number of time instants) are related to the
source amplitudes X ∈ RP×T by M = GX. By applying a
linear TF decomposition on X based on a dictionary of TF
atoms ΦH ∈ CK×T , the forward model can be expressed as:

M = GX + E = GZΦH + E , (1)

where Z ∈ CP×K is the coefficient matrix of the TF decom-
position, and E is an additive white noise, E ∼ N (0, λI).

In order to solve the ill-posed M/EEG inverse problem,
priors have to be imposed on the solution. As we assume that
only a small number of focal sources with smooth activation
time series are active during a cognitive task, we apply the
composite prior proposed in [7] and [13]. It is formed by the
sum of the `1 and the `21 norms (cf. Equation (2)) applied
on the coefficients of the TF decomposition Z. While the
`21 mixed norm promotes spatially sparse solutions, the `1
norm denoises the reconstructed source signals by limiting
the number of TF atoms used for the reconstruction. The
maximum a posteriori estimate is obtained by solving:

Z? = arg min
Z

1

2
‖M−GZΦH‖2Fro + λΩ(Z)

with Ω(Z) = ρ‖Z‖1 + (1− ρ)‖Z‖21

(2)

where λ ∈ R+ is the regularization parameter and ρ ∈ [0 1]
is the trade-off parameter between the `21 and the `1 norms.
Note that a Gabor transform as described here corresponds to
a discrete short time Fourier transform (STFT) with a Gabor
window.

For M/EEG inverse problems without orientation con-
straints, the composite prior needs to be adapted. We group
the different orientations in a common `2 norm such as in
[5]. Hence, assuming that each source is indexed by a spatial
location i and an orientation o ∈ {1, 2, 3} and the TF atoms
in the TF dictionary are indexed by k, the `1 and `21 norms
read:

‖Z‖1 =
∑
ik

√√√√ 3∑
o=1

|Z(i,o),k|2

‖Z‖21 =
∑
i

√√√√∑
k

3∑
o=1

|Z(i,o),k|2 ,

(3)

1) Implementation: The sparse regression problem in
Eq. (2) is a convex optimization problem. This implies that
the optimization cannot be trapped in local minima and that
improper initialization does not cause problems. The structure
and convexity of the cost function enables us to apply a first-
order scheme, known as FISTA, based on proximal opera-
tors [14]. As detailed in [13], the proximal operator of the
composite prior Z = proxλ(ρ‖.‖1+(1−ρ)‖.‖21)(Y) ∈ CP×K is
given by

Zp,k =
Yp,k
|Yp,k|

(|Yp,k| − λρ)
+ ·

·

(
1− λ(1− ρ)√∑

k((|Yp,k| − λρ)+)2

)+

,

(4)

where p and k index the TF decomposition matrix,
(x)+ = max(x, 0) for x ∈ R, and by definition 0

0 = 0. This
proximal operator is equivalent to applying the `1 and the



`21 proximal operators successively [15], [16]. The pseudo-
code for the optimization process is given in Algorithm 1.
Note that contrary to previous contributions like [7] that use
a truncated Newton method, which should be only applied to
differentiable problems, this contribution provides a principled
method to minimize the cost function in Equation (2).

Algorithm 1 FISTA with TF dictionaries
Require: Measurements M, lead field matrix G, regulariza-

tion parameter λ > 0 and I the number of iterations.
Ensure: Z?

1: Aux. variables: Y and Zo ∈ RP×K , and τ and τo ∈ R.
2: Estimate the Lipschitz constant L with the power iteration

method.
3: Y = Z? = Z, τ = 1, 0 < µ < L−1

4: for i = 1 to I do
5: Zo = Z?

6: Z? = proxµλΩ

(
Y + µGT (M−GYΦH)Φ

)
7: τo = τ
8: τ = 1+

√
1+4τ2

2
9: Y = Z? + τo−1

τ (Z? − Zo)
10: end for

We apply a Gabor transform with a Gabor frame based
on the LTFAT toolbox [17] to compute the TF decompo-
sition. This allows to recover stationary as well as non-
stationary source signals x ∈ RT from their Gabor coefficients
(〈x,φk,f 〉) = ΦHx. To reduce the computation time, we
compute the Gabor transform only for active sources, i.e.,
sources with non-zero TF decomposition coefficients.

C. Simulation setup

In order to evaluate the performance of the sparse TF inverse
algorithm, we performed simulations with isolated current
dipoles and dipole patches as sources. The simulation setup
consisted of a three shell boundary element model (BEM)
which was computed with OpenMEEG [18] using skin, skull,
and CSF surfaces segmented from a MRI scan using MNE1.
The conductivities were chosen according to [19]. The source
space was built from 5000 triplets of orthogonal current
dipoles placed on the boundary between white and gray matter,
which was segmented using FreeSurfer [20]. We used 128
EEG channels for spatially sampling of the simulated data.
Finally, a common-average reference transform was applied
to the leadfield matrix.

D. Simulation

1) Isolated current dipoles : We modeled 2 current dipoles
located in Brodmann areas 3b and 1. The orientations are
set perpendicular to the white matter surface. The geodesic

1http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php

distance between the simulated dipoles was 15.7 mm, and
the angle between dipole moment vectors 101.4◦. The acti-
vation curves were modeled using synthetic, non-stationary
chirp signals with an exponential decay (cf. Fig. 2). To
evaluate the performance with different signal to noise ra-
tios (SNR) (-6db, 0dB, and 6dB), which we define here
as 20 log10(‖M‖Fro/‖E‖Fro), white noise was added to the
forward simulation. By adding white noise, we assume that
the data were spatially whitened based on a noise covariance
matrix estimated during baseline.

We applied the sparse TF inverse approach with orientation
constraint and a tight Gabor frame with time shift k =
4 samples and frequency shift f = 4 samples. In order to
compensate the depth bias, the columns of the lead field
matrix were normalized before solving the inverse problem.
We compare our solution to inverse solvers based on `21 mixed
norm priors [5] and a `1 norm priors, respectively. We imposed
the `1 norm prior both on the source activations in the time
domain and on the coefficients of the TF decomposition. In
contrast, as the `21 mixed norm prior in the time and TF
domain are mathematically equivalent when using tight Gabor
frames, we chose to apply it in the time domain.

Although solving the inverse problem based on the com-
posite prior is tractable for high dimensional data sets (see
[13] for a real MEG data set), we reduced the source space
with regard to the complexity of the simulations in order to
decrease the computation time. Faster optimization relies on
an active set approach [21] and is further discussed in [13].
As the application and evaluation of this method is beyond the
scope of this contribution, we simulated the result of the active
set approach by restricting the source space to patches with
geodesic radii of 50 mm, which include the simulated sources.
The restricted source space was applied for all inverse solvers
making results comparable.

2) Patches: The presented inverse solver is based on the
assumption that the neural activity can be modeled by spatially
sparse isolated current-dipole sources. In order to analyze the
performance of the proposed method in the case that this
model assumption is violated, we performed a simulation
study with spatially extended sources. It is based on three
source patches with geodesic radii of 10 mm located in the
left and right auditory cortices and the left motor cortex.
A similar simulation is described in [22]. The sources were
perpendicular to the white matter surface. The source activa-
tions are simulated as non-stationary, synthetic chirp signals
with an exponential decay. The simulated patches as well
as their activation curves are displayed in Fig. 4. Different
SNRs (−6 dB, 0 dB, and 6 dB) are generated by adding white
noise. The inverse problem was solved without orientation
constraints. The regularization parameter λ and the trade-off
parameter ρ were set to λ = 6 · 10−5 and ρ = 0.1 respectively.



III. RESULTS

A. Isolated current dipoles

To compare the different priors, we calculate the root
mean square error (RMSE) in the source space defined as
RMSE = ‖Xsim −Xest‖2Fro. For each prior and SNR, we ana-
lyze the RMSE as a function of the regularization parameter
λ and determined the minimum. λ was chosen from 10−6 to
10−3 and ρ fixed to 0.1 for the composite prior. The results are
presented in Table I. All values are normalized to the RMSE
of the composite prior.

TABLE I
NORMALIZED RMSE IN THE SOURCE SPACE FOR DIFFERENT SPARSITY

INDUCING PRIORS. THE BEST RMSE IS MARKED IN BOLD

prior normalized RMSE in the source space

SNR = −6 dB SNR = 0 dB SNR = 6 dB

`21 + `1 norm 1 1 1
(TF domain)

`21 norm 1.66 1.32 1.22
(time domain)

`1 norm 2.10 1.71 1.77
(time domain)

`1 norm 2.12 1.86 2.26
(TF domain)

The `1 norm based approaches led to the highest RMSE
followed by the `21 mixed norm based method. The minimal
RMSE was achieved by the composite prior based technique.
Fig. 2 shows the simulated as well as the estimated source
signals for SNR = 0 dB. Compared to the solutions obtained
with the alternative priors, the composite prior led to the
smoothest and spatially sparsest solution (cf. Fig. 2). This is
particularly obvious in periods dominated by noise where the
composite prior based approach benefits from the denoising
based on Gabor TF thresholding. Besides the two simulated
dipoles, at least two erroneous sources, located close to the
simulated ones, are reconstructed with all priors which are
located close to the simulated sources. Their amplitude is
significantly smaller than the true sources and the time courses
correlate primarily with the deep tangential source. This can
be attributed to the applied depth compensation and the lower
sensitivity of EEG to tangential sources.

Due to the TF resolution of the applied Gabor frame and
the shape of the covered Gabor atoms, the composite prior
based inverse solver was not able to reconstruct perfectly the
abrupt changes at the signals onsets. This resulted in a transient
oscillation at the signals onsets (cf. Fig. 2(b)). By decreasing
the length of the Gabor atoms and increasing the TF resolution,
the reconstruction of abrupt changes can be improved.

Besides the source location and activation time series,
the proposed inverse solver also provides the time-frequency
distribution (TFD) of the source signals. This is illustrated
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(e) `1 in the TF domain

Fig. 2. Simulated and estimated source signals based on sparse priors. The
simulated dipoles, which are reconstucted in Brodmann area 3b and 1, are
marked in green and blue, the erroneous dipoles in black. The erroneous
dipole with the highest amplitude is colored in red. Note the different number
of erroneous dipoles for the different priors.

in Fig. 3. Thanks to the structured sparsity imposed by the
composite prior, small TFD coefficients are discarded and
the TF structure is well identified. The non-stationarity and
the chirp appear clearly. Vertical components in the TFDs,
at 100 ms and 200 ms respectively, reflect the steep slope at
the onset of the chirps. In contrast, due to the unstructured
sparsity pattern, the TFDs based on the `1 norm prior do not
allow to identify correctly the TF characteristics. Note that the
Gabor dictionary does not contain any chirp like atom, which
suggests that the solver does not rely on a very accurate a
priori knowledge of the temporal dynamics of the sources.
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(c) `1 in the time domain

Fig. 3. Simulated and estimated source signals in Brodmann 3b (left
column) and 1 (right column) in the TF domain for SNR = 0 dB. The TFDs
of the simulated signals and the `1 norm prior solutions are computed using
a Gabor transform. The TFDs of the composite prior solution are obtained
from the inverse solution in the TF domain.

B. Patches

Fig. 4 shows the simulated and the reconstructed source
activations for SNR = 0 dB. The final active set contains 45
active dipoles. For visualization purposes, the dipoles were
clustered into three groups based on the correlation of the
simulated and reconstructed source activations. In order to
compare the contribution of each group to the source estimates,
source amplitudes within each group were normalized to
have a unit Frobenius norm. Both the smoothness and non-
stationarity of the simulated source signals is recovered. The
sites of the estimated sources agree with the simulation.

IV. DISCUSSION AND CONCLUSION

In this work, we presented an M/EEG inverse solver
based on a composite prior, formed by the sum of a
`21 and a `1 norm priors, which is imposed on the TF
decomposition of the source activations. We briefly described
the mathematical framework, which is applied to formulate
the convex optimization problem (for details see [13]), and
provided further information on the implementation. We
obtained empirical evidence by using isolated current dipoles
and patches in EEG simulations that our approach is able to
reconstruct the spatial sparsity, temporal smoothness, and non-
stationarity of neural activations. We showed that the solver
provides in one step, the locations and TF characteristics
of the sources. The simulations indicated that the presented
method is more robust to noise than alternative sparse inverse
solvers due to the Gabor thresholding in the source space.
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(b) simulated source activations

(c) reconstructed dipolar sources
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(d) reconstructed source activations

Fig. 4. Results of the patch simulation study for SNR = 0 dB. The
reconstructed source activations were clustered in three groups based on
the correlation of the simulated and reconstructed source activations. The
activations within each group were normalized to have a unit Frobenius norm.

The results evidenced that the proposed inverse solver is a
promising approach for M/EEG source analysis.

Further investigations are needed to study the impact of
the choice of the time-frequency dictionary. To improve the
signal reconstruction, a union of different Gabor dictionaries
can be used to allow for different time-frequency resolutions.
In addition, the application of TF decomposition algorithms,
which are robust to outliers such as artifacts, is of interest.
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