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We investigate numerically the axisymmetric migration of bubbles toward a free surface, using a

boundary-integral technique. Our careful numerical implementation allows to study the bubble(s)

deformation and film drainage; it is benchmarked against several tests. The rise of one bubble toward

a free surface is studied and the computed bubble shape compared with the results of Princen

[J. Colloid Interface Sci. 18, 178 (1963)]. The liquid film between the bubble and the free surface is

found to drain exponentially in time in full agreement with the experimental work of Debrégeas et al.
[Science 279, 1704 (1998)]. Our numerical results also cast some light on the role played by the

deformation of the fluid interfaces and it turns out that for weakly deformed interfaces (high surface

tension or a tiny bubble) the film drainage is faster than for a large fluid deformation. By introducing

one or two additional bubble(s) below the first one, we examine to which extent the previous trends

are affected by bubble-bubble interactions. For instance, for a 2-bubble chain, decreasing the bubble-

bubble separation increases the deformation of the last bubble in the chain. Finally, the exponential

drainage of the film between the free surface and the closest bubble is preserved, yet the drainage is

enhanced. VC 2011 American Institute of Physics. [doi:10.1063/1.3629815]

I. INTRODUCTION

Phase separation is involved in many chemical proc-

esses, such as flotation, liquid-liquid or gas-liquid extractions.

The final stage of such processes, in which two phases have

to be separated, is generally limited by the collapse of inclu-

sions at the free surface. For instance, the coalescence of bub-

bles in highly viscous fluids is observed in various fields,

such as geophysics1 or the glass industry. For the latter appli-

cation, the energetic efficiency of glass furnaces is deeply

related to the occurrence of a foam layer on top of the molten

glass bath.2 Since the transition between frost and foam

depends strongly upon the lifetime of a bubble in the vicinity

of the free surface, more insights into the idealized problem

of a drop or a bubble moving toward a free surface are

needed in order to handle such basic and industrial issues.

Earlier basic studies in this direction include the work of

Princen,3 who approximated the drop shape at a liquid-liquid

free interface by balancing the pressures driven by gravity

with surface tension effects. Hartland4 confirmed experimen-

tally the theoretical predictions of Princen,3 using a drop

made of glycerol or golden syrup immersed in liquid paraffin

(light fluid). Hartland5 also determined the profile of the film

thickness and observed a minimum film thickness near the

edge of the film. He6 later developed a theoretical model

based on lubrication theory, in which faster drainage

occurred for mobile interfaces. Jones and Wilson7 developed

a lubrication theory to determine the behavior of the liquid

film where the settling of a solid particle and a drop were

both studied. They demonstrated that the film thickness

behaves as an algebraic function of time.

The special case of bubble drainage in a high viscous

fluid was experimentally examined by Debrégeas et al.8

using silicon oil. From an interferometry method, an expo-

nential decrease of the film thickness with time was clearly

established. This study was limited to large bubbles com-

pared to the capillary scale. Howell9 later studied the drain-

age of a bubble close to a free surface, using a lubrication

model and restricting attention to a bidimensional bubble.

Nevertheless, the case of axisymmetric bubble was reported

in an appendix where Howell showed that the film thickness

evolves as an algebraic function of time when the deforma-

tion is small, and the gravity is neglected.

One drawback of the lubrication theory is the poor

knowledge of the initial conditions. Generally, the latter

depend on the dynamics prior to the lubrication regime.

With this idea in mind, Chi and Leal10 developed a numeri-

cal method based on an integral formulation of Stokes equa-

tions in axisymmetric configuration. This work has been

done for a viscous drop with a dynamic viscosity that is a

multiple l̂ of the viscosity of the continuous liquid, and com-

putations were achieved mainly for l̂ in the domain [0.1,10].

Chi and Leal10 pointed out a fast drainage for small viscosity

ratio l̂, a neutral drainage for l̂ ¼ Oð1Þ and a low drainage

for large l̂. A boundary-integral equation approach has been

also used by Manga1 to study how a drop crosses a liquid-

liquid interface.

Two-phase flows can be numerically studied by various

techniques. The oldest one is the “Volume of Fluid” method

pioneered by Hirt and Nichols,11 where the two phases are

seen as a single fluid with a concentration varying between 0

in a phase and 1 in another one. Interfaces are then tracked

setting this concentration equal to 1/2. The “level set”

approach is based on the description of a distance function

from an interface where the interface is mathematically

defined for the level set equal to zero. This method is for
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example used by Sussman et al.12 Another method is the

“front-tracking” technique in which the interfaces between

the two phases are tracked using a discrete representation of

the interfaces (see, for instance, Unverdi et al.13). The main

advantage of these numerical methods is the ability to deal

with arbitrary Reynolds numbers. Unfortunately, such tech-

niques require to discretize the entire domain and also to

consider interfaces with thickness of order of a few cells.

Hence, interfaces that are too close can be merged depending

on the spatial resolution. This prohibits the accurate simula-

tion of film drainage at small scales.

The boundary-integral method is a powerful alternative

method, in which the fluid interfaces are carefully described.

The method is based on integral formulations exploiting14

the existence of a fundamental solution (Green’s functions)

and of a reciprocity relationship. These requirements are ful-

filled for Stokes equations, for which the reciprocity relation-

ship is known since the pioneering work of Lorentz,15

whereas the Green’s functions has been obtained 80 years

ago by Odqvist.16 Theoretical issues for Stokes flows to-

gether with the associated boundary-integral equations have

also been mathematically addressed by Ladyzhenskaya.17

However, the first numerical resolutions of boundary integral

equations for creeping flows were only first performed by

Youngren and Acrivos18 for a solid body and by Rallison

and Acrivos19 for a viscous drop. As this method is now

widely employed, we refer the reader to the books of Pozri-

kidis20 and Kim and Karrila21 for further details.

This work examines the motion and deformation of bub-

bles moving toward a free surface in a highly viscous fluid

when the inertial forces are negligible. Since arbitrary and fully

three-dimensional geometries would result in very involved

numerical implementation and computations, we restrict the

study to axisymmetric geometries. This assumption therefore

prevents us from tracking in time non-axisymmetric shapes

disturbances that might be produced by non-axisymmetric

instabilities. A boundary-integral approach of Stokes equations

and a relevant well-posed boundary-integral equation specifi-

cally developed for axisymmetric geometries involving several

bubbles and a free surface are obtained in Sec. III. Since we

aim at investigating the film drainage between bubbles or bub-

ble and a free surface, special efforts are made to solve accu-

rately the boundary-integral equations, as detailed in Sec. IV.

The implemented procedure then permits us to study the

motion and drainage of one, two, and three bubbles in axisym-

metric configuration in Sec. V.

II. GOVERNING EQUATIONS AND RELEVANT
PROCEDURE

We consider a Newtonian liquid with uniform viscosity l
and density q, subject to the uniform vertical gravity field

g¼� ge3 with magnitude g> 0. The ambient fluid above the

z¼ 0 plane free surface is a gas with a uniform pressure pa.

Injecting N � 1 bubble(s) in the liquid results, by buoyancy

effects, in a motion of each bubble toward the free surface,

whereas the shape of the bubble(s) and the free surface both

change with time. As outlined in the introduction, determining

those time-dependent shapes exhibiting significant deformations

is a challenging issue of fundamental interest. The present work

addresses such a task for axisymmetric configurations. As

depicted in Fig. 1, one therefore assumes at each time a free sur-

face and a single bubble or a N-bubble chain (for N � 2) that

share an axis of revolution parallel to the gravity field g. The dif-

ferent surfaces are numbered from the top to the bottom with

bubble Bn having a smooth surface Sn, whereas S0 denotes the

disturbed free surface. Moreover, those boundaries are charac-

terized by the same constant surface tension c, and a unit normal

vector n directed into the liquid.

Each bubble Bn, made of a gas with uniform pressure pn

(for instance) and negligible density and viscosity, is spheri-

cal with radius an at initial time. In the time-dependent liquid

domain D tð Þ, the fluid has pressure pþ qg � x and velocity u
with typical magnitude U¼qga2/(3l), where a¼max(an).

Moreover, the resulting Reynolds number Re obeys

Re ¼ qUa=l� 1; (1)

so that all inertial effects are neglected. Assuming quasi-

steady changes for the bubble(s) and free surface shapes, the

flow (u, p) therefore fulfills the steady Stokes equations

l$2u ¼ gradp; (2)

$ � u ¼ 0; (3)

in the liquid domain D tð Þ, to be supplemented with the far-

field behavior

ðu; pÞ ! ð0; 0Þ; as jjxjj ! 1; (4)

and additional boundary conditions on each surface Sn for

n¼ 0, … , N. Setting p0¼ pa and denoting by r, the stress

tensor of the flow (u, p), these relevant conditions consist of

both the relation (because the surface tension c is uniform)

r � n ¼ qg � x� pn þ c$S � nð Þn; (5)

on Sn for n¼ 0, … , N, and the usual zero-mass flux condi-

tions (impermeable surfaces)

FIG. 1. Retained axisymmetric configurations for N � 1 bubble(s).

092102-2 F. Pigeonneau and A. Sellier Phys. Fluids 23, 092102 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



V � n ¼ u � n; (6)

on Sn for n¼ 0, …, N, where V is the material velocity on

each surface Sn. In Eq. (5), the quantity $S � n is the surface

divergence of the unit normal n, which is related to the local

average curvature H as $S � n ¼ 2H (see Aris22). Further-

more, we assume in practice that both the temperature and

the pressure are uniform and time independent in each bub-

ble, which its volume is therefore constant as time evolves.

Under the boundary conditions (6), one then supplements

Eqs. (2)–(5) with the additional relationsð
Sn

u � ndS ¼ 0; for n ¼ 1;…;N: (7)

Observe that Eq. (7) also holds on the free surface S0 because u is

divergence free, see Eq. (3), and Eq. (7) is valid for each bubble.

At that stage, it is worth highlighting the following steps

when tracking in time the shapes of the bubble(s) and free

surface:

(i) At a given time t, one first obtains the liquid flow

(u, p) in the given fluid domain D tð Þ with boundaries

Sn by solving the problem (2)–(5) in conjunction with

Eq. (7). As explained in Sec. III B, one then actually

gets a unique solution (u, p) for Eqs. (2)–(5) and (7).

(ii) Once (u, p) has been obtained, one gets at the same

time t the normal component V � n by exploiting

Eq. (6). The knowledge of this normal velocity V � n
then permits one to move each bubble and the free

surface for a given time step dt and then to determine

the updated liquid domain D tþ dtð Þ.

The entire procedure (i)–(ii) is embedded in a Runge-

Kutta algorithm to determine the time-dependent shapes of

the bubble(s) and free surface. Such a scheme, quite simple

by essence, however, deserves a few key remarks:

(i) It requires to efficiently solve at each time the well-

posed problem (2)–(5) and (7). At a first glance, this

might be numerically achieved by computing the

flow (u, p) in the entire liquid domain using a stand-

ard finite element technique for instance. Unfortu-

nately, this would first require to adequately truncate

the unbounded liquid domain and it would also

become very cpu-time consuming if a good accuracy

is required. Another boundary approach, free from

these important drawbacks, is therefore introduced

and implemented in Secs. III and IV.

(ii) As previously noticed, the key boundary condition

(5) involves the local curvature H ¼ $S � n=2 on

each boundary. Clearly, the accuracy level at which

this quantity is numerically approximated directly

dictates the accuracy of the whole method and one

therefore needs to adequately discretize, as detailed

in Sec. IV, each surface Sn.

(iii) In order to accurately track in time the drainage

occurring for small bubble-bubble or/and bubble

free-surface gap(s), one must resort to a careful nu-

merical treatment of the boundary integrals and use

as many nodal points as necessary.

III. BOUNDARY FORMULATION

We present in this section the advocated boundary

approach to accurately solve the problem (2)–(5) and (7) for

a given liquid domain D tð Þ and prescribed gravity field g,

uniform surface tension c, uniform ambient pressure pa, and

uniform pressures pn for n¼ 1, … , N.

A. Relevant integral representation and associated
boundary-integral equation

Since the flow (u, p) obeys in the liquid domain the

Stokes equations (2) and the far-field behavior (4), its veloc-

ity field u receives in the entire liquid domain the following

widely employed integral representation:20

uðx0Þ ¼ �
1

8pl

ð
S

f ðxÞ � Gðx; x0ÞdSðxÞ

þ 1

8p

ð
S

uðxÞ � Tðx; x0Þ � nðxÞdSðxÞ; (8)

with the entire surface S ¼ [
n¼0

N
Sn and f the surface traction

defined as

f ðxÞ ¼ r � nðxÞ; (9)

and second- and third-rank tensors G and T the usual free-

space Oseen-Burgers tensor and associated stress tensor

admitting the Cartesian components Gij and Tijk given by

Gijðx; x0Þ ¼
dij

jjx� x0jj
þ ðxi � x0;iÞðxj � x0;jÞ

jjx� x0jj3
; (10)

Tijkðx; x0Þ ¼ �6
ðxi � x0;iÞðxj � x0;jÞðxk � x0;kÞ

jjx� x0jj5
; (11)

where dij is the Kronecker symbol.

Because Eq. (8) holds for x0 located in the liquid do-

main, it permits one to compute the velocity field u in the

liquid by solely appealing to two surface quantities: the ve-

locity u and the traction f on surface S. For the flow (u, p)

governed by Eqs. (2)–(5), the traction f is prescribed by the

boundary condition (5), and one therefore solely needs to

determine the velocity u on the entire liquid boundary S.

This is achieved by letting x0 tend to S in Eq. (8). Curtailing

the details which are available for instance in Pozrikidis,20

one then arrives at the following key Fredholm boundary-

integral equation of the second kind for the unknown veloc-

ity u on the liquid boundary S:

4puðx0Þ �
ð
�

S

uðxÞ � Tðx; x0Þ � nðxÞdSðxÞ

¼ � 1

l

ð
S

f ðxÞ � Gðx; x0ÞdSðxÞ; (12)

for x0 on S. In Eq. (12), the symbol means a weakly singular

integration in the principal value sense of Cauchy (see

Hadamard23 and Kupradze24). It turns out that the resulting

integral is actually a regular one, because of the scalar prod-

uct with the unit normal n. Noting that for x0 located on S
(see Pozrikidis20),
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ð
Sn

nðxÞ � Gðx; x0ÞdSðxÞ ¼ 0; (13)

for n¼ 1, …, N and injecting the boundary condition (5) in

(12) with each pressure pn being uniform then finally yields

the boundary-integral equation

uðx0Þ �
1

4pl

ð
�

S

uðxÞ � Tðx; x0Þ � nðxÞdSðxÞ ¼ Sðx0Þ; (14)

for x0 on S and S(x0) given by

Sðx0Þ ¼
1

4p

ð
S

½ðqg � xþ crS � nÞn�ðxÞ � Gðx; x0ÞdSðxÞ: (15)

Of course (5)–(15) is recovered by setting to zero the

drop viscosity ratio in Rallison and Acrivos.19 In summary,

for the present work, one has to invert at each time the above

boundary-integral equation (14) in conjunction with the rela-

tions (7) when the traction f¼ r � n is prescribed by Eq. (5).

Once this is done numerically, the liquid domain is subse-

quently updated by employing (6) and, if necessary, the ve-

locity field u is computed in the entire liquid domain by

appealing to the integral representation (8). Since this

approach only involves the surface quantities u and r � n, it is

termed a boundary approach. It clearly solely requires to

mesh the entire surface S and permits one to accurately

obtain the velocity u on S without calculating the liquid flow

(u, p) in the unbounded liquid domain.

B. Basic issues for the proposed boundary approach

Any solution (u, p) to Eqs. (2)–(5) obeys Eq. (14), but

we also require u to satisfy Eq. (7). Actually, Eq. (14) does

not admit a unique solution, i.e., is ill-posed. To clarify this

issue, let us introduce for a given bubble Bn the eigenvalues

k and associated eigenfunctions v defined on the bubble

boundary Sn such that

1

4p

ð
�

Sn

vðxÞ � Tðx; x0Þ � nðxÞdSðxÞ ¼ kvðx0Þ; (16)

for x0 on Sn. Whatever the bubble Bn, the set of eigenvalues

(the so-called spectrum) is the segment [� 1, 1] with k¼ 1

having multiplicity one (see, for instance, Pozrikidis20). The

associated normalized eigenfunctions defined on Sn are

denoted by vn and such that
Ð

Sn
vn � vndS ¼ 1. Hence, for

N¼ 1, it is clear that v obeys Eq. (12) for f¼ 0 and therefore

Eq. (14) does not have a unique solution if any. It is possible

to draw similar conclusions for N � 2 with this time v solu-

tion of Eq. (12) for f¼ 0. Consequently, the right-hand side

of Eq. (14) must satisfy compatibility conditions for Eq. (14)

to have at least one solution! To specify those conditions, we

first recall (see Pozrikidis20) that for arbitrary surfaces Sn and

Sm (with either m¼ n or m= n)ð
S0

nkðx0ÞTijkðx; x0ÞdSðx0Þ ¼ 0; (17)

for x on Sn andð
Sm

nkðx0ÞTijkðx; x0ÞdSðx0Þ ¼ 4pdijdmn; (18)

for x on Sn (when m¼ n, the integral (18) is a weakly singu-

lar integral in the principal value sense of Cauchy).

Multiplying Eq. (14) by the normal vector n(x0) and

integrating over the surface Sn, one thus arrives at the follow-

ing compatibility relations for the right-hand side S(x0) of

Eq. (14): ð
Sn

Sðx0Þ � nðx0ÞdSðx0Þ ¼ 0; (19)

for n¼ 1, …, N. Noting that Gij(x, x0)¼Gji(x0, x), exploiting

the identities (13) and the definition (15) of the right-hand

side S immediately shows that the above conditions (19) are

satisfied for the addressed boundary-integral equation (14).

Accordingly, Eq. (14) has solutions u, which read u ¼ u0

þvb1;:::;bN
with u0 any solution. For the present work, we

require the selected solution u to comply with the relations

(7). This is achieved by using Wielandt’s deflation technique

as performed, among others, by Loewenberg and Hinch,25

Zinchenko et al.,26 and explained in details in Kim and Kar-

rila.21 For N � 1 bubbles, it is then possible to prove that u
solution to Eqs. (14) and (7) obeys the modified, well-posed,

and coupled boundary-integral equations

uðx0Þ �
1

4p
�
ð

S

uðxÞ � Tðx; x0Þ � nðxÞdSðxÞ

�
XN

n¼1

ð
Sn

uðxÞ � nðxÞdSðxÞð
Sn

dSðxÞ

2
664

3
775nðx0Þ ¼ Sðx0Þ; (20)

for x0 on Sn, n¼ 1, …, N.

Clearly, u solution to Eqs. (14) and (7) obeys Eq. (20).

Conversely, multiplying Eq. (20) by n(x0) and integrating

over the surface Sn this time shows that, using Eqs. (17),

(18), and (19), a solution u to Eq. (20) also fulfils the rela-

tions (7) and thus obeys Eq. (14). Hence, the unique and

required solution to both Eqs. (14) and (7) is the solution of

the coupled boundary-integral equations (20), which is there-

fore well-posed. Moreover, as the reader may easily check,

the homogeneous counterpart of Eq. (20), here obtained by

selecting S¼ 0, has spectrum [� 1, 1].

C. Case of the axisymmetric fluid domain

The entire material developed in Secs. III A and III B is

actually valid for arbitrary three-dimensional N-bubble clus-

ters. However, as previously mentioned in the Introduction,

the numerical counterpart results in heavy implementation

step and computations. Therefore, we confine the analysis to

axisymmetric configurations, as the one depicted in Fig. 1,

and non-axisymmetric instabilities are thus not treated here.

For convenience, we further adopt cylindrical coordinates

(r, /, z) with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and / the azimuthal angle in the

range [0, 2p]. In Eq. (14), we perform the integration in the

azimuthal direction. Setting u¼ urerþ uzez¼ uaea (with

a¼ r, z) in the liquid and f¼ frerþ fzez¼ faea on the liquid

boundary then makes it possible to cast Eq. (14) into the fol-

lowing form:
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4puaðx0Þ � �
ð
L

Cabðx; x0ÞubðxÞdlðxÞ

¼ � 1

l

ð
L

Babðx; x0ÞðcrS � n� qgzÞnbðxÞdlðxÞ; (21)

where Ln is the trace of the surface Sn and L ¼ [N
m¼0 Ln the

entire contour. The quantity dl in the /¼ 0 half-plane (see

also Fig. 2) is the differential arc length. The resulting 2� 2

square matrices Bab(x, x0) and Cab(x, x0), called single-layer

and double-layer and available in Pozrikidis,20 are written in

Appendix A.

IV. NUMERICAL IMPLEMENTATION

The boundary-integral equation (14) and the relations (7)

are solved using a collocation method and a discrete Wielandt’s

deflation technique. The implemented steps are described below.

A. Employed boundary elements and discretized
boundary-integral equation

Following Muldowney and Higdon’s,27 the liquid con-

tour L ¼ [N
m¼0 Ln is divided into Ne curved boundary ele-

ments arranged to preserve the x !� x symmetry. Each

element has two end points, and Nc collocation points spread

by a uniform or Gauss distribution. As seen in Fig. 2, the end

point of an element can (i) belong to two elements located

off the axis of symmetry, or (ii) either be on the symmetry

axis or (iii) be completely free at the tip of the truncated con-

tour L0 modeling the free surface.

Isoparametric interpolations are employed for the loca-

tion of a point xie belonging to the boundary element ie and

for the approximation of the associated velocity u xieð Þ and

surface traction f xieð Þ with

xie¼
XNc

ic¼1

LicðfÞxie
ic
; uðxieÞ¼

XNc

ic¼1

LicðfÞuie
ic
; f ðxieÞ¼

XNc

ic¼1

LicðfÞf ie
ic
;

(22)

where Lic designates the employed (Nc� 1)-order Lagran-

gian interpolant polynomial and f the variable on the seg-

ment [� 1, 1] onto which each boundary element is mapped.

The quantities n � ez, n � er and $S � n are also expressed at the

point xie in Appendix B. Collecting at our NeNc nodal points

the components qg � xþ c$S � nð Þn � ea and u � ea for a¼ r, z
in prescribed and unknown 2NeNc vectors F and U and

exploiting Eq. (22) makes it possible to cast the boundary-

integral equation (21) into the 2NeNc-equation linear system

U � C � U ¼ B � F: (23)

Matrices B and C are given in Appendix B as integrals over

the segment [�1, 1] involving the quantities Bab(x, x0) and

Cab(x, x0) defined in Appendix A and are here accurately

computed, by exploiting the polynomial approximations

given in Abramowitz and Stegun,28 of the complete elliptic

integrals of the first and second kind (see also20)

FðkÞ ¼
ðp=2

0

d/

ð1� k2cos2/Þ1=2
;

EðkÞ ¼
ðp=2

0

ð1� k2cos2/Þ1=2d/:

(24)

One should note that the velocity u is unknown at each nodal

point of the truncated and discretized free-surface contour

L0. Therefore, the tips of this truncated free-surface are not

fixed in the numerical computations.

B. Computation of the matrices B and C

The components of the matrices B and C are reduced if

necessary to regular integrals. They are accurately computed

as explained in Appendix B by employing the self-adaptative

method proposed by Voutsinas and Bergeles.29 Here, we

iteratively divide a segment [a, b] into equal or inequal sub-

segments. The encountered regular integral over each sub-

segment is calculated by employing classical Gauss

quadratures. The iterative procedure is stopped as soon as

the computed value of the integral reaches a prescribed rela-

tive accuracy between 10�3 to 10�4 (obtained in practice

using three or four iterations).

C. Discrete Wielandt’s deflation

As previously explained in Sec. III B, the linear system

(23) involves the matrix C with a discrete spectrum having a fi-

nite number of eigenvalues in the interval [� 1, 1] and the

eigenvalues close to unity prevent one to accurately invert Eq.

(23). Here we remove the eigenvalues of C close to unity with-

out affecting the other eigenvalues by implementing a so-called

Wielandt’s deflation.21 We compute the (discrete) spectrum of

the C matrix by the QR method,30 select nk1
eigenvalues close

to unity with associated eigenvector Vn for the adjoint with

eigenvalue kn and introduce the new matrix C0 as

C0 ¼ C�
Xnk1

n¼1

knZn � Vn; Zn ¼ Vn=jjVnjj2; (25)

with jjVnjj the discrete norm of the vector Vn calculated

using the entire discretized surface S ¼ [N
m¼0Sn. Since the

FIG. 2. Discretization and mapping of each element onto [� 1,1] with end

points and collocation points are indicated by small segments or circles,

respectively.
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eigenvector Vn must be collinear on S to the normal vector

n, the scalar product of Vn � (B �F) must be practically equal

to zero and therefore the linear system (23) is replaced with

the well-posed one

U � C0 � U ¼ B � F; (26)

which is solved by LU decomposition.31

D. Fluid interfaces tracking

Each surface’s shape is tracked in time by exploiting the

conditions (6). In practice, the knowledge of the fluid veloc-

ity at each collocation point at time t is used to move

between times t and tþ dt the position of each nodal point

xie
ic

by integrating the equation

dxie
ic
ðtÞ

dt
¼ uie

ic
ðtÞ: (27)

This is numerically achieved by using a Runge-Kutta-Fehl-

berg method. The time step is adapted by controlling the nu-

merical error between the computations at a second and a

third Runge-Kutta algorithms. The new time step is deter-

mined following the relationship

dtnew ¼ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

e

jjxie
ic
ðtþ dtÞ � x̂ie

ic
ðtþ dtÞjj

3

s
; (28)

where32 e> 0 is a predefined accuracy, xie
ic
ðtþ dtÞ and

x̂ie
ic
ðtþ dtÞ are the computed locations at the second and third

orders, respectively. The set of coefficients required in the

Runge-Kutta algorithms are taken from the book of Stoer

and Bulirsch.30

As time evolves, collocation points have been seen to

concentrate near a stagnation area (a bubble rear) of the bub-

ble(s), therefore, yielding stretched and thus unsuitable

mesh(es) for the bubble(s). Such issues are circumvented by

redistributing from time to time the collocation points. In

addition, the typical length of the boundary elements is

adequately reduced in the area where two interfaces are close

by distributing elements nonuniformly, following a geomet-

ric sequence.

V. NUMERICAL RESULTS

This section presents and discusses our numerical results

for a few suitable benchmark tests and for the time-

dependent shapes of the free surface and one, two, or three

bubble(s). We study bubble-surface and bubble-bubble inter-

actions act, and the competition between such interactions.

A. Benchmark tests

Three tests have been performed for one bubble.

1. Integral identities

According to (13), (17), and (18) and the symmetries of

the stress tensor T (recall (11)), the following identities hold

for arbitrary point x0 located on the bubble surface Sð
S

Gijðx; x0ÞniðxÞdSðxÞ ¼ 0; (29)

ð
S

Tijkðx; x0ÞnkðxÞdSðxÞ ¼ �4pdij: (30)

In the axisymmetric formulation, the bubble has an associ-

ated contour L (the trace of its surface S in the /¼ 0 half-

plane) and the previous relations then become

Is
a ¼

ð
L

Babðx; x0ÞnbðxÞdlðxÞ ¼ 0; (31)

for a¼ r, z, and

Id
zz ¼

ð
L

Czzðx; x0ÞdlðxÞ ¼ �4p; (32)

Id
rz ¼

ð
L

Crzðx; x0ÞdlðxÞ ¼ 0: (33)

Indeed, the introduction of the velocity and unit normal

in the polar reference frame leads to a composition of the

Cartesian components Tijk. Using the definition of C easily

shows that (30) yields only relations (32) and (33) for the

components Czz and Crz. By contrast to the tridimensional

formulation,14 it is therefore not possible to regularize the

double-layer potential in Eq. (21) by solely using the identi-

ties (32) and (33).

The computed average (over all collocation points) of

the absolute value of the “single-layer” integral Is
a arising in

Eq. (31) is displayed in Table I using Ne¼ 1, 4, and 16

boundary elements on a sphere with unit diameter, Nc¼ 4, 6,

and 8 collocation points on each element and 8 Gauss points

to compute integrals over each partition.

Clearly, a good convergence is observed with, for Ne

and Nc large enough, a O(10�7) error comparable with the

TABLE I. Average of the absolute value of the integral (a) Is
r and (b) Is

z versus the numbers Ne and Nc of bound-

ary elements and collocation points on each element, respectively.

(a) Is
r (b) Is

z

Ng Ng

4 6 8 4 6 8

Ne 1 4.8 � 10�2 1.9 � 10�2 5.6 � 10�3 Ne 1 5.7 � 10�2 2 � 10�2 4.6 � 10�3

4 2.3 � 10�4 1.3 � 10�5 1.5 � 10�5 4 2.1 � 10�4 4.1 � 10�6 5.6 � 10�6

16 2.6 � 10�6 1.3 � 10�6 3.6 � 10�6 16 6 � 10�7 2.9 � 10�7 7.1 � 10�7
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obtained accuracy in computing the elliptic integrals of first

and second kind given, respectively, by Eq. (24) using Abra-

mowitz and Stegun.28

Similar results for the “double-layer” average values of

the quantities Id
zz=4p� 1 and Id

rz are given in Table II for the

same bubble and values of the integers Ne and Nc. Again, a

very good agreement with the theory is found.

2. Ascending bubble

As pointed out by Taylor and Acrivos33 and Pan and

Acrivos,34 within our assumption of negligible inertial

effects, a bubble immersed in an unbounded liquid having

uniform surface tension c and spherical shape with radius a
at initial time remains spherical with radius a when ascend-

ing under the action of a uniform gravity g¼� gez. The bub-

ble translates at the velocity u¼Uez with U¼qga2/(3l)

whatever the Bond number Bo¼qga2/(3c) and at its surface

the velocity components ur and uz read (this is the so-called

Hadamard-Rybczynski solution35,36)

ur ¼ U
sin 2h

4
; (34)

uz ¼ U 1� sin2h
2

� �
; (35)

with h the angle between the vector ez and the radial direc-

tion. Computed values of ur/U and uz/U for Bo¼ 1000 are

compared against the analytical solutions (34)–(35) in Figs.

3 and 4.

Numerical results perfectly match the analytical ones

even with the coarsest grid. Actually, the computed average

relative error is order 0.1% when Ne¼ 4 and becomes order

10�3% for refined meshes Ne¼ 8, 20.

3. Discrete spectrum of the discretized operator C

As mentioned in Sec. IV, a key step in accurately invert-

ing the discretized system (23) is the computation of the

eigenvalues k of the linear operator C. First, we consider a

spherical bubble distant from the free surface. Using Lamb’s

solutions, Kim and Karrila21 theoretically predicted these

values to be

k�n ¼
�3

ð2n� 1Þð2nþ 1Þ ; n ¼ 1; 2;…; (36)

kþn ¼
3

ð2nþ 1Þð2nþ 3Þ ; n ¼ 0; 1;…: (37)

The computed values are compared with Eqs. (36)–(37) in

Fig. 5 for different meshes of the bubble contour. For a given

mesh, there is only one eigenvalue close to unity.

TABLE II. Average of the absolute value of the quantity (a) Id
zz=4p� 1 and (b) integral Id

rz versus the numbers

Ne and Nc of boundary elements and collocation points on each element.

(a) Id
zz=4p� 1 (b) Id

rz

Ng Ng

4 6 8 4 6 8

Ne 1 1 � 10�3 1.8 � 10�5 6.1 � 10�6 Ne 1 2.5 � 10�2 2.8 � 10�3 3.1 � 10�5

4 4.9 � 10�4 1 � 10�5 5.1 � 10�7 4 2.3 � 10�3 1.8 � 10�5 2.7 � 10�6

16 7.6 � 10�6 6 � 10�7 3.1 � 10�7 16 5.8 � 10�5 4.3 � 10�6 3.7 � 10�5

FIG. 3. Normalized velocity ur/U velocity versus h
computed for Bo¼ 103; Ne¼ 4, 8, 20; and Nc¼ 4. The

analytical solution (34) is given by the solid line.
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When the bubble approaches a free surface for a similar

number of collocation points, there is a similar number of

discrete eigenvalues, but these values tend to concentrate

near the end point� 1 andþ 1 as the gap between the free

surface and the bubble decreases. This trend is clearly

observed in Fig. 6 both for undeformed and deformed liquid

surfaces. In such circumstances, one needs to apply Wie-

landt’s deflation to all eigenvalues located close to unity.

B. Results for one bubble

Here, we consider the motion of one bubble toward a

fluid interface under buoyancy effects. As mentioned in the

Introduction, this case is encountered in various applications,

such as in glass melting. For instance, the axisymmetric film

drainage between a droplet and a free surface has been stud-

ied by Chi and Leal,10 using a boundary integral formulation.

However, Chi and Leal confined the investigations to drop-

lets with a non-zero viscosity ratio between fluid inside the

droplet and fluid outside. In the present work, the case of

bubbles rising toward a fluid interface can be studied.

In practice, it is easier to work under dimensionless

form. At initial time, the bubble is spherical with radius a.

We henceforth take, respectively, 2a, U¼qga2/(3l), and

2a/U¼ 6�/(ga) as length, velocity, and time scales. The nor-

malized surface traction f using Eq. (5) and setting p1¼ 0 in

the bubble then reads

f ¼ $S � n
Bo
� 12z

� �
n; (38)

with Bo, the Bond number, defined as

Bo ¼ qga2

3c
: (39)

Here, we concentrate on the film drainage between the

bubble and the free surface, which takes place after a pure

rising regime of the bubble. Of course, both bubble and free

FIG. 4. Normalized velocity uz/U velocity versus h
computed for Bo¼ 103; Ne¼ 4, 8, 20; and Nc¼ 4. The

analytical solution (35) is given by the solid line.

FIG. 5. Computed eigenvalues and analytical predic-

tions (36)–(37) for a spherical bubble immersed in an

unbounded liquid.
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surface interfaces are likely to depend upon the initial loca-

tion and shape of the bubble. In our numerical procedure, the

free surface is moreover truncated and we therefore carefully

investigate to which extent both the initial location of the

bubble and the size of the truncated free surface affect the

results.

Henceforth, the film thickness h designates the gap (nor-

malized by 2a) on the z-axis between the bubble surface and

the free surface (note that h¼ h1/(2a) with h1 shown in Fig. 1).

The bubble and free surface interfaces are tracked as

explained in Sec. IV, using a self-adapted time step. More pre-

cisely, when the bubble is far from the interface, the time step

is large and nearly constant between two time iterations. In con-

trast, when the bubble is very close to the free surface, the pre-

scribed accuracy requires to decrease the time step. In practice,

numerical computations are stopped as soon as the film thick-

ness reaches a value of order 10�2, or whenever the time step

suitable to guarantee a prescribed accuracy becomes too small.

1. Sensitivity to the domain truncation

Numerical simulations37 have been achieved at Bo¼ 10,

with initial gap between the spherical bubble and the flat

(undeformed) interface equal to 1/2. The effect of the do-

main truncation has been first investigated by running simu-

lations for a fluid interface extending over 5 and 10 bubble

diameters using, respectively, 20 and 25 boundary elements

on the bubble and on the free surface interfaces. The number

Nc of collocation points (see Sec. IV) is equal to 4.

Fig. 7 presents for these numerical simulations both the

film thickness h and the relative error DVðtÞ ¼ VðtÞ=Vð0Þ � 1

for the preserved bubble volume VðtÞ, see Eq. (7).

Starting from a value equal to 0.5, h is seen to rapidly

decrease at small time when the bubble is free to rise. For

t&Oð1Þ, the film thickness h slowly drops due to the drain-

age of the liquid between the very close interfaces of the

bubble and of the free surface. The two numerical investiga-

tions clearly yield very close results. Therefore, truncating

the free surface at a distance exceeding five bubble diameters

appears to be sufficient.

2. Sensitivity to the bubble initial location

This time, numerical simulations are performed with

two different initial locations of the bubble below the fluid

interface, whereas the free surface is truncated at 5 bubble

FIG. 6. Computed eigenvalues for a spherical or non-

spherical bubble close to a free surface and compari-

sons with Eqs. (36)–(37) for a spherical bubble

immersed in an unbounded liquid.

FIG. 7. Film thickness h and relative error of DVðtÞ for

the bubble volume as a function of time for a fluid inter-

face truncated at a distance equal to 10 bubble diame-

ters (—) and equal to 5 bubble diameters 	—	ð Þ. Here,

Bo¼ 10 and the initial distance between the spherical

bubble and the flat interface is 1/2.
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diameters. The numbers of boundary elements are identical

to the previous calculations and again Nc¼ 4 and Bo¼ 10.

Fig. 8 plots h versus time t for two bubbles: a distant one

(h¼ 1 at t¼ 0) and another one starting from h¼ 1/2. More pre-

cisely, the distant bubble rises with h¼ 1/2 at time t1 
 0:75, at

which we let the other bubble start its motion (as illustrated in

Fig. 8). The first stage of the bubble started from h¼ 1/2 with

undeformed interfaces is slightly different from the case where

the bubble is initially located at h¼ 1. Nevertheless, after the

rising step, the two curves present the same trend.

The numerical value t1 
 0:75 at which the distant bub-

ble starting at h¼ 1 arrives at h¼ 1/2 is in good agreement

with the typical rising velocity of a bubble. Indeed, as shown

in Sec. V B 4, h obeys Eq. (41) for non-deformable interfa-

ces. Solving Eq. (41) for weak hydrodynamic interactions

then shows that the time to reduce h of 1/2 is 3/4, which is

very close to t1.

In view of the previous results, computations are hence-

forth achieved with an initial bubble-interface gap of one

bubble radius and by truncating the interface beyond 5 bub-

ble diameters.

3. Bubble shape’s sensitivity to the Bond number Bo

As already pointed out, two different steps are observed

in the bubble motion. The first one is the free rising of the

bubble, which depends on its hydrodynamic interactions

with the fluid interface. The second one is the key drainage

step, in which the bubble is nearly at rest. In this second

stage, the bubble’s shape is driven by the competition

between the buoyancy and surface tension forces. Conse-

quently, the bubble’s shape is a function of the Bond num-

ber. This shape has been determined by Princen3 for a drop

very close to the fluid interface by requiring the hydrostatic

pressure balance.

Fig. 9 presents bubble’s shapes when the bubble is

nearly at rest for Bond numbers equal to 0.1, 1, and 10. Bub-

ble’s shapes predicted by the Princen’s model are also drawn

in Fig. 9 using dashed lines.

For the weak value of the Bond number, Bo¼ 0.1, grav-

ity effects are small compared with surface tension effects,

and as seen in Fig. 9(a), the bubble remains nearly spherical

when rising and the free surface is weakly deformed. By

contrast, as Bo increases both the free surface and the bubble

interface are affected and the bubble shape becomes non-

spherical and evolves from a lens at Bo¼ 1, see Fig. 9(b) to

a quasi-hemispherical form at Bo¼ 10, Fig. 9(c). In any

case, the bubble however keeps its volume constant as

retrieved by the numerics (see the given relative error vol-

ume given in Fig. 9 caption).

The area where the drainage is at play increases with the

Bond number, and shrinks as the Bond number decreases. It

tends to zero when Bo¼ 0. A plateau is observed for the

drainage area at very large Bo. From this variety of shapes of

bubbles, we can expect to see the influence of the Bond num-

ber on the film drainage.

FIG. 8. Film thickness h versus time t for a bubble

located initially at h(0)¼ 1 (—) and for a bubble

located initially at h(0)¼ 1/2 	—	ð Þ with Bo¼ 10. The

distant bubble is located at h¼ 1/2 at t1 
 0:75 as

depicted in the inset.

FIG. 9. Bubble shape close to the free surface at (a) Bo¼ 0.1 with DV ¼ �1:1 � 10�3%, (b) Bo¼ 1 with DV ¼ 1:7 � 10�4% and (c) Bo¼ 10 with

DV ¼ 2:4 � 10�5%. Dashed lines indicate the bubble shapes predicted by Princen.3
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4. Dependence of the film drainage upon the Bond
number

Additional calculations have been carried out for various

Bond numbers in the range [0.1, 10], using the same initial

position and identical discretization. Again, numerical simu-

lations are performed until the dimensionless film thickness

reaches a value of order 10�2 whenever possible. As seen in

Fig. 10, where h versus t for various Bond numbers is plot-

ted, it is easy to reach the thickness equal to 10�2 when

Bo& 1. In contrast, for smaller Bond number, the 10�2 accu-

racy is difficult to reach. Consequently, the numerical com-

putation is stopped before that h decreases below 10�2.

The use of a log-scale on the h axis suggests that the

film drainage behaves as an exponential function of time in

the drainage regime, t&Oð1Þ. This trend contrasts with the

one observed on a viscous drop for which Chi and Leal10

proposed a rapid drainage when the drop viscosity is small

compared with the liquid viscosity, neutral drainage for

equivalent viscosities, and slow drainage for highly viscous

drops. Nevertheless, in this last situation, one observes an

algebraic evolution of the film drainage as a function of

time. For the bubble, the drainage is actually faster because

the gas inside and above the fluid interface has no effect on

the tangential stress balance. The drainage of a bubble in a

highly viscous liquid has been experimentally investigated

by Debrégeas et al.,8 and these authors report an exponential

behavior of the film drainage for a bubble suspended in a sil-

icon oil.

As previously suggested, the Bond number has a strong

influence on the drainage: the drainage rate increases when

Bo decreases (see Fig. 10). When the Bond number is larger

or equal to one, the film drainage is very similar. At a first

glance, such a trend is amazing. However, since gas does not

resist to the flow, the drainage is solely related to the flow in

the film. As suggested by the exponential behavior of the

film drainage, within the film the flow is a plug flow as it can

be shown using lubrication arguments.9 In this limit, the

drainage is limited by the extensional viscous force, which is

more important as the Bond number increases.

As Bo vanishes (for instance for high surface tension or a

very small bubble), the fluid interfaces do not deform. In this

limit, it is therefore possible to obtain h versus time by

employing the exact Stokes flow solution established in Bart38

by appealing to the bispherical coordinates procedure. For this

purpose, the force balance applied on the bubble can be used.

For a spherical bubble with a velocity U normal to the flat

interface and a gap h, the experienced drag force reads

Fd ¼ �6plakdðhÞU; (40)

where the drag coefficient kd describes the hydrodynamic

interaction between the spherical bubble and the flat fluid

interface. This quantity tends to 2/3 when h becomes large.

In our axisymmetric case, the force balance between the

drag and buoyancy forces, under the dimensionless form,

yields

kdðhÞ
dh

dt
¼ � 2

3
: (41)

The behavior of kd for h small can be obtained using the

method proposed by Cox and Brenner.39 Taking the drag

coefficient given by Bart,38 kd behaves as

kd ¼
2

3
cE �

ln h

2

� �
; (42)

with cE 
 0:57721 the Euler’s constant.28 By virtue of Eq.

(42), kd diverges as h tends to zero, but the occurring loga-

rithmic singularity is soft. Moreover, the introduction of the

last equation in Eq. (41) gives the following implicit equa-

tion for h:

cE þ
1

2

� �
hþ h ln h ¼ cE þ

1

2

� �
h0 þ h0 ln h0 � t; (43)

where h0 is the film thickness for t¼ 0. This relationship pre-

dicts the film rupture in a finite time and mainly explains

why the film drainage is faster when the fluid interfaces are

undeformed.

FIG. 10. Film thickness h versus time t at Bo¼ 0.1,

0.3, 0.5, 1, 5, 10. The solution for Bo¼ 0 is obtained by

the integration of Eq. (41).
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This conclusion contrasts with this one given by

Howell,9 who argued that the film behaves as an algebraic

function of time when the Bond number is small considering

that the gravity force is negligible. However, even if the

Bond number is very small, the buoyancy term is still impor-

tant as we can see in Eq. (41). Consequently, the drainage

for a rising bubble takes place under a constant force corre-

sponding to buoyancy effect. This conclusion should be dif-

ferent for a drainage obtained for constant velocity.

C. Results for two and three bubbles

So far, our attention has been restricted to the motion of

one bubble moving toward a free surface. In this section, the

proposed numerical method is used to investigate the axisym-

metric drainage of two or three bubbles. Note that adding one or

two bubble(s) however increases the number of involved param-

eters such as each bubble radius, and initial gaps between the

bubbles. Whenever possible, each simulation is stopped as soon

as the minimum normalized gap between bubbles is order 10�2.

1. Sensitivity to the initial bubble-bubble gaps

The numerical procedure has been applied to the case of

two bubbles rising toward a free surface. As depicted in Fig.

1, the bubble 1 is the closest one to the free surface. The film

thickness between the free surface and the first bubble is

denoted by h1 whilst h2 designates the gap between the two

bubbles. The sensitivity to the initial gap between the two

bubbles is addressed for identical bubbles and Bo¼ 1. For

each simulation, the initial value of h1 is 1/2 and we use 20

and 25 boundary elements with 4 collocation points (Nc¼ 4)

on each bubble and the free surface, respectively.

Fig. 11 shows each bubble shape when the initial dis-

tance between the two bubbles is (a) h2¼ 1/2, (b) h2¼ 1/4,

and (c) h2¼ 1/8 at t¼ 0, respectively. As seen in Fig. 11(a),

the first bubble is more deformed than when alone for an

equivalent Bond number since the second bubble pushes it

toward the free surface. In addition, the film drainage clearly

acts between the free surface and the first bubble well before

it takes place between the two bubbles.

These trends change when the initial gap h2 decreases. For

instance, Fig. 11(b) shows that for h2(t¼ 0)¼ 1/4 the second

bubble is this time more deformed and the drainage occurs

almost simultaneously above and below the first bubble. As

revealed by Fig. 11(c), for h2(t¼ 0)¼ 1/8, the second bubble is

more and more elongated as if it is sucked by the prior bubble,

and the drainage occurs first between the two bubbles.

The film drainage is analyzed by plotting in Fig. 12 the

film thicknesses h1 and h2 versus time for each addressed ini-

tial condition. As for a single bubble, the film drainage, h1,

decreases exponentially with time. For initial thickness

h2(t¼ 0)¼ 1/2 and 1/4, h2 stays stable until a time approxi-

mately equal to 0.5 and further decreases with the same

behavior as h1. In Fig. 12(b), when t& 0:75, the film thick-

nesses present a similar behavior.

2. Sensitivity to the bubble sizes

The influence of bubble sizes is investigated taking two

unequal bubbles: a small one with radius a/2 and a big one

FIG. 11. Bubble shapes for (a) h2¼ 1/2, (b) h2¼ 1/4, and (c) h2¼ 1/8 at t¼ 0 and Bo¼ 1. Solid lines represent the interfaces at the end of the computation.

The dashed lines indicate each initial interface contour.

FIG. 12. Film thicknesses h1 (solid line) and h2 (dashed line) versus time for two bubbles when the initial distance between the two bubbles are (a) h2¼ 1/2,

(b) h¼ 1/4, and (c) h¼ 1/8 and Bo¼ 1.
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with radius a. One sets Bo¼ qga2/(3c) and still takes 2a,

U¼qga2/(3l), and 2a/U as length, velocity, and time scales,

respectively. Note that the Bond number based on the small

bubble diameter is Bo/4. To study the influence of the Bond

number, computations have been done for Bo¼ 1 and 4. The

resulting interface shapes are given in Fig. 13. As seen in

Fig. 13(a), bubbles are weakly deformed for Bo¼ 1, espe-

cially the (big) bubble 2. The small bubble 1 is found to ex-

hibit two different curvatures: one on the top driven by the

film drainage with the free surface and the second on the bot-

tom due to the approaching second bubble. For Bo¼ 4, dif-

ferent shapes are obtained as seen in Fig. 13(b). For instance,

observe that the big bubble is less deformed at Bo¼ 4 than

at Bo¼ 1! The small bubble for Bo¼ 4 becomes thin and is

stretched above and near the big bubble. It therefore screens

the interactions between the free surface and the big bubble.

The film thicknesses h1 and h2 are given in Fig. 14 for

these Bond numbers. For Bo¼ 1, the film thicknesses present

similar behaviors. Observe that h1 decreases faster than h2 due

to the pushing by the second bubble. When Bo¼ 4, the film

drainage is smaller than the one observed when Bo¼ 1 both

for h1 and h2. The sensitivity of the film drainage to Bo that we

found for a single bubble is thus still valid for two bubbles.

3. Film drainage sensitivity to the number of bubbles
and Bo

In this subsection, we consider three equal bubbles ris-

ing toward the free surface. The distance between successive

bubbles is equal to 1/2 as well as the gap between the free

surface and the first bubble. Again, computations are actually

stopped here at time at which min(h1, h2, h3) 
 10�2. First,

we examine the influence of the Bond number on the inter-

face shapes by giving in Fig. 15 the free surface and bubble

shapes for Bo¼ 0.1, 0.5, and 1.

For the smallest Bond number, all bubbles remain quasi-

spherical, and the free surface is weakly deformed. As the

Bond number increases, the first bubble is more and more

deformed and takes a lens form. The second bubble is more

and more deformed near its rear (lower side) whereas the last

bubble undergoes the sucking of the previous bubble. This

behavior is similar to the one observed for two bubbles.

Actually, the last bubble is only sucked by the preceding

bubble leading to the elongation.

The influence of the bubble number on the film drainage

between the free surface and the first bubble is addressed by

plotting in Fig. 16 for one, two, and three bubbles the film

thickness h1 versus time t still for Bo¼ 0.1, 0.5, and 1.

As observed for one bubble, and two and three bubbles,

the film thickness h1 exhibits an exponential decay beyond

the free rising regime of the first bubble. Adding one bubble

increases the film drainage as clearly shown in Fig. 16(a)

when Bo¼ 0.1. Actually, at low Bond number, a second bub-

ble has a very small influence on the shape of the first bubble

located near the free surface but has a strong influence on the

film drainage taking place between this first bubble and the

free surface interface. This is because the second bubble

pushes the first one toward the free surface, thereby initiating

earlier the film drainage than in the case of a single bubble.

In addition, the increase of the thinning rate with two bub-

bles is less pronounced when the Bond number increases,

and the presence of a third bubble only weakly affects the

thinning rate when the Bond number exceeds 0.5.

VI. CONCLUSIONS

This work examines the axisymmetric motion of a bub-

ble chain rising toward a free surface. For this purpose, a rel-

evant boundary-integral approach has been both proposed

and carefully implemented. The numerical procedure is

based on a discretization of boundaries, using discontinuous

elements with variables interpolated using Lagrangian poly-

nomials. Furthermore, a well-posed regular linear system is

obtained by using a discrete Wielandt’s deflation.

FIG. 13. Bubble shapes for Bo¼ 1 (a) and Bo¼ 4 (b).

Solid lines indicate the interfaces at the end of the com-

putation when minðh1; h2Þ 
 Oð10�2Þ. The dashed

lines are initial interfaces.

FIG. 14. Film thicknesses h1 (solid line) and h2 (dashed

line) versus time for the two bubbles for Bo¼ 1 (a) and

Bo¼ 4 (b).
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The numerical procedure has been tested against some

integral identities verified by the Green functions, the rise of

a bubble in an infinite media, and the computation of discrete

eigenvalues of the double-layer potential of the Stokes

equations.

The rise of a bubble toward a free surface has been

investigated, with a special attention paid to the film drain-

age between the bubble interface and the free surface. When

close to the free interface, the bubble is found to adapt a

quasi-static shape. The obtained bubble shapes have been

compared with the results given by Princen.3 The thinning

rate appears to behave as an exponential function of time, in

agreement with prior experimental results obtained by

Debrégeas et al.8 The basic influence of the Bond number

(ratio of the gravity force to the surface tension force) has

been clearly revealed by the computation. More precisely, at

small Bond number, the drainage is fast, mainly because of

the weak deformation of fluid interfaces. For a sufficiently

large Bond number (larger than 1 with a definition used in

this article), the film drainage becomes independent of the

Bond number.

Computations with one or two additional bubble(s) have

also been performed. The initial distance between bubbles is

found to affect mainly the deformation of the last bubble,

because of the sucking of the first bubble. However, intro-

ducing one or two bubble(s) does not dramatically change

the general behavior of the film drainage of the first bubble,

which still exhibits an exponential thinning. Finally, the film

drainage is seen to decrease with the Bond number.

As explained in this work, when the Bond number Bo is

zero, the collapse of the liquid film between the bubble inter-

face and the free surface occurs in a finite time obtained by

solving Eq. (41). For a weak and non-zero Bond number, it

is this time necessary to approximate the drag force exerted

on the bubble for a slightly deformed bubble and fluid inter-

face, in order to gain a modified equation (41) and the thin

film collapse time. Such a challenging task is postponed to

future investigations.

APPENDIX A: SIMPLE AND DOUBLE-LAYER
OPERATORS IN AXISYMMETRIC FORMULATION

For x0 and x having cylindrical coordinates (r0, z0) and

(r, z), respectively, one gets20

Bzzðx; x0Þ ¼ r I10 þ ẑ2I30

� �
; Bzrðx; x0Þ ¼ rẑ rI30 � r0I31ð Þ;

(A1)

Brzðx; x0Þ ¼ rẑ rI31 � r0I30ð Þ;
Brrðx; x0Þ ¼ r I11 þ ðr2 þ r2

0ÞI31 � r0rðI30 þ I32Þ
� �

;
(A2)

with ẑ ¼ z� z0 for the single-layer matrix and, setting

n(x)¼ nrerþ nzez, the relations

Czzðx; x0Þ ¼ �6rẑ2 ẑI50nz þ ðrI50 � r0I51Þnr½ �; (A3)

Czrðx; x0Þ ¼ �6rẑ½ẑðrI50 � r0I51Þnz

þ ðr2
0I52 þ r2I50 � 2rr0I51Þnr�; (A4)

FIG. 15. Interface shapes for three rising bubbles at (a) Bo¼ 0.1 and (b) Bo¼ 0.5.

FIG. 16. Film thickness h1 versus time for one, two, and three bubbles for Bo¼ 0.1 (a), 0.5 (b), and 1 (c).
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Crzðx; x0Þ ¼ �6rẑfẑðrI51 � r0I50Þnz

þ ½ðr2 þ r2
0ÞI51 � rr0ðI50 þ I52Þ�nrg; (A5)

Crrðx; x0Þ ¼ �6rfẑ½ðr2 þ r2
0ÞI51 � rr0ðI50 þ I52Þ�nz

þ ½r3I51 � r2r0ðI50 þ 2I52Þ
þ rr2

0ðI53 þ 2I51Þ � r3
0I52�nrg; (A6)

for the double-layer matrix with previous quantities Imn

defined as

Imnðr; r0; ẑÞ ¼
4km

ð4rr0Þm=2

ðp=2

0

ð2cos2/� 1Þn

1� k2cos2/ð Þm=2
d/;

k2 ¼ 4rr0

ẑ2 þ ðr þ r0Þ2
:

(A7)

APPENDIX B: MATERIAL FOR THE NUMERICAL
IMPLEMENTATION

At a point xje with coordinate f in the segment [� 1, 1]

and located on the boundary element je, we denote by

l0jeðfÞ ¼ fz
02
je
ðfÞ þ r02je ðfÞg

1=2
the differential arc length where

primes indicate differentiation. One then gets

nzðxjeÞ ¼ �
r0jeðfÞ
l0jeðfÞ

; nrðxjeÞ ¼
z0jeðfÞ
l0jeðfÞ

;

$S � nðxjeÞ ¼
z0je

rie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z00je þ r00je

q þ
r0je z
00
je
� z0je r

00
je

ðz00je þ r00jeÞ
3=2
:

(B1)

Furthermore, the matrices B and C occurring in Eq. (23) consist

of Ne�Ne square block of order 2Nc� 2Nc with coefficients

Bieje
ab;icjc

¼ � 1

4p

ð1

�1

Babðxje ; xie
ic
ÞLjcðfÞl0jeðfÞdf; (B2)

Cieje
ab;icjc

¼ 1

4p

ð1

�1

Cabðxje ; xie
ic
ÞLjcðfÞl0jeðfÞdf for ie 6¼ je;

(B3)

Cieie
ab;icjc

¼ 1

4p
�
ð1

�1

Cabðxie ; xie
ic
ÞLjcðfÞl0ieðfÞdf; (B4)

where xie
ic

is the collocation point (with label ic on the bound-

ary element ie) at which the discretized boundary-integral

equation (21) is enforced. Two cases then occur when com-

puting the integrals (B2)–(B4):

(i) Regular integrals: This is not only the case when xie
ic

is

not located on the boundary element je. Indeed, if xie
ic

with intrinsic coordinate fic in the segment [� 1, 1],

belongs to the boundary element je the off-diagonal

components, Bzrðxie ; xie
ic
Þ and Brzðxie ; xie

ic
Þ are regular20

and, as f! fic, one gets

Czzðxie ; xie
ic
Þ ¼ �

8z02ie ðficÞ
l04ie ðficÞ

z0ieðficÞnz þ r0ieðficÞnr

f� fic

; (B5)

Czrðxie ; xie
ic
Þ ¼ Crz ¼ �

8z0ieðficÞr0ieðficÞ
l04ie ðficÞ

" #

�
z0ieðficÞnz þ r0ieðficÞnr

f� fic

	 

; (B6)

Crrðxie ; xie
ic
Þ ¼ �

8r02ie ðficÞ
l04ie ðficÞ

z0ieðficÞnz þ r0ieðficÞnr

f� fic

: (B7)

Exploiting (B1) then immediately shows that, as f
! fic,

z0ieðficÞnz þ r0ieðficÞnr

¼
r0ieðficÞz00ieðficÞ � r00ieðficÞz0ieðficÞ

l0ieðficÞ
ðf� ficÞ : (B8)

Accordingly, the integrals (B3)–(B4) are also regular

ones.

(ii) Weakly singular integrals: This happens only for inte-

grals (B2) when a¼ b and xie
ic

is located on the bound-

ary element je. This time

Brrðxie ; xie
ic
Þ � Bzzðxie ; xie

ic
Þ � 2 ln

8rieðficÞ
l0ieðficÞjf� fic j

" #

as f! fic ; (B9)

and we adopt the isolation and analytical integration

of the above weakly singular logarithmic term as

explained in Pozrikidis,20 therefore, finally ending

with the numerical evaluation of two regular integrals

over the segments [� 1, nic] and [nic,1].

Each regular integral encountered in previous cases (i)–(ii) is

iteratively computed by using the Voutsinas and Bergeles29

procedure which here consists in dividing in case (i) the seg-

ment [� 1, 1] into equal or unequal subsegments when the

point xie
ic

is not too close or close the boundary element je and

also using, as illustrated in Fig. 17, a non-uniform refinement

of the segments [� 1, nic] and [nic, 1] in case (ii).
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