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ABSTRACT

The motivation behind a spatio-temporal visual saliency
model is to extract salient information from two distinct
pathways: static (intensity) and dynamic (motion).
Consequently, the information from these pathways
is combined to get the final visual saliency map.
Since the response of the pathways is different, the
step of combination of the maps is important. As
a consequence, we study six recent fusion techniques
against two video databases using human eye positions
from an eye tracker. A criterion is used to evaluate and
underline the significance of these fusion methods.

1. INTRODUCTION

Visual attention is a process to attend to regions in
a visual scene that appears to be salient from their
surroundings. The map to represent this spotlight of
focus in the field of computer vision is called visual
saliency map. In the human vision system, the raw
information from the visual stimuli is decomposed into
several paths that process this information for certain
features. At the end of all the processing, these feature
maps are combined together into a final visual saliency
map that represents the regions of attention. It is
important to understand this function of the human
vision system, and to create models for computing that
can be used to extract relevant information. This
capability is potentially applicable in the domains
of video compression, video synthesis and analysis,
robotics, and many more.

The objective of the paper is to have a better
understanding of the potentialities of different fusion
methods, and to make the best choice for our
application. Furthermore, the fusion method must be
adaptive to the changing environment and quick to
process.

The rest of the paper is organized as follows: Section
2 introduces the spatio-temporal visual saliency model
employed to compute the visual saliency. Section 3
presents the methods used for information fusion for
the two-pathway visual saliency model. Section 4
describes the video databases, eye tracker experiment,
and criterion used for the evaluation of the results.
Section 5 presents the findings on the videos, and
demonstrates the performance of the different fusion
methods evaluated. Section 6 concludes the paper.

The research is supported by Rhône-Alpes region (France)
under the CIBLE project No. 2136.

2. SPATIO-TEMPORAL SALIENCY MODEL

Different spatio-temporal models exist to extract the
visual saliency using spatial and temporal information,
and to process them separately. Here, the model [5]
presented is based on the human visual system, where
the layout of the different steps of the model makes
it biologically inspired. Likewise, the information is
decomposed into two distinct pathways: static and
dynamic pathways to produce static and dynamic
maps, as shown in Figure 1. We use a faster GPU
implementation [8] to evaluate the model for the test
video databases.

The static pathway starts with retinal preprocessing
to enhance the details of the input visual scene by
increasing the higher luminance frequencies. This
preprocessed data is passed through a 2D bank of Gabor
filters arranged to model the receptive fields in the
visual cortex. This bank uses six orientations and
four frequencies, and results in 24 partial maps. The
resulting maps interact with each other that mimic
the lateral connections in the neuronal environment.
Finally, all the partial maps are concatenated into
a static visual saliency map Ms. Besides the static
pathway, the dynamic pathway estimates the region of
motion in the visual scene. The pathway starts with
camera motion compensation to estimate the dominant
motion of the salient regions. This preprocessing
is followed by 2D motion estimation of local motion
against the background. This estimation utilizes speed,
orientation, and direction in the moving scene. In the
end, temporal filtering is performed to minimize the
effects of bad estimations that result in the dynamic
visual saliency map Md. Ultimately, the final visual
saliency map Msd is produced by the fusion of both the
static and dynamic maps treated with a center effect
using a 2D Gaussian window. Here, the inclusion of
center effect is important because in real videos the
objects of interest are often placed in the center of the
screen.

3. DIFFERENT FUSION METHODS

The work evaluates six recent fusion techniques for the
fusion of static and dynamic saliency maps from the
spatio-temporal model. All these intermediate maps
have unequal influences in the final visual saliency map,
due to the varying input for the separate pathways.
Therefore, the motivation behind the evaluation is to
find an efficient and robust fusion method that not only
extracts all useful information, but also reduces the
effects of false findings.
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Figure 1: Block diagram of spatio-temporal visual
saliency model, where Ms, Md and Msd are static,
dynamic and fused visual saliency maps treated with
center effect Mc.

3.1 Fusion using Shannon’s information theory
[2]

Using the Shannon information theory, the conspicuous
spots are taken as events. Hence, the information
conveyed by each event is calculated by counting the
values above a threshold. This probability is used to
yield the information conveyed by each conspicuity map.

P (M) =
M > τ

M
τ = 0.6 ·MAX(Ms ∪Md)

The weights for the static and dynamic map are
obtained using:

I(M) = −log(P (M))

W (M) = I(M)MAX(M)

and, we get the final map using equation:

Msd = W (Ms)I(Ms)Ms +W (Md)I(Md)Md

3.2 Motion priority fusion model [3]

The work uses the notion of motion priority, as
the human vision system pays more attention to the

regions in motion against the static background. Here,
strong motion contrast will increase the weight for the
dynamic map, whereas the fusion weight of the spatial
information causes it to decrease. The dynamic weights
for the two pathways are calculated as:

Wd = α exp(1− α)

Ws = 1−Wd

α = MAX(Md)−MEAN(Md)

and, then the final saliency map is computed using:

Msd = WsMs +WdMd

3.3 Binary threshold mask fusion model [4]

The fusion method uses a mask for the dynamic
map, which enhances the robustness when the motion
parameters are not estimated correctly. It is useful
to exclude the inconsistent regions, and requires no
selection of a weighting factor for the spatial and
temporal information. Furthermore, the use of MAX
operator avoids the suppression of insignificant salient
regions.

Msd = MAX(Ms,Md ∩Mst)

Here, Mst(τ = M̄s) is the thresholded static saliency
map.

3.4 Max skewness fusion model [5]

The fusion model modulates the static and dynamic
saliency maps using the maximum and skewness
respectively using:

Msd = αMs + βMd + γMsMd

where,

{
α = MAX(Ms)
β = SKEWNESS(Md)
γ = αβ

3.5 Key memory fusion model [7]

The fusion model uses temporal changes to improve the
mean µ and variance S that are calculated as:

µk
s = (1− α)µk−1

s + αµk
s

µk
d = (1− α)µk−1

d + αµk
d

Sk
s = (1− α)Sk−1

s + αSk
s

Sk
d = (1− α)Sk−1

d + αSk
d

α =

{
1/k 1 ≤ k ≤ K
1/K k > K

where K depicts the rate of illumination changes that is
set to 2. Whereas, the weight is calculated as:

Wk =
(µk

s − µk
d)

(δks + δkd)

Finally, the fused saliency map is computed as:

Msd = WkMs +Md
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3.6 Dynamic weight fusion model [10]

The fusion method uses a dynamic weight calculated
from the ratio of the means of static and dynamic maps
(M̄s and M̄d) from the model.

Msd = αMd + (1− α)Ms

α =
M̄d

M̄s + M̄d

4. MATERIALS AND METHOD

4.1 Video databases

The different fusion methods detailed in Section 3
are tested against two video databases named GS [9]
and SM [5] that are assembled using the approach
followed by Carmi and Itti [1]. Here, each database
is composed of videos with varying content from
films, documentaries, sports etc . All the videos are
decomposed into small clip snippets of several seconds
that are randomly joined together into a set of clips
of ∼30s. This random fusion of the clip snippets is
interesting to study the influences of the early attention
rather than the participant anticipating the transitions
among the visual frames. The general information
regarding the video databases used is illustrated in Table
1. The main differences between the two video databases
are frame size, content and video quality.

4.2 Ground truth

The eye tracker experiment involves about 20
participants instructed to do free viewing of the video
stimuli; the two video databases. The respective eye
positions for each participant are recorded using Eyelink
II eye tracker, which afterwards are combined to build
density maps for each video frame. These resulting
density maps are compared against the visual saliency
maps to find the relevance of the model.

4.3 Criterion

Normalized Scanpath Saliency (NSS) [6] is the criterion
employed to evaluate the results of the model with their
corresponding eye fixations. It is a kind of Z-score to
compare a saliency map from the model to eye position
density map of the participants.

NSS(k) =
Mh(x, y, k)×Mm(x, y, k)−Mm(x, y, k)

σMm(x,y,k)

where Mm(x, y, k) is the average of the mapMm(x, y, k),
σMm(x,y,k) is the standard deviation of the map
Mm(x, y, k) and Mh(x, y, k) is the density map of
normalized eye positions. Here, m and h notations
correspond to the model and human respectively.

4.4 Dispersion

Dispersion is the measure used to analyze how eye
positions change overtime, we consider the dispersion
of these positions among the participants. It is defined
by the equation:

D =
1

N2

∑
i,j<i

d2i,j

where N is the number of participants and di,j is the
distance between the eye positions of participants i and
j. A lower value shows the eye positions to be closer for
the participants.

5. RESULTS

The static and dynamic saliency maps are combined into
a visual saliency map using different fusion methods
described in Section 3. These resulting maps are
compared against the experimental eye position density
maps using NSS as the criteria.

Here, Figures 2 and 3 illustrate the evolution of mean
NSS over time for the two video databases, where time
is represented by the frame position of the clip snippet
(one image = 40ms). The curve is plotted by averaging
the NSS values of the 1st frame of each clip snippet,
likewise, the same process is repeated for the first 70
frames of every clip snippet. It is observed that the
evolution curve starts off with a low mean NSS value
at the beginning of each frame, and it quickly reaches
to a peak value at about 13th frame (520ms). This
phenomenon is explained by the fact that at the change
of every clip snippet the real eye positions correspond
to the salient regions from the previous clip snippet.
The mean NSS curve reaches its maximum value after
the involvement of bottom-up influences on the visual
stimulus, and then decreases with time. Similarly,
Figure 4 shows that the value of dispersion is high at
the beginning of the videos, and it drops to a lowest
value as all the participants find a common region of
interest. It is significant that about the same time the
value of NSS is at a peak value.

Table 2 shows the NSS mean values and gains after
fusion, and Figure 5 illustrates resulting saliency maps
for the two test video databases. Firstly, the fusion
methods for Msdhan and Msdlu consider a threshold
to extract only the useful information from the partial
maps. Secondly, we know that in a human visual
system attention is often influenced by motion, that is
incorporated in the fusion method used for Msdjiang.
Likewise, Msdmarat uses skewness as a the motion

Figure 2: Evolution of NSS for GS video database using
various fusion techniques
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Experimental video databases

Name Number of Total Number of clip snippets Clip snippet Total Frame

participants (M/F) clips per clip duration frames size

GS 12/3 10 6 5-8s 10000 608× 272

SM 20/10 20 15 1-3s 14000 720× 576

Table 1: General information about the video databases used.

Different fusion methods

Video Criterion Ms Md Msdhan Msdjiang Msdlu Msdmarat Msdqi Msdxiao

database [2] [3] [4] [5] [7] [10]

GS NSS 0.57 1.02 1.02 1.26 1.14 1.19 1.17 1.25

Gain for NSS (·/Md) - - 0% 23% 12% 17% 15% 22%

SM NSS 0.88 1.19 1.33 1.40 1.37 1.28 1.43 1.35

Gain for NSS (·/Md) - - 12% 18% 15% 7% 20% 13%

Table 2: Mean NSS for various fusion methods evaluated against two video databases

Figure 3: Evolution of NSS for SM video database using
various fusion techniques

priority parameter. Thirdly, in Msdqi the fusion used
is additive, but the weight from the approximation
determines the validity of the maps. Lastly, Msdxiao
uses dynamic weight computed as the ratio of the means
of static and dynamic maps.

In Figure 5, the first row for each database represent
a scene with high motion, whereas the other samples
represent indoor, outdoor and sport scenes. The
resulting visual saliency maps show that Msdjiang and
Msdxiao give priority to the salient objects in the
dynamic saliency map Md. In the case of indoor and
sport scenes, the contours from the static maps Ms and
motion from the dynamic maps Md are fused into final
saliency maps depending on the fusion method used.

In Table 2, the NSS values for partial maps Ms

and Md from the two separate pathways of the model
show that globally results for SM video database are

Figure 4: Dispersion D for eye position as a function of
frame for the two video databases

better than the GS video database. Besides this, the
results show that the difference of the amount of salient
information in the partial maps contributes unequally in
the final visual saliency map. This unequal influence is
achieved by computing dynamic weights for the partial
maps. Resultantly, we get better results for fused
maps Msdjiang and Msdxiao for GS video database.
Whereas, in case of SM video database, the fusion
maps Msdqi takes into account the quality of both
static and dynamic maps. Additionally, the use of a
memory effect further enforces the fusion results, and
hence we obtain a gain of 20%. Furthermore, we know
that dynamic information is important in human visual
system, and hence a priority will improve the results.
This is observed for GS video database, where the fusion
maps Msdjiang has the best results.
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Original Ms Md Msdhan Msdjiang Msdlu Msdmarat Msdqi Msdxiao

(a) Examples of saliency maps using different fusion methods for GS video database

(b) Examples of saliency maps using different fusion methods for SM video database

Figure 5: Some results for the two video databases

6. CONCLUSION

The study evaluates six fusion methods for a
spatio-temporal model against two test video databases
with varying features. In a nutshell, each of the fusion
methods has their separate advantages, which could
be chosen in function of the application or combined
intelligently to result in a method that is more robust.
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