
HAL Id: hal-00620874
https://hal.science/hal-00620874

Submitted on 8 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling uncertainty in production activity control
using proactive simulation

Olivier Cardin, Pierre Castagna

To cite this version:
Olivier Cardin, Pierre Castagna. Handling uncertainty in production activity control using proactive
simulation. 12th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2006,
2006, Saint-Etienne, France. pp.579-584. �hal-00620874�

https://hal.science/hal-00620874
https://hal.archives-ouvertes.fr

HANDLING UNCERTAINTY IN PRODUCTION ACTIVITY CONTROL

USING PROACTIVE SIMULATION

Olivier CARDIN

Pierre CASTAGNA

Institut de Recherches en Communication et Cybernétique de Nantes

1 rue de la Noë

44321, Nantes FRANCE

Abstract: Simulation is a powerful tool used for a long time as a help to production

systems conception. Proactive simulation is a new approach, enabling a precious help to

these systems control. In this paper is presented a control architecture enabling the use of

this tool, and the obstacles to an optimised development. Copyright © 2006 IFAC

Keywords: Simulation, Scheduling, Uncertainty, Production Control, Manufacturing

Systems, Proactive, Real-time.

1. INTRODUCTION

In today's complex manufacturing setting, with

multiple lines of products, each requiring many

different steps and machines for completion, the

decision maker for the manufacturing plant must find

a way to successfully manage resources in order to

produce products in the most efficient way possible.

The decision maker needs to design a production

schedule that promotes on-time delivery, and

minimizes objectives such as the flow time of a

product. Real-word planning and scheduling

problems are generally complex, constrained and

multi-objective in nature.

For short-term production scheduling, alternative

methodologies and problem statements with different

considerations have been proposed in the literature.

Most of these works rely on mathematical

programming approaches based on discrete or

continuous-time representations. Although these

rigorous methods are able to guarantee the optimality

of the solution, their applicability is currently

restricted to quite small cases due to the inherent

combinatorial nature of scheduling problems. To

overcome this limitation, a wide variety of heuristic

and rule-based procedures have been developed

aiming at providing good schedules to large-scale

problems in a reasonable time. Recently, there has

been a high research interest in evolutionary, meta-

heuristic and soft computing approaches for solving

scheduling problems.

The problem of most of these scheduling solutions in

the literature is they need a perfect knowledge of all

the parameters involved in the computation of the

scheduling.

A lot of the production systems, taking into account

testing operations for example, cannot fit in this

category. Indeed, as soon as the recipes of the

products can be modified along the production, the

result of the scheduling operation is not up-to-date

anymore and thus another scheduling operation

should be run. Due to the frequency of this event, and

due to the complexity of the operation, another

solution has to be defined.

Moreover, due to the growing complexity of the

production systems, the decisional system (Le

Moigne, 1990; Lenclud, 1993), which runs the

production system, has to take a lot of decisions

along the production. To be able to take satisfying

decisions, two conditions have to be respected.

First, the decisional system must have at his disposal

reliable, complete and frequently updated data,

giving him a satisfying view of the system. The

proposition in this paper is to add a real-time

simulation in the control architecture. This

simulation plays the role of an observer, rebuilding,

thanks to the partial data retrieved from the system,

all the data needed to take a decision.

Secondly, the decisional system must be able to

evaluate the impact of the different options available.

As a matter of fact, a decision model has to be made.

This model must be at the same time accurate, i.e.

the forecasts must be sharp and correspond as much

as possible to the system, and quick. Indeed, facing a

given situation, the decisional system has a short

time to react and make a decision.

The complexity of the production systems makes that

no satisfying analytical model exists: this paper

presents the use of a proactive simulation module as

decision model.

First, the concept of a real-time simulation observer

is developed. Then, the proactive simulation module

is described before presenting an application of these

principles in last part.

2. OBSERVING A SYSTEM BY REAL-TIME

SIMULATION

Traditionally, simulation is used as a prediction tool.

As a matter of fact, time in simulation runs as fast as

possible to try and reduce the simulation time. To

achieve this, simulation tools have an engine base on

events. The simulator builds an events calendar,

ordered list of all the events that can be dated,

chronologically sorted. Then it executes the first

event of the list and rebuilds the calendar, which has

been modified by the event. This working is very

fast, as the simulator goes from event date to event

date, without considering dates where nothing is

supposed to happen.

In a real-time simulation, the engine is very different.

Indeed, the simulated time is adjusted with the real

time (synchronously with the CPU clock).

The main application of real-time simulation is the

development of simulation models meant to verify

the behaviour of real-time software

(Schludermann et al. 2000, Cofer and Rangarajan,

2003).

In this paper, another utilization of real-time

simulation is presented. The decision maker needs to

have, in order to be able to make a choice, a

complete description of the actual production system

state. To do that, a Manufacturing Execution System

(MES) is used.

"A Manufacturing Execution System (MES) is a

dynamic information system that drives effective

execution of manufacturing operations. Using current

and accurate data, MES guides, triggers, and reports

on plant activities as events occur from point of order

release into manufacturing to point of product

delivery into finished goods" according to

Manufacturing Enterprise Solutions Association

International (MESA). MES is the central source for

current information on the manufacturing floor.

These data are delivered by means of sensors to be

placed on the production floor. The problem is that

the MES is not able to give us all the state of the

system, at any time, because of the limited number of

sensors. So, a real-time simulator will be used as an

observer of the physical system.

The application will reproduce the behaviour of the

production system. Thus, the whole state of the

system will be known through the state of the

simulator.

Of course, it will be necessary to insure equivalence

between the evolution of the model and the evolution

of the system. To achieve this, the simulator will

automatically track the physical system thanks to the

data coming from the system through the MES.

The MES knows the state of the physical system

through the state change of a set of sensors. The link

between the MES and the simulator enables the

achievement of a tracking each time the MES detects

a new event.

Two possibilities may appear. On the first one, the

simulator is ahead of the physical system. In this

case, the simulator has to wait the event coming from

the MES. It means the simulation model must be

aware of all the situations where a synchronisation

has to be done. The model evolves until reaching

such a situation, and locally waits for this data. The

evolution of this part of the model will only keep

going when the data will be sent by the MES,

whereas the rest of the model keeps on going

normally.

On the second possibility, the data come from the

MES before the model reaches the synchronisation

point. At this point, a local time acceleration in order

to bring the simulator in a state conformed to the

physical system is used.

As an illustration, let’s take a conveyor and two

sensors s1 and s2 (Fig. 1).

On the simulation, a transporter (1) is in front of

sensor s1, whereas the real one is not arrived yet.

This is the first case previously described. The

simulator will then block the transporter in that

position until the real sensor s1 detects the real

transporter (1).

 On the opposite, the real transporter (2) is in front of

sensor s2 whereas the simulator displays (2) far

before sensor s2. The real system is ahead the

simulator. The tracking will instantaneously put

simulated transporter (2) in position (2b).

Obviously, each time the system is known by the

MES, there will be no difference between the

behaviour of the simulation and the behaviour of the

physical system. However, between the two sensors,

the position of the transporters is totally unknown.

s1

Physical system

Simulated system

(1)

s2

s1 s2

(1) (2) (2b)

(2)

Fig. 1. Tracking example

The simulation is then used to know this position by

simulating the moving of the transporters.

Let’s note that, because of the use of two interlocked

simulations, this work is set in the concept of

reflective simulation (Kindler et al., 2001).

3. USING THE PROACTIVE SIMULATION

Flow simulation is widely used to study production

system. For a long time, it was only used in the

conception or re-conception phase of the production

system. In Castagna et al. (2001), it was proposed to

use simulation as a Decision Helping Tool, with the

example of a production unit of the aeronautic

industry.

In Pujo et al. (2004), simulation was used inside the

Production Activity Control of a unit organised with

KANBAN. It is shown that, thanks to proactive

simulation, “the production manager […] can lean on

forecasts, simulated from structural data of the

workshop synoptic, and a model representing the

running production considering the actual state of the

workshop, permanently updated with the events,

planned or contingent, which happen”.

To develop proactive simulation on commercial

software, two main problems may appear: the

duration of the simulation and its initialisation.

3.1. The duration of a proactive simulation

Frequently, simulation of an industrial problem is

several hours long. In a conception phase, this has no

impact on the pertinence of its use. For a proactive

simulation, this duration is totally unacceptable. The

decisional system has a very short time to make its

decision, and the simulation is included in this time

as a part of the data retrieval.

Let’s consider:

 DT Total duration available for the

decisional system to make its decision,

 DC Duration needed for the retrieval of

the data needed for the simulation

 DS Total duration of the simulation,

 DD Decision-taking time, simulation

results being known.

The following relationship must be respected.

DC +DS + DD ≤ DT

In the DS time, several simulations can be run, each

one corresponding to a different scenario to be

tested. In each scenario, the decision maker applies a

different decision, which obviously leads to a

different events series. If the model is deterministic,

and the run of a simulation is Du long, then DS = N

Du will be needed to test N possible scenario.

Furthermore, if the model takes into account

stochastic events and that M replications are

necessary to increase the confidence interval, then

the duration of the simulations will be:

DS = N M Du

All along the model building, a particular care will be

brought to the running duration. Fortunately, the

simulation horizon needed for decision taking is

frequently relatively short.

3.2. The initialisation of a proactive simulation

Most of the simulation tools consider the production

system empty at initial state. Thus, there is a time at

the beginning of each replication devoted to a

progressive loading of the production system. If this

is not representative of the working of the system, it

must be removed.

In a proactive simulation, the initial state must be the

exact one of the production system. The model has to

be brought to this non-empty state starting from an

empty system and following a track that will lead it

to the correct initial state. This may quickly become

very tricky. The idea in this work is to configure the

simulator directly in the correct initial state.

But, the data retrieval is still a problem. This retrieval

has to be quick to decrease DC. As seen previously,

the MES does not have all the data required by the

simulator for its initialisation. For example, the

model needs the exact position of all the transporters

all along the system.

A communication link is thus settled with the

observer (i.e. the real-time simulation) in order to

complete the data brought by the MES: to the

production data provided by the MES are added

simulated data provided by the observer.

In the next section these concepts are developed on

an assembly line.

4. APPLICATION ON A COMPLEX

MANUFACTURING SYSTEM

The assembly line was built for educational and

research purposes by the Institut Universitaire de

Technologie of Nantes (Fig. 2). This job shop

production system is made of six workstations. The

goods are transported with pallets, which move on

unidirectional conveyors. The pallets will be called

transporters”.

Fig. 2. The job-shop production system

Figure 1. Tracking example

A transporter storehouse (an accumulation conveyor)

enables the storage of the free transporters. The

working of the line is based on the concept of

“Intelligent Product” (Wong et al., 2002). The 42

transporters are equipped with smart tags. These tags

enable an Auto-Identification when in front of a tag

reader. The data contained on the tag are part of the

decision making process. As lots of decisions are

made at a local scale, the global behaviour of the line

is hard to model.

Indeed, if, for example, the product needs to go on

stations 4, 6 and 3 (in this order) to perform the

operations required, the transporter moves on the

main loop until reaching the entrance of the work

station 4 (Fig. 3).

Fig. 3. The job-shop production system

At this point, a local decision is taken, making the

transporter enter (or not) the station. This decision

depends on a lot of parameters (number of

transporters in the station batch, breakdowns of the

station etc.).

Furthermore, the recipe of the product is an ordered

list of operations, not a list of stations. As a matter of

fact, it is frequent that two stations perform the same

operation. Thus, the entrance rule may become a lot

more complicated if, for example, the pilot chooses

to let one transporter out of two come in to balance

the load of the stations.

Similarly, stations 2 and 6 may not have a FIFO

priority rule. Indeed, the configuration of the batches

makes it possible to use dynamic scheduling methods

as list algorithms (Kim, 1995) or more complicated

rules as “Clear a Fraction” for example (Kumar and

Seidman, 1990).

Finally, it is possible to take into account test

operations. If the test is passed, the product goes on,

but if it is not, the recipe of the product is modified

to either treat the defective goods or rework it.

All these properties make this example particularly

adapted to the subject of this work, as the line is

almost impossible to model analytically.

5. THE CONTROL ARCHITECTURE

The Human Machine Interface in the control

architecture is made with a supervisor, part of the

Manufacturing Execution System with a database.

An OPC server is settled as an intermediate between

the Programmable Logic Controllers and the MES

(Fig. 4).

OPC (OLE for Process Control) is a communication

standard based on OLE/COM technology (Object

Linking and Embedding/Component Object Model),

which constitutes a unified mean of data exchanges

between software. It offers a great interoperability

(read/write) between the industrial equipments (PLC,

sensors etc.), all the monitoring/control/supervision

software and the office management software. It also

defines standard objects, methods and properties

based on COM concept to enable real-time data

servers (as PLC) to transfer the data to client OPC

applications. The server handles the refresh of the

data. Its rate may be different according to the

technology, in particular the communication

protocols.

Fig. 4. The control system

In this case, the OPC server is used as a common

platform of communication between any application

and the PLC. This enables the insertion of as many

elements in the architecture as wanted without

disturbing the other ones.

Indeed, both of the simulation applications have to be

linked to this architecture. As the system must be

able to run without the simulation help, these

applications are aggregated in a single module

(Fig. 4).

The module may be set for two different workings:

automatic or manual. Next sections will describe

these two modes.

5.1. Manual working

To illustrate this working, let’s take the example of a

major failure of station 1 of the assembly line. The

pilot expertise says it is necessary to re-organize the

workshop. All the five operations performed on the

station have to be reassigned to other stations.

At this point, the use of proactive simulation can be

broken down into 7 steps:

1. The pilot launches the simulation module

(Present Time = PT). The actual state of the

system is saved.

2. He sets the total decision time DT and the

simulation horizon.

3. He enters one of the new possible sets of

operations performed on the stations

corresponding to one of the possible scenario.

4. The simulation is launched. It is initialised from

the state saved in step 1. The production keeps

going on without any change until simulated

time PT+DT is reached, and then the changes are

made on the operations.

5. Once the simulation is over, either a new

replication of the same scenario is launched or a

new scenario is tested (step 3).

6. All the results are saved in a separate file. The

pilot can make a decision, based on the analysis

of all these results.

7. At real time PT+DT, the decision is applied on

the production system.

The pilot can analyse the results with the same

methods as those used in the usual post-production

analysis. Indeed, the simulation gives the same kind

of results than the real production, which makes this

analysis easier.

Obviously, this working is very flexible and enables

lots of possibilities. The crucial point here is once

more the time question, since a lot of replications

could be necessary (several hundreds in some cases).

Hopefully, the poor programming complexity allows

a fast evolution of the proactive simulation.

5.2. Automatic working

In automatic working, the simulation must be

transparent to the user. As two different simulations

cannot be run on the same CPU, a separate dedicated

computer may be useful.

As soon as the automatic simulation module is turned

on, the behaviour of the line changes. An application

of this feature is described in Cardin and Castagna

(2005), enabling the use of the “Clear a Fraction”

rule with a proactive sight to decrease the number of

settings.

In this mode, the decision of performing a simulation

is taken without any action of the pilot. In a given

configuration, a local decision module asks for a

simulation result. The information is transmitted to

the simulation module through the OPC server. Eight

steps can describe the working of the module:

1. When the event is generated (Present

Time=PT), the actual state of the system is

saved.

2. The total decision time DT and the simulation

horizon are automatically calculated by the

module.

3. The model corresponding to the question asked

is launched (each different type of question has

an own model).

4. The parameters of the simulation are set.

5. The simulation is launched. It is initialised from

the state saved in step 1. The production keeps

going on without any change until simulated

time PT+DT is reached, and then the changes are

made.

6. Once the simulation is over, either a new

replication of the same scenario is launched or a

new scenario is tested (step 3).

7. The module analyse the results (the decisions

procedure are decided during the building of the

architecture and may be different in each

application).

8. At real time PT+DT, a VBA procedure directly

modifies the affected PLC variables thanks to

the OPC server.

Obviously, this working is not flexible, as everything

must be programmed before its use on the production

system, but the absence of interaction with the

human operator makes the execution time (and thus

the Decision Time) a lot shorter. As a matter of fact,

this is meant to be applied to decisions that have to

be made in a few seconds.

Indeed, the decisions can be made on criteria as

much complicated as wanted, if the decision protocol

is correctly defined and based on a good expertise.

5.3. Results

On a temporal point of view, some tests were made

to evaluate the time needed for each step to be

completed in automatic working. The same tests

cannot be significant in manual working as it mostly

depends on the time the pilot needs to make his

decision, which fluctuates widely according to the

problem posed.

If steps 1 and 2 (backup of the actual state), 3, 4 and

5 (initialisation of the simulation) all together are 1

second long (DC), step 6 corresponding to the

simulation itself is about 3 seconds long (DS). As the

analysis of the results and the time needed to apply

the decision is about 1 second long (DD), a whole

simulation lasts less than 5 seconds (DT). This result

is fully satisfying as it is compatible with an online

use. Of course, this solution may be adapted if the

production rate is too high.

Then, tests were made to estimate the impact on the

production of the solution presented here. The results

are shown on Table 1.

Table 1 Comparison between workings with and

without proactive simulation

 Architecture

without

Proactive

Simulation

Architecture

with Proactive

Simulation

Gap

Number of

setups
159 109 -32%

Makespan

(seconds)
41 686 41239 -1%

The problematic of this test was to decrease the

number of setups of workstation 6. Indeed, this

station represents a painting station, and changing the

operation means changing the trajectories of the

robot and the colour of the painting. As a matter of

fact, paint is lost at each setup. The Clear-a-Fraction

rule was implemented in this aim, but better

performances are required. The results show a fall-

off of the number of setups thanks to Proactive

Simulation (-32%): this result confirms the impact of

the new architecture on the real system.

Furthermore, the makespan remains globally

constant. As proactive simulation is implemented on

a single work station (work station 6), its

productivity is modified (in this case, it is increased).

But the previous station in the recipe is not able to

supply enough products to work station 6. Similarly,

the next station in the recipe is not able to deal with

all the products coming from station 6, thus it slows

the production down. This is why the gap between

the production with and without simulation is so

small (about 1%).

6. CONCLUSION

This study shows how much simulation can be

included in a proactive approach of the Production

Activity Control of a manufacturing system with

uncertainties. It can be as well used for global

scheduling of the workshop activity, or on a very

local point of view, improve the behaviour of the

system.

As a matter of fact, proactive simulation is:

— Either a data complement given to the

pilot of the line in order to be able to

take the best decision

— or a possibility to control the line taking

into account what is going to happen

next.

All the elements needed to use proactive simulation

are meant to be aggregated in a single module

(containing several computers linked by an Ethernet

network), which can be plugged in or out without

stopping the system working.

In this module, two main elements may appear: the

real-time simulation and the proactive simulation.

The real-time simulation model is close to a classical

simulation model (except for the communications

with the other elements of the architecture), and thus

this is possible for an operator well versed in flow

simulation to build it.

Each time a new type of proactive simulation is

required, a new model has to be made. This model is

only a modification of the original model, but a large

set of strict rules has to be respected. As a matter of

fact, an expert in simulation is required at the time

being. A future development of this work is planned

about the definition of libraries useful in the

proactive simulation models building to make this

easier.

Another land to explore is the definition of the

decisional system. Indeed, in an automatic working,

it takes several decisions autonomously. Thus it

needs a decision algorithm based on the expertise of

the pilot of the line. This algorithm still needs to be

elaborated.

REFERENCES

Cardin O., P. Castagna (2005), Defining A Command

Architecture Enabling Proactive Simulations

On A Complex Manufacturing System, in

Proceedings of the I3M Conceptual Modeling

and Simulation Conference CMS’2005,

Marseille, France.

Castagna P., N. Mebarki, R. Gauduel, (2001), Apport

de la simulation comme outil d’aide au pilotage

des systèmes de production - exemples

d’application, in Proceedings of the 3e

Conférence Francophone de MOdélisation et

SIMulation MOSIM’01, Troyes, France.

Cofer Darren D. and Rangarajan M., (2003). Event-

triggered environment for verification of real-

time system, in Proceedings of the 2003 Winter

Simulation Conference, ed. S.Chick, P. J.

Sánchez, D. Ferrin, and D. J. Morrice,.

Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers. p. 915-922.

Kim Y-D (1995), A backward approach in list

scheduling algorithms for multi-machine

tardiness problems, Computers and operations

research, Volume 22, Issue 3, March 1995,

Pages 307-319

Kindler E., I. Krivy and A. Tanguy, (2001). Tentative

de simulation réflective des systèmes de

production et logistiques, in Proceedings of the

3e Conférence Francophone de MOdélisation et

SIMulation MOSIM’01, Troyes, France,

Volume 1, pp. 427-434.

Kumar P. R. and I. T Seidman., (1990) Dynamic

Instabilities and Stabilization Methods in

Distributed Real Time Scheduling of

Manufacturing Systems, IEEE Trans. on A.C.

35(3), pp. 289-298.

Le Moigne J.-L., (1990), La modélisation des

systèmes complexes, Editions Dunod.

Lenclud T., (1993), Contribution à la conception

d'un système intégré de simulation des systèmes

de production, Thèse de doctorat, Université de

Valenciennes et du Hainaut-Cambresis, France.

Pujo P., M. Pedetti and F. Ounnar, (2004), Pilotage

proactif des lignes de production kanban par

modélisation DEVS et simulation temps réel, in

Proceedings of the 5e Conférence Francophone

de MOdélisation et SIMulation, MOSIM'04,

Nantes, France, p.593-600.

Schludermann H., Kirchmair T. and Vorderwinkler

M., (2000), Soft-commissioning: Hardware-in-

the-loop based verification of controller

software, in Proceedings of the 2000 Winter

Simulation Conference. p.893-899.

Wong CY, D McFarlane, A Zaharudin and V

Agarawal, (2002), The Intelligent Product

Driven Supply Chain, in Proceedings of IEEE

Systems Man and Cybernetics, Tunisia, 2002

http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5945&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=1752e9ff99a841868b65af0fdbe4902f

