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RESOLVENT CONDITIONS

FOR THE CONTROL OF PARABOLIC EQUATIONS

THOMAS DUYCKAERTS1 AND LUC MILLER2

Abstract. Since the seminal work of Russell and Weiss in 1994, resolvent
conditions for various notions of admissibility, observability and controllability,

and for various notions of linear evolution equations have been investigated in-

tensively, sometimes under the name of infinite-dimensional Hautus test. This
paper sets out resolvent conditions for null-controllability in arbitrary time:

necessary for general semigroups, sufficient for analytic normal semigroups.

For a positive self-adjoint operator A, it gives a sufficient condition for the
null-controllability of the semigroup generated by −A which is only logarithmi-

cally stronger than the usual condition for the unitary group generated by iA.

This condition is sharp when the observation operator is bounded. The proof
combines the so-called “control transmutation method” and a new version of

the “direct Lebeau-Robbiano strategy”. The improvement of this strategy also

yields interior null-controllability of new logarithmic anomalous diffusions.

1. Introduction

This section describes briefly the control property under investigation in the
semigroup framework (we refer to the monograph [TW09] for a full account), some
previous results on resolvent conditions, the purpose, main results and plan of this
paper, and some applications to distributed parameter systems.

1.1. Preliminaries on control systems. Let −A be the generator of a strongly
continuous semigroup on a Hilbert space E and C be a bounded operator from the
domain D(A) with the graph norm to another Hilbert space F . Now ‖·‖ denotes
the norms in E and F and also the associated operator norms.

Recall the usual admissibility condition (for some time T > 0 hence all T > 0),

∃KT > 0, ∀v ∈ D(A),

∫ T

0

‖Ce−tAv‖2dt 6 KT ‖v‖2,(1)

which implies that the output map v 7→ Ce−tAv from D(A) to L2
loc(R;F) has

a continuous extension to E (n.b. the optimal admissibility constant T 7→ KT is
nondecreasing). E.g. (1) holds when C is bounded on E .

If the admissibility condition (1) holds, then null-controllability at time T (the
definition is not needed here) is equivalent to final-observability at time T , i.e.

∃κT > 0, ∀v ∈ D(A), ‖e−TAv‖2 6 κT
∫ T

0

‖Ce−tAv‖2dt.(2)

The control property investigated in this paper is (2) for all T > 0.
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Here C is interpreted as an observation operator and (2) as the continuous pre-
diction of the final state by observing the evolution between initial and final times.

Recall that κT is the control cost : it is the ratio of the size of the input over the
size of the initial state which the input steers to the zero final state in a lapse of
time T . It blows up as T tends to zero, e.g. like exp(1/T ) for the heat equation, cf.
[Sei08]. We refer to [Sei05, Mil10a] for a more extensive presentation.

Remark 1.1. When a multiple of the identity operator is added to A these notions
do not change, the constants KT and κT change but not their asymptotics as T → 0,
e.g. the value of lim supT→0 T

β lnκT for β > 0 does not change. For this reason
in some of our statements we may assume without real loss of generality that the
semigroup generated by −A is bounded or even exponentially stable.

1.2. Background on resolvent conditions for observability. The following
resolvent condition was introduced in [RW94]: ∃M > 0,

‖v‖2 6 M

(Reλ)2
‖(A− λ)v‖2 +

M

Reλ
‖Cv‖2, v ∈ D(A), Reλ > 0.(3)

Russell and Weiss proved that it is a necessary condition for exact observability in
infinite time of exponentially stable semigroups. Their conjecture that it is sufficient
was disproved in [JZ04].

When the generator is skew-adjoint (equivalently when the semigroup is a uni-
tary group) a similar resolvent condition is both necessary and sufficient for exact
observability in finite time, cf. [Mil05, theorem 5.1] repeated as [Mil11, theorem 3.8]:

Theorem 1.2. Let A be a self-adjoint operator on a Hilbert space W and C be a
bounded operator from D(A) with the graph norm to another Hilbert space.

Assume the usual admissibility condition (for some time τ > 0 hence all τ > 0),

∃Admτ > 0, ∀v ∈ D(A),

∫ τ

0

‖CeitAv‖2dt 6 Admτ‖v‖2.(4)

The resolvent condition: ∃M > 0, ∃m > 0,

‖v‖2 6M‖(A− λ)v‖2 +m‖Cv‖2, v ∈ D(A), λ ∈ R,(5)

is equivalent to exact observability in some time τ > 0, i.e. ∃τ > 0,

∃Obsτ > 0, ∀v ∈ D(A), ‖v‖2 6 Obsτ

∫ τ

0

‖CeitAv‖2dt.(6)

More precisely, (5) implies (6) for all τ > π
√
M with Obsτ 6 2mτ

τ2−π2M .

We refer to [Liu97, ZY97, BZ04] and to [Mil11] for more background and refer-
ences. This result was extended to some more general groups in [JZ09, theorem 1.2].
We refer to [EZZ08, Erv09, Erv11, Mil11] for applications to discretization.

This paper addresses resolvent conditions for the null-controllability (2) of heat-
like semigroups, i.e. when A is positive self-adjoint or more generally when the
semigroup is normal analytic. Resolvent conditions for the weaker notion of final-
observability in infinite time:

∃T > 0,∃κT > 0,∀v ∈ E , ‖e−TAv‖2 6 κT
∫ ∞

0

‖Ce−tAv‖2dt,(7)

was also investigated in [JZ09] for exponentially stable normal semigroups (in this
framework (7) implies (2) for some time T ), cf. remark 3.8. But it seems that resol-
vent conditions for final-observability for any T > 0 in (2) has not been previously
investigated, although it is a very natural notion for heat-like semigroups.

An other condition called the (α, β) Hautus test is introduced in [JS07, defini-
tion 3.5]. Other related papers are [JP06, JPP07, JPP09, XLY08].
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1.3. Main results. For simplicity, we focus in this introduction on the case where
the observation operator C is bounded from E to F . We refer to later sections for
the full statement of the main theorems under more general admissibility conditions.

We first state a sufficient resolvent condition for final-observability for any T > 0
(cf. theorems 4.3 and 4.5).

Theorem 1. Assume A is positive self-adjoint and C is bounded (from E to F).
If the resolvent condition with logarithmic factor : ∃M∗ > 0,

‖v‖2 6 M∗λ

(log λ)α

(
1

λ
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ > 0,(8)

holds for some power α > 2, then final-observability (2) for the semigroup generated
by −A holds for any time T > 0.

If the resolvent condition with power-law factor : ∃M∗ > 0,

‖v‖2 6M∗λδ
(

1

λ
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ > 0,(9)

holds for some power δ ∈ [0, 1), then final-observability (2) for the semigroup gen-

erated by −A holds for any time T > 0 with the control cost estimate κT 6 cec/T
β

for β = 1+δ
1−δ and some c > 0.

N.b. in the family of resolvent conditions (9), δ = 0 is equivalent to the exact
observability of the corresponding wave equation ẅ + Aw = 0, δ = 1 is implied by
the exact observability of the corresponding Schrödinger equation ψ̇ − iAψ = 0,
δ = −1 is the condition (3) of Russell and Weiss restricted to real λ.

Combining theorem 1 with theorem 1.2 yields that the observability of the
Schrödinger equation ψ̇− iAψ = 0 implies the observability of some “higher-order”
heat equations φ̇ + Aφ = 0 (in the sense that A and A can be expressed as some
functions of each other such that A � A at infinity in their spectrum).

Corollary 2. Assume A is positive self-adjoint and C = C is bounded, and consider

A = Aγ , γ > 1, or A = A logα/2(1 +A), α > 2.

If exact observability (6) for the Schrödinger group (eitA)t∈R holds for some time,
then final-observability (2) for the heat semigroups (e−tA)t>0 holds for any time.

Proof. By the convexity theorem [Mil11, Theorem 3.2], (5) implies (9) for A = Aγ
and δ = 2

γ − 1, and (8) for A = A logα/2(1 +A) (cf. [Mil11, Example 3.4]). �

The condition γ > 1 in corollary 2 is sharp by the following example from [Mil08,
Mil10b] of the harmonic oscillator observed from a half line (cf. proposition 5.1).

Proposition 3. Consider the positive self-adjoint operator A = −∂2
x + x2 on the

space E = L2(R) of square-summable functions on R. Define the bounded operator
C on E = F as the multiplication by the characteristic function of (−∞, x0), x0 ∈ R.

Exact observability for the Schrödinger group (eitA)t∈R holds for some time, but
final-observability (2) for the heat semigroup (e−tA)t>0 does not hold for any time.

This example also proves that condition δ < 1 in theorem 1 is sharp (since
(9) holds with δ = 1 by theorem 1.2). Another example given in §5.2 strongly
suggests that condition α > 2 in theorem 1 is also sharp. Although it does not
exactly satisfy the assumption that C is bounded, it does satisfy (8) with α = 2,
hence exact observability for the Schrödinger group holds for all times. However
final-observability for the heat semigroup does not hold for any time.

As opposed to the resolvent condition for unitary groups in theorem 1.2, the
sufficient resolvent condition with power-law factor (9) is not necessary. Indeed
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the eigenfunctions en(x, y, z) = (x + iy)n, n ∈ N∗, of the Laplacian A on the unit

sphere S2 =
{
x2 + y2 + z2 = 1

}
satisfy (A − λn)en = 0 and ‖en‖ > aea

√
λn‖Cen‖

for some a > 0, where E = L2(S2) and C is the multiplication by the characteristic
function of the complement of any neighborhood of the great circle {z = 0} (cf.
[Mil08, §4.2.2] for a similar computation), although final-observability (2) holds for
any time (cf. [LR95]). Moreover, [Mil08] gives an example (the Laplacian with cubic
potential observed from some cone in R3) where there are eigenfunctions satisfying

‖en‖ > aeaλ
2/3
n ‖Cen‖ although final-observability (2) holds for any time.

Instead of the resolvent condition with power-law factor (9), these two examples
lead us to rather consider the following resolvent conditions with exponential factor
with some powers α > 0: ∃a > 0,

‖v‖2 6 aea(Reλ)α
(
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), Reλ > 0.(10)

We prove that (10) are necessary conditions for final-observability (cf. theorem 2.4).

Theorem 4. If (1) and (2) hold for some T then (10) holds with power α = 1.

If (2) holds moreover for all T ∈ (0, T0] with the control cost κT = cec/T
β

for some

β > 0, c > 0, T0 > 0, then (10) holds with power α = β
β+1 < 1.

In §3, we give an exponential resolvent condition stronger than (10) which is
sufficient for final-observability (cf. theorem 3.7). For proving this and the other
sufficient condition (9) in theorem 1, we use the Lebeau-Robbiano strategy initiated
in [LR95] as revisited in [Mil10a]. Since this version of the strategy falls short
of proving the weaker logarithmic sufficient condition (8), we stretched it to this
purpose by dropping the requirement that it should provide an explicit estimate of
the control cost.

This new version of the direct Lebeau-Robbiano strategy of [Mil10a] is presented
in §6 for its own sake. In particular, it yields the following logarithmic improvement
(for simplicity, we state it for normal semigroups, although it is valid within the
more general framework of [Mil10a], cf. theorems 3.5 and 6.1).

Theorem 5. Assume the admissibility condition (1) and that −A generates a nor-
mal semigroup. If the logarithmic observability condition on spectral subspaces

‖v‖2 6 aeaλ/((log(log λ))α log λ)‖Cv‖2, v ∈ 1ReA<λ E , λ > e.(11)

holds for some α > 2 and a > 0, then final-observability (2) holds for all T > 0.

The corresponding condition for the strategy of [Mil10a] was (23) (n.b. this
condition is sufficient for the same range of exponents α ∈ (0, 1) as the second
necessary condition of theorem 4). The term λα, α ∈ (0, 1), in this earlier condition
(23) is replaced by λ/ϕ(λ), with ϕ(λ) = (log(log λ))α log λ and α > 2, in the new
condition (11) of theorem 5. The condition (11) may be replaced by the weaker
time-dependent condition parallel to the original in [LR95] (cf. (62) in theorem 6.1):

‖e−TAv‖2 6 a

T a
e
aλ
ϕ(λ)

∫ T

0

‖Ce−tAv‖2dt, v ∈ 1ReA<λ E , T ∈ (0, T0), λ > λ0.(12)

1.4. Applications of the main results to PDEs. Theorem 1 applies to dif-
fusions in a potential well in the following way. Consider A = −∆ + V on
E = L2(R) with potential V (x) = x2k, k ∈ N∗. It is positive self-adjoint with
domain D(A) =

{
u ∈ H2(R) | V u ∈ L2(R)

}
. Let C : E → F = E be the multipli-

cation by the characteristic function χ(−∞,x0) of a half line (−∞, x0), x0 ∈ R. It is
proved in [Mil10b] that they satisfy this power-law resolvent condition:

‖v‖2 6 λ1/kM

λ
‖(A− λ)v‖2 +m‖Cv‖2, v ∈ D(A), λ > 0,
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and the decay of the first coefficient cannot be improved (due to a basic quasimode).
Thus theorem 1 gives an alternative proof of [Mil08, theorem 1.10] for d = 1 (n.b.
in dimension d > 1, theorem 1 also applies but under a strong geometric condition
on cones than [Mil08, theorem 1.10]):

Theorem 6. The diffusion in the potential well V (x) = x2k, k ∈ N, k > 1,

∂tφ− ∂2
xφ− V φ = χ(−∞,x0)u, φ(0) = φ0 ∈ L2(R), u ∈ L2([0, T ]× R),

is null-controllable in any time, i.e. ∀T > 0, ∀φ0, ∃u such that φ(T ) = 0.

Theorem 5 applies to logarithmic anomalous diffusions in the following way (cf.
the more general theorem 6.3). Consider A = −

√
−∆ϕ(

√
−∆) on E = L2(M)

where ∆ is the Dirichlet Laplacian on a smooth connected bounded domain M of
Rd and ϕ is a function defined on the spectrum of

√
−∆. Let C : E → F = E be

the multiplication by the characteristic function χΩ of an open subset Ω 6= ∅ of M ,
i.e. it truncates the input function outside the control region Ω. Recall that in this
original framework of [LR95], −∆ satisfies (23) with exponent α = 1/2, i.e.

‖v‖2 6 cec
√
λ‖Cv‖2, v ∈ 1−∆<λ E , λ > 0.(13)

for some c > 0, where the spectral space 1−∆<λ E is the linear span of the eigen-
functions of −∆ with eigenvalues lower than λ. This interior observability estimate
for sums of eigenfunctions of the Dirichlet Laplacian is proved in joint papers of
Lebeau with Jerison and Zuazua using the boundary Carleman estimates due to
Robbiano as improved in [LR95], cf. [JL99, LZ98, LRL09]. We deduce that the log-
arithmic observability condition on spectral subspaces (11) is satisfied by A when
ϕ(λ) = (log(log λ))α log λ, α > 2, and a similar one when ϕ(λ) = (log λ)α, α > 1
(this computation is sketched before theorem 6.3). Thus theorem 5 proves

Theorem 7. Let ϕ(λ) = (log λ)α, α > 1 or ϕ(λ) = (log(log λ))α log λ, α > 2.
The following anomalous diffusion is null-controllable in any time T > 0:

∂tφ+
√
−∆ϕ(

√
−∆)φ = χΩu, φ(0) = φ0 ∈ L2(M), u ∈ L2([0, T ]×M).

For ϕ(λ) = λα, this problem was first discussed in [MZ06] (basically for a one
dimensional input u depending only on time not space, and α ∈ (−1, 0)), then null-
controllability was proved for α > 0 in [Mil06b], and the estimate of the control

cost was improved into κT = cec/T
1/α

for some c > 0, in [Mil10a, theorem 4.1]. It
is still an open problem wether theorem 7 holds for ϕ(λ) = 1, cf. remark 6.4.

1.5. Outline of the paper. In the general framework of §1.1, §2 proves that some
exponential resolvent conditions (10) are indeed necessary for null-controllability.
It mainly consists in changing i into −1 in [Mil05, lemma 5.2]. It is also close to the
proof in [RW94, theorem 1.2] that the stronger assumption of exact observability
in infinite time implies (3). Parallel exponential resolvent conditions are proved
necessary for admissibility (1). N.b. resolvent conditions equivalent to admissibility
of unitary groups (4) are introduced in [Erv09, Erv11] and generalized in [Mil11].

In §3, some exponential resolvent conditions stronger than (10) are proved suf-
ficient for null-controllability when A is normal. The proof is based on the di-
rect Lebeau-Robbiano strategy for proving final-observability in [Mil10a] (cf. theo-
rem 3.3). N.b. the “Lebeau-Robbiano strategy” was originally devised in [LR95]
for the heat flux on a bounded domain of Rd observed from some open subset of
this domain. It was revisited in more general frameworks in [Sei08, TT10, Mil10a].

When A is positive selfadjoint, §4 proves that null-controllability is implied by
power-law resolvent conditions weaker than (3) and, thanks to §6, by even weaker
logarithmic resolvent conditions. The proof combines the direct Lebeau-Robbiano
strategy of [Mil10a] and the control transmutation method of [Mil06a]. N.b. this
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method uses an integral representation similar to Phung’s in [Phu01, Phu02] to
deduce the final-observability of the heat equation v̇ + Av = 0, with an explicit
estimate of the fast control cost, from the exact observability of the wave equation
ẅ +Aw = 0 in some given time (cf. theorem 4.2).

Examples assessing the sharpness of these sufficient conditions are given in §5.
The independent §6 improves the Lebeau-Robbiano strategy in [Mil10a] when

estimating the costs is not a goal, and applies it to logarithmic anomalous diffusions.

2. Necessary resolvent conditions for semigroups

The framework of this section is as in §1.1: −A is the generator of a strongly
continuous semigroup on E and C ∈ L(D(A),F). This section examines which
resolvent conditions are implied by null-controllability in time T , and similarly by
admissibility.

Lemma 2.1. For all T > 0, v ∈ D(A), λ ∈ C, Reλ > 0:

1− e−2T Reλ

4 Reλ
‖Cv‖2 6

∫ T

0

‖Ce−tAv‖2dt+
1

(Reλ)2

∫ T

0

‖Ce−tA(A− λ)v‖2dt,(14) ∫ T

0

‖Ce−tAv‖2dt 6 1

Reλ
‖Cv‖2 +

2

(Reλ)2

∫ T

0

‖Ce−tA(A− λ)v‖2dt.(15)

Proof. Set α = Reλ, x0 = v, x(t) = e−tAx0, z(t) = x(t)−e−tλx0 and f = (A−λ)x0.
Since −ẋ(t) = Ax(t) = e−tAAx0 = e−tA(λx0 + f) = λx(t) + e−tAf , we have

ż(t) = ẋ(t)+λe−tλx0 = −λz(t)−e−tAf and therefore z(t) = −
∫ t

0
e−(t−s)λe−sAf ds.

Applying Cauchy-Schwarz inequality yields ‖Cz(t)‖2 6 It
∫ t

0
e−(t−s)α‖Ce−sAf‖2 ds

with It =
∫ t

0
e−(t−s)α ds =

∫ t
0
e−sα ds 6 1/α. Fubini’s theorem yields∫ T

0

‖Cz(t)‖2dt 6 IT
∫ T

0

IT−s‖Ce−sAf‖2ds 6
1

α2

∫ T

0

‖Ce−sAf‖2ds.

Respectively plugging e−tλx0 = x(t)− z(t) and x(t) = e−tλx0 + z(t), we now have
the following estimates which yield (14) and (15)∫ T

0

‖Ce−tαx0‖2dt 6 2

∫ T

0

‖Cx(t)‖2dt+
2

α2

∫ T

0

‖Ce−sAf‖2 ds,∫ T

0

‖Cx(t)‖2dt 6 2

∫ T

0

e−2tαdt‖Cx0‖2 +
2

α2

∫ T

0

‖Ce−sAf‖2 ds.

�

A direct consequence of (14) is a necessary resolvent condition for admissibility:

Proposition 2.2. The admissibility condition (1) implies the admissibility resol-
vent condition

‖Cv‖2 6 L(λ)‖(A− λ)v‖2 + l(λ)‖v‖2, v ∈ D(A), Reλ > 0,(16)

with L(λ) = 4 KT
(1−e−2T Reλ) Reλ

and l(λ) = 4 KT Reλ
(1−e−2T Reλ)

.

We now state necessary resolvent conditions for final-observability.

Proposition 2.3. Let BT = sup
t∈[0,T ]

‖e−tA‖ be the semigroup bound up to time T .

If (1) and (2) hold then : ∀v ∈ D(A), λ ∈ C, Reλ > 0,

‖v‖2 6 2e2T Reλ

(
(B2

T + 2κT KT )
‖(A− λ)v‖2

(Reλ)2
+ κT

‖Cv‖2

Reλ

)
.(17)
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If moreover (2) holds for all T ∈ (0, T0] with κT = c0e
2c

Tβ , c0, c, β > 0, then

‖v‖2 6 a0e
2a(Reλ)α

(
‖(A− λ)v‖2

(Reλ)2
+
‖Cv‖2

Reλ

)
, v ∈ D(A), Reλ > 0,(18)

with α = β
β+1 , a = c

1
β+1 β+1

βα and a0 = 2(B2
T0

+ c0(1 + 2 KT0)) exp 2c(β+1)

Tβ0
.

Proof. We keep the notations of the proof of lemma 2.1. The semigroup bound
yields ‖z(T )‖ 6 ITBT ‖f‖ 6 BT

α ‖f‖. Together with (2), it implies the following

estimate of x0 = eTλ(x(T )− z(T )):

‖x0‖2 6 2e2Tα

(
κT

∫ T

0

‖Cx(t)‖2dt+
B2
T

α2
‖f‖2

)
.

Plugging in the following consequence of (15) and (1)∫ T

0

‖Cx(t)‖2dt 6 1

α
‖Cx0‖2 +

2 KT

α2
‖f‖2 ,

completes the proof of (17).

Plugging κT = c0e
2c

Tβ in (17) and using that T 6 T0 and KT 6 KT0 yields:

‖v‖2 6 2(c0 +B2
T0

+ 2c0 KT0
)e2hλ(T )

(
‖Cv‖2

Reλ
+
‖(A− λ)v‖2

(Reλ)2

)
,

with hλ(T ) = T Reλ+ c
Tβ

. We are left with optimizing hλ: inf hλ(T ) = hλ(Tλ) =
c(β+1)

Tβλ
with T β+1

λ = cβ
Reλ . If Tλ 6 T0 then we choose T = Tλ and obtain hλ(T ) =

a(Reλ)α with α = β
β+1 and a = c

1
β+1 β+1

βα . Otherwise T0 Reλ 6 cβ

Tβ0
then we choose

T = T0 and obtain hλ(T ) 6 c(β+1)

Tβ0
. �

As a corollary, we state that the resolvent condition with exponential factor

‖v‖2 6 a0e
2a(Re+ λ)α

(
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ ∈ C,(19)

with α ∈ (0, 1], a and a0 positive, is necessary for final-observability.
N.b. Re+ λ := max {Reλ, 0} so that (19) for λ > 0 is nothing but (10).

Theorem 2.4. If admissibility (1) and final-observability (2) hold for some T then
(19) holds with power α = 1 and rate a = T . If (2) holds moreover for all T ∈ (0, T0]

with the control cost κT = c0e
2c

Tβ for some positive β, c and c0 then (19) holds with

power α = β
β+1 < 1 and rate a = c

1
β+1 β+1

βα .

Proof. By remark 1.1, without loss of generality we may assume that the spectrum
of A is contained in a positive half-space {z ∈ C | Re z > λ0 > 0}. Since

Reλ < λ0 ⇒ ‖v‖ 6 1

dist(λ, σ(A))
‖(A− λ)v‖ 6 1

|Reλ− λ0|
‖(A− λ)v‖,(20)

the two implications result from those in proposition 2.3: (18) implies (19) with a
greater a0, and similarly (17) implies (19) with α = 1, a = T and a greater a0. �

Remark 2.5. The fact that final-observability in some time T (2) implies an ob-
servability resolvent condition (21) for some unknown positive functions m and M
was observed independently by Hans Zwart in [OWR11]. In proposition 2.3, such m
and M are given explicitly in (16). The proof was already outlined in remark 1.13
of [Mil08].
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3. Sufficient conditions for a normal generator

In addition to the framework of §1.1, we assume in this section that −A gen-
erates a strongly continuous normal semigroup. Equivalently, A is a normal op-
erator on E (i.e. A is closed, densely defined and AA∗ = A∗A) with spectrum
contained in a left half-space (i.e. there exists γ ∈ R such that λ ∈ σ(A) implies
Reλ 6 γ). The reason for this new assumption, is that such a normal opera-
tor A has a spectral decomposition E (a.k.a. projection valued measure) which
commutes with any operator which commutes with A, defines spectral projections

1ReA<λ = E({z ∈ σ(A) | Re z < λ}), spectral spaces Eλ = 1ReA<λ E , and more
generally provides a simple functional calculus, cf. e.g. [Rud73].

The main result of this section is theorem 3.7 which gives sufficient resolvent
conditions to prove final-observability for all T > 0 by the Lebeau-Robbiano strat-
egy under the additional assumption that the semigroup is analytic, cf. §3.3. The
Lebeau-Robbiano strategy in [Mil10a] for normal semigroups is recalled in §3.2 to-
gether with a new logarithmic variant proved in greater generality in §6. We want to
stress the similarity between the usual sufficient condition for the Lebeau-Robbiano
strategy and some necessary and sufficient condition given in [RTTT05] for the va-
lidity of the resolvent condition (5). Therefore we begin in §3.1 by generalizing
this so-called “wavepacket condition” of [RTTT05] to normal semigroups and to
resolvent conditions with non-constant coefficients.

3.1. Wavepackets condition. We generalize the wavepacket condition introduced
in [CFNS91, RTTT05] for A selfadjoint with compact resolvent. Indeed the key re-
sult of [RTTT05] is that (22) for D and d constant is equivalent to (21) for M and
m constant.

Proposition 3.1. The observability resolvent condition

‖v‖2 6M(λ)‖(A− λ)v‖2 +m(λ)‖Cv‖2, v ∈ D(A), λ > 0,(21)

implies the wavepackets condition

‖v‖2 6 d(λ)‖Cv‖2, v ∈ 1|A−λ|26D(λ) E , λ > 0,(22)

for any function d > m with D =
1−md
M (e.g. d = 2m and D = 1

2M ).
The wavepackets condition (22) and the admissibility resolvent condition (16) im-

ply the observability resolvent condition (21) for any function m > d with

M = δL+ 1+δl
D , where δ =

(
1
d −

1
m

)−1
(e.g. m = 2d and M = 2dL+ 1+2dl

D ).

Proof. Let v ∈ 1|A−λ|26D(λ) E . By the spectral theorem ‖(A− λ)v‖2 6 D(λ)‖v‖2.
Plugging this in (21) yields (22) with d(λ) = m

1−DM since 1−DM = m
d > 0.

To prove the converse, we introduce the projection vλ = 1|A−λ|26D(λ) v of v ∈
D(A), and v⊥λ = v−vλ. Using ‖Cvλ‖2 6 (1+ε2)‖Cv‖2+(1+ε−2)‖Cv⊥λ ‖2, ε(λ) > 0,
and applying (16) to estimate this last term, then plugging this in (22) yields

‖v‖2 6 d(1 + ε2)‖Cv‖2 + d(1 + ε−2)L‖(A− λ)v⊥λ ‖2 + (1 + dl(1 + ε−2))‖v⊥λ ‖2.

But the spectral theorem implies ‖v⊥λ ‖2 6 1
D‖(A− λ)v⊥λ ‖2, so that (21) holds with

m = d(1 + ε2) and M = (1 + ε−2)dL+ 1+dl(1+ε−2)
D . �

Remark 3.2. E.g. this resolvent condition (which is equivalent to the observability
of the wave equation associated to A, when m is constant and admissibility holds),

‖v‖2 6 M

λ
‖(A− λ)v‖2 +m(λ)‖Cv‖2, v ∈ D(A), λ > 0,

implies

‖v‖2 6 2m(λ)‖Cv‖2, v ∈ 1|A−λ|6
√

λ
2M

E , λ > 0.
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3.2. The Lebeau-Robbiano strategy for normal semigroups. The observa-
tion operator C ∈ L(D(A),F) is said to satisfy the observability condition on spec-
tral subspaces Eλ = 1ReA<λ E with exponent α ∈ (0, 1) and rate a > 0 if there
exists positive a0 and λ0 such that

‖v‖2 6 a0e
2aλα‖Cv‖2, v ∈ Eλ, λ > λ0.(23)

This condition is the starting point of the Lebeau-Robbiano strategy. In the original
framework of [LR95] it writes (13) as recalled in §1.4. In such cases where A is
selfadjoint with compact resolvent it is a condition on sums of eigenfunctions. The
more general framework of [Mil10a] calls it observability on growth subspaces. N.b.
this condition can be considered as another kind of wavepackets condition: (23) can
be written as (22) with the spectral projection Eλ of E on the left half-plane with
abscissa lower than λ replacing the spectral projection of E on the ball of radius√
D(λ) and center on the real axis with abscissa λ.
We only recall the simpler version of the main result in [Mil10a] in the current

framework of a normal semigroup (cf. [Mil10a, §3.6]) with the simplest estimate of
the cost κT (n.b. the reference operator C0 is the identity, hence does not appear).

Theorem 3.3. Assume the admissibility condition (1), or there exists ω ∈ R and
θ ∈ [0, π2 ) such that the spectrum of A satisfies σ(A) ⊂ {z ∈ C | arg(z − ω) 6 θ}.

If the observability condition on spectral subspaces in time

‖e−TAv‖2 6 a0e
2aλα+ 2b

Tβ

∫ T

0

‖Ce−tAv‖2dt, v ∈ Eλ, T ∈ (0, T0), λ > λ0,(24)

holds with β, λ0, a0, a, b positive and α = β
β+1 , then final-observability (2) holds

for all T > 0 with the control cost estimate lim sup
T→0

T β lnκT <∞.

If the observability condition on spectral subspaces (23) holds then (24) holds for

all b > 0 and the resulting estimate is: lim sup
T→0

T β lnκT 6 2aβ+1(β+ 1)β(β+1)β−β
2

.

N.b. the time-dependent condition (24) is [Mil10a, (10)]. It generalizes the con-
dition in [LR95, §2, proposition 1] used in the original strategy before the time-
independent condition (13) was introduced, cf. also [Léa10, §4].

Remark 3.4. Admissibility here can even be replaced by the weak time smoothing
effect (introduced in [Mil10a, lemma 3.1] generalizing [TT10]), with the β of (24):

∀x ∈ E , ∀t > 0, e−tAx ∈ D(A), and lim sup
t→0

tβ ln‖Ae−tA‖ = 0.

If −A generates an analytic semigroup then this is satisfied for any β > 0 (cf. e.g.
[EN00, theorem II.4.6]). Since A is normal, analyticity is equivalent to the condition
on σ(A) stated in theorem 3.3 (cf. e.g. [EN00, corollary II.4.7]). In particular it is
satisfied if A is positive self-adjoint (which is the original assumption in [TT10]).

The following is the analogous simpler statement of the variant of the direct
Lebeau-Robbiano strategy proved in theorem 6.1:

Theorem 3.5. Assume the admissibility condition (1).
If the logarithmic observability condition on spectral subspaces in time

‖e−TAv‖2 6 ae
2aλ

(log λ)αTβ

∫ T

0

‖Ce−tAv‖2dt, v ∈ Eλ, T ∈ (0, T0), λ > λ0,(25)

holds for some λ0 > 1, a > 0, β > 0 and α > β + 1, then final-observability (2)
holds for all T > 0. Alternatively, (25) may be replaced by (12).

N.b. the assumption (25) is (62) with ϕ(λ) = (log λ)α and ψ(ω) = ωβ+1. It is
weaker than (24), but theorem 3.5 lacks the control cost estimate of theorem 3.3.
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3.3. Resolvent condition for the Lebeau-Robbiano strategy. The following
lemma just states a sufficient resolvent condition for an observability condition
on spectral subspaces of the same kind as (23). The characterization used in its
first sentence can be found in [EN00, corollary II.4.7]. N.b. if A is nonnegative
self-adjoint, it applies with θ = 0.

Lemma 3.6. Assume that the normal semigroup generated by −A is bounded an-
alytic, i.e. there exists θ ∈ [0, π2 ) such that σ(A) ⊂ {z ∈ C | arg(z) 6 θ}.

The observability resolvent condition

‖v‖2 6 cos2 θ

(λ+ λ1)2
‖(A− λ)v‖2 +m(λ)‖Cv‖2, v ∈ D(A), λ > λ0,(26)

with positive λ1 and λ0 implies

‖v‖2 6 (λ1 + λ0)2

λ1λ0(λ1 + 2λ0)
λm(λ)‖Cv‖2, v ∈ Eλ, λ > λ0.(27)

Proof. Since arg(z) 6 θ implies |Im z| 6 (tan θ) Re z, we have |ImA| 6 (tan θ) ReA.
Moreover 0 6 ReA 6 λ implies |ReA − λ| 6 λ, hence for all v ∈ Eλ, we have
‖(A − λ)v‖2 6 (1 + tan2 θ)λ2‖v‖2. Plugging this in the resolvent condition (26)

yields
(

1− λ2

(λ+λ1)2

)
‖v‖2 6 m(λ)‖Cv‖2. Now

(
1− λ2

(λ+λ1)2

)−1

= λ
λ1
g(λ) where

g(λ) = (λ1+λ)2

λ(λ1+2λ) = 1
µ(1+µ) is a decreasing function of µ = (1 + λ1

λ )−1 > 0 hence

a decreasing function of λ > 0. Using λ > λ0 yields ‖v‖2 6 λ
λ1
g(λ0)m(λ)‖Cv‖2

which is (27). �

This lemma 3.6 yields the following corollary of the Lebeau-Robbiano strategy in
theorems 3.3 and 3.5. N.b. if A is positive self-adjoint, it applies with ω0 = θ = 0.

Theorem 3.7. Assume that the normal semigroup generated by −A is analytic,
i.e. there exists ω ∈ R and θ ∈ [0, π2 ) such that σ(A) ⊂ {z ∈ C | arg(z − ω) 6 θ}.

The observability resolvent condition with α ∈ (0, 1), ω0 < ω, λ0 > ω0, and
positive a0 and a,

‖v‖2 6 cos2 θ

(λ− ω0)2
‖(A− λ)v‖2 + a0e

2aλα‖Cv‖2, v ∈ D(A), λ > λ0,(28)

implies final-observability (2) for all time T > 0 with the control cost estimate

lim sup
T→0

T β lnκT 6 2aβ+1(β + 1)β(β+1)β−β
2

, where β =
α

1− α
.

The resolvent condition (28) with λα replaced by λ/ ((log(log λ))α log λ), α > 2,
and the admissibility condition (1) imply final-observability (2) for all T > 0.

Proof. Let A0 = A − ω and λ1 = ω − ω0 > 0. The semigroup generated by −A0

is bounded analytic and normal. The condition (28) implies (26) with A replaced

by A0, with m(λ) = a′0e
2a′λα where a′ > a is arbitrary, with a′0 > 0 depending

on a′, and maybe a different λ0. Therefore we may apply lemma 3.6 to A0. The
resulting (27) implies (23) with a replaced by a′. Hence theorem 3.3 applies to A0.
According to remark 1.1, the resulting cost estimate is still valid for A.

The same proof applies to the second part of theorem 3.7 with theorem 3.3
replaced by theorem 3.5. �

Remark 3.8. For exponentially stable normal semigroups (not necessarily ana-
lytic), [JZ09, theorem 1.3] proves that the resolvent condition (3) implies final-
observability in infinite time (7), which implies final-observability at some time T
in (2). For exponentially stable normal semigroups which are analytic, theorem 3.7
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applies with some ω > ω0 = 0 and some θ: it says that the observability resolvent
condition with α ∈ (0, 1), λ0, a0 and a positive,

‖v‖2 6 cos2 θ

λ2
‖(A− λ)v‖2 + a0e

2aλα‖Cv‖2, v ∈ D(A), λ > λ0,(29)

implies a stronger conclusion than [JZ09, theorem 1.3]: final-observability for all
positive times T and a control cost estimate. Comparing (29) with (3), we see that
the assumption (29) concerns only large real λ, it is weaker on the second coefficient
(it is exponentially increasing instead of polynomially decreasing with λ), but it is
stronger on the first coefficient: M is restricted to taking the value cos2 θ (e.g.
M = 1 if A is positive self-adjoint). N.b. concerning this restriction, [GC96] and
under weaker assumptions [JZ09, proposition 4.1] prove: if an exponentially stable
semigroup satisfies (3) with M = 1, then it is exactly-observable in infinite time,
which implies final-observability in infinite time (7).

4. Sufficient resolvent condition for a self-adjoint generator

In addition to the framework of §1.1, we assume in this section that A is positive
self-adjoint. The main reason is that we shall use the resolvent condition for the
exact controllability of the corresponding second order equation ẅ+Aw = 0. Since
the propagators Cos(t) = cos(t

√
A) and Sin(t) = (

√
A)−1 sin(t

√
A) can be defined

for more general operators A (known as generators of a strongly continuous cosine
operator functions, cf. [Mil06a]) there is still some hope to extend this section to a
more general framework.

4.1. Preliminaries on second order control systems. We introduce the Sobolev
scale of spaces based on A. For any s ∈ R, let Hs denote the Hilbert space D(As/2)
with the norm ‖x‖s = ‖As/2x‖ (n.b. H0 = E).

For simplicity we consider the framework which suits the observability of the
wave equation from the interior rather than from the boundary. When C is an
interior observation operator, C ∈ L(H0,F) and admissibility is obvious. In this
section we make the weaker assumption C ∈ L(H1,F), but this is stronger than
the assumption C ∈ L(H2,F) in §1.1. Indeed we consider the second order system
with output function y:

z̈(t) +Az(t) = 0, z(0) = z0 ∈ H0, ż(0) = z1 ∈ H−1, y(t) = Cz(t),(30)

We rewrite it as a first order system ẇ−iAw = 0 in the Hilbert spaceW = H0×H−1

with norm ‖(z0, z1)‖2 = ‖z0‖20 + ‖z1‖2−1. The self-adjoint generator A is defined by

A(z0, z1) = i(−z1, Ãz0) with domain D(A) = H1 × H0 where Ã here denotes the
extension of A to H−1 with domain H1. The observation operator C ∈ L(D(A),F)
is defined by C(z0, z1) = Cz0.

The admissibility condition for (30) is (4), i.e.

∃Admτ > 0, ∀(z0, z1) ∈ D(A),

∫ τ

0

‖Cz(t)‖2dt 6 Admτ‖(z0, z1)‖2.(31)

This condition is equivalent to the resolvent condition, cf. [Mil11, corollary 3.15],

‖Cv‖2 6 L2(λ)

(
1

λ
‖(A− λ)v‖2 + ‖v‖2

)
, v ∈ D(A), λ > inf A,(32)

where the positive function L2 is (for the time being) constant.
Recall that, if the admissibility condition (31) holds, then exact controllability

in time τ is equivalent to exact observability in time τ of (30), i.e.

∃Obsτ > 0, ∀(z0, z1) ∈ D(A), ‖(z0, z1)‖2 6 Obsτ

∫ τ

0

‖Cz(t)‖2dt.(33)
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As already mentioned in theorem 1.2 of the introduction, the existence of τ > 0 such
that the observability condition (33) holds is equivalent to the resolvent condition

‖w‖2 6M(λ)‖(A− λ)w‖2 +m(λ)‖Cw‖2, w ∈ D(A), |λ| > inf
√
A,(34)

where the positive functions M and m are (for the time being) constants. Moreover
(34) with constant m and M , is equivalent to (cf. [Mil11, corollary 3.18])

‖v‖2 6M2(λ)

(
1

λ
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ > inf A,(35)

where the positive function M2 is (for the time being) constant.
We shall need the following more precise statement with variable coefficients

L2, M2, M and m proved in [Mil11, example 3.17] (e.g. proposition 5.2 gives an
example where L2(λ) and M2(λ) increase like λ/ log2(1 + λ)):

Theorem 4.1. The resolvent conditions (32) and (35) with L2 constant or L2(λ)→
+∞ as λ→ +∞, and with M2(λ)→ +∞ as λ→ +∞ imply the exact observability
condition (34) with m(λ) = 8M2(λ2) and M(λ) equivalent to some constant times
L2(λ2)M2(λ2) as λ→ +∞. (n.b. M(λ) also depends on ‖C‖L(H1;F)).

We shall also need the fast control cost estimate provided by the control trans-
mutation method, as stated at the end of the proof of [Mil06a, theorem 3.4]:

Theorem 4.2. There exists k∗ > 0 such that the admissibility (31) and the exact
observability (33) for some time τ > 0 of the second order system (30) imply the
final-observability of the first order system (2) for all times T > 0 with the control
cost estimate κT 6 Obsτ k∗ exp(k∗τ

2/T ), T ∈ (0,min{1, τ2}).

4.2. Main result. The control transmutation method in [Mil06a] stated in terms
of the resolvent conditions in [Mil11] says that the resolvent conditions (32) and
(35) when the functions L2 and M2 are positive constants imply final-observability
(2) for any time T > 0 with the control cost estimate lim supT→0 T lnκT < +∞.

Our main result is that, with appropriate admissibility condition, the observabil-
ity resolvent condition (35) is still sufficient when M2(λ) increases like λδ, δ ∈ (0, 1):

Theorem 4.3. Assume that the positive self-adjoint operator A and the operator
C bounded from D(

√
A) with the graph norm to F satisfy the admissibility and

observability conditions with nonnegative γ and positive δ, L∗ and M∗:

‖Cv‖2 6 L∗λγ
(

1

λ
‖(A− λ)v‖2 + ‖v‖2

)
, v ∈ D(A), λ > inf A,(36)

‖v‖2 6M∗λδ
(

1

λ
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ > inf A.(37)

If γ + δ < 1 then final-observability (2) for the semigroup generated by −A holds
for any time T > 0 with the control cost estimate

lim sup
T→0

T β lnκT < +∞, where β =
1 + γ + δ

1− γ − δ
.

Proof. Setting L2(λ) = L∗λ
γ and M2(λ) = M∗λ

δ, theorem 4.1 yields (34) with

M(λ) = m(λ) = M ′∗λ
2δ′ , δ′ = γ + δ, and some other positive constant M ′∗. Hence,

‖w‖2 6M ′∗λ2δ′
(
‖(A− µ)w‖2 + ‖Cw‖2

)
, w ∈ D(A), λ > |µ| > inf

√
A.(38)

For any λ > inf A, we introduce the restriction Aλ = 1A<λA of A to the spectral
subspace Eλ = 1A<λ E , and similarly the restrictionAλ = 1|A|<λA ofA to the spec-
tral subspaceWλ = 1|A|<λW. N.b. Aλ is associated with Aλ2 (rather than Aλ) and

Wλ = Eλ2 × Eλ2 with the same norm as W (indeed A is isomorphic to
√
A
(

1 0
0 −1

)
,



PARABOLIC OBSERVABILITY RESOLVENT CONDITIONS 13

cf. e.g. [Mil11, theorem 3.8]). Since σ(Aλ) ⊂
{
µ ∈ R | λ > |µ| > inf

√
A
}

, applying

[Mil11, proposition 2.9(iii)]) to the restricted resolvent condition (38) yields the full
resolvent condition:

‖w‖2 6M ′∗λ2δ′
(
‖(Aλ − µ)w‖2 + ‖Cw‖2

)
, w ∈ Wλ, µ ∈ R, λ > inf

√
A.

By theorem 1.2, this implies that the group generated by iAλ is exactly observ-

able by C for all τ > τ∗ = π
√
M ′∗λ

δ′ with cost Obsτ 6
2τ2
∗τ

π2(τ2−τ2
∗ ) . Taking

τ =
√

2τ∗ yields Obsτ 6 2π−2τ . By theorem 4.2, this implies final-observability
for all times T > 0 of the semigroup generated by −Aλ2 with the cost estimate
κT 6 2π−2k∗τ exp(k∗τ

2/T ), T ∈ (0, T0), T0 6 min{1, τ2}. Since λ > inf
√
A, we

may take T0 = min{1, 2π2M ′∗(inf A)δ
′}. For notational convenience we change λ2

into λ. Thus, taking any c∗ > 2π2M ′∗k∗, there exists c0 > 0 such that

‖e−TAv‖2 6 c0ec∗λ
δ′/T

∫ T

0

‖Ce−tAv‖2dt, v ∈ Eλ, T ∈ (0, T0), λ > inf A.(39)

Taking α and β such that β = α
1−α and 1

β + δ′

α = 1, Young inequality yields

λδ
′

T
=

(λα)δ
′/α

T
6
δ′

α
λα +

1

βT β
, with α =

δ′ + 1

2
, β =

1 + δ′

1− δ′
.

Hence (39) implies (24) for some positive a0, a and b, with α ∈ (1/2, 1) since
δ′ ∈ (0, 1). The Lebeau-Robbiano strategy in theorem 3.3 completes the proof. �

Remark 4.4. The assumption of the control transmutation method corresponds
to γ = δ = 0 in theorem 4.3. The Russell-Weiss condition (3) assumed in the more
general result of [JZ09] for normal generators mentioned in remark 3.8 corresponds
to δ = −1 in (37). As already mentioned after theorem 1 in §1.3, the condition
δ < 1 is sharp when C is bounded.

4.3. Variants. Thanks to the improved Lebeau-Robbiano strategy in §6, we re-
place the polynomial loss λ1−δ in (37) of Theorem 4.3 by a logarithmic loss:

Theorem 4.5. Assume that the positive self-adjoint operator A and the operator
C bounded from D(

√
A) with the graph norm to F satisfy the admissibility and

observability resolvent conditions with positive α, L∗ and M∗:

‖Cv‖2 6 L∗
(

1

λ
‖(A− λ)v‖2 + ‖v‖2

)
, v ∈ D(A), λ > inf A,(40)

‖v‖2 6 M∗λ

logα(λ+ 1)

(
1

λ
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ > inf A.(41)

If α > 2 then final-observability (2) holds for any time T > 0.

Remark 4.6. In Proposition 5.2 below, we give an example satisfying the admissi-
bility condition (1) and (41) with α = 2, and such that final-observability (2) does
not hold for any time T > 0. However this example does not satisfy condition (40).

Proof. The proof is very close to the one of Theorem 4.3, except that we use The-
orem 3.5 instead of Theorem 3.3 to conclude. We use the notations Eλ, Aλ, W, A,
Wλ and Aλ of the proof of Theorem 4.3.

Fix λ > inf
√
A. By Theorem 4.1 with L2(λ) = L∗ and M2(λ) = M∗λ

logα(λ+1) , there

exists M ′∗ > 0 such that

‖w‖2 6 M ′∗λ
2

logα(λ+ 1)

(
‖(A− µ)w‖2 + ‖Cw‖2

)
, w ∈ D(A), inf

√
A 6 |µ| 6 λ.
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By [Mil11, Prop. 2.9], (iii), applied to the operator Aλ,

‖w‖2 6 M ′∗λ
2

logα(λ+ 1)

(
‖(Aλ − µ)w‖2 + ‖Cw‖2

)
, w ∈ Wλ, µ ∈ R.

By Theorem 1.2, the group generated by iAλ is exactly observable in time
λπ
√

2M ′∗
logα/2(λ+1)

,

with a cost bounded, up to a multiplicative constant, by λ
logα/2(λ+1)

. By Theorem

4.2, this implies final-observability for e−tAλ2 , in time T ∈ (0, T0) (T0 is indepen-

dent of λ), with a cost which can be bounded from above by e
aλ2

T logα(λ+1) for some
a > 0. Hence (for some constant a′),

‖e−TAv‖2 6 a′e
a′λ

T logα(λ+1)

∫ T

0

‖Ce−tAv‖2dt, v ∈ Eλ, T ∈ (0, T0), λ > inf A.

and the conclusion of the theorem follows from Theorem 3.5. �

To close this section we give the version of the main result in the framework
which suits the observability from the boundary rather than from the interior, i.e.
we return to the weaker assumption C ∈ L(H2,F) in §1.1. It uses the definition of
Sobolev spaces Hs and norms introduced in §4.1.

Corollary 4.7. Assume that the positive self-adjoint operator A and the bounded
operator C : D(A) → F satisfy the admissibility and observability conditions with
nonnegative γ and positive δ, L∗ and M∗:

‖Cv‖2 6 L∗λγ
(

1

λ
‖(A− λ)v‖21 + ‖v‖21

)
, v ∈ H3, λ > inf A,(42)

‖v‖21 6M∗λδ
(

1

λ
‖(A− λ)v‖21 + ‖Cv‖2

)
, v ∈ H3, λ > inf A.(43)

If γ + δ < 1 then the conclusion of theorem 4.3 still holds.

Proof. It is enough to prove the conclusion (2) for v in the dense space H3 and with

the final-state norm ‖e−TAv‖ replaced by the larger norm ‖e−TAv‖1 = ‖e−TA
√
Av‖

(indeed this is not a stronger conclusion as can be proved using the analyticity of
the semigroup for an arbitrary small portion τ of the time T : ‖τAe−τA‖ is bounded
for τ > 0). Equivalently, it is enough to replace C in (2) by CA−1/2. To complete
the proof of this corollary, we check that theorem 4.3 applies to this new observation
operator CA−1/2: it is in L(D(

√
A),F) since C ∈ L(D(A),F) and, replacing v ∈ H3

by A−1/2v with v ∈ D(A), (42) and (43) are the needed resolvent conditions. �

5. Not sufficient resolvent conditions: two counterexamples

We first give the concrete example of the quantum harmonic oscillator hamil-
tonian A on the line, observed from a half line. In this example C is a bounded
operator and the resolvent condition (9) of theorem 1 in §1.3 is satisfied in the
excluded limit case δ = 1 although its conclusion does not hold. N.b. no stronger
resolvent condition holds, the Schrödinger group (eitA)t∈R is observable for some
time T , but the heat semigroup (e−tA)t>0 is not observable for any time T .

In the second example, A is a positive self-adjoint operator with compact resol-
vent on the state space E = `2 of complex (or real) square-summable sequences
and C is an observation with one dimensional output space F = C (resp. F = R).
In this example C is admissible (but not bounded) and the logarithmic resolvent
condition (41) of theorem 4.5 is satisfied in the excluded limit case α = 2 although
its conclusion does not hold. N.b. the Schrödinger group (eitA)t∈R is observable for
any time, but the heat semigroup (e−tA)t>0 is not observable in a stronger sense
(no sums of eigenfunctions may be driven to zero in finite time).
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5.1. Harmonic oscillator observed from a half line. Consider A = −∂2
x + V

on E = L2(R) with the quadratic potential V (x) = x2. It is positive self-adjoint
with domain D(A) =

{
u ∈ H2(R) | V u ∈ L2(R)

}
. Let C : E → F = E be the

multiplication by the characteristic function of a half line (−∞, x0), x0 ∈ R.

Proposition 5.1. This harmonic oscillator observed from a half line satisfies:

(a) The observation operator C is bounded on E, hence it is admissible for both
the heat semigroup (e−tA)t>0 and the Schrödinger group (eitA)t∈R.

(b) The resolvent condition with positive variable coefficients M and m

‖v‖2 6M(λ)‖(A− λ)v‖2 +m(λ)‖Cv‖2, v ∈ D(A), λ ∈ R,
holds when M and m are constant functions, but it cannot hold with a
function M such that M(λ)→ 0 as λ→ 0, cf. [Mil10b].

(c) The Schrödinger group is null-controllable (hence exactly controllable) for
any time T > π/2 (but not for T < π/2), cf. [Mil10b].

(d) The heat semigroup is not null-controllable in any time T > 0, cf. [Mil08].

Proof. Point (a) is trivial. For the sake of completeness, we sketch the proof of
point (b) in [Mil10b]. The resolvent condition in point (b) writes

(44)

∫ +∞

−∞
|v(x)|2dx 6M(λ)

∫ +∞

−∞
|−v′′(x) + (x2 − λ)v(x)|2dx

+m(λ)

∫ x0

−∞
|v(x)|2dx v ∈ C∞0 (R), λ ∈ R.

To prove it when M and m are constant functions, we may restrict it to λ > 1
without loss of generality by [Mil11, proposition 2.9.iii] since the first eigenvalue of

A is 1. By the change of variable u(y) = v(x), y =
√
hx, h = 1/λ, it writes∫ +∞

−∞
|u(y)|2dy 6 M

h2

∫ +∞

−∞
|−h2u′′(y) + (y2 − 1)u(y)|2dy

+m

∫ √hx0

−∞
|u(y)|2dy u ∈ C∞0 (R), h ∈ (0, 1].

Arguing by contradiction, we consider a decreasing sequence hn → 0 and a cor-
responding sequence of functions (uhn) such that the left hand side is equal to 1
whereas the right hand side converges to 0. From now on, for brevity, we drop
the index n, the variable y and its infinite limits in the integrals. Since (uh) is
bounded in L2(R), extracting a subsequence if needed, we may assume it has a
semiclassical measure µ on the phase space R × R (we refer to [GMMP97] for an
introduction to this tool also known as Wigner measure). Integrating by parts,∫
|hu′h|2 + V |uh|2 =

∫
(−h2u′′h + (V − 1)uh)ūh +

∫
|uh|2. This converges to 1 since∫

|uh|2 = 1 and
∫
|−h2u′′h + (V − 1)uh|2 → 0. Hence

∫
|hu′h|2 and

∫
V |uh|2 are

bounded. In the terminology of [GMMP97], this implies that (uh) is h-oscillating
and compact at infinity (more precisely,

∫
|y|>R|uh(y)|2dy 6 1

R2

∫
V |uh|2 implies

lim suph
∫
|y|>R|uh|

2 6 1/R2 → 0 as R → +∞). By [GMMP97, proposition 1.7.ii],

this ensures µ(R2) = limh

∫
|uh|2 = 1. Since

∫
|−h2u′′h + (V − 1)uh|2 converges to 0,

µ is supported on the the circle of radius 1 in R2 (the characteristic set). Since it
converges faster than h2, µ is invariant by rotation (the hamiltonian flow). Since∫√hx0

−∞ |uh|2 → 0, µ((−∞, 0)×R) = 0. Combining these last three facts yields µ = 0

which contradicts the previous fact µ(R2) = 1.
To disprove (44) when M(λ) → 0 as λ → 0 it is sufficient to display an un-

observed quasimode in the following sense, keeping the same semiclassical nota-
tions: a sequence (uh) in L2(R) such that

∫
|uh|2 6= 0 does not depend on h,
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−∞ |uh|2 = 0 for h small enough and
∫
|−h2u′′h + (V − 1)uh|2/h2 is bounded.

We construct (uh) in the usual WKB form uh(x) = a(x)eiϕ(x)/h, h > 0, where
a 6= 0 is a smooth amplitude with compact support included in (0, 1) and ϕ
is a smooth phase function on (−1, 1) satisfying the Hamilton-Jacobi equation

|ϕ′|2 + V − 1 = 0, more explicitly 2ϕ(x) = x
√

1− x2 + arcsinx. It fulfils its

purpose:
∫
|uh|2 =

∫
|a|2 6= 0, (−∞,

√
hx0] ∩ supp(a) = ∅ for h small enough and∫

|(−h2u′′h + (V − 1)uh)/h|2 →
∫
|ϕ′′a+ 2ϕ′a′|2 < +∞ since

−h2u′′h + (V − 1)uh = (|ϕ′|2 + V − 1)uh − hi(ϕ′′a+ 2ϕ′a′)eiϕ/h − h2a′′eiϕ/h.

The controllability of the Schrödinger group in some time T results from point
(b) and theorem 1.2. Point (c) gives the optimal value of this T obtained in [Mil10b]
by space-time semiclassical measures. We shall not recall this lengthier proof here.

For the sake of completeness, we recall the proof of point (d) in [Mil08, §4.3.1].
We have to disprove the observability condition (2) which we rewrite:

∃κT > 0,∀v ∈ L2(R),

∫ +∞

−∞
|e−TAv|2(x) dx 6 κT

∫ T

0

∫ x0

−∞
|e−tAv|2(x) dx dt.(45)

The Schwartz distribution kernel on R2 of the operator e−tA is called the Hermite
kernel and denoted (x, y) 7→ e−tA(x, y) (if the initial state is the Dirac mass at y
then x 7→ e−tA(x, y) is the state at time t). The key idea is to consider the initial
condition v(x) = e−t0A(x, y) in (45) for given T > 0, t0 > 0 and y > 0, and let
y → +∞ in the end. By the semigroup property, (e−tAv)(x) = e−(t+t0)A(x, y).

The first Hermite function φ0(x) = π−1/4e−|x|
2/2 is the normalized eigenfunction

of A = −∆ + |x|2 corresponding to the lowest eigenvalue λ0 = 1. Let T0 = t0 + T .
Writing the semigroup in a Hilbert basis of eigenfunctions yields

∃C0 > 0, ∀y ∈ Rd,
∫ +∞

−∞
|e−TAv|2(x) dx > e−2T0λ0 |φ0(y)|2 = C0e

−|y|2 .(46)

Mehler’s explicit formula for the Hermite kernel is (cf. e.g. [Dav89, prop 4.3.1]):

e−tA(x, y) =
e−t√

π(1− e−4t))
exp

(
− (1 + e−4t)(x2 + y2)− 4e−2txy

2(1− e−4t)

)
.

The function a(t) = 1+e−4t

1−e−4t is decreasing for t > 0, hence a(T0) > lim∞ a = 1 and

|e−tA(x, y)|2 6 1

π(1− e−4t0)
exp

(
−a(T0)(x2 + y2) +

4|x0|y
1− e−4t0

)
,

for all x < x0, y > 0 and t ∈ (t0, T0). This implies: ∃C1 ∈ (1, a(T0)), ∃C2 > 0,

|e−tA(x, y)|2 6 C2e
−C2x

2−C1y
2

, x < x0, y > 0, t ∈ [t0, T0].

Therefore, setting C3 = TC2

∫ x0

−∞ e−C2x
2

dx yields:

∃C1 > 1, ∃C3 > 0, ∀y ∈ R+,

∫ T

0

∫ x0

−∞
|e−tAv|2(x) dx dt 6 C3e

−C1y
2

.(47)

The combination of (46) and (47) as y → +∞ proves that the null-controllability
inequality (45) does not hold for any T . �

N.b. in this example the eigenvalues λn = 2n+1 of A satisfy the second property
stated in theorem A.1, i.e. the divergence of

∑
n>1

1
λn

, but Appendix A does not

apply because the output space F = L2(R) is not one-dimensional. Instead we
resorted to Mehler’s explicit formula for the semigroup kernel.

N.b. the proof of the resolvent condition by contradiction using semiclassical
measures follows [Bur02] and [BZ04, theorem 8] where the lower-order coefficients
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of A are at most bounded. Here the semiclassical reduction takes advantage of the
homogeneity of the unbounded potential as in [Mil08, Mil10b].

5.2. The log threshold.

Proposition 5.2. There exists a positive self-adjoint operator A on `2 with dense
domain D(A) and compact resolvent, and an observation C ∈ L(D(A),C) with the
following properties:

(a) The observation C is admissible for the Schrödinger group (eitA)t∈R and
the heat semigroup (e−tA)t>0.

(b) The following logarithmic resolvent observability condition holds for some
positive constant M :

‖v‖2 6 M

log2(λ+ 1)
‖(A− λ)v‖2 +M‖Cv‖2, v ∈ D(A), λ > 0.

(c) For any time T > 0, the Schrödinger group is controllable by C in time T .
(d) For any time T > 0, the heat semigroup is not controllable by C in time T .

More precisely, given any nonzero finite sum of eigenfunctions of A as initial
state, there is no input steering it to zero at time T .

N.b. in this example C ∈ L(D(Aε+1/2),C) for all ε > 0, but C /∈ L(D(
√
A),C).

Proof. Let (en)n>1 be the canonical Hilbert basis of `2. For x ∈ `2, denote by
xn = (x, en) its n-th coordinate.

Consider the operator A on `2 with domain D(A) defined by

D(A) =
{
x ∈ `2 |

∑
n>1

n2(log n)2x2
n <∞

}
, Aen = n log(n+ 1)en, n > 1.

Note that A = f(B), where f is the convex function t 7→ t log(t + 1), and B is

the operator on `2 with domain D(B) =
{
x ∈ `2 |

∑
n>1 n

2x2
n <∞

}
defined by

Ben = n en, n > 1. Consider the observation operator C defined by

Cx =
∑
n>1

xn.

Note that C ∈ L(D(B),C) ⊂ L(D(A),C). Indeed C ∈ L(D(Aε+1/2),C) for all

ε > 0, but xn = 1/(n log n log(log n)), n > 1, proves that C /∈ L(D(
√
A),C).

By Parseval identity, C is admissible for the group eitB , and this group is ob-
servable in a time π by C. By [Mil11, Theorems 2.3 and 2.4], these two facts imply
the following resolvent conditions for some positive constants L0,M0:

‖Cx‖2 6 L0‖(B − λ)x‖2 + L0‖x‖2, λ > 0(48)

‖x‖2 6M0‖(B − λ)x‖2 +M0‖Cx‖2, λ > 0.(49)

Let us show that (48) and (49) imply (for some positive constants L,M)

‖Cx‖2 6 L

log2(λ+ 1)
‖(A− λ)x‖2 + L‖x‖2, λ > 0(50)

‖x‖2 6 M

log2(λ+ 1)
‖(A− λ)x‖2 +M‖Cx‖2, λ > 0.(51)

This follows from [Mil11, Theorem 3.2] as in [Mil11, Example 3.4]. We sketch
the proof for the sake of completeness. Fixing µ > 0, we consider the function

gµ : t 7→ f(t)−f(µ)
t−µ (gµ(µ) = f ′(µ)). As f is convex, gµ is nondecreasing on (0,+∞).

By functional calculus, using that B is positive, we get

gµ(0)‖(B − µ)x‖ 6 ‖gµ(B)(B − µ)x‖,
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which yields

log(µ+ 1)‖(B − µ)x‖ 6 ‖(A− f(µ))x‖.

Plugging µ = f−1(λ) here yields that (48) and (49) imply (50) and (51).
The point (b) of the proposition is exactly (51). It implies point (c) by the-

orem 1.2 since the resolvent of A is compact (cf. [RTTT05, proposition 6.6.4] or
[Mil11, corollary 2.14]).

Inequality (50) implies the admissibility of C for the group eitA by [Mil11, The-
orem 2.3]. To complete the proof of point (a) of the proposition, we compute the
admissibility of C for the heat semigroup (e−tA)t>0 (setting λk = k log(k + 1) 6 k
and ending with Hilbert’s inequality, cf. [Hil06, HLP88]), for x ∈ D(A),∫ T

0

‖Ce−tAx‖2dt 6
∫ +∞

0

‖Ce−tAx‖2dt 6
∫ +∞

0

∑
j,k>1

e−t(λj+λk)|xj ||xk|dt

6
∑
j,k>1

|xj ||xk|
λj + λk

6
∑
j,k>1

|xj ||xk|
j + k

6 π
∑
j>1

|xj |2.

Point (d) results from the divergence of
∑
n>1

1
n log(n+1) and AppendixA. �

Remark 5.3. In [Mil11, Example 3.13], this diagonal operator A on `2 is interpreted
as a function of the Dirichlet Laplacian on (0, 1), and C as a boundary observation.

6. The direct Lebeau-Robbiano strategy without explicit cost

This section concerns the so-called “Lebeau-Robbiano strategy” for proving final-
observability (2) already mentioned in §3.2. It was originally devised in [LR95] for
the heat flux on a bounded domain of Rd observed from some open subset of this
domain. In order to estimate how the control cost blows up as the time available
to perform it tends to zero, it was recently revisited in [Mil10a], which gives more
background and references. This section improves [Mil10a] when estimating the
control cost is not a goal.

The result of this section is simpler to state in the normal semigroups framework
of §3.2 as done in theorem 5 of §1.3. It says that the strategy is still valid if
the condition (23) holds with λα, α ∈ (0, 1) replaced by λ/ϕ(λ), where ϕ is a
positive increasing continuous function tending to +∞ at +∞ which satisfies some
integrability condition, e.g. ϕ(λ) = (log λ)α, α > 1, or ϕ(λ) = (log(log λ))α log λ,
α > 2. The price we pay for this weaker assumption is a weaker conclusion on the
control cost κT in (2): theorem 6.1 does not estimate κT explicitly as T → 0.

Throughout this section we essentially use the more general framework of [Mil10a]
in order to encompass all the applications discussed there. It is recalled in §6.1 in
the form suitable for the improvement. The general statement of the new result, the
discussion of logarithmic conditions and their application to logarithmic anomalous
diffusions are given in §6.2. The key idea and proof of the result are given in §6.3.

6.1. Framework. We consider the abstract differential equation:

φ̇(t) = Aφ(t), φ(0) = x ∈ E , t > 0,(52)

where A : D(A) ⊂ E → E is the generator of a strongly continuous semigroup
(etA)t>0 on a Hilbert space E . The solution is φ(t) = etAx.

N.b. here the generator is A whereas it was −A in previous sections.
We also consider an observation operator C continuous from D(A) with the graph

norm to another Hilbert space F (norms in E and F are both denoted ‖·‖). For
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simplicity we assume that C satisfies the admissibility condition∫ T

0

‖CetAx‖2dt 6 KT ‖x‖2, x ∈ D(A), T > 0.(53)

This assumption could probably be replaced by some time smoothing effect as in
theorem 3.3, cf. [Mil10a, lemma 3.1].

The goal is to prove that for all T > 0 there is a cost κT > 0 such that final-
observability in time T holds, i.e.

‖eTAx‖2 6 κT
∫ T

0

‖CetAx‖2dt, x ∈ D(A).(54)

We now generalize the three conditions of the Lebeau-Robbiano strategy in
[Mil10a] in order to encompass our logarithmic improvement.

Let T0 and λ0 be positive constants. Let ϕ and ψ be two positive increasing
continuous functions defined on (λ0,+∞) and (1/T0,+∞) respectively such that ϕ,
λ 7→ λ/ϕ(λ) and ω 7→ ψ(ω)/ω tend to +∞ at +∞. E.g. these assumptions on ψ hold
if ω 7→ ψ(ω)/ω is a positive increasing continuous function on (1/T0,+∞) tending
to +∞ at +∞. N.b. the assumptions in [Mil10a] correspond to ϕ(λ) = λ1−α/a,
α ∈ (0, 1), a > 0, and ψ(ω) = bωβ+1, β > 0, b > 0.

We assume that there is a nondecreasing family of semigroup invariant spaces
Eλ ⊂ E , λ > λ0 (i.e. etAEλ ⊂ Eλ ⊂ Eλ′ , t > 0, λ′ > λ) satisfying the semigroup
growth property (namely some time-decay): there exists m0 > 0 and m > 0,

‖etAx‖ 6 m0e
mλ/ϕ(λ)e−λt‖x‖, x ⊥ Eλ, t ∈ (0, T0), λ > λ0.(55)

When A is a normal operator (as in §3.2) these growth spaces Eλ are naturally
defined by the functional calculus as the spectral subspaces Eλ = 1ReA>−λ E which
satisfy (55) with m0 = 1 and m = 0 by the spectral theorem. Note the interpreta-
tion of λ as a spectral abscissa in this simple case.

We also assume that there is an observation operator C0 ∈ L(D(A),F) which
satisfies the final-observability property: there exists b0 > 0 such that

‖eTAx‖2 6 b0e2Tψ(1/T )

∫ T

0

‖C0e
tAx‖2dt, x ∈ D(A), T ∈ (0, T0).(56)

In the original framework of [LR95] and in §3.2, the reference operator C0 is the
identity operator which always satisfies (56) with b0 = supt∈[0,T0]‖e−tA‖2 and

ψ(ω) = 1
2ω logω, all the more with ψ(ω) = bωβ+1, β > 0, b > 0. Some appli-

cations require C0 to be a non-trivial projection as discussed in [Mil10a, §3.7].
Finally, generalizing the “condition on sums of eigenfunctions” (23), we assume

the observability on the growth subspaces Eλ relative to the reference operator C0:
there exists a0 > 0 such that there are positive constants a0 and a such that

‖C0x‖2 6 a0e
2λ/ϕ(λ)‖Cx‖2, x ∈ Eλ, λ > λ0.(57)

6.2. The direct Lebeau-Robbiano strategy and logarithmic conditions.
The statement of the “direct Lebeau-Robbiano strategy without explicit cost” is:

Theorem 6.1. In the framework of §6.1, assuming in particular admissibility (53)
and relative observability on growth subspaces (55), (56) and (57), if

s 7→ 1

ψ−1
(
ϕ(qs)
p

) is integrable at +∞ for some p > m+ 1 and q > 1,(58)

then final-observability (54) holds for all T > 0.
N.b. instead of assuming (56) and (57) separately, we may as well assume (62).
N.b. if (58) holds for some q > 1 then it holds for all q > 1.
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This theorem is proved in the next §6.3. Here we discuss some applications.
As explained after (56), ψ(ω) = ωβ+1, β > 0, and ψ(ω) = ω logω are interesting

examples of ψ. Here are some admissible functions ϕ for these ψ.

Lemma 6.2. The integrability condition (58) holds for all p > 0 and q > 1 with
the following functions (ψ,ϕ) (hence also with (bψ, ϕ/a) for all a > 0 and b > 0):

ψ(ω) = ωβ+1, β > 0, and ϕ(λ) = (log λ)α, α > β + 1,

or ψ(ω) = ω logω and ϕ(λ) = (log(log λ))α log λ, α > 2.

Proof. This follows from straightforward computations. With the substitution
ϕ(qs) = pψ(ω), (58) is equivalent to the integrability of ds/ω at +∞. We only
give details for the latter case. In this case this substitution writes

s(log q) logα(s log q) = pω logω.(59)

Taking the logarithm of (59) yields log s ∼ logω as s → +∞. Since (x logα x)′ ∼
logα x as x→ +∞, taking the derivative of (59) yields ds

dω ∼
p logω

log q logα s as s→ +∞.

Hence (58) is equivalent to the integrability of dω/(ω logα−1 ω) at +∞. This well-
know Betrand integral is convergent if and only if α > 2. �

Now we state the corollary corresponding to the original framework of [LR95].
Let M be a smooth connected compact d-dimensional Riemannian manifold with
metric g and boundary ∂M 6= ∅. Let ∆ denote the Laplace-Beltrami operator
on L2(M) with domain D(∆) = H1

0 (M) ∩ H2(M) defined by g. N.b. the results
are already interesting when (M, g) is a smooth connected bounded domain of the

Euclidean space Rd, so that ∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d
.

In this application, the state and input spaces are E = F = L2(M), the growth
spaces are the spectral spaces defined after (55), i.e. Eλ is the linear span of the
eigenfunctions of −∆ with eigenvalues lower than λ. The reference operator C0 is
the identity operator and the observation operator C is the multiplication by the
characteristic function χΩ of an open subset Ω 6= ∅ of M , i.e. it truncates the input
function outside the control region Ω.

As recalled in (13) of §1.4, A = −∆ satisfies (23) with exponent α = 1/2. Hence
A = −

√
−∆ satisfies (23) with α = 1. We deduce that (57) holds for A = −Bϕ(B),

B =
√
−∆, with either ϕ(λ) = (log λ)α, α > 1 or ϕ(λ) = (log(log λ))α log λ, α > 2

and some greater a0 and a. The main step of this straightforward computation
is: since ϕ(λ) � λ, µ = λ/ϕ(λ) implies logµ ∼ log λ and λ = µϕ(λ) ∼ µϕ(µ).
Applying theorem 6.1 with lemma 6.2 yields:

Theorem 6.3. Let ϕ(λ) = (log λ)α, α > 1 or ϕ(λ) = (log(log λ))α log λ, α > 2,
and consider A = −

√
−∆ϕ(

√
−∆). The anomalous diffusion:

∂tφ−Aφ = χΩu, φ(0) = φ0 ∈ L2(M), u ∈ L2([0, T ]×M),

is null-controllable in any time T > 0.

Remark 6.4. Theorem 6.3 for ϕ(λ) = λ1/β , β > 0, with the control cost estimate
lim sup
T→0

T β lnκT < ∞ is [Mil10a, theorem 4.1]. It is still an open problem wether

theorem 6.3 holds for ϕ(λ) = 1, although theorem A.2 rather indicates that it
does not. This problem is the null-controllability for ∂tφ+

√
−∆φ = χΩu. Unique

continuation holds since (∂t +
√
−∆)φ = 0 ⇒ (∂2

t + ∆)φ = 0. We mention some
available “transmutation formulas” that could be relevant to this problem:

e−t
√
−∆ =

1

π

+∞∫
−∞

t

t2 + s2
cos(s

√
−∆)ds =

1

2
√
π

+∞∫
0

t

s3/2
e−t

2/(4s)es∆ds.
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6.3. Proof of theorem 6.1. To bound the cost κT obtained by the Lebeau-
Robbiano strategy, the crucial lemma [Mil10a, lemma 2.1] partitions the time inter-
val (0, T ] into an infinity of intervals with lengths in geometric progression. The key
idea in this section is to consider instead a geometric progression of the “spectral
abscissa” λ. This means that the dependence of the resulting cost κT on T is no
longer explicit. In other words, the following alternative lemma exploited in this
section does not bound the cost κT but allows more general partitions of (0, T ]:

Lemma 6.5. Let λ1 > 0 and q > 1. Consider a positive decreasing continuous
function τ on (λ1,+∞) such that τ(λ)→ 0 as λ→ +∞ and satisfying

s 7→ τ(qs) is integrable at +∞.(60)

Also consider a positive function f on (λ1,+∞) such that f(λ)→ 0 as λ→ +∞.
The approximate observability estimate ([Mil10a, §3.5] justifies this name)

f(λ)‖eτ(λ)Ax‖2 − f(qλ)‖x‖2 6
∫ τ(λ)

0

‖CetAx‖2dt, x ∈ D(A), λ > λ1,(61)

implies final-observability (54) for all T > 0.

Proof. Define the geometric sequence λk+1 = qλk, k ∈ N∗, and the corresponding
sequence of time lapses τk = τ(λk). Due to the integrability condition (60) and
the monotony of τ , the series

∑
k τk converges. Hence Tn =

∑
k>n τk defines a

decreasing sequence of times converging to zero. Applying (61) to x = eTk+1Ay and
λ = λk yields

f(λk)‖eTkAy‖2 − f(λk+1)‖eTk+1Ay‖2 6
∫ Tk

Tk+1

‖CetAy‖2dt, y ∈ D(A), k > 1.

Since the left hand side is a telescoping series, adding these inequalities yields

f(λN )‖eTNAy‖2 − f(λk)‖eTkAy‖2 6
∫ TN

Tk

‖CetAy‖2dt, y ∈ D(A), k > N > 1.

Taking the limit k → ∞ yields (54) with T = TN and κT = 1/f(λN ) since f(λk)
converges to zero and the continuous function t 7→ ‖etAy‖ is bounded on the com-
pact set [0, TN ]. This completes the proof of the lemma since for all T > 0 there
exists N such that TN < T . �

We proceed with the proof of theorem 6.1. For ease of exposition, we start with
the case m = 0 in (55) and complete the general case at the very end of §6.3.
Plugging (57) in (56) yields

‖eTAy‖2 6 a0b0e
2(λ/ϕ(λ)+Tψ(1/T ))

∫ T

0

‖CetAy‖2dt, y ∈ Eλ, T ∈ (0, T0), λ > λ0.

Since λ 7→ λ/ϕ(λ) and ω 7→ ψ(ω)/ω tend to +∞ at +∞, taking λ0 and 1/T0 greater
if needed, we may assume that these functions are greater than 2 so that their sum
is lower than their product. We deduce

‖eTAy‖2 6 a0b0e
2Tψ( 1

T ) λ
ϕ(λ)

∫ T

0

‖CetAy‖2dt, y ∈ Eλ, T ∈ (0, T0), λ > λ0.(62)

For a given x ∈ D(A), λ > λ0 and τ ∈ (0, T0) we introduce an observation
time T = ετ with ε ∈ (0, 1), the orthogonal projection of x on Eλ denoted xλ, and
x⊥λ = x− xλ.

Since Eλ is semigroup invariant, we may apply (62) to y = e(1−ε)τAxλ and obtain:

‖eτAxλ‖2 6
1

4g(τ, λ)

∫ τ

(1−ε)τ
‖CetAxλ‖2dt, g(τ, λ) =

1

4a0b0
e−2Tψ( 1

T ) λ
ϕ(λ) .(63)
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We put the factor 4 in the definition of g because we shall use twice the inequality:

‖y + z‖2 6 2(‖y‖2 + ‖z‖2), y ∈ E , z ∈ E .(64)

Using (64) then (53) yields∫ τ

(1−ε)τ
‖CetAxλ‖2dt 6 2

∫ τ

(1−ε)τ
‖CetAx‖2dt+ 2 Kετ‖e(1−ε)τAx⊥λ ‖2.(65)

Using (64) again, then (63) and finally (65) yields

g(τ, λ)‖eτAx‖2 6
∫ τ

(1−ε)τ
‖CetAx‖2dt+ Kετ‖e(1−ε)τAx⊥λ ‖2 + 2g(τ, λ)‖eτAx⊥λ ‖2.

Applying (55) with m = 0 to x⊥λ yields

g(τ, λ)‖eτAx‖2 −m2
0

(
Kετ e

−2(1−ε)τλ + 2g(τ, λ)e−2τλ
)
‖x⊥λ ‖2 6

∫ τ

0

‖CetAx‖2dt.

Since ‖x⊥λ ‖ 6 ‖x‖,Kετ 6 KT0
and g(τ, λ) 6 1

4a0b0
, we set g0 = m2

0(KT0
+ 1

2a0b0
) and

deduce the approximate observability estimate: for all x ∈ D(A),

g(τ, λ)‖eτAx‖2 − g0e
−2(1−ε)τλ‖x‖2 6

∫ τ

0

‖CetAx‖2dt, λ > λ0, τ ∈ (0, T0).(66)

In order to apply lemma 6.5, let q > 1 and define the functions τ and f by

1

ετ(λ)
= ψ−1

(
ϕ(λ)

r

)
, r =

q

1− ε
, f(λ) = g(τ(λ), λ) =

1

4a0b0
e−2ε(1−ε)τ(λ)λ/q.

These functions are well-defined on (λ1,+∞) for λ1 large enough. Taking ε small
enough ensures p > r > q hence the integrability condition (58) with p replaced
by r, hence (60). The assumptions on ϕ and ψ in §6.1 ensure that τ decreases,
τ(λ)→ 0 as λ→ +∞, and g(τ, λ)→ 0 as (τ, λ)→ (0,+∞). Therefore f(λ)→ 0 as
λ → +∞. Equivalently τ(λ)λ → ∞ as λ → +∞. Using τ(qλ) 6 τ(λ), this yields
for λ1 large enough

f(qλ) >
1

4a0b0
e−2ε(1−ε)τ(λ)λ > g0e

−2(1−ε)τ(λ)λ, λ > λ1.

Therefore (66) implies (61), and lemma 6.5 completes the proof in the case m = 0.
We now complete the general case m 6= 0 in (55). The proof uses (55) only once:

in the equation before (66). We may divide this equation by e2mλ/ϕ(λ) and keep the
same right hand side since e−2mλ/ϕ(λ) 6 1. This yields (66) with g(τ, λ) replaced
by g(τ, λ)e−2mλ/ϕ(λ). Recalling that ω 7→ ψ(ω)/ω is greater than 1 (as a result of
increasing λ0), this amounts to replacing ϕ by ϕ/(m+ 1) in the definition of g and
eventually in the integrability condition (58).

Remark 6.6. We take this opportunity to correct misprints in the proof of [Mil10a,
lemma 3.4]: the definition of u is u(t) = κCe(T−t)Aψ0 and, conversely, f(T ) =∫ T

0
etA

∗
Bu(T−t)dt+eTA∗f0 yields 〈f0, e

TAx〉 = −
∫ T

0
〈u(T−t), CetAx〉dt+〈f(T ), x〉.

Appendix A. Lack of controllability based on Müntz theorem

For the sake of completeness, we repeat [Mil06b, Appendix] used in §5.2 and
take this opportunity to correct some misprints. This appendix concerns control
systems having a Riesz basis of eigenvectors and a one-dimensional input space.
Theorem A.2 gives a sufficient condition in terms of eigenvalues for a property
which is much stronger than the lack of null-controllability: no sum of eigenvectors
can be steered to zero. It is based on the following generalized Müntz theorem
recalled from [Red77, theorem 7]:



PARABOLIC OBSERVABILITY RESOLVENT CONDITIONS 23

Theorem A.1. Let {ζn}n∈N be a sequence of distinct non zero complex numbers
and let {en}n∈N be the corresponding sequence of exponential functions defined by
en(t) = exp(ζnt). If {ζn}n∈N satisfies one of these properties:

i) ∃ε > 0,
∑
n

1

|ζn|1+ε
=∞,

ii)
∑
n

|Re
1

ζn
| =∞,

iii) {|ζn|}n∈N increases and there exists a sequence {θn}n∈N of nonnegative real

numbers such that
∑
n

1

nθn
<∞, and

∑
n

1

|ζn|θn
=∞,

then, for all T > 0, {en}n∈N is complete in L2(0, T ;C), i.e. the only vector orthog-
onal to this set is 0 (equivalently, any function of L2(0, T ;C) can be approximated
in the norm of this space by linear combinations of these exponential functions).

On a Hilbert space X we consider the system described by the following differ-
ential equation for t > 0 :

ẋ(t) +Ax(t) = bu(t), x(0) = x0 ∈ X , u ∈ L2
loc(R;C) .(67)

We assume that −A is the infinitesimal generator of a C0-semigroup {e−tA}t>0 on
X , which has a sequence of normalized eigenvectors {φn}n∈N forming a Riesz basis
of X , with associated eigenvalues {λn}n∈N, that is, Aφn = λnφn. We denote by X1

the Hilbert space obtained by choosing the graph norm on the domain D(A) of the
unbounded operator A on X , by X−1 the space dual to X1, and we keep the same
notation for the extension of {e−tA}t>0 to a semigroup on X−1. We also assume
that the “control vector” b is in X−1 so that the solution x ∈ C(0, T ;X−1) of (67)
is defined for T > 0 by the integral formula:

x(T ) = e−TAx0 +

∫ T

0

e−(T−t)Abu(t)dt .(68)

There is a sequence of eigenvectors {ψn}n∈N of A∗ forming a Riesz basis of
X , with associated eigenvalues {λ̄n}n∈N, which is bi-orthogonal to {φn}n∈N, i.e.
〈φn, ψn〉 = 1 and 〈φn, ψm〉 = 0 if m 6= n. We introduce the coefficients bn = 〈b, ψn〉
in the expansion b =

∑
n∈N bnφn.

Theorem A.2. Assume that bn 6= 0 for all n larger than some integer Nb. If the
set of distinct non zero eigenvalues of A satisfies one of the properties stated in
theorem A.1, then, for all non zero initial state x0 which is a finite linear combi-
nation of the eigenvectors {φn}n∈N and for all T > 0, there is no input function
u ∈ L2(0, T ;C) such that the solution x ∈ C(0, T ;X−1) of (67) satisfies x(T ) = 0.

Proof. Introducing the coefficients xn(t) = 〈x(t), ψn〉, (68) writes xn(T ) = e−λnTx0
n+∫ T

0
e−λn(T−t)bnu(t)dt. With the notation yn(t) = exp(λnt), x(T ) = 0 writes:

∀n ∈ N, −x0
n = bn

∫ T

0

yn(t)u(t)dt .(69)

We make the assumptions on {bn}n∈N and {λn}n∈N of the theorem. Arguing by
contradiction, we also assume that there are T > 0, x0 6= 0 which is a finite linear
combination of the {φn}n∈N, and u ∈ L2(0, T ;C) such that (69) holds. Let x0

N

be the nonzero coefficient of x0 with the greatest index, i.e. x0
N 6= 0 and x0

n = 0
for n > N . Let M = max{Nb, N}. For all n > M , on the one hand M > Nb
implies bn 6= 0, on the other hand M > N implies x0

n = 0, so that (69) implies∫ T
0
yn(t)u(t)dt = 0. The set of distinct non zero values of {λn}n>M also satisfies

the same property stated in theorem A.1 as {λn}n∈N, so that the corresponding
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subset of {yn}n>M is complete in L2(0, T ;C), and therefore u = 0. Plugging this in

(69) with n = N yields the contradiction: 0 6= −x0
N = bN

∫ T
0
yn(t)u(t)dt = 0. �
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