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ABSTRACT 

Comparison of absorption and fluorescence in a nano-cell containing Rb vapor with other Rb nano-cells where 
neon gas is added is presented. The effect of collapse and revival of Dicke-type narrowing is still observable for the Rb 
nano-cells where Ne gas is added under 6 and 20 Torr pressure for the thickness L=/2 and L=, where   is a resonant 
laser wavelength 794 nm (D1 line). Particularly for 6 Torr the line-width of the transmission spectrum for the thickness 
L=/2 is 2 times narrower than that for L=. For an ordinary Rb cell with L = 0.1 - 10 cm with addition of buffer gas, the 
velocity selective optical pumping/saturation (VSOP) resonances in saturated absorption spectra are fully suppressed 
when the buffer gas pressure > 0.5 Torr. A spectacular difference is that for L=, VSOP resonances located at the atomic 
transition are still observable even when Ne pressure is ≥ 6 Torr. Narrowband fluorescence spectra of the nano-cell with 
L= λ/2 can be used as a convenient tool for online buffer gas pressure monitoring for the conditions when ordinary 
pressure gauges are unusable. Comparison of electromagnetically induced transparency (EIT) effect in a nano-cell filled 
with pure Rb with another nano-cell, where buffer gas nitrogen is added, is presented. Use of gas N2 inside the Rb nano-
cell strongly extended the region of the coupling laser detuning where EIT resonance is still possible to form.  
 

Keywords: Atomic spectroscopy; nano-cell; buffer gas; coherent narrowing, electromagnetically induced 
transparency 

                                                1.  INTRODUCTION 
 
A number of works published in recent years deal with the laser spectroscopy of the resonance absorption and 

fluorescence of an atomic vapor column of 10–100 m thickness [1,2] and of an atomic vapor column enclosed in so-
called extremely thin cells (ETC), or nano-cells [3,4] filled with pure metallic Cesium and/or Rubidium. It was shown in 
the works [5–13] that an important parameter determining the spectral width, the shape of the line, and the absorption in 
these nano-cell, is the ratio L/ with L being the thickness of the vapor column (i.e. the distance between the nano-cell 
windows) and  is the wavelength of the laser radiation resonant with the corresponding atomic transition of Cs or Rb, 
D2 and D1 lines. In particular it was shown that the spectral width of the resonant absorption reaches its minimum value 
at L = (2n + 1) /2 (n is an integer); this effect has been termed the Dicke coherent narrowing (DCN) effect. Note that the 
spectral width of the resonant absorption reaches its absolute minimum value for L =  /2 which is more than 4 times 
narrower than the Doppler width, recorded in the cells of the conventional length (CCL) 0.1–10 cm (note that the 
Doppler width of hyperfine transition in CCL is about of 350 MHz for Cs and ~500 MHz for the Rb, at room 
temperature). Relative contrast of spectral width decreases with respect to the broad pedestal which increases 
proportionally to L = 3 /2, 5 /2 , 7 /2 etc. Simple calculation shows that the the Dicke coherent narrowing should be 
observable up to the thickness Lmax= Vt, where V is the mean thermal velocity of Cs /Rb atoms (~250 / 200 m/s), and the 
t is excited state lifetime (~30 /27 ns), that is  Lmax~  7.5 /5.4 m for the Cs/Rb atomic vapor, correspondingly.  

It was also demonstrated [8–13] that for L = n the spectral width of the resonant absorption reaches its maximum 
value, close to the Doppler width, recorded in the CCL. This phenomenon was termed collapse of DCN. For relatively 
high pump intensity (>1 mW/cm2), the VSOP resonances of a reduced absorption (with the line-width close to the 
natural one), and centered on the hyperfine transitions occurs sharply when L = n, while the narrowest and well-marked 
VSOP resonance occurs when L = . There are several distinct benefits to use these VSOP resonances as a frequency 
reference for atomic transitions of alkali atoms in comparison with widely used Saturation Absorption (SA) technique. 
Particularly, use of the nano-cell with the thickness L=  allows the complete elimination of crossover (CO) resonances 
when L = . “-Zeeman technique” (LZT) is shown to be efficient for studies of individual transitions between the 
Zeeman sublevels of hyperfine levels in an external magnetic field of 1 - 5000 G [14]. LZT is based on nano-cell with 
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thickness L = . Narrow VSOP resonances in the transmission spectrum of the ETC are split into several components in 
a magnetic field; their frequency positions and probabilities depend on the B-field . 

In contrast to the transmission spectra, when L increases, the spectral width of the fluorescence spectra increases 
monotonically, without oscillations of the line-width versus L, while remaining below the Doppler broadening even 
when the thickness of the vapor column increased up to a 3-4 μm [3,4,7-9,13]. The narrowest line-width of the 
fluorescence spectrum is obtained when L is in the range /4 < L  /2 and is 1.5-1.8 times narrower than the absorption 
spectral width for L in the same range. Another difference between absorption and fluorescence processes obtained with 
the nano-cells is that VSOP resonances of a reduced fluorescence appear at much higher intensity (>20 mW/cm2). 
The“/2-Zeeman technique” (HLZT) is shown to be efficient for studies of individual transitions between the Zeeman 
sublevels of hyperfine levels in an external magnetic field of 10 - 2500 G. HLZT is based on resonant fluorescence 
spectrum emitted by a nano-cell with L = /2 [15,16 ]. 

Considerable interest of coherent population trapping (CPT) and the related electromagnetically induced 
transparency  phenomena is caused by a number of important applications in a variety of fields such as laser cooling, 
information storage, magnetometry, spectroscopy, atomic frequency references etc [17 - 19]. EIT resonance can occurs 
in -system with a two long-lived states and one excited state coupled by two laser fields (so called coupling and probe 
lasers). From the application point of view it is important to reduce dimensions of the cell which are containing atomic 
vapor of metal where an EIT resonance is formed, while keeping resonance parameters good (such as narrow line-width 
and contrast)[20-24]. 

We have developed a new nano-cells filled with the natural Rb where neon gas is added under 6 Torr and 20 Torr 
pressure [25]. Also, the nano-cell filled with the natural Rb where nitrogen gas is added is fabricated. Comparison of the 
above mentioned processes in nano-cell filled with pure Rb is provided both experimentally and theoretically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

II. EXPERIMENTAL 
 
                                  II.1. The design of multi- region cells filled with the Rb and neon gas 

 

 

ETC: 

L= 100 nm  4 μm 

Rb 

Cell, L≈1 cm 

Fig.1 MRC consisting of 2 interconnected regions: ETC 
or nano-cell (shown in the upper part) with wedged 
thickness in the range of 100nm - 4 m, and 1 cm-long 
sapphire cell (shown the lower part) with the sapphire 
windows (the sapphire plates-windows are cut across the 
c-axis). MRC is filled with the natural Rb with addition 
of neon gas at 6 Torr or 20 Torr pressure.  

 

Fig.2 Photography of the multi-region cell. The
nano-cell is seen in the upper part, while ~ 1 cm-
long sapphire cell is shown in the middle part.
MRC is fixed inside the oven with the help of the
aluminum tube-holder which is tied to the side arm
(only the top is seen at the bottom of the photo). 
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Multi-region cell  consists of two interconnected cells and a side-arm containing metal. The nano-cell region (shown 
in the upper part of Fig.1) has a wedged thickness of the gap between the windows that allows one to exploit atomic vapor 
column thickness in the range of 0.1 -4 m. The first design of the nano-cell (or so called extremely thin cell), which 
consists of windows and a vertical side-arm (a metal reservoir), was presented in [3]. Later, this design has been somewhat 
modified; the typical example of the last version is presented in Fig.1. We use 15 × 25 mm rectangular window wafers, 
fabricated either from commercial sapphire or garnet (Y3Al5O12) crystal, which are both chemically resistant to the 
chemically aggressive vapors of alkali metals. In order to minimize the birefringence effect, the sapphire plates are cut 
across the c-axis, while the garnet is free of birefringence. The wafers have to be perfectly polished (better than λ/20) 
before the use. In order to form the wedge gap in the vertical direction  (this is needed to have a variable thickness of 
atomic vapor column-see the inset in Fig.1),  an Al2O3  strip,  ~1000 nm thick,  5 mm long,  and  1 mm  wide,  is  deposited 
on the surface of one of the windows in its lower part (in some cases, a platinum strip is used as a spacer: Pt is also 
resistant to highly corrosive hot Rb atomic vapor). Prior to the deposition, a 2 mm hole is drilled in the bottom of the 
windows, into which a 25 mm long tube of the same diameter, made of commercial sapphire, is inserted. With the help of 
this sapphire tube (inside diameter is of 1 mm) the nano-cell is connected  with the 1 cm-long cell region (the lower part of 
Fig.1) with 2 sapphire windows. The 1 cm-long sapphire cell with sapphire windows is terminated by with a 4-cm long 
sapphire side-arm. Then, the entire construction is assembled and glued in a vacuum furnace. After the gluing, a glass 
extension is sealed to the sapphire tube, and the multi-region cell is filled with a natural mixture of the 85Rb (72%) and 
87Rb (28%) as well as with a buffer gas neon , as is done for an ordinary glass cell. Photograph of the multi-region cell is 
presented in Fig.2. The holder of the multi-region cell (which is tied to the side arm and is seen at the bottom in Fig.2) is 
made from the short aluminium tube. With the help of this holder MRC is fixed inside the oven. 

We have used 2 MRCs, filled with 6 Torr and 20 Torr of neon gas. Such design of MRC allows one to compare 
absorption and fluorescence signals simultaneously recorded by the nano-cell and 1 cm-long ordinary cell.  

The MRC is placed in the oven with openings, which allow passing the laser radiation and registration of 
fluorescence in the direction perpendicular to the laser beam. The temperature of the MRC was kept at ~ 120 oC at the 
side-arm (the latter defines Rb atomic vapor pressure), and somewhat (20 oC) higher at the windows in order to prevent Rb 
vapor condensation at the windows. This regime corresponds to the number density of Rb atoms N ~ 1013 at/cm3. To 
measure the transmission and fluorescence spectra at different nano-cell thicknesses, the oven with MRC was smoothly 
translating vertically as indicated by an arrow in Fig.3. 

 
II.2. Experimental arrangement for spectroscopic measurements 

 
The experimental arrangement for transmission and fluorescence measurements is presented in Fig.3. Extended 

cavity diode laser (ECDL) with  = 794 nm, ~30 mW power and spectral width ~1 MHz was used. Faraday isolator (FI) 
was used in order to avoid optical feedback. Diode laser radiation is focused on the cell (2) nearly perpendicular to its 
window  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
surface (this is very important in the case of nano-cell use[3,7]), with a spot size of  ~ 0.5 mm. The MRC is placed in 
the oven made from non-magnetic materials, which has 3 openings: 2 for the laser beam transmission and one for 

 794 nm 
L 1MHz vertical 

translation

1

1

Oscilloscope

 Transmis.

Fluor.

    Rb cell,L=3 cm

1

2
ECDL

FI

Fig.3. Sketch of the experimental 
setup. ECDL diode laser with  = 
794 nm; FI- Faraday isolator, 2-
multi-region cell (inside the 
oven), or an auxiliary nano-cell 
filled with pure Rb or Cs; the 
upper part – unit for the frequency 
reference formation, 1- 
photodiodes. 
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registration of resonance fluorescence in perpendicular direction to the laser beam. The temperature of the ETC is kept at 
~ 110 - 120 oC on the side arm (this defines the Rb atomic vapor pressure), and 20-30 oC higher at the windows (in order 
to prevent the Rb vapor condensation at the windows). This regime corresponds to the number density of Rb atoms N ~ 
1013 at/cm3. In order to measure the transmission and fluorescence spectra at different nano-cell thicknesses, the oven 
with the MRC was smoothly moved vertically as indicated by an arrow in Fig.3.  

In order to obtain the transmission or/and fluorescence spectra, the laser radiation frequency is linearly scanned 
in an appropriate spectral region around the studied transition group of either the 85Rb or 87Rb, D1 line. Part of radiation 
(~ 50%) is branched to auxiliary reference setup (the upper part in Fig.3) for comparison with the spectra obtained in the 
main nano-cell. Depending on task, it could be: i) resonant transmission or fluorescence spectra obtained with 3 cm- long 
Rb cell; ii) SA spectra based on a room temperature 3 cm- long Rb cell; iii) transmission spectra of hyperfine atomic 
transitions in an auxiliary nano-cell, which is preferable in some cases. The spectra were recorded by photo-detectors (1) 
followed by a digital four channel storage oscilloscope, Tektronix TDS 2014B.  
 

II.3. Key features of resonant absorption in nano-cell filled with pure alkali metal (Cs) 
 
We note that in [3 ,7,910,13] the resonance absorption at D2 lines of Rb and Cs atoms has been studied where the 

frequency distance between the upper hyperfine sublevels is rather small (several tens of MHz), which hinders 
practically the consideration of behavior of separate atomic transitions. From this point of view, the D1 lines of Cs is 
more convenient because the frequency separation of the upper hyperfine levels reaches 1.167 GHz (see Fig.4) and 
hence the atomic transitions are completely resolved. In order to demonstrate the key features of resonant absorption in 
nano-cell, an auxiliary nano-cell filled with pure Cs was used.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The laser frequency was scanned in the range of 10 GHz covering all four spectral components Fg = 3  Fe = 3; 4 
and Fg = 4  Fe = 3; 4 of the hfs of the Cs D1 line (subscripts “g” and ”e” denote, respectively, the lower and upper 
levels of the transition). In order to obtain the transmission spectra for different thicknesses, the oven with the nano-cell 
was moved vertically as indicated by an arrow in Fig. 3. A small portion of radiation was directed onto a cell of 3 cm –
long at room temperature where the well-known saturated absorption (SA) scheme was realized. The filters F were also 
used for attenuation of the probe (as well as pump) beam in the SA scheme in order to obtain a reference spectrum with a 
width close to natural.  

Depicted in Fig. 5 are the transmission spectra of the nano-cell and of the cell with L = 3 cm for atomic transition Fg 
= 4  Fe = 3 and the thickness of the nano-cell L =  /2. Laser intensity  30 W/cm2. Curve (1) is the transmission 
spectrum of the nano-cell at side-arm temperature 110C. The absolute value of absorption amounts to ~2%. The 
experimental profile 1 of the transmission line for L =  / 2 is best approximated by the curve 2 which is described by the 

 

1167 MHz
3'

4'

F=4

F=3

62S
1/2 9.19 GHz


L

Fig.4 Relevant energy levels of the   
Cs, D1 line.  
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Fig.5. Transmission spectra, 4  3’ , the nano-cell with L =  / 2 
and the cell with L = 3 cm; (1) transmission spectrum of the 
nano-cell which is well described by curve (2) the “pseudo-
Voigt2” function with FWHM  75 MHz; (3) Doppler-broadened 
transmission spectrum from the 3 cm-long cell which is well 
described by (4)  the Gaussian profile with FWHM  350 MHz.
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“pseudo-Voigt2” function of the Origin-7 program with the Lorentzian and the Gaussian profiles having the FWHM 70 
and 77 MHz, respectively (the parameters m and A of the “pseudo-Voigt2” function have also been adjusted). Curve 2 
has FWHM 75 MHz. Curve 3 is the experimental Doppler-broadened transmission spectrum of the cell with L = 3 cm 
which is well described by the Gaussian profile 4 with FWHM  350 MHz (curves 3 and 4 in Fig.5 coincide practically). 
So, for L =  /2 a 4.6 times narrowing of the spectrum is observed. But if we compare the transmission spectra from the 
nanocell and the usual cell at the temperature of windows of both of them equal 150C, the FWHM is 430 MHz and the 
spectrum narrowing for L =  / 2 is 5.7 times. 

Figure 6 shows the transmission spectra for the same atomic transition and the thickness varying from /2 to 
7/2 with the step of  / 2 at the laser intensity  0.1 mW/cm2. The phenomena of DCN and collapse of DCN are well 
seen in Fig. 6: the minimum value of the spectral width is reached at the thicknesses L = (2n+1)  / 2. Note that for L =  
/ 2 the width is minimal: 75–80 MHz [5,6,10], whereas for L = 3 / 2, 5 / 2, and 7 /2, the narrowing of the spectrum 
occurs in the presence of increasing broad Doppler pedestal). As seen in Fig. 6, for L = n the spectral width is maximal 
(for L =  it is  300 MHz). So, fourfold narrowing of the transmission spectrum takes place for L =  / 2 as compared to 
L = . Note that in [6] the twofold narrowing of the spectrum has been observed which may probably be explained as 
follows: because of small gaps between the nano-cell windows the evacuation of residual gases (adsorbed at the window 
surfaces) is strongly hindered and hence many-hours evacuation is needed at the temperature of  400C; work [6] used 
the first nano-cell model where the evacuation of residual gases was performed worse than in subsequent models. 
Residual gases may lead to an additional broadening of the transmission spectrum and this influence is more for the 
thickness L = /2 than for L = . Note that the peak transmission for the thickness L =  / 2 is practically equal to the 
peak transmission for L = , whereas at the increase in laser intensity  the peak transmission for L =  / 2 becomes higher 
than for L = . The lower curve in Figs.6, 7 are obtained with the standard SA technique from the cell of usual length. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
III. Resonant absorption and fluorescence in nano-cell filled with Rb and neon gas. 
                 
                  III.1Resonant absorption in nano-cell filled with Rb and neon gas. 
 
Transmission spectra for 85Rb D1 line 32’,3’ and 87Rb, 22’ transitions recorded in nano-cell filled with pure Rb (the 
cases L=λ/2 and L=λ) are shown in Fig.8a for laser intensity < 0.1 mW/cm2. Dicke-type coherent narrowing effect is well 
seen: the spectral line-width for L=λ/2 (~150 MHz) is narrower by factor of 3 than that for L=λ (~ 450 MHz). 
Transmission spectra for the nano-cell filled with Rb and 6 Torr of Ne are shown in Fig.8b for the same thicknesses. 
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Dicke-type coherent narrowing effect is still well seen [6,8,9]. The further increase of buffer gas pressure (Fig.8c) results 
in broadening and contrast reduction of DCN dips. We should note that transmission for L=λ in Fig.8b,c is more 
sensitive to IL as compared with the case of L=λ/2. Particularly, at IL~ 1mW/cm2 transmission for L=λ can be higher (the 
absorption is lower) than for L=λ/2, which is caused by stronger influence of an optical pumping for L=λ . For this 
reason, in order to get graphs visually comparable with those presented in Fig.8 we have adjusted IL for L=λ. Fig.9 
presents calculated spectra corresponding to those presented in Fig.8. An agreement with experimental results is seen. 
The striking point is that even with Ne pressure is up to 20 Torr the CRDN is still observable (graphs c), though less 
pronounced as compared with a) and b).  
 

III.2 VSOP formation in nano-cell filled with Rb and neon gas 
 

It is well-known that in the case of alkali metal vapor cells of conventional length (0.1 - 10 cm), the addition of 
> 0.5 Torr of (any) buffer gas leads to disappearance of all the sub-Doppler features in the saturated absorption spectrum. 
Upper curve in Fig.10 shows well-known SA spectrum obtained with 3-cm long cell filled with pure Rb. The VSOP and 
crossover (CO) resonances are well seen. The same spectrum recorded with 1-cm long Rb cell with 6 Torr of neon is 
shown by the lower curve. One can see that here all the VSOP and CO resonances are completely vanished. The latter is 
caused by the fact that in the case of buffered cell, the velocity selectivity of Rb atoms reduces due to frequent collisions  
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Fig.8. Transmission spectra for L= λ/2 and L= λ. a) nano-cell with pure 85Rb, DCN and its collapse is well seen; b) 
nano-cell with Rb + 6 Torr Ne, DCN and its collapse is still well seen; c) nano-cell with Rb + 20 Torr Ne, DCN and its 
collapse is yet seen, though less pronounced compared with a), b). 

Fig.9 Calculated spectra for cases presented in Fig.8. 85Rb, D1 line, only 3 2’, 3’ transitions a) pure Rb, L=λ/2, and 
λ, L ~ 0.04 ;  b) Rb + 6 Torr Ne for L=λ/2 and λ L ~ 0.4 ; c) Rb + 20 Torr Ne,  for L=λ/2 and λ, L = 0.8  ( = 
N +3 MHz), VT=300m/s, pressure broadening 7.5 MHz/Torr.  
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with Ne, thus deteriorating necessary conditions to form sub-Doppler resonances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 shows transmission spectra for nano-cells with L=λ on 85Rb Fg=3Fe=2,3 and 87Rb Fg=2Fe=2 

transitions (IL~ 10 mW/cm2) for the following cases: upper curve for nano-cell with pure Rb: the linewidth of VSOP 
resonances ~25 MHz; middle curve for nano-cell with Rb and 6 Torr Ne: VSOP linewidth is ~90 MHz; lower curve for 
the nano-cell with Rb and 20 Torr Ne (note, VSOP resonances are absent). The comparison of Fig.6 and Fig.7 shows a 
striking peculiarity: the VSOPs still exist for the nano-cell with Rb + 6 Torr neon when L= λ. This important difference 
in behavior as compared with vapor cells of the conventional length can be explained as follows. The free path length of 
Rb atom for 6 Torr Ne is a bit less than 10 m, so the atoms flying parallel to the windows inside the laser beam of 2 mm 
diameter experience hundreds of collisions with Ne atoms causing just additional broadening of VSOP. Meanwhile 
collisions of Rb atoms with longitudinal velocity with Ne atoms have a negligible impact since the thickness of nano-cell 
for L= λ is less than 1 m.  

 
                              III.3.Resonant fluorescence in nano-cell filled with Rb and neon gas. 

 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Fig.10. Upper curve is well-known SA resonances for 
1-cm long cell (pure 85Rb, D1 line), CO is crossover 
resonance; the lower curve is  SA spectrum for 1 cm-
long cell filled with Rb + 6 Torr Ne showing absence 
of VSOP resonances. Spectra are shifted vertically for 
the convenience. 
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Torr Ne, VSOP resonances are washed out. Spectra are 
shifted vertically for the convenience. 
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and 137 MHz (theory); lower curves ,  Rb + 20 Torr Ne: 230 MHz (exp) and 240 MHz (theory). L = 0.4  ( = N 
+3 MHz), VT = 300m/s, pressure broadening 7.5 MHz/Torr.  
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It was demonstrated in [7,14] that under optimal conditions, the FWHM of the fluorescence spectrum of an individual  
transition for L= λ/2 can be reduced down to ~70 MHz (in the case of ordinary cm-size cell the value is ~ 500 MHz). 
This striking feature of the nano-cell offers an important benefit in the case of the nano-cell filled with buffer gas, too. 
Fig.12 presents fluorescence spectrum when L= λ/2 for 3 cases (left- experiment, right- theory): upper curve - nano-cell 
with pure Rb vapor; middle (grey) and lower curves – nano-cell containing Rb vapor + 6 Torr and 20 Torr Ne, 
correspondingly. For theory (b): Rabi frequency L=0.4, where  =N (~ 6 MHz) + 3 MHz (the broadening caused by 
Rb-Rb collisions at 120oC at the side-arm). For the calculations we used broadening rate of ≈ 7.5 MHz/Torr, thus for 6 
Torr, (total) ~ 50 MHz, and for 20 Torr, (total) ~ 150 MHz, and Maxwellian velocity distribution with VT = 300 m/s. 
Laser intensity is ~ 10 mW/cm2. As it is seen, up to 20 Torr Ne the fluorescence spectrum has a sub-Doppler linewidth. 
As it is shown in [25] , a tool for in situ pressure monitoring based on this effect can be developed.  
 
IV. Theoretical Consideration and Discussion 
 
We consider a three-level atomic system (see Fig. 9) interacting with a linearly polarized laser radiation of frequency  . 

The three levels under the consideration are: one ground hyperfine level 1F     1  and two excited levels 3,2F  

 2  and 3 . For simplicity, we consider a one-dimensional situation, where the driving field is in the z -direction 

and the atom is moving along z-direction with a velocity zv . The detunings of the laser from the transitions 21   

and 31   are zkv 211  and zkv 312 , respectively, where zkv is the shift due to the 

Doppler effect, with k  being the wave vector of the excitation light. We analyze the observed spectra of resonant 
absorption and fluorescence on the basis of a standard density-matrix approach [?]. The dynamical behavior of the 
density matrix ρ is given by the Liouville equation of motion 

   terms,relaxation,ˆˆ1
0   VH

i
         (1) 

where 0H  is the unperturbed atomic Hamiltonian, and )(E d̂ˆ tV   is the atom-light interaction Hamiltonian in the 

electric-dipole approximation with d̂  being the electric dipole operator and )(tE  the electric field of the radiation light. 

The components of the density-matrix elements of Eq. (1) can be represented by taking rotating-wave- 
approximation  

3331222131
*

21
*

11 )Im(2)Im(2    

2221
*

22 2)Im(2    

3331
*

33 2)Im(2    

211
*
3222211121 )()(   iii         

3123213311231 )()(   iii  

3231
**

232 )2(
121

 iii   

where 1i  is the rate of the spontaneous decay from the excited state i  to the ground state 1 , and 

2311212   . Here 1     and 2   are the rates of population lost from the system, responsible for the 

optical pumping of the other ground hyperfine level with 2F  denoted as 1  in Fig. 9.  The Rabi frequencies of the 

corresponding transitions are denoted by 1  and 2 , respectively. As the atoms are in thermal motion, we take the 

average of all ij  values over the range of velocities, weighted by the one dimensional Maxwellian velocity distribution. 

To take into account the laser bandwidth we use the phase diffusion model of Wigner-Levy [?], in accordance with 
which it is assumed that the laser radiation has a Lorentzian spectrum with the Full Width at Half Maximum (FWHM) of 

(2) 
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γL. The bandwidth is incorporated into Eqs. (2) as a relaxation term for the non-diagonal element of the density matrix in 
accordance to the procedure given in [?]. The main assumptions made in the model are as follows: the atomic number  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
density is assumed to be low enough so that the effect of collisions between the atoms can be ignored; the atoms 
experience inelastic collisions with the cell walls, i.e. atoms lose completely their optical excitation; the incident beam 
diameter largely exceeds the cell thickness which allows one to neglect the relaxation of atoms travelling out of the 
diameter of the laser beam. These assumptions allow us to take into account the collisional relaxation of each atom by 
solving the temporal equations for the atomic density matrix with proper boundary conditions for each atom separately. 
The effect of the reflection of the radiation from the highly-parallel windows of the nano-cell behaving as a Fabri-Perot 
cavity [5] is also taken into account. The model used here is on the lines of [5,8]. Fig. 14 presents the calculated 
dependence of the fluorescence line-width and the amplitudes as a function of the neon pressure for Rb, D1 line, Fg = 
3Fe = 2;3 ,  = 0.4  , VT =300 m/s. Note that, the FWHM data coincide for 3 2’ and 3 3’ spectral lines. One of 
the possible application using this dependence is development of an online pressure gauge which is described in [25].  

 
V. Electromagnetically induced transparency phenomenon; ordinary cm-size Rb cell; nano-cell filled 

with pure Rb ; nano-cell filled with Rb and nitrogen gas 
 

The line-width of the EIT resonance in the case of small probe intensity is γEIT  2Γ21 + Ω2/γN  [17], where  Γ21  
is the relaxation rate between ground hyperfine levels (for -system) , with Ω being a Rabi frequency. For the case of the 
nano-cell [4, 21], the value of Γ21 is highly affected by atom-wall (cell’s window) collisions. It is known that a unique 
collision with the dielectric surface of an uncoated vapor cell is sufficient to thermalize the ground hyperfine levels, with 
depolarization probability 0.5 – 1. In order to preserve the atomic coherence in wall collisions either an additional gas or 
paraffin-coated walls were used [20]. As the size of the vapor cell is reduced, the lifetime of the ground-state coherence 

becomes shorter because of collisions of the atoms with the windows: Γ21= (2π t)-1
, where t=L/u (L is distance between 

windows and u is the most probable thermal velocity). Also, the EIT resonance contrast (defined as the ratio of the EIT 
depth to the height of shoulders of the EIT window) strongly depends on Γ21. Hence, in the case of L < 1 μm (2Γ21 >100 
MHz), one could expect that the EIT effect will be vanished. Nevertheless, in [21,22 ] it was demonstrated that the EIT 
resonance can be observed in thin cell with thickness as small as ~ 1 μm. The explanation is as follows: when the 
coupling laser is resonant with the corresponding atomic transition then the atoms moving nearly parallel to the cell 
windows participates in the EIT resonance formation and collisions with the windows are not essential, meanwhile when 
the coupling laser is detuned from the corresponding transition by a value of Δ, only those atoms having the velocity 
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Fig. 13. The three-level scheme 
around the D1 line of 85Rb. Fig.14. Dependence (theory) of the fluorescence line-width and the 
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projections vz =2 π Δ /k participate in the formation of EIT, and for these atoms the time of flight between the cell 
windows is small enough τL = L / vz. This causes a frequent collisions of the atoms with the nano-cell’s windows and 
leads to the increase of Γ21 and, consequently, to the line-width broadening and contrast reduction of the EIT resonance. 

One of the most dramatic different in behavior of the EIT resonance formed in ordinary cm-size Rb cell or in 
nano-cell filled with pure Rb or in nano-cell filled filled with Rb and nitrogen gas is dependence of the EIT resonance 
line-width and contrast as a function of the coupling laser frequency detuning Δ (from the corresponding atomic 
transition) which is demonstrated below. The experimental arrangement is sketched in Fig 15. Both beams ( 3 mm) of 
two single-frequency extended cavity diode lasers (ECDL) (coupling and probe) with   794 nm (the linewidth is ~ 1  

 
 
 
 
 
 
 
 

  
 
 
 
 
 

 
 
 
 
 
 
MHz) are well superposed and directed onto the cell (4) at near-normal incidence with the help of the first Glan prism 
(the coupling and probe beams have linear and perpendicular polarizations).The second Glan 2 prism  has been used, 
which allows to provide separate detection of the spectra of the probe and coupling lasers,  (1)-are Faraday isolators. 
Thin cell (4), of nano-metric thickness, was placed inside the three pairs of mutually perpendicular Helmholts coils (2) 
providing possibility to cancel laboratory magnetic field as well as to apply homogeneous magnetic field. The optical 
radiations were recorded by the photodiodes (3) and the signal of the photodiodes was intensified and recorded by a two-
channel digital storage oscilloscope Tektronix TDS 3032B, F-are filters. An improved Dichroic-Atomic-Vapor-Laser-
Locking (DAVLL) method, realized in a separate nano-cell with the thickness L = λ/2, is used for the coupling laser 
frequency stabilization; this technique is presented in [23]. The frequency reference spectra formation has been realized 
with the help of an auxiliary nano-cell with thickness L = λ [4]. 

Dependence of the EIT resonance line-width and amplitude (contrast) as a function of the coupling detuning Δ 
for 6cm-long cell is shown in Fig 16. The coupling power is ~10 mW ,while the probe power is  ~20 W. As it is seen 
when Δ is increasing : Δ0, 1, 2, values are 0, 90 and 120 MHz, correspondingly, the line-width of EIT resonances is 
slightly reduced and line-width values (FWHM)are  13.5, 12.7 and 12.5 MHz , correspondingly, while the amplitude of 
the EIT resonances remain practically the same. Some reduction of the EIT amplitude with  increasing is caused by 
Maxwellian velocity distribution. VSOP peak is demonstrating increasing of the absorption, since the coupling laser 
transfer a number of atoms from the level 3 to level 2, and this causes increase of the probe absorption for 2→ 2’,3’ 
transitions (the EIT resonance is superimposed with the VSOP at 2- 3’transition ).Note that physical nature of this VSOP 
is different to the another VSOP presented in Fig.7. Dependence of the  EIT resonance line-width and amplitude as a 
function of the blue detuning Δ of the coupling  for thickness L=λ is shown in Fig 17. PC ~15 mW, PP~20 W, nano-
cell’s reservoir temperature is 120oC.  As it is seen when Δ is increasing : Δ0, 1, 2, 3, 4 values are 0, 15, 40, 50 and 85 
MHz, correspondingly, the line-width of EIT resonances are rapidly increasing and line-width values are  30, 33, 51 and 
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74 MHz, correspondingly, while the amplitude of the EIT resonances are rapidly reduced. The physical explanation of 
this fact is presented above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
to study atom-walls collisions, i.e. a wall’s material. Note, that that it is expected that a high temperature of the nano-cell 
wall > 400 oC may causes a reduction of the depolarization probability due to atom-wall collision, i.e. smaller 
dependence of the EIT line-width versus the coupling detuning could be observed in this case. Thus, there is a dramatic 
different in behavior of the EIT resonance in nano-cell filled with pure Rb and CCL. Comparison of the EIT resonance 
line-width for the both cases vs the coupling detuning is shown in Fig.18. Note, that increasing of the Δ in the case of 
nano-cell is causes rapid increase of the line-width, meanwhile for CCL even a small reduction of the line-width is 
observable. 
       It is expected that addition of a buffer gas (under the appropriate pressure) inside the nano-cell will reduce dramatic 
behavior of the EIT resonance contrast and the line-width as a function of coupling detuning. If mean free path for 
 

 
 
 
 
 
 
 
 
 
 
  
 
 

 
 
 
 

Fig.16.Tansmission spectra of the probe when the 
coupling frequency is shifted by Δ with the respect of 3 
→ 3’ transition, Δ0, 1, 2,are equal to : 0 ; 90 and 120 
MHz , for the curves 1,2,3,  for 6cm-long cell . Lower 
curve is the reference spectrum which is formed with 
the help of an auxiliary nano-cell with thickness L= λ. 
For the VSOP peak see the text. Spectra are shifted 
vertically for the convenience. 

Fig.17. Nano-cell filled with pure Rb, transmission 
spectra of the probe when the coupling frequency is 
shifted by Δ with the respect of 3 → 3’ transition , Δ0, 
1, 2, 3, 4 values are 0, 15, 40, 50 and 74 MHz, 
correspondingly , for the curves 1,2,3,4,5, nano-cell  
thickness  L= λ.  EIT resonances are indicated by the 
vertical arrows. For the VSOP peak see the text. 
Spectra are shifted vertically for the convenience. 
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Rb-buffer collisions will be much less than the distance L between nano-cell’s windows ( L= ~800 nm) this will 
prevent direct atom-walls collisions, thus, this will avoid  increase of Γ21 (and, consequently, avoiding the strong line-  

 
 

 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
width broadening and contrast reduction).In order to check this statement a special nano-cell filled with the Rb and  
nitrogen (N2) with the pressure ~20 Torr was fabricated and is shown in Fig 19. The gap has wedged form in the vertical 
direction from 100 nm (centum of the ring part) up to 2 m near the bottom. Collisional cross section of Rb- N2 by 
several times is larger than that of Rb-Ne, thus providing smaller mean free path for Rb-N2 collisions (mean free path ~ 
300 nm). Dependence of the EIT resonance line-width and amplitude as a function of the blue detuning Δ of the coupling  
for nano-cell filled with Rb and 20 Torr N2 with thickness L=λ is shown in Fig 20. As it is seen when Δ is increasing ,i.e. 
Δ0, 1, 2, 3, 4 are equal to 0 ; 79, 98.5 , 142 and 177 MHz ,correspondingly, the EIT amplitude reduction is much 
weaker than that in the case of the nano-cell filled with pure Rb vapor. Reference spectrum is formed by the help of an 
auxiliary nano-cell filled with pure Rb and with thickness L= , thus showing atomic transition position not perturbed by 
N2 collisions ,while EIT resonance for 0 =0 is red shifted by 130 MHz which means that atomic transition 3 3’ is red 
shifted due to Rb- N2 collisions.  The comparison of the EIT resonance amplitude for the both cases versus the coupling 
detuning is shown in Fig.21. Thus, use of buffer gas N2 strongly extended the region of the coupling detuning where EIT 
resonances is still possible to create.  

 
VI Conclusions 

 
Comparison of the resonant absorption in the nano-cell filled with Rb vapor with another nano-cell filled with 

Rb and neon gas with pressure 6 Torr and 20 Torr shows that the spectra of the resonant absorption demonstrate sub-
Doppler narrowing for the thickness L=/2 and broadening for the thickness L=, thus manifesting the effect of collapse 
and revival of Dicke-type narrowing ( = 794 nm is a resonant laser wavelength). In the Rb cells of the conventional 
length   filled with buffer gas, in the saturated absorption VSOP resonances are washed out when pressure > 0.5 Torr. In 
contrast, for the nano-cell with L=  the VSOP resonances located at the atomic transition are still observable even when 
neon pressure is ≥ 6 Torr. Narrowband fluorescence spectra emitted by the nano-cell with L= λ/2 can be used as a 
convenient tool for online buffer gas pressure monitoring in the MRC in its several centimeter-long part, for the 
conditions when ordinary pressure gauges are unusable. Developed theoretical model well describes all experimentally 
observed peculiarities.A strong increasing of the EIT resonance line-width and contrast (amplitude) reduction for a large 
detuning of the coupling laser frequency with respect to the corresponding transition is revealed in the nano-cell filled 
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by Δ0, 1, 2, 3, 4which are equal to 0 ; 79, 98.5 , 142 and 
177 MHz ,correspondingly , for the curves 1,2,3,4,5 , 
thickness L= λ. EIT resonances are indicated by  vertical 
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with pure Rb and thickness L= . It is shown that this is completely in contradiction to that observable in the case of CCL  
filled with the Rb. It is demonstrated that addition of buffer gas nitrogen (under the appropriate pressure) strongly 
extended the region of the coupling detuning where EIT resonance is still possible to create with the help of  the nano-
cell with the thickness L =.  
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