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Châtenay Malabry, France
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The management of correlation risk is of the utmost importance in several areas of investment
banking: multi-asset derivatives pricing and hedging, optimal asset allocation, risk manage-
ment, statistical arbitrage and many others.x However, the modeling of correlation as a time-
dependent quantity—as opposed to that of the volatility, say—is still in its infancy. In this
article, we present a mechanism for the presence of a stochastic covariance matrix in financial
markets, and provide an explanation for the returns’ heavy tailed joint distribution. This
mechanism relies on sampling returns according to an appropriate event time. Using CAC 40
high-frequency data, we compare the predictions of our model with real-world statistics and
find very good agreement.

Keywords: Correlation modelling; Econophysics; Equity options; Quantitative finance

1. Introduction

Since the celebrated Black–Scholes model started its
career as a benchmark model in derivatives houses,
many attempts have been made to check whether its
assumptions are in agreement with real-world data.
Among those assumptions, the most heavily rejected is
that returns in calendar time are normally distributed, or,
in other words, that volatility does not fluctuate ran-
domly. Indeed, non-Gaussian tails (such as power-law or
exponential tails) are well documented in the empirical
literature (Bouchaud and Potters 2004).

However, one is prone to ask whether, as studied in the
pioneering work of Clark (1973), returns may indeed be
normally distributed modulo a stochastic change of time.
In the one-dimensional case considered by Clark and
several other authors thereafter (see, e.g., Ane and Geman
1996 and Carr et al. 2002), a stochastic clock is
introduced, the so-called business time, speeding up the
usual calendar time as market activity rushes. Therefore,
the random intensity of the market activity flow, through

the arrival of trades, provides an explanation for the
fluctuating aspect of volatility. In a more mathematical
formulation: Returns are then driven by a subordinated
Brownian motion, the subordinator being the business
time, leading to heavy-tailed{ distributions. Moreover,
the degree of heaviness is easily seen to depend
on the distribution of arrival times. It is noteworthy
that, to the best of our knowledge, no such approach has
previously been applied to the multi-dimensional case,
and the aim of the work presented in this paper is
precisely to do so. Inspired by a multidimensional version
of the Central Limit Theorem, we introduce a suitable,
rather natural multidimensional business time and study
some of its elementary properties. We then determine the
influence of this stochastic change of time on the joint
distribution of returns, our main objective being to
introduce a finer-grain, more accurate description of the
origin of covariance between pairs of assets. Finally, we
present an analytically tractable model that may be
viewed as a simple mathematical tool possessing statisti-
cal properties similar to those of the multidimensional

*Corresponding author. Email: frederic.abergel@ecp.fr
xEven single asset derivatives desks are sensitive to shifts in correlation if, for instance, they are focused on a specific sectorial or
geographic exposure.
{A probability distribution with survival function �F is said to exhibit heavy tails if limx!þ1

�FðxÞ e�x ¼ þ1 for every �40. It has
semi-heavy tails if limx!þ1

�FðxÞ e�x 5þ1 and limx!þ1
�FðxÞ e�x

2

¼ þ1 for every �40.
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trade time. Both the statistical estimates and the models
that we present in this note are new, and we strongly
believe that the use of multidimensional trade time for the
modeling of correlated assets at the microstructure level is
prone to many interesting new developments, some of
which may already be found in the work of Huth (2010)
and Muni Toke (2010).

The paper is organized as follows. In section 1 we
provide a very simple theoretical background supporting
Clark’s model as well as the empirical and statistical
studies presented by Christian Silva (2005) and extend it
to the multivariate case. After a brief description, in
section 2, of the data sets we use, we apply our approach
to high-frequency data in section 3, unveiling a strikingly
convincing agreement. Section 4 states our temporary
conclusions as well as questions for future research, some
of which are addressed by Huth (2010) and Muni
Toke (2010).

2. Theoretical framework

2.1. Univariate case

Let us consider an asset whose price fluctuates randomly
during trading hours. Between the (i� 1)th and the ith
trade, the price increment is simply �Pi :¼Pi�Pi�1. Then,
N trades away from the opening price P0, the total
variation is given by the sum of these elementary
increments

PN � P0 ¼
XN
i¼1

�Pi:

The elementary price increment can itself be decomposed
into two parts, its sign and magnitude: �Pi¼ sgn(�Pi)j�Pij.
In the simplest description of the price evolution in trade
time, the sign of the increment is given by that of the
corresponding market order, whether it is a buy or sell
order, and its magnitude is then a function of the volume
of the trade and of the available liquidity in the order
book just before the trade. It is well known, and well
documented in the literature (see, e.g., Bouchaud et al.
2009) that such a simplistic explanation may not always
be accurate, but the mathematical decomposition of the
price increment as above is obviously always legitimate.
We are then left with the following expression for the
relative price increment, i.e. the asset return:

RN :¼
PN � P0

P0
¼

1

P0

XN
i¼1

sgnð�PiÞj�Pij:

The asset return is clearly the sum of random variables
and we would like to apply a version of the Central Limit
Theorem (CLT). The basic CLT is stated for independent
and identically distributed random variables, a property
which clearly fails to hold if one considers the returns of a

financial asset: it has been well documented, and is easily
verified experimentally, that absolute values of returns are
autocorrelated (Bouchaud et al. 2003). However, the CLT
can be extended to the more general case of dependent
variables X1, . . . ,Xn (Whitt 2002). The main condition for
it to hold is the existence of the asymptotic variance

lim
n!þ1

Var
1ffiffiffi
n
p

Xn
i¼1

Xi

 !
¼ VarðX1Þ þ 2

Xþ1
k¼1

CovðX1,X1þkÞ,

assuming the same distribution for all Xi.
If the sum above is finite, i.e. if the autocorrelation

function of �Pi decays fast enough,y then the CLT yields,
as N!þ1,

RNffiffiffiffi
N
p !

d Nð0, �2Þ,

where �2 :¼ limN!þ1Varðð1=
ffiffiffiffi
N
p

P0Þ
PN

i¼1 �PiÞ and we
have assumedz E(�P1)� 0. Hence, there holds, for N �1,

RN � Nð0,N�
2Þ,

i.e. returns are asymptotically normally distributed when
they are sampled in trade time. Recast in the context of
stochastic processes, the returns can therefore be viewed
as a Brownian motion in a stochastic clock (such
processes are called subordinated Brownian motions),
the clock being the number of trades.

Now, the number of trades over a time period
is obviously random. Therefore, the Dt-return RDt :¼
(PDt�P0)/P0 in calendar time exhibits a random variance
NDt�

2 where NDt is the number of trades occurring during
a time period of length Dt. The distribution of calendar
time returns RDt can be recovered from trade time returns
RNDt

through the application of Bayes’ formulax

PRDt ðrÞ ¼

Z þ1
0

PNð0, n�2ÞðrÞPNDt ðnÞ dn,

where PX(x) is the probability density function of X. As
mentioned in the introduction, this mechanism has been
extensively studied in the finance literature (Christian
Silva 2005), but only in the univariate framework.

Slightly rephrasing the equations above, one has that
RDt ¼ �

ffiffiffiffiffiffiffiffi
NDt
p

:X in distribution, where X�N (0, 1) inde-
pendently from the value of NDt and � is a scaling
constant. In order to derive the final expression for PRDt

,
PNDt

must be specified. Nevertheless, some model-free
properties can be established, such as the computation of
moments. Defining �k(X ) :¼E(Xk)/E(X2)k/2 the kth
dimensionless moment of X, there holds

EðRk
DtÞ ¼ EðNk=2

Dt EðXk j NDtÞÞ

¼ �kEðNk=2
Dt ÞEðN ð0, 1Þ

k=2
Þ

¼ �kEðNk=2
Dt Þ

k

2

� �
!!11f9m2N�:k¼2mg,

yIn the case of price differences �Pi, the autocorrelation function decays very fast and can be considered as statistically insignificant
after some lag k close to one, even for small time scales (Abergel et al. 2009). Therefore, the above sum may reasonably be assured to
converge.
zIt is a reasonable assumption since we are dealing with high-frequency data.
xWe assume that the distribution of the trading activity NDt can be approximated by a continuous distribution.
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leading to

�kðRDtÞ ¼
EðNk=2

Dt Þ

EðNDtÞ
k=2

k

2

� �
!!11f9m2N�:k¼2mg,

where n!! :¼ 1� 3� � � � � (n� 1) for n even (see appendix
A). For k¼ 4, we obtain

�4ðRDtÞ ¼ 3
EðN2

DtÞ

EðNDtÞ
2
� 3 ¼ �4ðN ð0, 1ÞÞ,

thanks to Jensen’s inequality.y As the fourth moment
provides information on the heaviness of the tails, we see
that such a model predicts distribution tails fatter than
those of the normal distribution for RDt. Therefore,
stochastic volatility, via the random fluctuations of the
number of trades, provides an explanation for the fat tails
of returns sampled in calendar time.z

Moreover, the shape of the tails of PRDt
is given by the

asymptotic behavior of PNDt
. For instance, it can be

shown that if NDt obeys an inverse gamma (respectively
gamma) distribution, which has heavy (respectively semi-
heavy) tails, then PRDt

is a Student (respectively Variance
Gamma) law (Carr et al. 1998, Bouchaud and Potters
2004), therefore exhibiting heavy (respectively semi-
heavy) tails. In fact, the tail behavior of PNDt

propagates
over to PRDt

(see appendix B).

2.2. Multivariate case

We now turn to the more interesting case of d� 2 assets.
How can we extend the previous framework to take
several assets into account? Let us assume that an event
time N is defined, and that we sample returns
RN ¼ ðR

1
N, . . . ,Rd

NÞ according to this time. Using a
multivariate CLT, we follow the same line of reasoning
as in the previous section and obtain for N � 1

RN � Nð0,N�Þ,

wherex� ¼ limN!þ1Varðð1=
ffiffiffiffi
N
p
ÞdiagðP0Þ

�1PN
i¼1 �PiÞ is

now the covariance matrix.
For a given time interval Dt, the respective numbers of

trades for each asset N1
Dt, . . . ,Nd

Dt are obviously different,
and we need to define a global event time
NDt ¼ f ðN1

Dt, . . . ,Nd
DtÞ. We suggest using NDt ¼

Pd
i¼1 N

i
Dt,

which amounts to increment time as soon as a trade

occurs on any one of the d assets. This choice seems to us

the simplest and most intuitive generalization of the

univariate case, since it amounts to considering a single

asset with dimension d: we aggregate the time series of the

returns of each asset in chronological order, and then

count trades as in the univariate case.{
In many areas of the finance industry—derivatives

pricing, asset management, risk management, statistical

arbitrage, etc.—the (calendar time) correlation matrix

arises as a fundamental input in the determination of

profit and loss. It is then clearly important to determine

whether the sampling in trade time has an effect on the

correlation matrix itself. Using our model, we can easily

recover the calendar time covariance matrix by Bayes’

calculus. Since RDt ¼ �1=2
ffiffiffiffiffiffiffiffi
NDt
p

X in distribution, with

X�N d(0, Id) independently from the value of NDt, we

obtain

EðRDtR
0
DtÞ ¼ EðNDt�

1=2XX0ð�1=2Þ
0
Þ

¼ �1=2
EðNDtEðXX

0 j NDtÞÞð�
1=2Þ
0

¼ EðNDtÞ�,

which implies that the calendar time correlation �ijDt
between asset i and j is given by

�ijDt :¼
CovðRi

Dt,R
j
DtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðRi
DtÞVarðRi

DtÞ

q

¼
EðNDtÞ�ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðNDtÞ�iiEðNDtÞ�jj

p
¼

�ijffiffiffiffiffiffiffiffiffiffiffiffi
�ii�jj

p
¼

�ijNDtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iiNDt�jjNDt

p
¼ �ijNDt

¼ �ij:

Therefore, the calendar time correlation is equal to the

trade time correlation, and does not depend on the time

interval length Dt. We will check this property in the

empirical part of our study below.

yThe equality is reached iff NDt is almost surely constant.
zAs pointed out by Gillemot et al. (2006), there might be other factors explaining the volatility of financial markets on a microscopic
time scale, such as the shape of the order book. However, the number of trades tends to be a reliable proxy for variance and
covariance according to Christian Silva (2005) and our study.
xWe note

diagðP0Þ :¼

P1
0 0 . . . 0
0 P2

0 . . . 0

..

. . .
. ..

.

0 . . . . . . Pd
0

0
BBB@

1
CCCA:

{Such a representation makes sense when the orders of magnitude of the liquidity of each of the d assets are similar: consider the
extreme case of one heavily traded asset and another one with only one trade per day. In this case, the normality of the couple as NDt
may fail to appear before an unrealistically large number of trades.
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3. Data description and methodology

In this section, we testy our theory against high-frequency
multivariate data. The main statements are as follows.

. Do returns become jointly normal when sam-
pled in trade time as N grows?

. Is the empirical covariance matrix of returns
scaling linearly with N ?

. Is the calendar time correlation equal to the
trade time correlation and independent of Dt ?

. What does PNDt
look like?

We use CAC 40 tick-by-tick data starting from 04/02/
2008 to 20/03/2008, that is 34 trading days. We study four
pairs of stocks, namelyz (BNPP, SOGN), (RENA,
VLOF), (LVMH, LYOE) and (FTE, ISPA). Empirical
results are found to be quite stable over these stocks.

4. Empirical results

We now address the four questions of the previous
section. We present our results for the pair (LVMH,

LYOE) since the findings are similar for the others. To
obtain a rough idea of the daily liquidity on these two
stocks, the average daily number of trades for LVHM
(respectively LYOE) is 7317 (respectively 10,236), so that
the average daily number of trades for the couple
(LVMH, LYOE) is 17,553.

4.1. Joint normality of returns

Figure 1 shows a scatter plot of the normalized trade time
returns ðR1

N=
ffiffiffiffiffiffiffiffiffiffiffi
N�11

p
,R2

N=
ffiffiffiffiffiffiffiffiffiffiffi
N�22

p
Þ for several N, together

with bivariate Gaussian confidence ellipses (see appendix
C) for the confidence levels �¼ 50%, 70%, 90%, 95%
and 99%.

First, we note that, as N grows, the correlation between
the two returns appears. This effect is known as the Epps
effect in the financial literature (Epps 1979, Toth and
Kertesz 2006, 2009), and we will also document it in
section 3.3. The bivariate normality, not a likely property
at all for N¼ 8, reaches better and better agreement with
the data as N grows.

In order to confirm normality, figure 2(left) plots the
empirical probability of being inside the � confidence
ellipse as a function of N. Figure 2(right) shows a plot of

Figure 1. Scatter plot of normalized returns of (LVMH, LYOE) with Gaussian confidence ellipses (levels �¼ 50%, 70%, 90%, 95%
and 99%) for N¼ 8, 256, 1024 and 4096.

yAll the statistical computations were performed using the free statistical software R, available at http://cran.r-project.org.
zBNPP, BNP Paribas; SOGN, Société Générale; RENA, Renault; VLOF, Valeo; LVMH, Louis Vuitton Moët Hennessy; LYOE,
Suez; FTE, France Telecom; ISPA, Arcelor-Mittal.
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the empirical probability versus the theoretical probabil-

ity for several values of N. Both graphs confirm the

normality of the returns as N grows. After 5910 trades,

roughly a third of the average daily number of trades for

this pair, the normal fit is quite satisfactory.y

4.2. Linear scaling of the covariance matrix

We now check the linear growth of Var(RN) as N grows.

Figure 3 shows graphs of CovðR1
N,R

2
NÞ, VarðR1

NÞ and

VarðR2
NÞ as a function of N. The linear fit is quite

convincing. When switching to calendar time, the linearity

still holds, but with respect to calendar time. As we shall
see in section 3.4, E(NDt) / Dt, leading to Var(RDt) / Dt.
One can see from figure 4 that the linearity is indeed
experimentally satisfied.

4.3. Trade time and calendar time correlations

We now test the equality between trade time and

calendar time correlations, and the independence of

Figure 2. Left: Plot of the empirical probability of lying inside the Gaussian confidence ellipse of level �¼ 50%, 70%, 90%, 95%
and 99% versus N. Right: Empirical probability versus theoretical probability of lying inside Gaussian confidence ellipses for
N¼ 10, 310, 810, 5910 and 9910 (pink, grey, black, red and green).

Figure 3. Left: CovðR1
N,R

2
NÞ versus N. Right: VarðR2

NÞ (LYOE) versus N; LVMH is not shown but displays the same linear pattern.

yEven if the graphical fit seems to suggest that the normal hypothesis is reasonable for large N, we computed a bivariate Shapiro–
Wilk normality test using R. The average p-value for N varying from 910 to 9910 is 25%, indicating that the normality hypothesis
cannot be rejected at any usual confidence level.
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the latter with respect to Dt. Figure 5 plots the trade

time and calendar time correlation. The equality

between trade time and calendar time correlations

holds when both reach their stationary regime, i.e.

when the Epps effect—or other effects at the

microstructure level—vanishes. It is noteworthy that

the stationary regime appears to be reached much

earlier in trade time, a fact that strengthens our prefer-

ence for multidimensional trade time over the usual

calendar time.

4.4. Distribution of the event time

Finally, we investigate the best fit for PNDt
for different Dt.

Figure 6 displays the empirical survival function (average
of number of trades greater than a given threshold) for
Dt¼ 180, 600, 1800 and 6000 seconds on a log-linear
scale. Different parametric fits are suggested: Poisson,
gamma, inverse gamma and log-normal, with parameters
chosen so as to match the first two empirical moments.
The empirical distribution starts from inverse gamma
(heavy tails) for small Dt and moves towards a gamma
law (semi-heavy tails) for large Dt. An inverse gamma law
for N leads to a Student’s distribution for PRDt

, which is of
power-law type, while a gamma law leads to a Variance
Gamma model having exponential tails (Carr et al. 1998,
Nicolato 2009).

In figure 7 we plot the two first moments of NDt: its
mean, which impacts the variance of returns, and its
second moment, which impacts the kurtosis of returns,
against Dt. We find that E(NDt)/Dt and EðN2

DtÞ / Dt�

with �� 1.85 for the four pairs of stocks under consid-
eration. The linearity of the average number of trades
essentially states that trade time is comparable to calen-
dar time. The sub-quadratic scaling of the second
moment implies a slow decay for the kurtosis of the
returns in calendar time, i.e. a slow convergence of the
returns distribution in calendar time towards a Gaussian
limit. Actually, we have

EðR4
DtÞ

EðR2
DtÞ

2
/

EðN2
DtÞ

EðNDtÞ
2
/ Dt��2,

with (�� 2)��0.15. This is in agreement with the
existing literature (Bouchaud and Potters 2004), as well
as the fact that an i.i.d. modeling of returns in calendar
time is inappropriate, since it forecasts a scaling of the
kurtosis in Dt�1.

Figure 4. Left: CovðR1
Dt,R

2
DtÞ versus Dt. Right: VarðR2

DtÞ (LYOE) versus Dt; LVMH is not shown but displays the same linear
pattern.

Figure 5. Calendar time (blue) and trade time (green) correla-
tion versus Dt. The number of trades chosen to compute the
trade time correlation is such that E(N )¼Dt for each Dt.
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Figure 6. Log–linear plot of the empirical survival function of NT (blue), Poisson (green), gamma (pink), inverse gamma (brown)
and log-normal (orange) for T¼ 180, 600, 1800 and 3600 seconds.
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Figure 7. Left: E(NDt) versus Dt. Right: log–log plot of EðN2
DtÞ versus Dt; the slope of the linear fit is �1.85.
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5. Conclusion and further research

In this paper, we have presented empirical evidence that

demonstrates the stochastic behavior of the covariance

matrix in financial markets. A simple mechanism has been

described that accounts for this stochastic behavior: as in

the classical subordination approach of Clark (1973), the

randomness of the covariance matrix stems from that of

the arrival times of market orders. Going a step further

and moving to continuous-time finance, one can think of

returns being driven by a subordinated multivariate

Brownian motion. The stochastic clock, i.e. the trade

time, is distributed according to a gamma law for large

enough time periods. The resulting distribution for stock

returns in calendar time is known as the multivariate

Variance Gamma model (Leoni and Schoutens 2008) (see

also Nicolato 2009 for interesting extensions):

Si
t ¼ Si

0 e
Xi

t eBS
i
t e!

i
t ,

Xi
t ¼ �

iGt þ 	
iW iðGtÞ,

Gt � Gamma
t



,
1




� �
,

BSi
t ¼

Z t

0

� iðsÞ dWi,?
s �

1

2

Z t

0

� iðsÞ2 ds,

dhWi,Wjit ¼ �
ij dt:

The common stochastic clock G refers to the multivariate

number of trades. This model has several advantages

such as:

. an intuitive and parsimonious parameteriza-

tion: �i provides control over the skewness of

lnðSi
t=S

i
0Þ while 


i impacts its kurtosis;
. a straightforward marginal calibration: the

Variance Gamma belongs to the class of Lévy

processes, leading to an analytical formula for

the characteristic function of lnðSi
t=S

i
0Þ.

Therefore, vanillas can be priced quickly using

FFT techniques; and
. correlation calibration: since the joint charac-

teristic function of returns is available in closed

form in this model, the Brownian correlation

matrix can easily be calibrated onto the histor-

ical correlation matrix of the returns (Leoni and

Schoutens 2008).

It also exhibits very serious shortcomings:

. a lack of spot/covariance correlation: for

instance, the only correlation between spot

and volatility in this model goes through the

parameter �. This might not be sufficient to

capture the strong functional dependency

between spot and volatility, especially during

market crashes;
. there is no real covariance dynamics. The model

cannot explain long-range covariance depen-

dency or covariance clustering;
. the volatilities of the assets are perfectly corre-

lated due to the common stochastic clock;

. the variance of Gt scales as t, contrary to
empirical data scaling as t1.85; and

. full independence cannot be reached in this

model even if Brownian correlations are set to

zero.

In our opinion, one of the main questions for future

work (Huth 2010, Muni Toke 2010) is to understand,
from the microstructure point of view and using order-

book models, the spot/covariance correlation and covari-

ance clustering. Other questions, more specific to equity
derivatives management, include the following.

. Should equity derivatives traders manage their
books in trade time or in calendar time? Which

approach produces smoother P&L’s and

Greeks?
. Since correlation risk is not really hedgeable,

due to the illiquidity of contracts providing

pure correlation exposure, what is the best
factor to project correlation onto? A common

feature of correlation is that equity correlations

rally towards 100% when the market drops.
It is also well known that market drops are

synonymous with very volatile periods.

Therefore, the question is the following: Is it
the index level or the index volatility that has

the highest predictive power for correlation?

The answer would yield important conse-
quences in terms of the correlation hedge, as it

would help us determine the respective parts of

the correlation risk that can be hedged through
delta and vega hedging.
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Appendix A: Moments of the Gaussian distribution

Let X�N (0, 1). We state that E(X2m)¼ (2m)!! and
that E(X2m�1)¼ 0 for m2N

�. We prove it by forward
induction. It is clear that, for m¼ 1, E(X )¼ 0 and
E(X2)¼ 1¼ 2!!. Then assume it is true for m� 1. We
obtain

EðX2mÞ ¼

Z
R

x2m�1ðxe�x
2=2Þ

dxffiffiffiffiffiffi
2p
p

¼ð2m�1Þ

Z
R

x2m�2 e�x
2=2 dxffiffiffiffiffiffi

2p
p

¼ð2m�1ÞEðX2ðm�1ÞÞ ¼ ð2m�1Þð2ðm�1ÞÞ!!¼ ð2mÞ!!

The same computations lead to

EðX2m�1Þ ¼ ð2m� 2ÞEðX2ðm�1Þ�1Þ ¼ 0,

so that the initial statement is true for any m2N
�.

Appendix B: Probability distribution of returns in

calendar time

Given the probability distribution of the number
of trades over the time period Dt, the probability

distribution of returns in calendar time can be com-

puted as

PRDt ðrÞ ¼

Z þ1
0

PNð0, n:�2ÞðrÞPNDt ðnÞ dn

¼

Z þ1
0

e�ðr
2=2�2nÞþlnðPNDt

ðnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�2n
p dn:

An approximation of this integral can be provided for

jrj �þ1 by performing the integration around the
maximizer n�¼ n�(r) of the exponential function. n� is

defined through the following equation:

r2

2ð�n?Þ2
þ
P 0NDt
ðn?Þ

PNDt ðn
?Þ
¼ 0:

Let us consider two cases for PNDt
(n): exponential and

power-law tails, i.e. for n � þ1,

PNDtðnÞ / e��n, ðB1Þ

PNDt ðnÞ / n��: ðB2Þ

In the first case, n�¼ bjrj, while in the second case,

n�¼ cr2. This yields, for jrj � þ1,

PRDt ðrÞ / e�d jrj, for case 1,

PRDt ðrÞ /
1

jrj2�
, for case 2:

therefore, in both cases, the tail behavior of the number of

trades, i.e. of the stochastic volatility, is propagated over

the tails of returns with adjusted shape coefficients,

leading to non-Gaussian tails.

Appendix C: Gaussian confidence ellipses

Let X¼ (X1, . . . ,Xd)0 � N (�, �). Then Y¼��1/2

(X��)�N (0, Id ) and therefore Y0Y��2(d ). For a

given �2 (0, 1), we are looking for a such that

PðY 0Y 	 aÞ ¼ �:

Setting F as the cumulative density function of a �2(d )-
distributed variable, we obtain a¼F�1(�)¼ a(�). We call

the region {Y0Y	 a(�)} the Gaussian confidence ellipse

with level �, since

Y 0Y� a ¼ ðX� �Þ 0��1ðX� �Þ � a

gives an ellipsoid in the Gaussian hyperplane (X1, . . . ,Xd).
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