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A single bubble is placed in a solid body rotating flow of silicon oil. From the measurement of its equilibrium position,

lift and drag forces are determined. Five different silicon oils have been used, providing five different viscosities and

Morton numbers. Experiments have been performed over a wide range of bubble Reynolds numbers (0.7 ≤ Re ≤
380), Rossby numbers (0.58 ≤ Ro ≤ 26) and bubble aspect ratios (1 ≤ χ ≤ 3). For spherical bubbles, the drag

coefficient at the first order is the same as that of clean spherical bubbles in a uniform flow. It noticeably increases

with the local shear S = Ro−1, following a Ro−5/2 power law. The lift coefficient tends to 0.5 for large Re numbers

and rapidly decreases as Re tends to zero, in agreement with existing simulations (Magnaudet and Legendre 1998).

It becomes hardly measurable for Re approaching unity. When bubbles start to shrink with Re numbers decreasing

slowly, drag and lift coefficients instantaneously follow their stationary curves versus Re. In the standard Eötvös -

Reynolds diagram, the transitions from spherical to deformed shapes slightly differ from the uniform flow case, with

asymmetric shapes appearing. The aspect ratio χ for deformed bubbles increases with the Weber number following

a law which lies in between the two expressions derived from the potential flow theory by Moore (1959, 1965) at

low and moderate We, and the bubble orients with an angle between its minor axis and the direction of the flow that

increases for low Ro. The drag coefficient increases with χ, to an extent which is well predicted by the Moore (1965)

drag law at high Re and Ro numbers. The lift coefficient is a function both of χ and Re. It increases linearly with

(χ− 1) at high Re in line with the inviscid theory, while in the intermediate range of Reynolds numbers, a decrease of

lift with aspect ratio is observed. But the deformation is not sufficient for a reversal of lift to occur.

1. Introduction

Bubbles are present in many industrial and environmental flows (oil industry, chemical engineering, water purifica-

tion etc...). The importance of understanding their behavior is obvious. A central question for a number of applications

is to predict where bubbles are distributed and what the consequences are on the local transfers (momentum, heat,

mass). When the flow is non-homogeneous, one physical effect that influences the preferential migration and accumu-

lation of bubbles is the transverse (or lift) force acting on them. The mechanism by which the lift is produced depends

on the Reynolds number built on the velocity of bubbles relative to the flow, and the bubble’s diameter. This has

motivated researchers to study the forces on bubbles by considering different shear flow configurations. The case of

spherical bubbles in linear shear flow is now well described. For instance, Legendre and Magnaudet (1998) computed

the drag and lift coefficients over a wide range of Reynolds numbers and shear rates and provided information on the

physical mechanisms involved in the lift force. The effect of bubble deformation had also been investigated to some

extent . Kariyasaki (1987), Ervin and Tryggvason (1997), Tomiyama et al. (2002), Adoua et al. (2009) found that

this deformation can generate a reversal of the lift, which would explain the transition from void wall peaking to void

coring observed in pipe flows (Serizawa et al. 1975).

In comparison, other interesting situations regarding transverse forces have been less extensively covered. Solid

rotation flow is one of them. Its main difference with shear flow is that it does not include any strain effect, hence is

more representative of regions with local vorticity (e.g. mixing layers). The works available in the literature can be

categorized into solid body rotation around vertical and horizontal axes (see Bluemink et al. (2008), Rastello et al.

(2009) for a survey). Experimentally, the main advantage of solid body rotation around an horizontal axis (SBRH) is

that bubbles reach an equilibrium point, from which it is possible to measure the drag and lift coefficients. Moreover,

since the bubble is kept stationary, interface deformation and interface contamination, both crucial for the forces,

can be more easily investigated. On the purity of the bubble surface will depend the boundary conditions to which
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the surrounding liquid is subjected. When the bubble is clean, the liquid is subjected to a shear-free condition and

free to slip along the surface. When the interface is contaminated, this boundary condition is no longer satisfied, so

that the slip of the liquid at the bubble surface can be reduced or even suppressed. The forces acting on the bubble

in both cases will obviously be different. The numerical study that makes reference for this type of flow is that by

Magnaudet and Legendre (1998). It concerns a clean spherical bubble kept stationary in a SBRH. The lift coefficient

was computed over a wide range of Reynolds numbers (0.1 ≤ Re ≤ 1000) and the transition between viscous and

inviscid behavior analysed. The influence of the shear on the drag coefficient was also quantified. The experimental

works were performed with nearly spherical bubbles in rotating tanks filled either with a mixture of water and glycerine

(Naciri 1992; van Nierop et al. 2007), or with demineralized water (Rastello et al. 2007, 2009). They showed that the

lift coefficients may significantly differ from those expected numerically for clean bubbles, indicating that some degree

of contamination may have been present. Naciri (1992) was the first to run this type of experiment. He worked with

slightly deformed, probably contaminated bubbles, and measured a lift coefficient of the order of 0.2 to 0.3, for Re
numbers ranging from 10 to 100. van Nierop et al. (2007) revisited Naciri’s experiment by extending the range of local

shear rate (0.1 < S < 2) and bubble Reynolds number (0.01 < Re < 500). The drag curves reported are close to

those of a solid sphere, indicating that interfaces were probably not perfectly clean. The lift coefficients found at high

Re are typically around 1, rather than the value 0.5 expected by the simulation (Magnaudet and Legendre 1998) or

the inviscid theory (Auton 1987), while, quite remarkably they become negative at low Reynolds numbers (Re < 5)

with increasing viscous effects. Recently, we made measurements with highly contaminated interfaces (Rastello et al.

2007, 2009) over an intermediate range of Reynolds numbers (4 < Re < 280). The low-Re case was not investigated

and so the negative lift was neither confirmed nor refuted. It was shown that when interfaces are contaminated the

flow at the interface spins around the bubble, inducing an additional lift component due to a Magnus-like effect that

adds to the shear induced lift. We used our measured spin rates in combination with the Magnus-like force proposed

by Bagchi and Balachandar (2002) to predict the increase of lift due to this effect. Similar results have been reported

by Bluemink et al. (2010) for spinning solid spheres.

The objective of the present experiment is to complete our previous study by investigating a situation where the

interfaces are clean. We thus want to confirm that the higher lift coefficients reported in the intermediate and high

Reynolds range come from contamination. Attention will be also focused on low Reynolds numbers where the lift

sign can be expected to change. Finally, our intention is to investigate the effect of bubble deformation on the drag and

lift coefficients and see whether lift can be reversed,like in linear shears under certain conditions. Since it is extremely

difficult to avoid contamination by active surface molecules or impurities, as is the case when using polar fluids such

as water (Duineveld 1995; de Vries et al. 2002a), we work with five silicon oils, whose physical properties are

perfectly calibrated and stable in time. Experiments performed with silicon oils were recently found to be conclusive

to check theoretical predictions regarding several aspects of the dynamics of spherical and spheroidal bubbles, e.g.

wall interaction as in Takemura et al. (2002), Takemura et al. (2009), or the onset of path instability as in Zenit and

Magnaudet (2008). We thus adopt the same strategy for determining the shear-induced lift force. As a result, interfaces

can be kept free of contaminants and the drag and lift forces measured by varying the non-dimensional numbers of the

problem (Re, Ro, and Mo), over a wide range of values.

This paper is set out as follows. First, the force balance and the dimensionless numbers are recalled for spherical and

ellipsoidal cases. Then, the experimental set-up, measurement principle and flow characteristics are briefly recalled.

The drag and lift coefficient measurements are presented and commented on in the two last parts, starting by spherical

bubbles and ending with deformed ones.

2. Force balance, dimensionless numbers

2.1. Spherical bubbles

For a spherical bubble, moving relatively to the fluid at a moderate to large Reynolds number, the dynamical equation

commonly adopted to describe the bubble motion when any possible history effects are neglected is (Magnaudet and

Eames 2000):

ρlVbCA
dv

dt
= −ρlVbg + ρlVb(CA + 1)

DU

Dt
(2.1)

+ρlVbCL(U− v)× (∇×U) +
1

2
ρlCDAb|U− v|(U− v)



Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid body rotating flow. 3

x

y

z

ω

re
FL

FBθe

FD

FA

FIGURE 1. The forces applied to a bubble at equilibrium at moderate to high Reynolds numbers (Rastello et al. 2009). FB is the
buoyancy force, FD , the drag force, FL the lift force. FA takes into account the added mass force and pressure gradient effects. In
this diagram, the angular velocity ω and equilibrium angle θe are negative.

where ρl is the liquid density, Vb the volume of the bubble, Ab its projected area, v the bubble’s velocity, g gravity

acceleration and U the velocity of the undisturbed ambient flow taken at the center of the bubble. The forces considered

in this equation are respectively buoyancy FB , added mass and pressure gradient FA , lift FL and drag FD. CA is the

added mass coefficient. Its value is 0.5 for spherical bubbles (Magnaudet and Eames 2000). CL is the lift coefficient

and CD the drag coefficient. In the present experiment the undisturbed flow field U is a solid body rotating flow at

constant angular velocity ω around a horizontal axis (SBRH). In this case all forces balance when the flow is stationary

and the bubble comes to an equilibrium position (see figure 1) where v = 0. With U = ωreθ, equation (2.1) becomes:

CL =
1

2

(

1 + CA −
g sin θe
reω2

)

(2.2)

and

CD =
4

3

gd cos θe
r2eω

2
(2.3)

where (re, θe) are the polar coordinates (r, θ) of the center of the bubble at equilibrium and d the equivalent diameter

of the bubble. Thus, if one measures re and θe, d and ω, the values of CL and CD can be calculated. At low Reynolds

numbers the force balance cannot be expressed in the form (2.1). The total hydrodynamic force on the bubble at

leading-order with respect to Re.S is simply the sum of the Stokes drag and a low-Re lift which accounts for the

inertia effects (Saffman 1965; Harper and Chang 1968). This low-Re lift scales as (Re.S)1/2 and not as Re.S as is

the case in (2.1) (Magnaudet and Legendre 1998). Equations (2.2), (2.3) have to be modified accordingly. As the flow

is stationary when the bubble is at rest, no contribution of the history force used to describe non-stationary effects in

this small Reynolds regime (Candelier et al. 2004; Wakaba and Balachandar 2005) is to be expected in this last stage.

The equations for the equilibrium can be used as long as a radial force exists to enable a stationary bubble position,

which is no longer the case when Re tends to zero. Indeed, in this limit, the Stokes drag balances the buoyancy and the

bubble describes circles at constant angular velocity ω, corresponding to FB + FD = 0:

v = ωruθ −
d2

12ν
g (2.4)

As discussed in Rastello et al. (2009), three non-dimensional numbers are formally needed to describe the flow

when working with different fluids. The three numbers chosen here to parametrize the results are: Re = (v − U)d/ν,

the Reynolds number based on bubble diameter and on the relative velocity; Ro = (v − U)/ωd, the Rossby number

that takes into account the non-homogeneity of the rotational flow; Mo = gν4ρ3/σ3 the Morton number whose main

advantage is to be a function only of the fluid properties. When the bubble is at equilibrium, Re = ωred/ν and
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Ro = re/d. It must be noted that Ro in the present arrangement is simply the inverse of the non-dimensional local

shear rate S, and is used to characterize the effects of the strain and the curvature of the streamlines ”seen” by the

bubble at rest. Bubbles remain perfectly spherical (aspect ratio χ = 1) as long as surface tension effects dominate

the normal stress. In that case, surface tension can be considered as infinite, which means that the Mo number does

not influence this regime. It can therefore be removed from the previous list. This is no longer true as bubbles start to

depart from spheres. As will be seen in subsection 5.1, the shape transition takes place more or less early with Re,

according to the Mo.

2.2. Deformed bubbles

For ellipsoidal bubbles the same force balance can be used (de Vries et al. 2002b). The various coefficients are

then a function of the bubble shape. At equilibrium, CD and CL can be determined, as for spherical bubbles, from

equations (2.3) and (2.2). We choose to define the drag coefficient in 2.1 by taking the projected area Ab of a sphere of

identical volume, hence d there denotes the equivalent diameter. The stabilized bubbles being mostly oblate spheroids

with their small axis approximately aligned with the flow direction (section 5), CD, CL, CA will depend on the aspect

ratio χ. The component of the added mass tensor parallel to the direction of the flow relative to the bubble is equal to

ρlVbCA, where CA is given by (Lamb 1934):

CA =
γ0

2− γ0
with γ0 =

2

e2

(

1−
√

1− e2
asin(e)

e

)

and e =

√

χ2 − 1

χ
(2.5)

This expression is valid as far as the bubble can be approximated by an oblate spheroid. As added mass effects result

from the equality of the normal liquid and gas velocities at the interface, it is appropriate whatever the flow past

the bubble is separating or not. A fourth non-dimensional number is needed to account for the bubble deformation.

The aspect ratio χ characterizes the geometry, more than the physical mechanisms involved in the shape change.

Since deformation is linked to the dynamic pressure distribution seen by the bubbles and surface tension effect, the

Weber number We = ρ(v − U)2d/σ = ρω2r2ed/σ is generally employed, together with the Reynolds number (Clift

et al. 1978). However, in experiments on ascending bubbles, this set is often replaced by the Eötvös number Eo =
g∆ρd2/σ = gρd2/σ and the Morton number, which are more straightforward to specify. Referring to Loth (2008),

buoyancy effects included in Eo are not directly responsible for deformation and, for that reason the two sets are

equivalent only in situations of equilibrium, where drag balances buoyancy. This is almost the case here, so that both

sets are possible. Because we use different silicon oils, we will keep as for spherical bubbles the Mo and finally retain

the set Re, Ro, Mo, We.

3. Experimental features

A complete description of the facility and of the flow field characteristics can be found in Rastello et al. (2007,

2009). It is sufficient to say that the device is a cylindrical tank (Ø=10 cm, L=10 cm) rotating around a horizontal axis.

The tank is made of Plexiglas (see figure 2) and is connected to a motor by a toothed belt. For this set of experiments,

the range of rotation rates for the tank is [4 rad.s−1, 27 rad.s−1]. The fluids used are silicon oils. As specified earlier,

the advantage of such fluids is that tensioactive molecules do not systematically collect at the bubble’s surface as they

would do in water. Hence the bubbles’ interface remains clean and bubbles behave like clean bubbles whereas they

have a contaminated behavior in water. Five oils with five different viscosities have been used so as to explore a large

Re range and different Mo numbers. Their main physical properties are listed in table 1. All the experiments were

performed by following the same procedure. The temperature (T ) of the fluid contained in the tank is first measured

using a thermometer. A bubble is then injected. After that, the tank is set in rotation. Once time necessary for the fluid

to reach constant angular velocity and for the bubble to stabilize at its equilibrium has elapsed,images are taken with

the Phantom V4.3 high speed camera in front of the disposal. The 2000 images for each run are treated using in-house

software under Matlab to give the position of the bubble, its diameter, Re, CD, CL...

4. Spherical bubbles

4.1. Working context

Usually (Clift et al. 1978), bubbles are considered spherical if the minor to major axis ratio lies within 10% of unity.

When stabilized, the bubbles always move slightly around their equilibrium position. The amplitude of these motions
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FIGURE 2. Photograph of the experimental device showing the tank (Rastello et al. 2009). In front of it is a high-speed camera. In
the back the toothed belt can be seen.

Name molecular formula ν (cSt) α σ (mN/m) SG

Rhodorsil R© 47V100 (CH3)3SiO((CH3)2SiO)100Si(CH3)3 100 0.60 20.9 0.965

Rhodorsil R© 47V20 (CH3)3SiO((CH3)2SiO)20Si(CH3)3 20 0.59 20.6 0.950

Rhodorsil R© 47V5 (CH3)3SiO((CH3)2SiO)5Si(CH3)3 5 0.55 19.7 0.910

Dow Corning 200 R© 1cst (CH3)3SiO((CH3)2SiO)Si(CH3)3 1 0.41 17.4 0.818

Dow Corning 200 R© 0.65cst (CH3)3SiOSi(CH3)3 0.65 0.31 15.9 0.761

TABLE 1. Physical properties of the five silicon oils. Kinematic viscosity ν, surface tension σ and specific gravity SG are given for
T = 25◦C. α = 1− ν(100◦C)/ν(40◦C) for Rhodorsil R© oils and α = 1− ν(99◦C)/ν(38◦C) for Dow Corning 200 R© ones.

are typically of the order of a tenth of a millimeter, like in water (Rastello et al. 2009). However, the power spectrum

of the equilibrium positions in silicon oils is much less noisy and shows that these motions are associated with a

single peak at the rotation frequency ω of the tank. The mean equilibrium values of the parameters (CL, CD, Re...)

are obtained by averaging the instantaneous values over the 2000 images. Although the motions around equilibrium

remain small, in certain cases they produce significant oscillations of the instantaneous values (see section 4.4). We

have chosen to reject the experiments for which the standard deviation for CD is larger than 30% of the mean value. The

other point that we have checked to be sure of the accuracy of the foregoing measurements is the possible perturbation

of the SBRH flow that might result from the bubble’s presence. Referring to our previous study in water, no perturbation

occurs when the equilibrium position is far from the center (Ro ≥ 6). In that case, whatever the Re, the wake vanishes

before a full tank rotation and thus neither impinges on the bubble, nor disturbs the incoming SBRH. Conversely, when

Ro ≤ 6, a large bubble whose Re is typically ≥ 80 might become instable with a coriolis-type precession motion

at a frequency of 2ω. Strong coupling then develops between the bubble, its wake and the rotational flow, so that the

flow seen by the bubble is strongly perturbed. Such experiments must not be retained. Here, no peak at frequency 2ω
were detected on the power spectrum of equilibrium positions. We conclude that this situation is never encountered.
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FIGURE 3. Re-Ro operating domain. ◦: Rhodorsil R© 47V100, �: Rhodorsil R© 47V20, •: Rhodorsil R© 47V5, ×: Dow Corning
200 R© 1cst, ⊳: Dow Corning 200 R© 0.65cst.
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FIGURE 4. log(CD) as a function of log(Re). ◦: present experiments for all the silicon oils; solid line: empirical drag curve for
clean bubbles in a uniform flow proposed by Mei et al. (1994) dashed line: drag curve for solid spheres in a uniform flow (Schiller
and Nauman 1933 see Clift et al. (1978)). Erratum: these two references (clean bubbles and solid spheres) were reversed by mistake
in (Rastello et al. 2009).

Moreover, low Ro numbers (Ro ≤ 6) correspond to low Re numbers (see figure 3). The bubbles therefore have very

thin wakes that dissipate rapidly and do not influence the bubbles. The same conclusions hold for deformed bubbles

(section 5).

4.2. Drag coefficient

The drag coefficient is first plotted as a function of the Re number in figure 4. The present experimental points fall

quite well on the empirical drag law proposed by Mei et al. (1994) for clean bubbles in a uniform flow, which is

known to provide an accurate description of the drag law for all Re (Magnaudet and Eames 2000). This contrasts

with the previous study performed with similar spherical bubbles, but in water (Rastello et al. 2009). In that case, the

experimental points fell on the curve that describes solid spheres in uniform flow, indicating that the bubbles were

contaminated. Here, the bubbles appear to have a clean interface. This confirms that, even with small bubbles, the use

of silicon oil ensures that a sliding condition can be retained at the bubbles’ interfaces. As the flow is not uniform, it is

of interest to look at the influence of the Ro number on the drag. For a linear shear flow, the simulations of Legendre

and Magnaudet (1998) performed at high Re numbers (300 and 500) show that the drag significantly increases as the

non-dimensional local shear rate S = Ro−1 increases. The increase in that case is mainly due to the modification of

the pressure distribution produced by the shear in the front part of the bubble. The value in uniform flow CD(uniform)
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must be then corrected to take into account this increase. The simple correlation proposed by these authors to fit their

results is written as

CD = CD(uniform)(1 +
0.55

Ro2
) (4.1)

Although the flow is different, our experimental data are compared to this drag law in figure 5. As the data are

scattered when divided by CD(uniform), the comparison was made by plotting the difference CD − CD(uniform) as

a function of Ro, where CD(uniform) is the drag coefficient of Mei et al. (1994). In that form, it can be seen that the

drag is almost unaffected by the shear rate characterizing the flow rotation for Ro > 5, while it significantly increases

for Ro ≤ 5, in agreement with Legendre and Magnaudet (1998). However, the above Ro dependence law tends to

slightly underestimate the data in the range which corresponds to the small local shear rates (Re > 30, Ro ∈ [5; 20])
and significantly overestimate them at high shear rates (Re < 30, Ro ∈ [1; 5]). This is not unexpected in the sense

that equation 4.1 accounts for the shear dependence at high Reynolds numbers in a linear shear flow. In our case,

besides the fact that the flow is a solid body rotation, the low Rossby numbers (Ro < 5) or high shear rates correspond

to low or moderate Reynolds numbers (Re < 30) in the operating plane (Re, Ro) investigated, while low shear

rates S < 0.15 are associated with moderate and high Reynolds numbers Re > 30. This difficulty to vary Re and Ro
independently, like in the simulations, arises because it is impossible to control the equilibrium position of the bubbles,

which is imposed by the bubble’s diameter and the rotation rate. For that reason, the comparison with Legendre and

Magnaudet (1998) remains limited as regards its physical interpretation. Over the range explored, the data generally

follow a 5/Ro
5

2 law well. The deviations from this average law are linked to the Re variations. The dependence on

Reynolds and Rossby numbers has been sought in the form kCD(uniform)/Roexp. Optimal proportionality factor and

exponent have been determined by a least-square fitting method for all pairs (Re,Ro) corresponding to the range

Ro ∈ [1; 22]. This yields the following dependence relationship

CD = CD(uniform)(1 +
0.3

Ro
5

2

) (4.2)

Clearly, this drag law reproduces rather satisfactorily the significant increases of drag which are observed for the

various Re at low Ro. Unlike equation 4.1, it is established for low, moderate and high Reynolds numbers.

4.3. Lift coefficient

The lift coefficient is plotted versus Re number in figure 6. Our data are compared with the results from the numer-

ical simulations of Magnaudet and Legendre (1998). Both fall onto the same curve, unlike in Rastello et al. (2009),

where the measured lift coefficients were systematically higher than those calculated. The good agreement between

the present data and the simulations is consistent with the previous results on drag. It confirms that the interfaces are
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0.5 + 4(1− 6/(5Re
1

6 ))exp(−Re
1

6 ); dashed line: 0.5 + 1.2Re−
1

3 − 6.5Re−1

clean, so that the boundary condition is of the ”shear-free” type as in the calculation. It brings the expected confir-

mation that the higher values obtained in water by Rastello et al. (2009) with the same experimental procedure are

neither imputable to some errors in the measurements nor to the additional micronic fluorescent particles used for the

visualizations, but result from the initial contamination of the interface which modifies the boundary conditions. As

recalled in the introduction, the quasi non-slip condition existing in this case makes a thin layer of fluid spin around

the contaminated bubble interface, increasing lift. Both experimental and numerical points in the figure appear to be

well fitted by Magnaudet and Legendre (1998)’s correlation for Re > 50:

CL = 0.5 + 1.2Re−
1

3 − 6.5Re−1 (4.3)

However this correlation does not fit experimental and numerical data below 50, so we propose another expression

that works well for both the high and low Re numbers covered in this study:

CL = 0.5 + 4(1−
6

5Re
1

6

)exp(−Re
1

6 ) (4.4)

It is noted that equation 4.4 asymptotically behaves like equation 4.3 for Re > 150. Magnaudet and Legendre

(1998) observed no Ro dependence for the lift coefficient. Here also we are not able to exhibit any Ro dependence for

the lift coefficient. If there is one, it should be so small that it will fall within the dispersion of our points. Moreover,

if it exists, Ro dependence would be much smaller than that observed for contaminated bubbles, where CL was found

to increase by a factor of about 1.2-1.4 with Ro, when Re is greater than 70.

4.4. Considerations on the low-Reynolds-number regime

Because Re = ωred/ν, different conditions are required to achieve an experiment with a low Reynolds number. A

fluid with high viscosity is evidently better suited, together with a small diameter for the bubble. Also, the fluid velocity

at the stabilization point ωre must be small. Unfortunately this velocity is controlled by the two previous parameters

(ν , d), hence, ω and re cannot be varied independently. This is shown by eliminating angle θ between equations 2.2

and 2.3 (Bluemink et al. 2010). If the drag coefficient is estimated by CD = 16
Re

, the equilibrium position re for very

high viscosity and very low viscosity fluids can respectively be approximated by

re
d

=
gd

3νω
(4.5)

re
d

=
g

d(CL − 1− CA)ω2
(4.6)

Therefore, increasing (resp. decreasing) ω will decrease (resp. increase) re. For rotation to be stable, the tank needs
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to turn at least faster than 4 rad.s−1. Owing to this lower limit, the only possibility to obtain data at low Reynolds

numbers, even for the highest fluid viscosity, is to decrease d . Hence, as we decrease Re, re decreases. Such a decrease

is problematic for the measurements. As mentioned earlier, bubbles always move slightly around their equilibrium

position. The motions are typically of the order of a tenth of a millimeter and generally have a negligible influence on

the calculation of the mean quantities. This is no longer true at very low Reynolds numbers where CL tends steeply to

zero (figure 6). In that case, the relative importance of these slight motions rises, due to the concomitant decrease of ye
and of re that results from the particular position of the equilibrium point (near the center and the horizontal x-axis).

The instantaneous values of Re, CD and CL then begin to exhibit significant oscillations. Their amplitudes remain

reasonable (less than 30% of the mean) for Re and CD, but become higher and higher for CL as Re decreases (see

for instance figure 7). For Re . 3 − 5, the amplitude of the oscillations of CL is such that we can wonder whether

the mean coefficient calculated from the equilibrium position is still meaningful. This more especially concerns the

negative values of the lift coefficient. Just as van Nierop et al. (2007) observed a change of lift sign for Re around 5,

we here measure negative values of CL (on average) when Re is ≤ 1. If we refer to the low-Re theory established by

Gotoh (1990), the lift force on a solid sphere kept fixed in a pure solid-body rotation can be expected to change sign

at low Reynolds numbers. According to van Nierop et al. (2007), p.444-445, this reversal of lift can also be expected

for clean spherical bubbles, where it can be explained in terms of two competing mechanisms. One, centrifugal, is

the counterpart of the Saffman shear-induced force for solid spheres. The other, centripetal, is a force generated by

the curvature of the wake induced by the rotational flow. This second mechanism, that does not exist in a linear-shear

flow (Legendre and Magnaudet 1998), becomes dominant below a certain Re, yielding the change of lift sign. This

theory is confirmed for a clean bubble by the few DNS results obtained by Magnaudet and Legendre (1998) over that

low-Re range (see figure 6). In a sense, the negative lift coefficients measured here below Re ≃ 1 are consistent with

all these predictions and the trend provided by fit 4.4. However for the reason mentioned earlier, we can doubt their

relevancy. This is all the more true as the use of equation 2.2 and equation 2.3 to determine the force coefficients

becomes questionable over this range of Re. This idea is reinforced by the nature of the trajectories of very small

bubbles. As an example, the trajectory of a bubble whose lift coefficient is negative (Re = 0.7, CL = −0.38) is shown

in figure 8. For these small Re numbers, the bubble describes circles with a small amplitude, that compares rather well

with the circle (in black) simulated when only the drag force balances the buoyancy force (equation 2.4). Most of

these bubbles have been ignored when plotting the results. Nevertheless, three of them are still present in the figures.

They are represented by filled circles in figure 6. Of course, as the low-Re are associated to bubble positions close to

the axis, one can also suspect that bubbles are disturbed by their own wake and so are not really embedded in a pure

SBRH flow. But at these Re ≤ 1 (bubble sizes typically ≤ 1mm), the wake is too thin and vanishes too rapidly

to significantly influence the flow (see PIV measurements in Rastello et al. (2009)). Therefore, the measurement of

the lift becomes very controversial within this limit and it is difficult to conclude if lift reversal does actually take

place in our experiment or whether the lift monotonously decreases to zero with the decreasing Reynolds number.

If a reversal of lift takes place, the results show that it must occur at very low Reynolds numbers, lower than those

reported in the experiment of van Nierop et al. (2007), where some contamination may have been present. Clearly,
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FIGURE 8. In gray: trajectory of a bubble with Re = 0.7, CL = −0.38. In black: simulated trajectory for the same bubble with
only buoyancy and drag forces (CA = CL = 0).

an experiment where the Re number can be varied independently of the bubble position would probably be a more

appropriate situation to validate the available low-Re theories and simulations.

4.5. Drag and lift for shrinking bubbles

Bubbles in certain silicon oils shrink relatively rapidly compared to bubbles in demineralized water. So, by increasing

the duration of the recorded sequences, it is possible to track a bubble which is contracting and to study the time

evolution of the forces acting on it. The oil used for this part of our work is Rhodorsil R© 47V5, with bubble diameters

in the range of 0.2mm-1.5mm. The diameter of these bubbles decreases linearly with time. The average shrinking

speed is typically of the order of 10−3 cm.s−1. Once the bubble introduced into the tank has reached an equilibrium

position, it is filmed at a low framing rate for about 75secs. As the bubble starts to contract, the initial equilibrium

position drifts slowly toward the axis of the SBRH, as expected. A typical example of the instantaneous drag and lift

coefficients calculated from the successive positions are plotted versus the instantaneous Reynolds number Re(t) in

figures 9 (a) and (b). As can be seen, both coefficients vary in time by following respectively the drag curve of Mei

et al. (1994) and the extended lift correlation 4.4 (dotted lines). This means that the contracting bubbles drift in a

quasi-static manner, by experiencing at each instant the same force balance and by adopting the same equilibrium

position as a constant diameter bubble having the same Re(t) would do. This result can be explained by the fact that

the characteristic time scale of the shrinking process is here much greater than the dynamical relaxation time of the

bubble. Interestingly, the lift coefficient measured in figure 9 (b) for the lower Reynolds number Re(t) = 1.8 is of the

order of that found in figure 6 and is positive around 0.2. This confirms that the reversal of lift, if it takes place, should

occur lower.

5. Deformed bubbles

5.1. Shape transitions

The Re− Ro operating domain for deformed bubbles is displayed in figure (10). For bubbles ascending in a uniform

medium, the transition between the different shape regimes (spherical, ellipsoidal, wobbling...) can be correlated in

terms of Eo-Re-Mo, by the well-known diagram proposed by Clift et al. (1978). The point here is to see whether

this diagram is modified in the context of the SBRH. This series of experiments was performed with the silicon oils

previously used, but with slightly larger bubbles. Increasing the size yields different shapes depending on silicon

viscosity. In low-viscosity oils (Dow Corning 200 R© 1cst and 0.65cst), bubbles become ellipsoidal before taking on

an asymmetric shape at high deformation rates. In the intermediate viscosity range (Rhodorsil R© 47V5 and 47V20

oils), the same type of transition is observed, the difference being that the bubbles are not perfectly ellipsoidal at

moderate deformation rates. However, the deviations are very small and bubbles can reasonably be assimilated to
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FIGURE 9. (a): Drag coefficient as a function of the instantaneous Re(t) number. −− drag curve for clean bubbles in a uni-
form flow (Mei et al. 1994); − . : drag curve for solid spheres in a uniform flow (Schiller and Nauman 1933 see Clift et al.
(1978)); Thick line: evolution of CD with Re for a shrinking bubble. (b): Lift coefficient as a function of the Re number. −− :

0.5 + 4(1− 6/(5Re
1

6 ))exp(−Re
1

6 ); Thick line: evolution of CL with Re for a shrinking bubble.
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FIGURE 10. Re-Ro operating domain. ◦: Rhodorsil R© 47V100, �: Rhodorsil R© 47V20, •: Rhodorsil R© 47V5, ×: Dow Corning
200 R© 1cst, ⊳: Dow Corning 200 R© 0.65cst.
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FIGURE 11. Examples of typical deformed bubbles. Bubbles in the following fluids: (a): Dow Corning 200 R© 1cst and 0.65cst
(Re = 331, major axis length: 1.1mm, minor axis length: 0.7mm, equivalent diameter: 0.9mm), (b): Rhodorsil R© 47V5
(Re = 84, major axis length: 3.0mm, minor axis length: 1.8mm, equivalent diameter: 2.3mm), (c): Rhodorsil R© 47V20
(Re = 25, major axis length: 3.9mm, minor axis length: 2.5mm, equivalent diameter: 3.1mm), (d): Rhodorsil R© 47V100
(Re = 4, major axis length: 5.1mm, minor axis length: 3.9mm, equivalent diameter: 4.5mm)
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FIGURE 12. Left Figure: Aspect ratio of the bubbles versus Eo. ◦: Rhodorsil R© 47V100, �: Rhodorsil R© 47V20, •: Rhodorsil R©
47V5, ×: Dow Corning 200 R© 1cst, ⊳: Dow Corning 200 R© 0.65cst. Dotted lines: values of χ corresponding to the shape transi-
tions. Right Figure: Aspect ratio of the bubbles versus Re, same symbols. Straight lines: equation 5.1 and equation 5.2 for the most
viscous oil

oblate spheroids. In Rhodorsil R© 47V100, the first deformed stage is an asymmetric one, more curved at the top

and flatter at the rear (see figure 11 for all). For asymmetric shapes an equivalent ellipsoid is computed to determine

the equivalent aspect ratio χ. The bubble is fitted using a bivariate normal distribution that has the same normalized

second central moment (covariance matrix) as the bubble in the picture (Teague 1980). The directions and lengths of

the ellipsoid’s axes are given by the eigenvectors and eigenvalues of the covariance matrix of this distribution.

The aspect ratios χ of the bubbles increase with Eo all the more rapidly as viscosity is low, or Mo number is

high (see left figure 12). The Re number for which the deformation becomes significant (χ ≥ 1.1) increases with

decreasing viscosity (increasing Mo number), following the trends reported in the literature on uniform flow (Clift

et al. (1978); Loth (2008)). Moore (1965) calculated the theoretical deformation of clean bubbles in a uniform flow at

high Reynolds numbers, by considering the potential flow around an oblate ellipsoid and assuming that the Bernoulli

condition, including surface tension effects, is satisfied at both stagnation points and on the equatorial plane. The

expression obtained is valid for bubbles whose We are of the order of unity, which is the condition for their shape

could be approximated by an oblate ellipsoid. Moore (1965) used the expansion of this expression in the limit of small

deformations (χ → 1, Moore (1959)) to estimate the departure from the spherical shape as a function of the Mo
number. This departure was arbitrarily taken to be χ ≥ 1.05 and the terminal velocity of the bubble estimated on

the base of a Levich (1962) drag law, yielding for the transition Re = 1.1Mo−
1

5 . The same calculation with a shape

distortion χ = 1.1, as adopted in Clift et al. (1978) , yields

Re = 1.65Mo−
1

5 (5.1)

and,

Re = 1.45Mo−
1

5 (5.2)

when the bubble terminal velocity is estimated on the basis of a Stokes drag. As can be seen in right figure 12, the

departures from the spherical shape which are experimentally observed are rather well predicted by equation 5.1,

and equation 5.2 for the most viscous oil. This shows that the rotation does not really influence the Re at which

deformation starts over the range of parameters investigated. However, the shape regimes are somewhat different from

those in uniform flows. This is illustrated in figure 13, where the data are plotted on the Clift et al. (1978) diagram for

bubbles in uniform flows.

The values of log(Mo) corresponding to the different silicon oils are, by increasing viscosity: -9.7, -8.9, -6.1, -3.8,

-0.9. Because bubbles are at equilibrium in a SBRH, this diagram should include a third dimension depending for

example on Ro. This has been done using different symbols for different Ro ranges in figure 13. When Mo is constant

the Re − Eo curves are nearly the same for uniform and SBRH flows, indicating that the dynamical equilibrium is

barely modified by rotation effects. In particular the values of (Re,Eo) for which deformation becomes significant for
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FIGURE 13. log(Re) versus log(Eo). Symbols: ◦: Ro < 4, ⊲: 4 ≤ Ro < 10, �: 10 ≤ Ro. Open symbols: χ < 1.1, gray
symbols: 1.1 ≤ χ < 1.6, ∗: 1.6 ≤ χ, ⋄: spherical cap bubbles. Dotted lines: transition between spherical and ellipsoidal shape
according to Grace et al. (1976). Solid line: line joining the transition points between spherical and ellipsoidal shape, as determined
by equation 5.1, and equation 5.2 for the most viscous oil. Dashed lines: transition to asymmetric and spherical cap shapes.

the various Mo numbers, are very close to the bounds given by equation 5.1, and equation 5.2 in uniform flow, within

the precision of our study. Concerning the shape regimes, comparison with the uniform flow situation shows that:

• At small deformation rates (1.1 ≤ χ < 1.6), the major change concerns the highest Mo number (the most viscous

oil) for which the transition between spherical and ellipsoidal shapes in the uniform flow case is now between spherical

and asymmetric shapes. For the two low Mo values (least viscous oils), the transition remains unchanged: between

spherical and ellipsoidal shapes. For the two intermediate Mo numbers (intermediate viscosities), the deformed shapes

are not strictly ellipsoids but slightly asymmetric. These trends can be related to the operating plane (Re, Ro) in

figure (10). It is likely that bubbles with low or moderate Reynolds numbers (Re < 30) deform asymmetrically

because they are associated with low Rossby numbers: Ro ∈ [1; 5] (high shear rates), while bubbles with a high

Reynolds number (Re > 80) remain symmetric because they are subjected to low shear rates. Would low Re have

been obtained over that range, it is not certain that this would be the case.

• At high deformation rates (χ ≥ 1.6), a second transition from ellipsoidal or quasi-ellipsoidal to asymmetric

bubbles takes place in the domain where, in uniform flow, bubbles with a symmetrical shape are still expected (Grace

et al. 1976). The corresponding Rossby numbers are rather high (Ro ∈ [4; 22]), but since the We number is high too,

the moderate shear rates which are associated are sufficient to explain these asymmetrical shapes. Finally for the more

viscous oil such that with log(Mo) = −3.8, the transition between asymmetric bubbles and spherical cap ones is

observed.

5.2. Bubble features

As specified in section 2.2, we chose to work with Re, Ro, We and Mo non-dimensional numbers. The fact that the

We is well suited to describe the bubble deformation is illustrated in figure 14, where the bubble’s Reynolds numbers

for the different oils collapse when plotted versus We
2

3Mo−
1

5 . The corresponding correlation curve is written as:

Re = 2.05We
2

3Mo−
1

5 (5.3)

which is very similar to the equation derived by Moore (1965) for high Re on the basis of a Levich (1962) drag law

Re = 2.04We
3

5Mo−
1

5 (5.4)

The aspect ratio χ is plotted as a function of the We number in figure 15, together with the complete expression
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5 . ◦: Rhodorsil R© 47V100, �: Rhodorsil R© 47V20, •: Rhodorsil R© 47V5, ×: Dow Corning

200 R© 1cst, ⊳: Dow Corning 200 R© 0.65cst. Correlation curve: 2.05We
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5 .

derived from the potential flow theory by Moore (1965) for We numbers of the order of unity and its expansion at

small We, respectively:

We(χ) = 4χ−

4

3 (χ3 + χ− 2)[χ2sec−1(χ)− (χ2 − 1)
1

2 ]2(χ2 − 1)−3 (5.5)

χ = 1 +
9

64
We+O(We2) (5.6)

The correlation recently proposed by Loth (2008) for bubbles rising freely in a uniform flow by compiling a large data

base with Re over the range 0.2− 5000:

1

χ
= 1− (1− Emin)tanh(cEWe) (5.7)

with

Emin = 0.25 + 0.55exp(−0.09Re)

and

cE = 0.165 + 0.55exp(−0.3Re)

has also been reported in this figure. Our data are in between the complete and small-deformation expressions of

Moore (1965) at low to moderate Weber numbers, but rapidly these expressions respectively under- and over-estimate

the measured aspect ratios. Referring to Loth (2008), this can be explained by the fact that the fore-aft symmetry of

the bubble is progressively broken as χ increases and that the theories do not account for the open wake which then

develops. In comparison, equation 5.7, which asymptotically tends to equation 5.6 at small We, well describes our

experimental results over the whole range of (We,Re) explored, except at high deformation rates (χ > 2.4,We > 6)).

Emin stands for the inverse of the upper aspect ratio that can be reached as the bubble deforms. It generally corresponds

to spherical cap bubbles. Before reaching this shape, the increase in χ starts to saturate when the boundary layer around

the bubble separates and a separated wake appears. Here, this situation is clearly observed for the oil such that with

log(Mo) = −3.8. The beginning of the saturation appears earlier than it is predicted by equation 5.7. Apart from

that case, we can expect, by referring to the Re − χ phase diagram of Blanco and Magnaudet (1995) established for

uniform flows, the wakes to remain attached for all other flow conditions. Over the range χ ∈ [1; 2.4],We ∈ [1; 6], a

least-square fit of the results shows that the aspect ratios are well approximated by a simple relationship of the form

χ = 1 +
9

64
We+

3

250
We2 +O(We3) (5.8)

which is almost the second-order expansion of equation 5.7 within the limit of small Re,We.
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FIGURE 15. χ as a function of We.◦: Rhodorsil R© 47V100; �: Rhodorsil R© 47V20; •: Rhodorsil R© 47V5; ×: Dow Corning
200 R© 1cst; ⊳: Dow Corning 200 R© 0.65cst. Dotted line: equation 5.6; dashed line: equation 5.5. +: Loth (2008)’s values for χ
for the corresponding (Re, We) values; solid line: equation 5.8.

The fact that the aspect ratio does not depend on Ro seems consistent with the simplifications introduced in sub-

section 5.1. The shape of the deformed bubbles is treated as ellipsoid, even in cases where deformation becomes

asymmetric (the highest viscous silicon oils). In reality, the deformed shape is more complex. It is a combination

of symmetric and asymmetric surface deformation modes, which are often modeled in potential flow in terms of

spheroidal surface harmonics (Lamb 1934). It is reasonable to think that the first symmetric deformation mode that

we consider here and characterize by χ, will essentially depend on We, while the other asymmetric modes will be

more influenced by Ro.

Contrary to what happens with a spherical bubble, an ellipsoidal bubble experiences non-zero torque when immersed

in a non-uniform flow like a SBRH. Indeed the bubble being clean, all the forces are locally normal to the surface. If

the flow is non-axisymmetric, their resultant is not directed toward the center of inertia. As a result, bubbles will orient

so that the torque becomes nil. This is why an angle α between the direction of the flow and the minor axis is observed.

In uniform flows, the torque is nil when this angle is zero, except when the clean ellipsoidal bubble path is instable,

that is for a Re number greater about 600 (Duineveld 1995; Veldhuis et al. 2008). In that case, zig-zagging or spiraling

bubbles undergo shape oscillations coupled to vortex shedding and bubble rotates periodically about its minor axis in

response to the new rising direction (Lunde and Perkins 1998). This does not concern the bubbles studied here since

their Re is far lower. The angle is constant in time, meaning that no instability takes place. Figure 16 shows how

this angle varies with the Ro number. For the two highest Morton numbers (Dow Corning 200 R© 0,65 cst, 1cst) the

ellipsoid minor axis is nearly aligned with the direction of the flow. This corresponds to situations where Ro > 5
(figure 3), thus the non-dimensional local shear rate Sr = Ro−1 is small. The angle is then typically of the order

of one degree, which is close to the observations of Tomiyama et al. (2002) in a linear shear flow, under similar

deformations and shear rates. The same kind of result has been obtained numerically at high Reynolds numbers by

Adoua (2007) for ellipsoidal clean bubbles in a linear shear flow. The author shows that this small angle corresponds

to the stable solution for the position of the bubble. It depends both on the aspect ratio and the local shear rate and is

shown to increase as Sr1/3. Here, the angle also increases in absolute value as Ro decreases. This increase becomes

more pronounced at lower Mo numbers, when fluids are more viscous (Rhodorsil R© 47V5,47V20) and bubbles still

approximately ellipsoidal. For asymmetric bubbles and the few spherical cap ones, α takes on large absolute values.

This is due among other things to the fact that these bubbles frequently have an equilibrium position little or well

above the horizontal line. But in that case the aspect ratio, like the angle, are not really adapted to characterize the real

shape. Nevertheless, angles for the non-ellipsoidal bubbles are somehow in the continuity of those for ellipsoidal ones.

5.3. Drag forces

As can be seen in figure 17, drag is more important for deformed ellipsoidal bubbles than for the equivalent spherical

ones, whatever the Mo number. This expected trend can be attributed to two effects: an increase of pressure drag linked

to an increase of the apparent cross section and an increase of friction drag in the curved boundary layer developing
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FIGURE 17. log(CD) as a function of log(Re). χ < 1.6: ◦: Rhodorsil R© 47V100; �: Rhodorsil R© 47V20; •: Rhodorsil R© 47V5;
×: Dow Corning 200 R© 1cst; ⊳: Dow Corning 200 R© 0.65cst. χ ≥ 2: ⋄. Solid line: drag curve for clean spherical bubbles in a
uniform flow (Cduniform) (Mei et al. 1994); dashed line: drag curve for solid spheres in a uniform flow (Schiller and Nauman
1933 see Clift et al. (1978)); thick solid lines: equation 5.15; dotted line: equation 5.16, increase of drag expected from the theory
of Moore (1965).

around the bubble (Moore 1965; Blanco and Magnaudet 1995). The relative importance of the two contributions varies

both with Re and χ. We note that the increase of the drag with the Rhodorsil R© 47V100 oil (low Re, low Mo) remains

weak. This can be explained, by the particular shape of the bubble in this highly viscous oil and the fact that the aspect

ratio (χ < 1.4) does not reach sufficient values to enhance the two components of drag (see for instance picture (d) in

figure11). For practical applications, it is convenient to represent our experimental results with an analytical drag law

as simple as possible. Such a law must of course be consistent with the asymptotic behavior of the drag coefficient for

distorted bubbles at high and low Reynolds numbers, in the absence of rotation. The first case is correctly described by

the theory of Moore (1965), while the second can be deduced from the extension of Oseen’s correction to the creeping

flow around a sphere. Brenner (1961) found the general form of the Oseen’s drag for a particle of arbitrary shape,

and Breach (1961) gave the exact expression for a solid oblate ellipsoid, but these works are not adapted to a bubble

subject to the shear-free condition at the interface. In the limit of low but finite Re, expressions for the drag and shape
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of a drop of arbitrary density and viscosity were derived by Taylor and Acrivos (1964) using matched asymptotic

expansions, combined with the result of Brenner and Cox (1963). The case where the density and viscosity tend to

zero corresponds to a clean bubble and the aspect ratio and the drag coefficient are then given by:

χ = 1 +
5

32
We+O(We2) (5.9)

CD,T&A = 1 +
16

Re
[1 +

Re

8
+

We

12
+O(Re2Ln(Re))] (5.10)

It follows that the effect of the deformation on the drag is accounted for by a correction of the order of We, which

remains small as long as the bubble’s shape does not depart too much from the sphere. This is the case in the present

experiments, since the low Reynolds number range is associated with small Weber numbers. Combining equations

5.10 and 5.9, yields the drag coefficient at low but finite Re:

CD,T&A = 1 +
16

Re
[1 +

Re

8
+

8

15
(χ− 1)] (5.11)

which tends to Oseen’s drag as χ → 1. The drag law of Moore was calculated by assuming that the viscous flow

around the bubble was confined in a thin viscous sublayer which remained attached. It is expressed as:

CD,Moore =
48

Re
G(χ)[1−

2.21H(χ)

Re
1

2

] (5.12)

where G(χ) sand H(χ) are geometrical factors calculated by Moore (1965), and which can be accurately approximated

by (Loth (2008))

G(χ) ≃ 0.1287 + 0.4256χ+ 0.4466χ2;H(χ) ≃ 0.8886 + 0.5693χ− 0.4563χ2 (5.13)

The simplest starting point to find a drag law valid for all the Re spanned here is that proposed by Mei et al. (1994)

to represent the drag coefficient of a spherical bubble moving in a quiescent liquid, which matches the two asymptotic

limits and fits the numerical simulations in the intermediate range of Reynolds numbers. A modification of the formula

to account for the deformation reads in:

CD(χ) =
16

Re
[
1 + 8

15 (χ− 1) + 0.015(3G(χ)− 2)Re

1 + 0.015Re
+ [

8

Re
+

1

2
(1 +

3.315H(χ)G(χ)

Re
1

2

)]−1] (5.14)

The prefactor 0.015 and the exponent 1 of Re in the first term have been determined to give the best fit of the experi-

mental data throughout all the whole range of Re spanned. The above expression retrieves Moore’s drag law at large

Reynolds numbers, and Taylor and Acrivos’s drag law when Re and χ are small. A last step is necessary to represent

the effect of rotation. Adoua (2007) found that for a linear shear flow, the drag should be corrected by a multiplicative

factor function of the shear parameter. Following the same line, we simply use the correction in equation 4.2 obtained

for a spherical bubble, which yields :

CD(χ) =
16

Re
[
1 + 8

15 (χ− 1) + 0.015(3G(χ)− 2)Re

1 + 0.015Re
+ [

8

Re
+

1

2
(1 +

3.315H(χ)G(χ)

Re
1

2

)]−1](1 +
0.3

Ro
5

2

) (5.15)

Equation 5.15 is plotted in a solid line in figure 17. It predicts well the experimental trends in the range χ < 2
where deformation is not too high and bubbles approximately ellipsoidal. We see that for the oil with the intermediate

viscosity (Rhodorsil R© 47V20), the drag appears to saturate and no longer increases as rapidly as before. This is

because bubbles are asymmetrical - even spherical cap - that probably the boundary layer separates and a separated

wake appears. The increase of drag expected from the theory of Moore (1965) and calculated as:

CD(χ) = CD,Mei + (CD,Moore(χ)− CD,Moore(1)) (5.16)

is also plotted in a dotted line in the same figure. It reproduces well the trends at high Re (high Ro) but unsurprisingly,

predict increases that are all the more over-estimated as the oil are more viscous and the Re numbers low. The modified

drag law 5.15 can be expressed as a function of We number from equation 5.8 (or equation 5.9 when Re is low) and

the We as a function of (Re, Mo) from equation 5.4.
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FIGURE 18. Left figure: CL − CL(spherical) as a function of χ − 1. χ < 1.6: ◦: Rhodorsil R© 47V100; �: Rhodorsil R© 47V20;
•: Rhodorsil R© 47V5; ×: Dow Corning 200 R© 1cst; ⊳: Dow Corning 200 R© 0.65cst; 1.6 ≤ χ < 2: ⋄; χ > 2: ∗. Dotted line: high

Reynolds limit 0.8(χ− 1); solid line: 0.8(χ− 1)− 1.3(χ− 1)3/2/(1 + 0.004Re3/2). Right figure: CL as a function of log(Re).
Same symbols. Dotted line: equation 4.4; solid line: equation 5.17; dashed line: extrapolated trends at high deformation rates, as
calculated by equation 5.17 together with equation 5.8 and equation 5.4.

5.4. Lift forces

Lift coefficients for deformed bubbles are plotted in figure 18 versus Re number on the right, and the aspect ratio on

the left. Since they are calculated assuming an added mass coefficient valid for ellipsoids (equation 2.5), they can be

considered as unbiased by this restriction for χ < 2.5− 3 (Fig. 15). For the less viscous fluids (viscosities: 5 cSt, 1 cSt

and 0.65 cSt), the deformation of the bubble from the spherical shape to the ellipsoidal shape increases the lift. The

higher the We number, the higher the lift coefficient. For ν = 20 cSt, an increase followed by a decrease is observed

when the We number is increased. For ν = 100 cSt, the behavior is not so easy to analyze. Nevertheless, it can be

mentioned that in such a fluid the increase in We is linked to a decrease in the lift coefficient.

CL = CL(spherical) + 0.8(χ− 1)− 1.3
(χ− 1)

3

2

1 + 0.004Re3/2
(5.17)

fits the variation of the lift coefficient with the aspect ratio χ and with the Re number for the three lower viscosities

(5 cSt, 1 cSt and 0.65 cSt) closely. The lift increase is reproduced well. For the higher viscosity (20 cSt), the increase

followed by the decrease is also predicted but with a slight shift with the experimental results. The irregularities of the

solid lines corresponding to equation 5.17 in figure 18 are linked to the experimental dispersion in χ and Re.

Physically, the second term in equation 5.17 expresses the increase of CL with the aspect ratio within the limit as Re
tends to infinite. It is close to the theoretical solution obtained for ellipsoidal bubbles in a weak inviscid shear flow

by Naciri (1992), who showed that this solution closely follows the evolution of the added mass coefficient. The last

term is a Re-dependent correction which is suggested by the recent simulations by Adoua (2007), Adoua et al. (2009)

for oblate bubbles in a weakly viscous linear shear flow. For clean bubbles, the lift force results from the integration

of the pressure and the normal viscous stress at the interface. The simulations prove that for Re > 100, the pressure

contribution is dominant and that the evolution of lift with deformation is directly linked to the asymmetric distribution

of pressure at the surface of the bubble. This asymmetric distribution is linked to the top-bottom asymmetry of the

boundary layer generated at the bubble surface by the inhomogeneity of the base flow. It induces a viscous pressure

correction that contributes to the lift and behaves as Re−3/2, thus justifying the form of the correction term. Here, the

denominator is almost the same as in Adoua et al. (2009), while the numerator is the one which provides the best fit of

our data. A contribution for the normal viscous stress should also be included for Re below 100, unfortunately there

are not enough data in that range to find the Re-dependence of this contribution.

It can be noticed that there is no discontinuity (rupture) in the evolution of the lift coefficients as bubbles become

asymmetric. At first order, they follow the trends (dashed lines in right figure 18) obtained for highly deformed el-
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lipsoidal bubbles from equation 5.17, 5.8 and 5.4. With the oil of viscosity 20 cSt an inversion of the lift force

seems possible as Re will increase further. Such a reversal of the lift force has been observed in some experiments in

linear shear flow by Kariyasaki (1987), Tomiyama et al. (2002) and is predicted by Adoua et al. (2009). The exper-

iments of Tomiyama et al. (2002) were performed in mixtures of water and glycerine over the range of parameters:

Mo ∈ [10−5.5; 10−2.8], equivalent Re ∈ [5; 80], Eo ∈ [1.4; 5.7], and S ≤ 0.1. According to this work, a change

of lift sign can be expected when Eo > 4, the evolution of the lift coefficient being then described by the empirical

relationship:

CL = 0.00105Eo3 − 0.0159Eo2 − 0.0204Eo+ 0.474 (5.18)

The oils which have Re typically in the range ∈ [5; 80] are the Rhodorsil R© 47V20, and the Rhodorsil R© 47V5. In the

first case, Eo ∈ [0.2; 8.7] and one should expect from equation 5.18 a reversal of the lift in a linear flow, while here, the

lift decreases but does not change sign. This difference comes from the fact that the lift coefficients in Tomiyama et al.

(2002), are initially equal to 0.3, thus much lower than ours over this range of Re. In the second case, Eo ∈ [0.2; 2.8]
so that a stabilization of the lift around a constant value 0.3 is predicted in a linear flow, while it clearly increases here

with deformation. Comparing the two flow situations must therefore be considered with great caution.

According to the simulations of Adoua et al. (2009), the inversion of the lift is due to competition between the

vorticity generated at the interface and the upstream vorticity tilted around the bubble. It occurs when the aspect ratio

reaches a critical value, function of the non dimensional shear rate. Here the reversal, if it takes place, will correspond

to spherical cap bubbles or even more deformed ones. The reason is that, unlike what can be done numerically, it is

not possible to generate ellipsoidal bubbles of large Re numbers with a large aspect ratio for a given Mo number

with the silicon oils we use. The surface tension is much lower than that of water (typically 3.5 to 4.5 times smaller).

Subsequently, as size increases, bubbles depart from the ellipsoidal shape rapidly. Hence, it is not possible to expect

an inversion of lift with an ellipsoidal bubble, whereas it appears to be possible with a spherical cap one for some

given Mo numbers. Finally bubbles are free to orientate unlike in the calculations, which could be another source of

differences. Adoua (2007) compared the value of the lift and drag coefficients obtained when the angle is nil, and the

angle is equal to the equilibrium value for which the torque exerted on the bubble in a linear shear flow is nil. He found

that the differences induced by the bubble inclination are of the order of a few percent for Re = 1000 and χ ∈ [0.2; 2],
but become significant for Re = 400 and χ = 2.5, with a possible consequence on the transition where the lift sign

changes.

6. Conclusion

This article is an extension of our previous work on contaminated bubbles (Rastello et al. 2009). The purpose

was to measure the drag and lift coefficients on clean spherical and deformed bubbles in a SBRH flow. To ensure the

bubbles’ cleanliness, experiments have been performed with five silicon oils, giving a large panel of viscosities and

Mo numbers. In the regime where bubble are spherical, the dependence of drag coefficients on Re number is very close

to that of clean bubbles rising in uniform flows. This validates the fact that the shear-free condition at the interface is

satisfied. The drag coefficients are found to increase when the Ro number decreases. This increase varying as Ro−
5

2

is comparatively smaller than that calculated at much higher Re for linear shear flows (Legendre and Magnaudet

1998). Regarding the lift coefficients, they coincide with the ones obtained numerically by Magnaudet and Legendre

(1998) for clean spherical bubbles in a SBRH. A fit of both their and our results has been proposed. It covers the four

decades of all the results. The excellent agreement brings additional evidence that the higher lift coefficients reported

in Rastello et al. (2009) were due to the contamination of the interfaces (the liquid is not free to slip along the bubble

surface any more) and the ensuing spinning of the surface layer. No influence on the Ro number has been revealed,

which is consistent with the numerical results. Special attention was paid to the low Re numbers. For very low values

of the Re number, measurement of the lift coefficient is shown to be problematic, so that a change of lift sign over that

range, if it takes place, is hardly detectable. Strongly decreasing the framing rate allowed some bubbles to be filmed as

they shrank. The drag and lift measured from successive bubble time positions turns out to follow the curves of non-

shrinking bubbles, indicating that the contracting process is quasi-static. In the regime where bubbles deform, the shape

is generally close to an ellipsoidal spheroid and becomes more asymmetric for the most viscous oils. The transition

between the spherical and ellipsoidal shapes in the SBRH flow has been determined by revisiting the well-known Clift

et al. (1978) diagram. The transitions between the two regimes occur on average at the same (Re,Eo) values as for

bubbles ascending in a uniform flow. Whatever the silicon oil, the aspect ratio of the ellipsoidal bubbles approximately

increases with We number following the recent correlation by Loth (2008). At low and moderate deformation rates,
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the increase is in between the complete theory of Moore (1965) for ellipsoidal bubbles, and its small-deformations

expansion (Moore 1959). Under the action of the torque exerted by the flow, deformed bubbles orient their small axis at

an angle of a few degrees to the incoming flow, comparable to that calculated in linear shear flows (Adoua et al. 2009).

However this angle becomes greater at low Mo or Ro numbers. At the same equivalent diameter, the drag coefficient is

higher for ellipsoidal bubbles than for spherical ones, the difference being both a function of the aspect ratio or, which

is equivalent, of the We number and the Re number. The increase of drag is well predicted by the theory of Moore

(1965) at high Re and high Ro, but is over-estimated by this theory at low Re, as expected. A modified expression

of the Mei et al. (1994) drag law that reproduces the experimental trends over the whole range of Re numbers has

been proposed. It retrieves the drag law of Moore (1965) at high Re, that of Taylor and Acrivos (1964) at low but

finite Re, and includes both the effects of deformation and rotation. The behavior of the lift coefficients also depends

both on the aspect ratio and Re number. For high Re numbers (less viscous oils) the lift coefficients increase almost

linearly with the aspect ratio, in line with the inviscid theory, whereas in an intermediate range (more viscous oils) the

increase is followed by a decrease at a high deformation rate. However, we never reached the conditions for reversal of

lift to occur. An approximate relationship that reproduces the lift tendencies rather well over the range of parameters

investigated has been proposed. It includes a shear-induced viscous pressure correction of the form suggested by the

simulations of Adoua et al. (2009). This correction arises from the top-bottom asymmetry of the boundary layer

generated at the bubble surface by the inhomogeneity of the base flow and is supposed to behave like Re−
3

2 , as in a

linear shear flow.
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