
HAL Id: hal-00620817
https://hal.science/hal-00620817

Submitted on 12 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable-length codes and finite automata
Marie-Pierre Béal, Jean Berstel, Brian H. Marcus, Dominique Perrin,

Christophe Reutenauer, Paul H. Siegel

To cite this version:
Marie-Pierre Béal, Jean Berstel, Brian H. Marcus, Dominique Perrin, Christophe Reutenauer, et
al.. Variable-length codes and finite automata. I. Woungang, S. Misra et S. Chandra Misra. Selected
Topics in Information and Coding Theory, World Scientific, pp.505-584, 2010, Series on Coding Theory
and Cryptology, 978-981-283-716-5. �hal-00620817�

https://hal.science/hal-00620817
https://hal.archives-ouvertes.fr

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Chapter 1

Variable-Length Codes and Finite Automata

Marie-Pierre Béal, Jean Berstel, Brian H. Marcus,

Dominique Perrin, Christophe Reutenauer and Paul H. Siegel

M.-P. B., J. B., D. P.:Institut Gaspard-Monge (IGM), Université Paris-Est
B. H. M.: University of British Columbia, Vancouver

C. R.: LaCIM, Université du Québec à Montréal

P. H. S.: Department of Electrical and Computer Engineering, UCSD

1.1 Introduction . 2

1.2 Background . 3

1.3 Thoughts for practitioners . 5

1.4 Definitions and notation . 8

1.5 Basic properties of codes . 11

1.6 Optimal prefix codes . 16

1.7 Prefix codes for integers . 26

1.8 Encoders and decoders . 32

1.9 Codes for constrained channels 37

1.10 Codes for constrained sources 45

1.11 Bifix codes . 49

1.12 Synchronizing words . 55

1.13 Directions for future research 58

1.14 Conclusion . 59

1.15 Solutions to exercises . 60

1.16 Questions & answers . 63

1.17 Keywords . 66

References . 68

The aim of this chapter is to present, in appropriate perspective, some selected
topics in the theory of variable-length codes. One of the domains of applications
is lossless data compression. The main aspects covered include optimal prefix
codes and finite automata and transducers. These are a basic tool for encod-
ing and decoding variable-length codes. Connections with codes for constrained
channels and sources are developed in some detail. Generating series are used
systematically for computing the parameters of encodings such as length and

1

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

2 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

probability distributions. The chapter contains numerous examples and exercises
with solutions.

1.1. Introduction

Variable-length codes occur frequently in the domain of data compression. His-

torically, they appeared at the beginning of modern information theory with the

seminal work of Shannon. One of the first algorithmic results is the construction,

by Huffman, of an optimal variable-length code for a given weight distribution. Al-

though their role in data communication has been limited by their weak tolerance

to faults, they are nonetheless commonly used in contexts where error handling is

less critical or is treated by other methods.

Variable-length codes are strongly related to automata, and one of the aims

of this chapter is to highlight connections between these domains. Automata are

labeled graphs, and their use goes beyond the field of coding. Automata can be used

to implement encoders and decoders, such as for compression codes, modulation

codes and convolutional error correcting codes.

The use of variable-length codes in data compression is widespread. Huffman’s

algorithm is still frequently used in various contexts, and under various forms, in-

cluding in its adaptive version. In particular, Huffman codes are frequently used

in the compression of motion pictures. In another setting, search trees are strongly

related to ordered prefix codes, and optimal ordered prefix codes, as constructed

later, correspond to optimal binary search trees.

Coding for constrained channels is required in the context of magnetic or optical

recording. The constraints that occur can be represented by finite automata, and a

coding method makes use of finite transducers. In this context, the constraints are

defined by an automaton which in turn is used to define a state-dependent encoder.

Even if this encoder operates at fixed rate, it can also be considered as a memoryless

encoder based on two variable-length codes with the same length distribution, that

is with the same number of words for each length.

Although convolutional error correcting codes are fixed-length codes, their anal-

ysis involves use of finite automata because encoders and decoders are described in

terms of labeled graphs.

Specific properties of automata correspond to properties of variable-length codes.

Typically, unambiguity in automata corresponds to unique decipherability.

Variable-length codes also are used for the representation of natural languages.

They play a role for instance in phonetic transcription of languages and in the

transformation from text to speech, or in speech recognition. We will mention

examples in Section 1.10.

The mathematical relation between codes and automata is very deep, as shown

in early, pioneering investigations by Schützenberger. He discovered and developed

a new branch of algebra relating unique decipherability of codes with the theory of

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 3

semigroups. There are still difficult open problems in the theory of variable-length

codes. One of them is the commutative equivalence conjecture. It has practical

significance in relation with optimal coding. We will discuss this and other open

problems in Section 1.13.

The material covered by the chapter is the following. We start with a few

definitions and examples, and then address the problem of constructing optimal

codes under various types of constraints. Typically, we consider alphabetic coding

under cost conditions.

We study in detail prefix codes used for representing integers, such as Elias and

Golomb codes.

Automata and transducers are introduced insofar as coding and decoding op-

erations are concerned. These are applied to two special domains, namely coding

with constraints on channels, and constraints on sources. They are important in

applications which are described here.

Reversible codes, also called bifix codes, have both practical significance and

deep mathematical properties which we only sketch here.

The final section is concerned with synchronization. This is important in the

context of error recovery, and we present very recent theoretical results such as the

road coloring theorem.

The chapter is written at a level accessible to nonspecialists. There are few

formal proofs, but key algorithms are described in considerable detail and many

illustrative examples are given. Exercises that reinforce and extend the material

are given at the end of most sections, and sketches of solutions are provided. Some

elementary questions and answers are also included.

The authors would like to thank Frédérique Bassino, Julien Clément, Éric In-

certi, Claire Kenyon, Éric Laporte and Olivier Vénard for their help in the prepa-

ration of this text, and the anonymous referees for their helpful comments.

1.2. Background

The topic of this chapter is an introduction to some syntactic and algorithmic

problems of data transmission. In this sense, it is connected with three main fields:

(1) coding and information theory

(2) automata and formal language theory

(3) algorithms

In this section, we describe these connections, their historical roots and the notions

to which they relate.

The relation between codes and automata can be traced back to Shannon, who

used labeled graphs to represent information sources. Later, the notion of informa-

tion lossless machine was introduced as a model for reversible encoding [44]. These

are the unambiguous transducers defined below. The term lossless has remained in

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

4 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

common use with the notion of lossless methods for data compression. The main

motivation for studying variable-length codes is in data compression. In many cod-

ing systems, encoding by variable-length codes is used in connection with other

coding components for error correction. The search for efficient data compression

methods leads to algorithmic problems such as the design of optimal prefix codes

under various criteria.

One of the main tools for encoding and decoding as presented here are finite

automata and transducers. In this context, finite automata are particular cases of

more general models of machines, such as pushdown automata which can use an

auxiliary stack and, more generally, Turing machines which are used to define the

notion of computability. The theory of automata has also developed independently

of coding theory with motivations in algorithms on strings of symbols, in the theory

of computation and also as a model for discrete processes.

The basic result of automata theory is Kleene’s theorem asserting the equivalence

between finite automata and regular expressions and providing algorithms to convert

from automata to regular expressions and conversely. This conversion is actually

used in the context of convolutional codes to compute the path weight enumerator

(also called the transfer function) of a convolutional code [48].

Inside the family of finite automata, several subclasses have been studied which

correspond to various types of restrictions. An important one is the class of aperiodic

automata which contains the classes of local automata frequently used in connection

with coding, in particular with sliding block encoders and decoders.

One of the possible extensions of automata theory is the use of multiplicities,

which can be integers, real numbers, or elements of other semirings (see [18] or [12]).

The ordinary case corresponds to the Boolean semiring with just two element 0, 1.

This leads to a theory in which sets of strings are replaced by functions from strings

to a semiring. This point of view has in particular the advantage of allowing the

handling of generating series and gives a method, due to Schützenberger, to com-

pute them. We will often use this method to compute generating series.

The well-known Huffman algorithm, described below, is the ancestor of a family

of algorithms used in the field of information searching. Indeed, it can be used

to build search trees as well as optimal prefix codes for source compression. The

design and analysis of search algorithms is part of an important body of knowledge

encompassing many different ideas and methods, including, for example, the theory

of hashing functions (see [43]). Text processing algorithms find application in variety

of domains, ranging from bioinformatics to the processing of large data sets such as

those maintained by Internet search engines (see [46] for an introduction).

The topic of coding with constraints is related to symbolic dynamics which is a

field in its own right. Its aim is to describe dynamical systems and mappings be-

tween them. Codes for constrained channels are a particular case of these mappings

(see [45]).

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 5

1.3. Thoughts for practitioners

In this chapter, a wide variety of variable-length coding techniques are presented.

We consider source and channel models that take into account the statistical prop-

erties of the source and the costs associated with transmission of channel symbols.

Given these models, we define a measure of code optimality by which to evaluate the

code design algorithms. The resulting families of variable-length codes are intended

for use in a range of practical applications, including image and video coding, speech

compression, magnetic and optical recording, data transmission, natural language

representation, and tree search algorithms.

In practice, however, there are often system-related issues that are not explicitly

reflected in the idealized source and channel models, and therefore are not taken

into account by the code design algorithms. For example, there are often tradeoffs

between the efficiency of the code and the complexity of its implementation in

software or hardware. Encoding and decoding operations may be subject to latency

constraints or a requirement for synchronous input-output processing. There is

often a need for resilience against errors introduced by the channel, as well as

robustness in the presence of variability in the source and channel characteristics.

There may also be a system interface that dictates the incorporation of specific

code properties or even a specific code. Finally, intellectual property concerns, such

as the existence of patents on certain codes or coding methods, can play a role in

practical code design. Such realities provide a challenge to the coding practitioner

in applying the various design methods, as well as a stimulus for further research

and innovation.

To illustrate some of these points, we examine two applications where variable-

length coding has found pervasive use – data compression and digital magnetic

recording.

Codes for data compression. In Section 1.6, we present the classical Huffman al-

gorithm for designing an optimal prefix code for a memoryless source with specified

symbol statistics and equal channel symbol costs. Codes produced by this algorithm

and its variants have been extensively employed in data compression applications.

Practical system issues are often addressed during the code design process, or by

using a modification of the standard design approach.

As will be described later in the chapter, for a binary channel alphabet, the

Huffman algorithm builds a binary code tree from the bottom up by combining two

nodes with the smallest probabilities. If there are multiple possibilities for select-

ing such pairs of nodes, all choices lead to codes with the same average codeword

length. However, this is not true of the variance of the codeword lengths, and a

large variance could have an impact on the implementation complexity if the code is

incorporated into a data transmission system that calls for a constant transmission

rate. This problem can be mitigated if the practitioner follows a simple rule for

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

6 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

judiciously combining nodes during the generation of the code tree, resulting in a

Huffman code with the smallest possible variance. There are also variants of Huff-

man coding that help to control the maximum length of a codeword, a parameter

that also may influence implementation complexity of the code.

Another practical consideration in applying Huffman codes may be the ease of

representing the code tree. The class of canonical Huffman codes have a particu-{c
an
on
ic
al

Hu
ff
ma
n
co
de
}

{H
uf
fm
an

co
de
!c
an
on
ic
al
}

larly succinct description: the codewords can be generated directly from a suitably

ordered list of codeword lengths. Canonical codes are also very amenable to fast

decoding, and are of particular interest when the source alphabet is large. For-

tunately, a code designed using the standard Huffman algorithm can be directly

converted into a canonical code.

The practitioner may also encounter situations where the source statistics are

not known in advance. In order to deal with this situation, one can use adap-

tive Huffman coding techniques. Application of adaptive coding, though, requires{a
da
pt
iv
e
Hu
ff
ma
n
co
di
ng
}

{H
uf
fm
an

co
de
!a
da
pt
iv
e}

careful attention to a number of implementation related issues.

Huffman codes are generally not resilient to channel symbol errors. Neverthe-

less they have some inherent synchronization capabilities and, for certain length

distributions, one can design synchronized Huffman codes. Typically, though, in

order to ensure recovery within a reasonable time after a channel error, substantial

modifications to the coding scheme are necessary.

Despite the availability of more efficient data compression methods, such as

arithmetic coding, Huffman coding and its variants continue to play a role in many

text and multimedia compression systems. They are relatively effective, simple to

implement, and, as just discussed, they offer some flexibility in coping with a variety

of practical system issues. For further details, see, for example, [58].

Codes for digital magnetic recording. In Section 1.9, we consider the problem of

encoding binary source sequences into binary channel sequences in which there are

at least d and at most k 0’s between consecutive 1’s, for specified 0 ≤ d < k. This

[d, k]-constraint is used as a channel model in magnetic recording.

One simple approach to encoding a binary source sequence into the [d, k]-

constraint uses the idea of a bit-stuffing encoder. The bit-stuffing encoder generates{b
it
-s
tu
ff
in
g
en
co
de
r}

a code sequence by inserting extra bits into the source sequence to prevent violations

of the [d, k]-constraint. It uses a counter to keep track of the number of consecutive

0’s in the generated sequence. When the number reaches k, the encoder inserts a

1 followed by d 0’s. Whenever the source bit is a 1, the encoder inserts d 0’s. The

decoder is correspondingly simple. It also keeps track of the number of consecutive

0’s. Whenever the number reaches k, it removes the following d + 1 bits (the 1 and

d 0’s that had been inserted by the encoder). When the decoder encounters a 1, it

removes the following d bits (the d 0’s that had been inserted by the encoder). The

bit-stuffing encoder can also be recast as a variable-length code, as shown for the

special case [d, k] = [2, 7] in Figure 1.1. A source sequence can be uniquely parsed

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 7

into a sequence of the source words shown, possibly followed by a prefix of a word.

Each source words is then encoded into a corresponding channel word according

to the table. Although the encoding and decoding operations are extremely simple

conceptually, and the decoder resynchronizes with only a moderate delay following

an erroneous channel bit, this code is not suitable for use in a disk drive because it

does not have fixed encoding and decoding rate.

Source Channel

1 001

01 0001

001 00001

0001 000001

00001 0000001

00000 00000001

Fig. 1.1.: Variable-length [2,7] bit-stuffing code.

In Section 1.9, we present another variable-length [2,7] code, the Franaszek code,

whose encoder mapping is shown in Figure 1.2 below. This encoder has a fixed

encoding rate of 1/2, since each source word is mapped to a code word with twice

its length. In fact, as shown in Section 1.9, this code can be implemented by a rate

1:2, 6-state encoder that converts each source bit synchronously into 2 channel bits

according to simple state-dependent rules. The decoder is also synchronous, and

it decodes a pair of channel bits into a single source bit based upon the contents

of an 8-bit window containing the channel-bit pair along with the preceding pair

and the next two upcoming pairs. This sliding-window decoding limits to 4 bits the

propagation of decoding errors caused by an erroneous channel bit.

Source Channel

10 0100

11 1000

000 000100

010 100100

011 001000

0010 00100100

0011 00001000

Fig. 1.2.: The [2,7] Franaszek code.

This code is also efficient, in the sense that the theoretical upper bound on the

rate of a code for the [2,7] constraint is approximately 0.5172. Moreover, among

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

8 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

[2, k]-constraints, the [2, 7]-constraint has the smallest k constraint that can support

a rate 1/2 code. This code was patented by IBM and was extensively used in its

commercial disk drive products.

The construction of the Franaszek code involved certain choices along the way.

For example, a different choice of the assignment of source words to channel code-

words would potentially affect the implementation complexity as well as the worst-

case decoder error propagation. Virtually all code design methodologies share this

characteristic, and the practitioner has to exercise considerable technical insight in

order to construct the best code for the particular situation.

For example, using the state-splitting algorithm discussed later in the chapter,

one can construct another rate 1:2 code for the [2,7]-constraint that requires only

5 encoder states, but the resulting maximum error propagation of the decoder is

increased to 5 bits. It is also possible to construct fixed-rate encoders for the [2,7]-

constraint that have a higher code rate than the Franaszek code, but the encoder

and decoder implementation will very likely be more complex.

While some of the earliest [d, k]-constrained codes designed for disk drives

were standardized by the interface between the drive and the host computer

drive controller, the encoding and decoding functions eventually migrated into

the drive itself. This allowed coding practitioners to exercise their creativ-

ity and invent new codes to meet their particular system requirements. For

further details about practical constrained code design, see, for example, [39;

47].

1.4. Definitions and notation

We start with some definitions and notation on words and languages.

Some notation. Given a finite set A called alphabet , each element of A is a letter ,{a
lp
ha
be
t}

{l
et
te
r}

and a sequence of letters is called a word . The length of a word is the number of its{w
or
d}

{l
en
gt
h!
of

a
wo
rd
}

letters. The length of a word w is denoted by |w|. The empty word , usually denoted{e
mp
ty

wo
rd
}

{w
or
d!
em
pt
y}

by ε, is the unique word of length 0. The set of all words over the alphabet A is

denoted by A∗. We denote by juxtaposition the concatenation of words. If w, x, y, z{c
on
ca
te
na
ti
on
}

are words, and if w = xy, then x is a prefix , and y is a suffix of w. If w = xyz, then{p
re
fi
x}

{s
uf
fi
x}

y is called a factor (or also a subword or a block) of w.{f
ac
to
r}

Given sets X and Y of words over some alphabet A, we denote by XY the set

of all words xy, for x in X and y in Y . We write Xn for the n-fold product of X ,

with X0 = {ε}. We denote by X∗ the set of all words that are products of words

in X , formally

X∗ = {ε} ∪X ∪X2 ∪ · · · ∪Xn ∪ · · · .

If X = {x}, we write x∗ for {x}∗. Thus x∗ = {xn | n ≥ 0} = {ε, x, x2, x3, . . . , }.
The operations of union, set product and star (∗) are used to describe sets of words

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 9

by so-called regular expressions.{r
eg
ul
ar

ex
pr
es
si
on
}

Generating series. Given a set of words X , the generating series of the lengths of {g
en
er
at
in
g
se
ri
es
!o
f
le
ng
th
s}

{g
en
er
at
in
g
se
ri
es
}

the words of X is the series in the variable z defined by

fX(z) =
∑

x∈X

z|x| =
∑

n≥0

anzn ,

where an is the number of words in X of length n. It is easily checked that

fX∪Y (z) = fX(z) + fY (z) , (1.1) {e
q:
01
}

whenever X and Y are disjoint, and

fXY (z) = fX(z)fY (z) , (1.2) {e
q:
02
}

when the product XY is unambiguous, that is whenever xy = x′y′ with x, x′ ∈ X , {u
na
mb
ig
uo
us

pr
od
uc
t}

{p
ro
du
ct
!u
na
mb
ig
uo
us
}

y, y′ ∈ Y imply x = x′, y = y′. We will also make use of an extension (introduced

later) of these series to the case where words are equipped with a cost.

Encoding. We start with a source alphabet B and a channel alphabet A. Consider {s
ou
rc
e
al
ph
ab
et
}

{a
lp
ha
be
t!
so
ur
ce
}

{c
ha
nn
el
!

al
ph
ab
et
}

{a
lp
ha
be
t!
ch
an
ne
l}

a mapping γ that associates to each symbol b in B a nonempty word over the alpha-

bet A. This mapping is extended to words over B by γ(s1 · · · sn) = γ(s1) · · · γ(sn).

We say that γ is an encoding if it is uniquely decipherable (UD) in the sense that {e
nc
od
in
g}

{u
ni
qu
el
y
de
ci
ph
er
ab
le
}

γ(w) = γ(w′) =⇒ w = w′

for each pair of words w, w′. In this case, each γ(b) for b in B is a codeword , and {c
od
ew
or
d}

the set of all codewords is called a variable-length code or VLC for short. We will {v
ar
ia
bl
e-
le
ng
th

co
de
}

{V
LC
}

call this a code for short instead of the commonly used term uniquely decipherable {c
od
e}

code (or UD-code).

Every property of an encoding has a natural formulation in terms of a property

of the associated code, and vice-versa. We will generally not distinguish between

codes and encodings.

Let C be a code. Since Cn and Cm are disjoint for n 6= m and since the products

Cn are unambiguous, we obtain from (1.1) and (1.2) the following fundamental

equation

fC∗(z) =
∑

n≥0

(fC(z))n =
1

1− fC(z)
. (1.3) {e

q:
03
}

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

10 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Alphabetic Encoding. Suppose now that both B and A are ordered. The order on {o
rd
er

on
wo
rd
s}

the alphabet is extended to words lexicographically, that is u < v if either u is a

proper prefix of v or u = zaw and v = zbw′ for some words z, w, w′ and letters a, b

with a < b.

An encoding γ is said to be ordered or alphabetic if b < b′ =⇒ γ(b) < γ(b′).{e
nc
od
in
g!
or
de
re
d}

{e
nc
od
in
g!
al
ph
ab
et
ic
}

A set C of nonempty words over an alphabet A is a prefix code (suffix code) if{p
re
fi
x
co
de
}

{c
od
e!
pr
ef
ix
}

{s
uf
fi
x
co
de
}

{c
od
e!
su
ff
ix
}

no element of C is a proper prefix (suffix) of another one. An encoding γ of B is

called a prefix encoding if the set γ(B) is a prefix code.

Prefix codes are especially interesting because they are instantaneously deci-

pherable in a left to right parsing.

Table 1.1.: A binary ordered encoding of the five most frequent English words.

b γ(b)

A 000

AND 001

OF 01

THE 10

TO 11

Example 1.1. The set B is composed of five elements in bijection with the five

most common words in English, which are A, AND, OF, THE and TO. An ordered prefix

encoding γ of these words over the binary alphabet {0, 1} is given in Table 1.1.

A common way to represent an encoding – one that is especially enlightening

for prefix encodings – is by a rooted planar tree labeled in an appropriate way.

Assume the channel alphabet A has q symbols. The tree considered has nodes

which all have at most q children. The edge from a node to a child is labeled with

one symbol of the channel alphabet A. If this alphabet is ordered, then the children

are ordered accordingly from left to right. Some of the children may be missing.

Each path from the root to a node in the tree corresponds to a word over the

channel alphabet, obtained by concatenating the labels on its edges. In this way, a

set of words is associated to a set of nodes in a tree, and conversely. If the set of

words is a prefix code, then the set of nodes is the set of leaves of the tree.

OF THE TO

A AND

Fig. 1.3.: The tree of the binary ordered encoding of the five most frequent English

words.

Thus, a prefix encoding γ from a source alphabet B into words over a channel

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 11

alphabet A is represented by a tree, and each leaf of the tree may in addition be

labeled with the symbol b corresponding to the codeword γ(b) which labels the path

to this leaf. Figure 1.3 represents the tree associated to the ordered encoding γ of

Table 1.1.

Example 1.2. The Morse code associates to each alphanumeric character a se- {M
or
se

co
de
}

quence of dots and dashes. For instance, A is encoded by “. -” and J is encoded by

“. - - -”. Provided each codeword is terminated with an additional symbol (usually

a space, called a “pause”), the Morse code becomes a prefix code.

4 5 6 7

2 3

1

Fig. 1.4.: The Elias code.

Example 1.3. There are many representations of integers. The unary representa-

tion of an integer n is composed of a sequence of n symbols 1. The usual binary

representation of positive integers is exponentially more succinct than the unary

representation, and thus is preferable for efficiency. However, it is not adapted to

representation of sequences of integers, since it is not uniquely decipherable: for

instance, 11010 may represent the number 26, or the sequence 6, 2, or the sequence

1, 2, 2. The Elias code [19] maps a positive integer into a word composed of its {E
li
as

co
de
}

binary representation preceded by a number of zeros equal to the length of this

representation minus one. For instance, the Elias encoding of 26 is 000011010. It is

easily seen that the set of Elias encodings of positive integers is a prefix code. The

corresponding tree is given in Figure 1.4.

Example 1.4. There exist codes, even quite simple ones, which are neither prefix

nor suffix. This is the case of the encoding of a, b and c by 00, 10 and 100. To see

that this is indeed uniquely decipherable, one considers the occurrences of 1. If the

number of 0’s following a 1 is even, this block is decoded as ca · · ·a, otherwise as

ba · · ·a.

1.5. Basic properties of codes

We start with stating a basic numerical inequality on codes. It gives a restriction

on the distribution of lengths of codewords.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

12 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Kraft–McMillan inequality. For any code C over an alphabet A with k letters, one

has the inequality, called the Kraft–McMillan inequality (see for instance [5]) {K
ra
ft
--
Mc
Mi
ll
an

in
eq
ua
li
ty
}

∑

c∈C

k−|c| ≤ 1 . (1.4) {e
q:
KM
}

We prove the inequality below. Before that, we note that (1.4) is easy to prove

for a finite prefix code. Indeed, the inequality above can also be written as
∑

i

mik
−i ≤ 1 ,

where mi is the number of elements in C of length i. Multiply both sides by kn,

where n is the maximal length of codewords. One gets
∑

i mik
n−i ≤ kn. The

left-hand side counts the number of words of length n that have a prefix in C, and

the inequality expresses the fact that each word of length n has at most one prefix

in C.

For general codes, the inequality (1.4) can be proved as follows. Consider the

generating series of the lengths of the words of the code C{g
en
er
at
in
g
se
ri
es
}

fC(z) =
∑

c∈C

z|c| =
∑

n≥0

anzn ,

where an is the number of codewords of length n. Then, since C is a code, we have

by (1.3):

fC∗(z) =
1

1− fC(z)
.

Set fC∗(z) =
∑

n≥0 bnzn. Since C∗ is a subset of A∗, one has bn ≤ kn. Thus the

radius of convergence of fC∗(z) is at least equal to 1/k. Since fC(r) is increasing

for real positive r, the radius of convergence of fC∗(z) is precisely the positive real

number r such that fC(r) = 1. Thus fC(1/k) ≤ 1. This proves the Kraft–McMillan

inequality.

There is a converse statement for the Kraft–McMillan inequality: For any se-

quence ℓ1, . . . , ℓn of positive integers such that
∑

i k−ℓi ≤ 1, there exists a prefix

code C = {c1, . . . , cn} over A such that |ci| = ℓi.

This can be proved by induction on n as follows. It is clearly true for

n = 1. Suppose that n > 1 and consider ℓ1, . . . , ℓn satisfying
∑n

i=1 k−ℓi ≤ 1.

Since also
∑n−1

i=1 k−ℓi ≤ 1, there exists by induction hypothesis a prefix code

C = {c1, . . . , cn−1} such that |ci| = ℓi for 1 ≤ i ≤ n − 1. We multiply both

sides of the inequality
∑n−1

i=1 k−ℓi ≤ 1 by kℓn , and we obtain

n−1
∑

i=1

kℓn−ℓi ≤ kℓn − 1 . (1.5){e
q:
04
}

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 13

Each of the terms kℓn−ℓi of the left-hand side of (1.5) counts the number of words

of length ℓn − ℓi, and can be viewed as counting the number of words of length

ℓn with fixed prefix ci of length ℓi. Since the code C is prefix, the sets of words

of length ℓn with fixed prefix ci are pairwise disjoint, so the left-hand side of (1.5)

is the number of words of length ℓn on the alphabet A which have a prefix in C.

Thus, (1.5) implies that there exists a word cn of length ℓn over the alphabet A

which does not have a prefix in C. The set {c1, . . . , cn} is then a prefix code. This

proves the property.

Entropy. Consider a source alphabet B. We associate to each symbol b ∈ B

a weight which we denote by weight(b). For now, we assume that B is finite.

The symbol weights are often normalized to sum to 1, in which case they can {n
or
ma
li
ze
d
we
ig
ht
s}

be interpreted as probabilities. The entropy of the source B = {b1, . . . , bn} with {e
nt
ro
py
}

probabilities pi = weight(bi) is the number

H = −
n

∑

i=1

pi log pi ,

where log is the logarithm to base 2. Actually, this expression defines what is called

the entropy of order 1. The same expression defines the entropy of order k, when

the pi’s are the probabilities of the blocks of length k and n is replaced by nk.

Channel. In the context of encoding the symbols of a source alphabet B, we con-

sider a channel alphabet A with a cost, denoted cost(a), associated to each channel

symbol a ∈ A. The cost of a symbol is a positive integer. The symbol costs allow

us to consider the case where the channel symbols have non-uniform lengths, and

the cost of each symbol can be interpreted as the time required to send the symbol.

A classic example is the alphabet composed of two symbols {.,−}, referred to as

dot and dash, with costs 1 and 2, respectively. This alphabet is sometimes referred

to as the telegraph channel.

The channel capacity is log 1/ρ where ρ is the real positive root of {c
ha
nn
el
!c
ap
ac
it
y}

{c
ap
ac
it
y
of

a
ch
an
ne
l}

∑

a∈A

zcost(a) = 1 .

In the case of an alphabet with k symbols, each having cost equal to 1, this reduces

to ρ = 1/k. In the case of the telegraph channel, the capacity is the positive root

of ρ + ρ2 = 1, which is ρ ≈ 0.618.

The cost of a word w over the alphabet A is denoted by cost(w). It is by

definition the sum of the costs of the letters composing it. Thus

cost(a1 · · · an) = cost(a1) + · · ·+ cost(an) .

We extend the notation of generating series as follows. For a set of words, X , denote

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

14 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

by

fX(z) =
∑

x∈X

zcost(x)

the generating series of the costs of the elements of X . For convenience, the cost{g
en
er
at
in
g
se
ri
es
!o
f
co
st
s}

{g
en
er
at
in
g
se
ri
es
}

function is omitted in the notation. Note that if the cost function assigns to each

word its length, the generating series of costs reduces to the generating series of

lengths considered earlier. Equations (1.1), (1.2) and (1.3) hold for general cost

functions.

For a code C over the alphabet A the following inequality holds which is a

generalization of the Kraft–McMillan inequality (1.4).

∑

c∈C

ρcost(c) ≤ 1 . (1.6){e
q:
KM
rh
o}

The proof follows the same argument as for the Kraft–McMillan inequality using

the generating series of the costs of the words of C

fC(z) =
∑

c∈C

zcost(c) =
∑

n≥0

anzn ,

where an is the number of words in C of cost equal to n. Similary,

fA∗(z) =
∑

w∈A∗

zcost(w) =
∑

n≥0

bnzn ,

where bn is the number of words in A∗ of cost equal to n. Now

fA∗(z) =
1

1− fA(z)
,

and the radius of convergence of fA∗(z) is the number ρ which is the real positive

root of
∑

a∈A zcost(a) = 1.

Optimal encoding. Consider an encoding γ which associates to each symbol b in B

a word γ(b) over the alphabet A. The weighted cost is{w
ei
gh
te
d
co
st
}

W (γ) =
∑

b∈B

weight(b) cost(γ(b)) .

When the weights are probabilities, Shannons fundamental theorem on discrete

noiseless channels [62] implies a lower bound on the weighted cost,

W (γ) ≥ H

log 1/ρ

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 15

To show this, we set B = {b1, . . . , bn}, pi = weight(bi), and qi = ρcost(γ(bi)). We can

then write (log ρ)W (γ) =
∑

pi log qi. Invoking the well-known inequality lnx ≤
x− 1, where ln denotes the natural logarithm, and applying (1.6), we find

(log ρ)W (γ)−
∑

pi log pi =
∑

pi log qi/pi = (log e)
∑

pi ln qi/pi

≤ (log e)
∑

pi(qi/pi − 1) ≤ (log e)
(

∑

qi − 1
)

≤ 0 ,

from which the bound follows.

The optimal encoding problem is the problem of finding, for given sets B and A {o
pt
im
al
!e
nc
od
in
g
pr
ob
le
m}

with associated weight and cost functions, an encoding γ such that W (γ) is minimal.

The optimal prefix encoding problem is the problem of finding an optimal prefix {o
pt
im
al
!p
re
fi
x
en
co
di
ng

pr
ob
le
m}

encoding. Most research on optimal coding has been devoted to this second problem,

both because of its practical interest and because of the conjecture that an optimal

encoding can always be chosen to be prefix (see [41] and also the discussion below).

There is another situation that will be considered below, where the alphabets A

and B are ordered and the encoding is required to be ordered.

In the case of equal letter costs, that is where all cost(a) are equal, the cost

of a letter may be assumed to be 1. The cost of a codeword γ(b) is then merely

the length |γ(b)|. In this case, the weighted cost is called the average length of {a
ve
ra
ge

le
ng
th
}

codewords. An optimal encoding can always be chosen to be prefix in view of the

Kraft–McMillan inequality, as mentioned above.

Commutative equivalence. In the case of unequal letter costs, the answer to the

problem of finding a prefix encoding which has the same weighted cost as an optimal

encoding is not known. This is related to an important conjecture, which we now

formulate. Two codes C and D are commutatively equivalent if there is a one-to-one

correspondence between C and D such that any two words in correspondence have

the same number of occurrences of each letter (that is, they are anagrams). Observe

that the encodings corresponding to commutatively equivalent codes have the same

weight, and therefore one is optimal if the other is.

Example 1.5. The code C = {00, 10, 100} seen in Example 1.4 is neither prefix

nor suffix. It is commutatively equivalent to the prefix code D = {00, 01, 100} and

to the suffix code D′ = {00, 10, 001}.

It is conjectured that any finite maximal code (that is, a code that is not strictly tzenberger} {c
on
je
ct
ur
e!
Sc
h{
ü

{c
od
e!
ma
xi
ma
l}

contained in another code) is commutatively equivalent to a prefix code. This would

imply that, in the case of maximal codes, the optimal encoding can be obtained

with a prefix code. For a discussion, see [10; 13]. The conjecture is known to be false

if the code is not maximal. A counter-example has been given by Shor [63]. Note

that if equality holds in the Kraft–McMillan inequality (1.4), then the code must

be maximal. Conversely, it can be shown (see e.g. [11]) that for a finite maximal

code, (1.4) is an equality.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

16 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

1.6. Optimal prefix codes

In this section, we describe methods used to obtain optimal prefix codes under

various constraints, such as equal or unequal letter costs, as well as equal or unequal

letter weights, and finally encodings which are alphabetic or not. The different cases

are summarized in Figure 1.5, where the vertices are associated to the inventors of

some corresponding algorithm. For instance, vertex 3 denotes the problem of finding

an optimal alphabetic tree in the case of unequal weights and unequal letter costs,

and it is solved by Itai’s algorithm described later. All these algorithms, Karp’s

algorithm excepted, have polynomial running time. We consider first the two cases

(vertices 4 and 1 in Figure 1.5) of unequal weights without the constraint on the

encoding to be alphabetic. {K
ar
p
al
go
ri
th
m}

{H
uf
fm
an

al
go
ri
th
m}

{V
ar
n
al
go
ri
th
m}

{G
ar
si
a-
-W
ac
hs

al
go
ri
th
m}

{I
ta
i
al
go
ri
th
m}

{a
lg
or
it
hm
!K
ar
p}

{a
lg
or
it
hm
!H
uf
fm
an
}

{a
lg
or
it
hm
!V
ar
n}

{a
lg
or
it
hm
!G
ar
si
a-
-W
ac
hs
}

{a
lg
or
it
hm
!I
ta
i}

bc

bc bc

bc

bc

bc

bc

bc

1

2

4

3

5

6

8

7

Huffman Karp

Varn

Garsia–Wachs Itai

Varn

Fig. 1.5.: Various hypotheses. Front plane (1, 2, 3, 4): unequal weights. Right plane

(3, 4, 7, 8): unequal letter costs. Top plane (2, 3, 6, 7): alphabetic encodings. The

two unnamed vertices 5, 6 are easy special cases.

Unequal letter costs. The computational complexity of the optimal prefix encoding

problem in the case of unequal letter costs (vertex 4 in Figure 1.5) is still unknown,

in the sense that no polynomial time algorithm is known for this, nor is it known

whether the corresponding recognition problem (is there a code of cost ≤ m?) is

NP-complete. It has been shown to be reducible to an integer programming problem

by Karp [41].

We explain how an optimal prefix code can be found by solving an integer

programming problem. Let ρ be the positive real number such that fA(ρ) = 1.

Thus, log 1/ρ is the channel capacity. Recall that, for any code C, one has{c
ha
nn
el
!c
ap
ac
it
y}

{c
ap
ac
it
y
of

a
ch
an
ne
l}

fC(ρ) ≤ 1 . (1.7){e
qP
ro
ba
Co
de
}

However, given a series f(z), the inequality f(ρ) ≤ 1 is not sufficient to imply the

existence of a prefix code C such that f(z) = fC(z). For example, if the alphabet A

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 17

has a single letter of cost 2, then fA(z) = z2, and so ρ = 1. The polynomial f(z) = z

satisfies f(ρ) = 1, but there can be no codeword of cost 1.

Despite this fact, the existence of a code C with prescribed generating series of

costs can be formulated in terms of solutions for a system of linear equations, as we

describe now.

Let C be a prefix code over the channel alphabet A, with source alphabet B

equipped with weights denoted weight(b) for b ∈ B, and let P be the set of prefixes

of words in C which do not belong to C. Set

fA(z) =
∑

i≥1

aiz
i , fC(z) =

∑

i≥1

ciz
i , fP (z) =

∑

i≥1

piz
i .

Here ai is the number of channel symbols of cost i, ci is the number of codewords

of cost i, and pi is the number of words in P of cost i. The following equality holds

between the sets C, P and A (see Exercise 1.6.2).

PA ∪ {ε} = P ∪C .

Since the unions are disjoint, it follows that

c1 + p1 = a1

c2 + p2 = p1a1 + a2

· · ·
cn + pn = pn−1a1 + · · · p1an−1 + an

· · ·

(1.8) {e
qL
in
}

Conversely, if ci, ai are non-negative integers satisfying these equations, there is a

prefix code C such that fC(z) =
∑

i≥1 ciz
i.

Thus, an optimal prefix code can be found by solving the problem of finding

non-negative integers ub for b ∈ B which will be the costs of the codewords, and

integers ci, pi for i ≥ 1 which minimize the linear form
∑

b ubweight(b) such that

Equations (1.8) hold and with ci equal to the number of b such that ub = i.

There have been many approaches to partial solutions of the optimal prefix

encoding problem [49; 25]. The most recent one is a polynomial time approximation

scheme which has been given in [29]. This means that, given ǫ > 0, there exists

a polynomial time algorithm computing a solution with weighted cost (1 + ǫ)W ,

where W is the optimal weighted cost.

Equal letter costs. The case of equal letter costs (vertex 1 in Figure 1.5) is solved

by the well-known Huffman algorithm [37]. The principle of this algorithm in the {H
uf
fm
an

al
go
ri
th
m}

{a
lg
or
it
hm
!H
uf
fm
an
}

binary case is the following. Select two symbols b1, b2 in B with lowest weights,

replace them by a fresh symbol b with weight weight(b) = weight(b1) + weight(b2),

and associate to b a node with children labeled b1 and b2. Then iterate the process.

The result is a binary tree corresponding to an optimal prefix code. The complexity

of the algorithm is O(n log n), or O(n) if the weights are available in increasing order.

The case where all weights are equal (vertex 5 in Figure 1.5) is an easy special case.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

18 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Example 1.6. Consider the alphabets B = {a, b, c, d, e, f} and A = {0, 1}, and the

weights given in the table

a b c d e f

weight 2 2 3 3 3 5

The steps of the algorithm are presented below

a b c d e f

2 2 3 3 3 5

ab c d e f

4 3 3 3 5

ab c de f

4 3 6 5

(ab)c de f

7 6 5

(ab)c (de)f

7 11

((ab)c)((de)f)

18

The corresponding trees are given in Figure 1.6.

4

2

a

2

b

7

4

2

a

2

b

3

c

6

3

d

3

e

11

6

3

d

3

e

5

f

18

7

4

2

a

2

b

3

c

11

6

3

d

3

e

5

f

Fig. 1.6.: Computing an optimal Huffman encoding by combining trees.

Alphabetic coding. We suppose that both the source and the channel alphabets are

ordered (these are vertices 2, 3, 6, 7 in Figure 1.5). Recall that an encoding γ is said

to be ordered or alphabetic if b < b′ =⇒ γ(b) < γ(b′). The optimal alphabetic prefix{e
nc
od
in
g!
or
de
re
d}

{e
nc
od
in
g!
al
ph
ab
et
ic
}

encoding problem is the problem of finding an optimal ordered prefix encoding.{o
pt
im
al
!a
lp
ha
be
ti
c
pr
ef
ix

en
co
di
ng

pr
ob
le
m}

Alphabetic encoding is motivated by searching problems. Indeed, a prefix code

can be used as a searching procedure to retrieve an element of an ordered set. Each

node of the associated tree corresponds to a query, and the answer to this query

determines the subtree in which to continue the search.

Example 1.7. In the binary tree of Example 1.1, one looks for an occurrence of an

English word. The query associated to the root can be the comparison of the first

letter of the word to the letter T.

In contrast to the non-alphabetic case, there exist polynomial-time solutions to

the optimal alphabetic prefix encoding problem. It has been considered mainly in

the case where the channel alphabet is binary. Again, there is a distinction between

equal letter costs and unequal letter costs.

Example 1.8. Consider the alphabet B = {a, b, c}, with weight(a) = weight(c) =

1 and weight(b) = 4. Figure 1.7 (a) shows an optimum tree for these weights,

and Figure 1.7 (b) an optimum ordered tree. This example shows that Huffman’s

algorithm does not give the optimal ordered tree.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 19

8

2

1

a

1

c

4

b

(a) Optimum coding

11

5

1

a

4

b

1

c

(b) Optimum ordered coding

Fig. 1.7.: Two trees for the given weights. Tree (a) has weighted cost 8, it is optimal

but not ordered. Tree (b) is ordered and has weighted cost 11.

We consider now the case of equal letter costs, represented by vertex 2 in Fig-

ure 1.5. Let B = {b1, . . . , bn} be an ordered alphabet with n letters, and let pi

be the weight of letter bi. There is a simple algorithm for computing an optimal

ordered tree based on dynamic programming. It runs in time O(n3) and can be

improved to run in time O(n2) (see [43]).

We present a more sophisticated algorithm due to Garsia and Wachs [23]. The {G
ar
si
a-
-W
ac
hs

al
go
ri
th
m}

{a
lg
or
it
hm
!G
ar
si
a-
-W
ac
hs
}

intuitive idea of the algorithm is to use a variant of Huffman’s algorithm by group-

ing together pairs of elements with minimal weight which are consecutive in the

ordering. The algorithm can be implemented to run in time O(n log n).

Example 1.9. Consider the following weights for an alphabet of five letters.

a b c d e

weight 25 20 12 10 14

The algorithm is composed of three parts. In the first part, called the combination

part, one starts with the sequence of weights

p = (p1, . . . , pn)

and constructs an optimal binary tree T ′ for a permutation bσ(1), . . . , bσ(n) of the

alphabet. The leaves, from left to right, have weights

pσ(1), . . . , pσ(n) .

In general, this permutation is not the identity, so the tree is not ordered, see

Figure 1.8 (a).

The second part, the level assignment, consists of computing the levels of the

leaves. In the last part, called the recombination part, one constructs a tree T which

has the weights p1, . . . , pn associated to its leaves from left to right, and where each

leaf with weight pi appears at the same level as in the previous tree T ′. This tree

is ordered, see Figure 1.8 (b).

Since the leaves have the same level in T and in T ′, the corresponding codewords

have the same length, and therefore the trees T and T ′ have the same weighted cost.

Thus T is an optimal ordered tree.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

20 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

184

69

25

a

22

12

c

10

d

34

20

b

14

e

(a) After combination

184

45

25

a

20

b

58

22

12

c

10

d

14

e

(b) After recombination

Fig. 1.8.: The two steps of the algorithm: (a) the unordered tree obtained in the

combination phase, and (b) the final ordered tree, obtained by recombination. Both

have weighted cost 184.

We now give the details of the algorithm and illustrate it with this specific

example. For ease of description, it is convenient to introduce some terminology.

A sequence (p1, . . . , pk) of numbers is 2-descending if pi > pi+2 for 1 ≤ i ≤ k − 2. {d
es
ce
nd
in
g
se
qu
en
ce
@$
2$
-d
es
ce
nd
in
g
se
qu
en
ce
}

Clearly a sequence is 2-descending if and only if the sequence of “two-sums” (p1 +

p2, . . . , pk−1 + pk) is strictly decreasing.

Let p = (p1, . . . , pn) be a sequence of (positive) weights. The left minimal pair{l
ef
t
mi
ni
ma
l
pa
ir
}

or simply minimal pair of p is the pair (pk−1, pk), where (p1, . . . , pk) is the longest

2-descending chain that is a prefix of p. The index k is the position of the pair. In

other words, k is the integer such that

pi−1 > pi+1 (1 < i < k) and pk−1 ≤ pk+1 .

with the convention that p0 = pn+1 =∞. The target is the index j with 1 ≤ j < k

such that

pj−1 ≥ pk−1 + pk > pj , . . . , pk .

Example 1.10. For (14, 15, 10, 11, 12, 6, 8, 4), the minimal pair is (10, 11), the tar-

get is 1, whereas for the sequence (28, 8, 15, 20, 7, 5), the minimal pair is (8, 15) and

the target is 2.

The three phases of the algorithm work as follows. Let (p1, . . . , pn) be a sequence

of weights.

Combination. Associate to each weight a tree composed of a single leaf. Repeat

the following steps as long as the sequence of weights has more than one element.

(i) compute the left minimal pair (pk−1, pk) .

(ii) compute the target j .

(iii) remove the weights pk−1 and pk,

(iv) insert pk−1 + pk between pj−1 and pj .

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 21

(v) associate to pk−1 + pk a new tree with weight pk−1 + pk, and which has a left

(right) subtree the correponding tree for pk−1 (for pk).

Level assignment. Compute, for each letter b in B, the level of its leaf in the

tree T ′.

Recombination. Construct an ordered tree T in which the leaves of the letters have

the levels computed by the level assignment.

25

a

20

b

12

c

10

d

14

e

Fig. 1.9.: The initial sequence of trees.

Example 1.11. Consider again the following weights for an alphabet of five letters.

a b c d e

weight 25 20 12 10 14

The initial sequence of trees is given in Figure 1.9. The left minimal pair is 12, 10,

its target is 2, so the leaves for c and d are combined into a tree which is inserted just

to the right of the first tree, as shown on the left in Figure 1.10. Now the minimal

pair is (20, 14) (there is an infinite weight at the right end), so the leaves for letters

b and e are combined, and inserted at the beginning. The resulting sequence of

trees is shown on the right in Figure 1.10.

25

a

22

12

c

10

d

20

b

14

e

34

20

b

14

e

25

a

22

12

c

10

d

Fig. 1.10.: The next two steps.

Next, the last two trees are combined and inserted at the beginning as shown on

the left in Figure 1.11, and finally, the two remaining trees are combined, yielding

the tree shown on the right in the figure.

The tree T ′ obtained at the end of the first phase is not ordered. The prescribed

levels for the letters of the example are:

a b c d e

level 2 2 3 3 2

The optimal ordered tree with these levels is given by recombination. It is the tree

given in Figure 1.8(b).

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

22 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

47

25

a

22

12

c

10

d

34

20

b

14

e

81

47

25

a

22

12

c

10

d

34

20

b

14

e

Fig. 1.11.: The two last steps of the combination part.

For a correctness proof, see [42] or [43]. The time bound is given in [43]. The

Garsia-Wachs algorithm is simpler than a previous algorithm due to Hu and Tucker
[35] which was also described in the first edition of Knuth’s book, preceding [43]. For {H

u-
-T
uc
ke
r
al
go
ri
th
m}

a proof and a detailed description of the Hu-Tucker algorithm and variations, see [34;

36].

Alphabetic coding with unequal costs. This is the most general case for alphabetic

encoding (vertex 3 in Figure 1.5). There is a dynamic programming algorithm due

to Itai [40] which computes an optimal solution in polynomial time.{I
ta
i
al
go
ri
th
m}

{a
lg
or
it
hm
!I
ta
i}

Given a source alphabet B = {1, . . . , n} with n symbols, and weights

weight(1), . . . ,weight(n), one looks for an optimal alphabetic encoding γ on the

ordered channel alphabet A with costs cost(a), for a in A. The weighted cost is
∑n

i=1 weight(i)cost(γ(i)). For convenience, the first (resp. the last) letter in A is

denoted by α (resp. by ω). We also write a + 1 for the letter following a in the

order on A.

Define Wa,b[i, j] as the minimal weight of an alphabetic encoding for the sym-

bols k with i ≤ k ≤ j, using codewords for which the initial symbol x satisfies

a ≤ x ≤ b.

The following equations provide a method to compute the minimal weight

Wα,ω[1, n]. First, for a < b, i < j,

Wa,b[i, j] = min
{

Wa+1,b[i, j], Va,b[i, j], Wa,a[i, j]
}

, (1.9){e
q:
it
ai
1}

where

Va,b[i, j] = min
i≤k<j

(Wa,a[i, k] + Wa+1,b[k + 1, j]) .

This formula expresses the fact that either the first codeword does not start with

the letter a, or it does, and the set of codewords starting with a encodes the interval

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 23

[i, k] for some k < j, or finally all codewords start with a. Next, for i < j,

Wa,a[i, j] = cost(a)
(

j
∑

k=i

weight(k)
)

+ min
i≤k<j
α≤x<ω

{Wx,x[i, k]+ Wx+1,ω[k +1, j]} . (1.10){e
q:
it
ai
2}

In this case, all codewords start with the letter a. Moreover, the second letter

cannot be the same for all codewords (otherwise this letter can be removed and this

improves the solution). Finally, for a ≤ b, the boundary conditions are

Wa,b[i, i] = min
a≤x≤b

{Wx,x[i, i]} , Wx,x[i, i] = cost(x)weight(i) . (1.11) {e
q:
it
ai
3}

The appropriate way to compute the W ’s is by increasing values of the difference

j − i, starting with (1.11) and, for a fixed value of j − i, by increasing lengths of

the source alphabet intervals, starting with (1.10), followed by (1.9).

This method gives an algorithm running in time O(q2n3) where q is the size of the

channel alphabet. Indeed, each evaluation of (1.10) requires time O((j − i)q), and

each evaluation of (1.9) is done in time O(j− i). Itai [40] has given an improvement

of the algorithm that leads to a better bound of O(q2n2).

Example 1.12. Consider a five symbol source alphabet and a three letter channel

alphabet {a, b, c} with weights and costs

i 1 2 3 4 5

weight(i) 5 8 2 10 4

x a b c

cost(x) 1 3 2

The algorithm computes the following tables

Wa,a =

0

B

B

B

B

@

5 34 48 85 115
− 8 22 54 84
− − 2 34 56
− − − 10 32
− − − − 4

1

C

C

C

C

A

Wb,b =

0

B

B

B

B

@

15 60 78 135 173
− 24 42 94 132
− − 6 58 88
− − − 30 60
− − − − 12

1

C

C

C

C

A

Wc,c =

0

B

B

B

B

@

10 47 63 110 144
− 16 32 74 108
− − 4 46 72
− − − 20 46
− − − − 8

1

C

C

C

C

A

Wa,b =

0

B

B

B

B

@

5 29 40 78 97
− 8 14 52 66
− − 2 32 46
− − − 10 22
− − − − 4

1

C

C

C

C

A

Wb,c =

0

B

B

B

B

@

10 31 47 89 123
− 16 28 62 88
− − 4 26 52
− − − 20 38
− − − − 8

1

C

C

C

C

A

Wa,c =

0

B

B

B

B

@

5 21 33 60 86
− 8 12 34 60
− − 2 22 40
− − − 10 18
− − − − 4

1

C

C

C

C

A

So the minimal weight of an encoding is Wa,c[1, 5] = 86. Since Wa,a[1, 2] +

Wb,c[3, 5] = Wa,a[1, 3] + Wb,c[4, 5] = 86, there are, by (1.9), two optimal trees.

Inspection of the matrices yield the trees given in Figure 1.12.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

24 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

86

33

a

5

a

8

b

2

c

10

b

4

c

86

21

a

5

a

8

c

2

b

18

c

10

a

4

c

Fig. 1.12.: Trees built with Itai’s algorithm.

Optimal encodings with equal weights. In the case where all source symbols have

the same weight (vertices 5− 8 in Figure 1.5), this weight can be assumed to be 1.

The weighted cost becomes simply

W (γ) =
∑

b∈B

cost(γ(b)) .

The prefix coding problem in this case is known as the Varn coding problem. It has{V
ar
n
co
di
ng

pr
ob
le
m}

an amazingly simple O(n log n) time solution [67].

We assume that A is a k-letter alphabet and that n = q(k − 1) + 1 for some

integer q. So the prefix code (or the tree) obtained is complete with q internal nodes

and n leaves. Varn’s algorithm starts with a tree composed solely of its root, and

iteratively replaces a leaf of minimal cost by an internal node which has k leaves,

one for each letter. The number of leaves increases by k−1, so in q steps, one gets a

tree with n leaves. Note that this solves also the cases numbered 5, 6 in Figure 1.5.

Example 1.13. Assume we are looking for a code with seven words over the ternary

alphabet {a, b, c}, and that the cost for letter a is 2, for letter b is 4, and for letter c

is 5. The algorithms starts with a tree composed of a single leaf, and then builds the

tree by the algorithm. There are two solutions, both of cost 45, given in Figure 1.13.

Tree 1.13(d) defines the prefix code {aa, ab, ac, ba, bb, bc, c}, and tree 1.13(e) gives

the code {aaa, aab, aac, ab, ac, b, c}.

Exercises

Exercise 1.6.1. Show that for any distribution pi of probabilities, the sequence

ℓi = ⌈log 1/pi⌉ satisfies the inequality
∑

2−ℓi ≤ 1. Conclude that for any source

with equal letter costs, there is a prefix code with weighted cost W ≤ H+1 where H

is the entropy of the source with probabilities pi.

Exercise 1.6.2. Let A be a k-letter alphabet. A k-ary tree is complete if each of

its nodes has 0 or k children. A prefix code is complete if its tree is complete. Let

C be a finite complete prefix code and let P be the set of prefixes of the words of

C which are not in C. Show that

PA ∪ {ε} = P ∪C .

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 25

0

(a)

0

2 4 5

(b)

0

2

4 6 7

4 5

(c)

0

2

4 6 7

4

6 8 9

5

(d) First solution

0

2

4

6 8 9

6 7

4 5

(e) Second solution

Fig. 1.13.: Varn’s algorithm for 7 words over a 3-letter alphabet. At each step, a

leaf of minimal cost is replaced by a node with all possible leaves. There are two

choices for the last step. Both give a minimal tree.

Deduce that

Card(C) − 1 = Card(P)(k − 1) ,

where, for a finite set S, Card(S) denotes the cardinality of S.

Exercise 1.6.3. For a nonempty binary word s of length p, denote by Q the set of

words w of length strictly less than p such that sw has s as a suffix. Let X be the

set of binary words which have s as a suffix but no other factor equal to s. Show

that X is a maximal prefix code and that the generating series of the lengths of X

is

fX(z) =
zp

zp + (1− 2z)fQ(z)
, (1.12) {e

qS
em
}

where fQ(z) is the generating series of the lengths of Q (called the autocorrelation

polynomial of s). {a
ut
oc
or
re
la
ti
on

po
ly
no
mi
al
}

Exercise 1.6.4. Show that, for s = 101, one has

fX(z) =
z3

1− 2z + z2 − z3
.

Exercise 1.6.5. A set of binary words is said to be a prefix synchronized code if all {c
od
e!
pr
ef
ix

sy
nc
hr
on
iz
ed
}

words have the same length n and share a common prefix s which does not appear

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

26 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

elsewhere in the sequences of codewords. For each s and n, there is a maximal set

Cn,s which satisfies this condition. For example, C5,101 = {10100, 10111}. Table 1.2

shows the cardinalities of some of the sets Cn,s.

Table 1.2.: The cardinalities of the codes Cn,s

11 10 111 110 101 1111 1110 1010 1001

3 1 2 0 1 1
4 1 3 1 2 1 0 1 0 1
5 2 4 1 4 2 1 2 2 2
6 3 5 2 7 4 1 4 3 3
7 5 6 4 12 7 2 8 4 6
8 8 7 7 20 12 4 15 9 11
9 13 8 13 33 21 8 28 18 21

10 21 9 24 54 37 15 52 32 39
11 34 10 44 88 65 29 96 60 73

12 55 11 81 143 114 56 177 115 136

Let U be the set of binary words u such that s is a proper prefix of u and us

does not have s as a factor except as a prefix or a suffix. Show that

fU (z) =
2z − 1

zp + (1 − 2z)fQ(z)
+ 1 ,

where p is the length of s and fQ(z) is the autocorrelation polynomial of the word

s. (Hint: use the fact that s ∪ {0, 1}X = X ∪ Us where X is as in Exercise 1.6.3).

Show that for each n ≥ p, Cn,s is the set of words of length n in U .

Exercise 1.6.6. Let π be a Bernoulli distribution on the source alphabet B. A

Tunstall code of order n is a maximal prefix code with n codewords over the alphabet{T
un
st
al
l
co
de
}

B which has maximal average length with respect to π. Such a code is used to

encode the words of the source alphabet by binary blocks of length k for n ≤ 2k.

For example, if B = {a, b} and π(a) = .8, π(b) = .2, the code C = {aaa, aab, ab, b}
is a Tunstall code of order 4. Its average length is 2.44 and thus coding each word

of C by a binary block of length 2 realizes a compression with rate 2/2.44 ≈ 0.82.

Show how Varn’s algorithm can be used to build a Tunstall code. (Tunstall

codes were introduced in [66], see also [58].)

1.7. Prefix codes for integers

Some particular codes are used for compression purposes to encode numerical data

subject to a known probability distribution. They appear in particular in the con-

text of digital audio and video coding. The data encoded are integers and thus

these codes are infinite. We will consider several families of these codes, beginning

with the Golomb codes introduced in [30]. We have already seen the Elias code

which belongs to one of these families.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 27

Golomb codes. The Golomb code of order m ≥ 1, denoted by Gm, is the maximal{G
ol
om
b
co
de
}

infinite prefix code

Gm = 1∗0Rm .

Thus words in Gm are composed of a (possibly empty) block of 1’s, followed by 0,

and followed by a word in Rm, where the prefix codes Rm are defined as follows.

If m = 2k is a power of 2, then Rm is the set of all binary words of length k. In

particular, R1 is composed of the empty word only. For other values of m, the

description is more involved. Set m = 2k + ℓ, with 0 < ℓ < 2k. Setting n = 2k−1,

Rm =

{

0Rℓ ∪ 1R2n if ℓ ≥ n ,

0Rn ∪ 1Rn+ℓ otherwise .

The codes Rm for m = 1 to 7 are represented in Figure 1.14. Note that, in particular,

the lengths of the codewords differ at most by one.

Fig. 1.14.: The sets R1 to R7.

The Golomb codes of order 1, 2, 3 are represented in Figure 1.15. The encoding

of the integers is alphabetic. Note that, except possibly for the first level, there

are exactly m words of each length. One way to define directly the encoding of an

integer is as follows. Set r = ⌈log m⌉. Define the adjusted binary representation of {a
dj
us
te
d
bi
na
ry

re
pr
es
en
ta
ti
on
}

an integer n < m as its representation on r − 1 bits if n < 2r −m and on r bits

otherwise (adding 0’s on the left if necessary). The encoding of the integer n in Gm

is formed of n/m 1’s followed by 0, followed by the adjusted binary representation

of n modulo m.

0

1

2

0 1

2 3

4 5

0

1 2 3

4 5 6

7 8

Fig. 1.15.: The Golomb codes of orders 1, 2, 3.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

28 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

A geometric distribution on the set of integers is given by {g
eo
me
tr
ic

di
st
ri
bu
ti
on
}

π(n) = pnq , (1.13) {g
eo
me
tr
ic
}

for positve real numbers p, q with p + q = 1. Such a distribution may arise from

run-length encoding where a sequence of 0n1 is encoded by n. If the source produces{r
un
-l
en
gt
h
en
co
di
ng
}

0 and 1’s independently with probability p and q, the probability of 0n1 is precisely

π(n). This is of practical interest if p is large since then long runs of 0 are expected

and the run-length encoding realizes a logarithmic compression.

We will show that for a source of integers with the geometric distribution cor-

responding to a given p, there is an integer m ≥ 1 such that the Golomb code Gm

is an optimal prefix code.

For this, consider, following [22], the integer m such that

pm + pm+1 ≤ 1 < pm + pm−1 . (1.14){e
qG
al
la
ge
r}

For each p with 0 < p < 1, there is a unique integer m satisfying (1.14). Indeed,

(1.14) is equivalent with

pm(1 + p) ≤ 1 < pm−1(1 + p)

or equivalently

m ≥ − log(1 + p)

log p
> m− 1.

Note that when m is large, (1.14) implies pm ∼ 1/2, and that (1.14) holds for

pm = 1/2. Let us show that the application of the Huffman algorithm to a geometric

distribution given by (1.13) can produce the Golomb code of order m where m is

defined by (1.14). This shows the optimality of the Golomb code. Actually, we will

operate on a truncated, but growing source since Huffman’s algorithm works only

on finite alphabets.

Set Q = 1 − pm. By the choice of m, one has p−1−m ≥ 1/Q > p1−m. We

consider, for k ≥ −1, the bounded alphabet

Bk = {0, . . . , k + m} .

In particular, B−1 = {0, . . . , m− 1}. We consider on Bk the distribution

π(i) =

{

piq for 0 ≤ i ≤ k ,

piq/Q for k < i ≤ k + m.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 29

Clearly π(i) > π(k) for i < k and π(k+i) > π(k+m) for 1 < i < m. Observe that

also π(i) > π(k+m) for i < k since π(k+m) = pk+mq/Q ≤ pk+mq/pm+1 = π(k−1).

Also π(k + i) > π(k) for 1 < i < m since indeed π(k + i) > π(k + m − 1) =

pk+m−1q/Q > pkq = π(k). As a consequence, the symbols k and k + m are those

of minimal weight. Huffman’s algorithm replaces them with a new symbol, say k′,

which is the root node of a tree with, say, left child k and right child k + m. The

weight of k′ is

π(k′) = π(k) + π(k + m) = pkq(1 + pm/Q) = pkq/Q .

Thus we may identify Bk \ {k, k + m} ∪ {k′} with Bk−1 by assigning to k the new

value π(k) = pkq/Q. We get for Bk−1 the same properties as for Bk and we may

iterate.

After m iterations, we have replaced Bk by Bk−m, and each of the symbols

k − m + 1, . . . , k now is the root of a tree with two children. Assume now that

k = (h + 1)m − 1 for some h. Then after hm steps, one gets the alphabet B−1 =

{0, . . . , m−1}, and each of the symbols i in B−1 is the root of a binary tree of height

h composed of a unique right path of length h, and at each level one left child i+m,

i + 2m, . . . , i + (h− 1)m. This corresponds to the code Ph = {0, 10, . . . , 1h−10, 1h}.
The weights of the symbols in B−1 are decreasing, and moreover π(m− 2)+ π(m−
1) > π(0) because pm−2 + pm−1 > 1. It follows from Exercise 1.7.2 below that the

code Rm is optimal for this probability distribution.

Thus we have shown that the application of Huffman’s algorithm to the trun-

cated source produces the code RmPk. When h tends to infinity, the sequence of

codes converges to Rm1∗0. Since each of the codes in the sequence is optimal, the

code Rm1∗0 is an optimal prefix code for the geometric distribution. The Golomb

code Gm = 1∗0Rm has the same length distribution and so is also optimal.

Golomb–Rice codes. The Golomb–Rice code of order k, denoted GRk, is the par- {G
ol
om
b-
Ri
ce

co
de
}

ticular case of the Golomb code for m = 2k. It was introduced in [54]. Its structure

is especially simple and allows an easy explicit description. The encoding assigns

to an integer n ≥ 0 the concatenation of two binary words, the base and the offset.

The base is the unary expansion (over the alphabet {1}) of ⌊n/2k⌋ followed by a

0. The offset is the remainder of the division written in binary on k bits. Thus,

for k = 2, the integer n = 9 is coded by 110|01. The binary trees representing the

Golomb–Rice code of orders 0, 1, 2 are represented in Figure 1.16.

Another description of the Golomb–Rice code of order k is given by the regular

expression {r
eg
ul
ar

ex
pr
es
si
on
}

GRk = 1∗0{0, 1}k . (1.15) {e
q:
GR
}

This indicates that the binary words forming the code are composed of a base of

the form 1i0 for some i ≥ 0 and an offset which is an arbitrary binary sequence of

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

30 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

0

1

2

0 1

2 3

4 5

0 1 2 3

4 5 6 7

8 9 10 11

Fig. 1.16.: The Golomb–Rice codes of orders 0, 1, 2.

length k.

It follows from (1.15) that the generating series of the lengths of words of the

Golomb–Rice code of order k is

fGRk
(z) =

2kzk+1

1− z
=

∑

i≥k+1

2kzi.

The weighted generating series of a code C with probability distribution π is{w
ei
gh
te
d
ge
ne
ra
ti
ng

se
ri
es
}

{g
en
er
at
in
g
se
ri
es
!w
ei
gh
te
d}

pC(z) =
∑

x∈C

π(x)z|x| .

The average length of C is then

λC(z) =
∑

x∈C

|x|π(x) = p′C(1) .

For a uniform Bernoulli distribution on the channel symbols, the weighted gener-

ating series for the resulting probabilities of the Golomb–Rice codes GRk and the

corresponding average length λGRk
are

pGRk
(z) = fGRk

(z/2) =
zk+1

2− z
,

λGRk
= p′GRk

(1) = k + 2 . (1.16){e
q:
av
Le
ng
th
GR
}

Observe that in the case where pm = 1/2, the series pGRk
(z), and thus also the

average length λGRk
, happens to be the same for the probability distribution on

the code induced by the geometric distribution on the source.

Indeed, the sum of the probabilities of the codewords for rm to (r + 1)m− 1 is

prm(1−pm), and since pm = 1/2, this is equal to 2−r−1. The sum of the probabilities

of m words of length r + k + 1 with respect to a uniform Bernoulli distribution is

m2−r−k−1 = 2−r−1 (recall that m = 2k). Thus we get the same value in both cases,

as claimed.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 31

Exponential Golomb codes. The exponential Golomb codes , denoted EGk for k ≥ 0,{e
xp
on
en
ti
al

Go
lo
mb

co
de
}

form a family of codes whose length distributions make them better suited than

the Golomb–Rice codes for encoding the integers endowed with certain probability

distributions. They are introduced in [64]. The case k = 0 is the Elias code already{E
li
as

co
de
}

mentioned and introduced in [19]. Exponential Golomb codes are used in practice

in digital transmissions. In particular, they are a part of the video compression

standard technically known as H.264/MPEG-4 Advanced Video Coding (AVC) [55].

The codeword representing an integer n tends to be shorter for large integers.

The base of the codeword for an integer n is obtained as follows. Let x be the

binary expansion of 1 + ⌊n/2k⌋ and let i be its length. The base is made of the

unary expansion of i−1 followed by x with its initial 1 replaced by a 0. The offset is,

as before, the binary expansion of the remainder of the division of n by 2k, written

on k bits. Thus, for k = 1, the codeword for 9 is 11001|1. Figure 1.17 represents

the binary trees of the exponential Golomb codes of orders 0, 1, 2. An expression

0

1 2

0 1

2 3 4 5

0 1 2 3

4 5 6 7 8 9 10 11

Fig. 1.17.: The exponential Golomb codes of orders 0, 1, 2.

describing the exponential Golomb code of order k is

EGk =
⋃

i≥0

1i0{0, 1}i+k ,

and we have the simple relation

EGk = EG0{0, 1}k .

The generating series of the lengths of words in EGk is

fEGk
(z) =

2kzk+1

1− 2z2
.

The weighted generating series for the probabilities of codewords corresponding to

a uniform Bernoulli distribution and the average length are

pEGk
(z) =

zk+1

2− z2

λEGk
= k + 3 .

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

32 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

For handling signed integers, there is a simple method which consists of adding a

bit to the words of one of the previous codes. More sophisticated methods, adapted

to a two-sided geometric distribution, have been developed in [50].

Exercises

Exercise 1.7.1. Show that the entropy H = −∑

π(n) log π(n) of the source emit-

ting integers with a geometric distribution (1.13) is

H = −(p log p + q log q)/q .

Verify directly that, for p2k

= 1/2, the average length of the Golomb–Rice code

GRk satisfies λGRk
≤ H + 1.

Exercise 1.7.2. Let m ≥ 3. A nonincreasing sequence w1 ≥ w2 ≥ . . . ≥ wm of

integers is said to be quasi-uniform if it satisfies wm−1 + wm ≥ w1. Let T be an{q
ua
si
-u
ni
fo
rm

se
qu
en
ce
}

optimal binary tree corresponding to a quasi-uniform sequence of weights. Show

that the heights of the leaves of T differ at most by one.

1.8. Encoders and decoders

In this section, we present the basic notions of automata theory, as far as encoding

and decoding processes are concerned. The notion of finite automata allows us to

define a state-dependent process which can be used both for encoding and decod-

ing. We give the definition of two closely related notions, namely automata and

transducers, which are both labeled directed graphs.

A finite automaton A over some (finite) alphabet A is composed of a finite set Q{a
ut
om
at
on
}

of states , together with two distinguished subsets I and T called the sets of initial{s
ta
te
!i
ni
ti
al
}

{s
ta
te
!t
er
mi
na
l}

and terminal states, and a set E of edges which are triples (p, a, q) where p and q{e
dg
e!

of
an

au
to
ma
to
n}

are states and a is a symbol. An edge is also denoted by p
a→ q. It starts in p, ends

in q and has label a.

Similarly, a finite transducer T uses an input alphabet A and an output alphabet{t
ra
ns
du
ce
r}

B. It is composed of a finite set Q of states , together with two distinguished subsets{s
ta
te
!i
ni
ti
al
}

{s
ta
te
!t
er
mi
na
l}

I and T called the sets of initial and terminal states, and a set E of edges which{e
dg
e!

of
a
tr
an
sd
uc
er
}

are quadruples (p, u, v, q) where p and q are states and u is a word over A and v is a

word over B. An edge is also denoted by p
u|v→ q. The main purpose for transducers

is decoding. In this case, A is the channel alphabet and B is the source alphabet.

A path in an automaton or in a transducer is a sequence of consecutive edges.

The label of the path is obtained by concatenating the labels of the edges (in the

case of a transducer, one concatenates separately the input and the output labels).

We write p
w→ q for a path in an automaton labeled with w starting in state p and

ending in state q. Similarly, we write p
x|y−−→ q for a path in a transducer. A path is

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 33

successful if it starts in an initial state and ends in a terminal state.{s
uc
ce
ss
fu
l
pa
th
}

An automaton A recognizes a set of words, which is the set of labels of its{r
ec
og
ni
ze
d
se
t}

successful paths. The sets recognized by finite automata are called regular sets.{r
eg
ul
ar

se
t}

b|1

a|00

c|01

Fig. 1.18.: A simple encoder. The only state is both initial and terminal.

A transducer T defines a binary relation between words on the two alphabets

as follows. A pair (u, v) is in the relation if it is the label of a successful path. This

is called the relation realized by T . This relation can be viewed as a multi-valued {r
el
at
io
n
re
al
iz
ed
}

{t
ra
ns
du
ce
r!
re
la
ti
on

re
al
iz
ed
}

mapping from the input words into the output words, and also as a multi-valued

mapping from the output words into the input words. For practical purposes, this

definition is too general and will be specialized. We consider transducers called

literal , which by definition means that each input label is a single letter. For {l
it
er
al

tr
an
sd
uc
er
}

{t
ra
ns
du
ce
r!
li
te
ra
l}

example, an encoding γ, as defined at the beginning of the chapter, can be realized

by a one-state literal transducer, with the set of labels of edges being simply the

pairs (b, γ(b)) for b in B.

Example 1.14. Consider the encoding defined by γ(a) = 00, γ(b) = 1, and γ(c) =

01. The corresponding encoding transducer is given in Figure 1.18

Transducers for decoding are more interesting. For the purpose of coding and

decoding, we are concerned with transducers which define single-valued mappings

in both directions. We need two additional notions.

An automaton is called deterministic if it has a unique initial state and if, for {d
et
er
mi
ni
st
ic
!a
ut
om
at
on
}

{a
ut
om
at
on
!d
et
er
mi
ni
st
ic
}

each state p and each letter a, there is at most one edge starting in p and labeled

with a. This implies that, for each state p and each word w, there exists at most

one path starting in p and labeled with w.

Consider a finite deterministic automaton with a unique terminal state which is

equal to the initial state i. The closed paths from i to i such that no initial segment

ends in i are called first return paths . The set of labels of these paths is a regular {p
at
h
of

fi
rs
t
re
tu
rn
}

prefix code C (that is a prefix code which is a regular set), and the set recognized

by the automaton is the set C∗. Conversely, any regular prefix code is obtained in

this way.

For example, Golomb codes are regular, whereas exponential Golomb codes are {G
ol
om
b
co
de
}

{e
xp
on
en
ti
al

Go
lo
mb

co
de
}

not.

More generally, an automaton is called unambiguous if, for all states p, q and {u
na
mb
ig
uo
us
!a
ut
om
at
on
}

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

34 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

ε 01|b

0|−

0|a, 1|c

Fig. 1.19.: A deterministic decoder. A dash represents the empty word. An incom-

ing (outgoing) arrow indicates the initial (terminal) state.

all words w, there is at most one path from p to q labeled with w. Clearly, a

deterministic automaton is unambiguous.

A literal transducer defines naturally an automaton over its input alphabet,

called its input automaton. For simplicity, we discard the possibility of multiple{i
np
ut

au
to
ma
to
n}

edges in the resulting automaton. A literal transducer is called deterministic (resp.{d
et
er
mi
ni
st
ic
!t
ra
ns
du
ce
r}

{t
ra
ns
du
ce
r!
de
te
rm
in
is
ti
c}

unambiguous) if its associated input automaton is deterministic (resp. unambigu-{u
na
mb
ig
uo
us
!t
ra
ns
du
ce
r}

{t
ra
ns
du
ce
r!
un
am
bi
gu
ou
s}

ous). Clearly, the relation realized by a deterministic transducer is a function.

An important result is that for any encoding (with finite source and channel al-

phabets), there exists a literal unambiguous transducer which realizes the associated

decoding. When the code is prefix, the transducer is actually deterministic.

The construction is as follows. Let γ be an encoding. Define a transducer T by

taking a state for each proper prefix of some codeword. The state corresponding

to the empty word ε is the initial and terminal state. There is an edge p
a|−−−→ pa,

where − represents the empty word, for each prefix p and letter a such that pa is a

prefix, and an edge p
a|b→ ε for each p and letter a with pa = γ(b). When the code

is prefix, the decoder is deterministic. In the general case, the property of unique

decipherability is reflected by the fact that the transducer is unambiguous.

Example 1.15. The decoder corresponding to the prefix code of Example 1.14 is

represented in Figure 1.19.

Example 1.16. Consider the code C = {00, 10, 100} of Example 1.4. The decoder

given by the construction is represented in Figure 1.20.

As a consequence of this construction, it can be shown that decoding can always

be realized in linear time with respect to the length of the encoded string (consider-

ing the number of states as a constant). Indeed, given a word w = a1 · · · an of length

n to be decoded, one computes the sequence of sets Si of states accessible from the

initial state for each prefix a1 · · · ai of length i of w, with the convention S0 = {ε}.
Of course the terminal state ε is in Sn. Working backwards, we set qn = ε and we

identify in each set Si the unique state qi such that there is an edge qi
ai→ qi+1 in the

input automaton. The uniqueness comes from the unambiguity of the transducer.

The corresponding sequence of output labels gives the decoding. This construction

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 35

ε0

1

10

0|−

0|a

1|−

0|b
0|−

0|c

Fig. 1.20.: An unambiguous decoder for a code which is not prefix.

is based on the Schützenberger covering of an unambiguous automaton, see [57].{S
ch
üt
ze
nb
er
ge
r
co
ve
ri
ng
}

Example 1.17. Consider again the code C = {00, 10, 100}. The decoding of the

sequence 10001010000 is represented on Figure 1.21. Working from left to right

ε 1 ε

10

0

ε

ε

0

1 ε

10

1 ε

10

0

ε

ε

0

0

ε

1 0

0

0

0

0

0

1 0

0

1 0

0

0

0

0

0

0

0

Fig. 1.21.: The decoding of 10001010000.

produces the tree of possible paths in the decoder of Figure 1.20. Working back-

wards from the state ε in the last column produces the successful path indicated in

boldface.

The notion of deterministic transducer is too constrained for the purpose of cod-

ing and decoding because it does not allow a lookahead on the input or equivalently

a delay on the output. The notion of sequential transducer to be introduced now

fills this gap.

0 1
a|−

a|a

b|b

a

Fig. 1.22.: A sequential transducer realizing a cyclic shift on words starting with

the letter a, with σ(0) = ε and σ(1) = a.

A sequential transducer is composed of a deterministic transducer and an output {s
eq
ue
nt
ia
l
tr
an
sd
uc
er
}

{t
ra
ns
du
ce
r!
se
qu
en
ti
al
}

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

36 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

function. This function maps the terminal states of the transducer into words on

the output alphabet. The function realized by a sequential transducer is obtained

by appending, to the value of the deterministic transducer, the image of the output

function on the arrival state. Formally, the value on the input word x is

f(x) = g(x)σ(i · x) ,

where g(x) is the value of the deterministic transducer on the input word x, i · x is

the state reached from the input state i by the word x, and σ is the output function.

This is defined only if the state i · x is a terminal state.

Example 1.18. The sequential transducer given in Figure 1.22 realizes the partial

function aw 7→ wa, for each word w. The output function σ is given by σ(0) = ε

and σ(1) = a.

It is a well-known property of finite automata that any finite automaton is equiv-

alent to a finite deterministic automaton. The process realizing this transformation

is known as the determinization algorithm. This remarkable property does not hold{d
et
er
mi
ni
za
ti
on

al
go
ri
th
m}

{a
lg
or
it
hm
!d
et
er
mi
ni
za
ti
on
}

in general for transducers.

Nonetheless, there is an effective procedure to compute a sequential transducer

S that is equivalent to a given literal transducer T , whenever such a transducer

exists, see [46]. The algorithm goes as follows.

The states of S are sets of pairs (u, p). Each pair (u, p) is composed of an output

word u and a state p of T . For a state s of S and an input letter a, one first computes

the set s̄ of pairs (uv, q) such that there is a pair (u, p) in s and an edge p
a|v→ q in

T . In a second step, one chooses some common prefix z of all words uv, and one

defines the set t = {(w, q) | (zw, q) ∈ s̄}. There is a transition from state s to a

state t labelled with (a, z). The initial state is (ε, i), where i is the initial state of T .

The terminal states are the sets t containing a pair (u, q) with q terminal in T . The

output function σ is defined on state t of S by σ(t) = u. If there are several pairs

(u, q) in t with distinct u for the same terminal state q, then the given transducer

does not compute a function and thus it is not equivalent to a sequential one.

The process of building new states of S may not halt if the lengths of the words

which are the components of the pairs are not bounded. There exist a priori bounds

for the maximal length of the words appearing whenever the determinization is

possible, provided that, at each step, the longest common prefix is chosen. This

makes the procedure effective.

Example 1.19. Consider the transducer given in Figure 1.23. The result of the

determinization algorithm is the transducer of Figure 1.22. State 0 is composed of

the pair (ε, p), and state 1 is formed of the pairs (a, p) and (b, q).

Example 1.20. Consider the code C = {00, 10, 100} of Example 1.4. Its decoder

is represented in Figure 1.20. The determinization algorithm applied to this trans-

ducer produces, for the input word 102n, the state consisting of (ban−1, 0) and

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 37

p q

a|b
a|a b|b

b|a

Fig. 1.23.: Another transducer realizing a cyclic shift on words starting with the

letter a.

(can−1, ε). Thus the algorithm does not terminate, and there is no equivalent se-

quential transducer.

Exercises

Exercise 1.8.1. A set of words C is said to be weakly prefix if there is an integer {w
ea
kl
y
pr
ef
ix

co
de
}

{c
od
e!
we
ak
ly

pr
ef
ix
}

d ≥ 0 such that the following condition holds for any elements c, c′ of C and any

words w, w′ of C∗. If the prefix of length |c|+d of cw is a prefix of c′w′, then c = c′.

The least integer d such that this property holds is called the deciphering delay and {d
ec
ip
he
ri
ng

de
la
y}

a weakly prefix code is also said to have finite deciphering delay. {c
od
e!
wi
th

fi
ni
te

de
ci
ph
er
in
g
de
la
y}

Show that a weakly prefix set is uniquely decipherable.

Exercise 1.8.2. Which of the following sets C and C′ is a weakly prefix code?

C = {00, 10, 100} and C′ = {0, 001}.

Exercise 1.8.3. Show that a finite code is weakly prefix if and only if it can be

decoded by a sequential transducer.

1.9. Codes for constrained channels

The problem considered in this section arises in connection with the use of com-

munication channels which impose input constraints on the sequences that can be

transmitted. User messages are encoded to satisfy the constraint; the encoded mes-

sages are transmitted across the channel and then decoded by an inverse to the

encoder.

In this context, we will use a more general notion of encoding. Instead of a

memoryless substitution of source symbols by codewords, we will consider finite

transducers: the codeword associated to a source symbol depends not only on this

symbol, but also on a state depending on the past.

We require, in order to be able to decode, that the encoder is unambiguous on

its output in the sense that for each pair of states and each word w, there is at most

one path between these states with output label w. For ease of use, we will also

assume that the input automaton of the encoder is deterministic.

Example 1.21. The encoder in Figure 1.26 is deterministic. The source alphabet

is {0, 1} and the channel alphabet is {a, b, c}. The sequence 0011 is encoded by acbb

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

38 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

if the encoding starts in state 1. A more complicated example of a deterministic

encoder that will be described later is depicted in Figure 1.31.

A stronger condition for a decoder than unambiguity is that of having finite

look-ahead . This means that there exists an integer D ≥ 0 such that, for all states q{l
oo
k-
ah
ea
d}

and all channel sequences w of length D+1, all paths that begin at state q and have

channel label w share the same first edge (and therefore the first source symbol). In

other words, decoding is a function of the current state, the current channel symbol,

and the upcoming string of D channel symbols [45]. These decoders correspond to

sequential transducers as introduced in Section 1.8.

However, even this condition is heavily state-dependent, and so a channel error

which causes the decoder to lose track of the current state may propagate errors

forever. For this reason, the following stronger condition is usually employed.

A sliding block decoder operates on words of channel symbols with a window{s
li
di
ng

bl
oc
k
de
co
de
r}

{d
ec
od
er
!s
li
di
ng

bl
oc
k}

of fixed size. The decoder uses m symbols before the current one and a symbols

after it (m is for memory and a for anticipation). According to the value of the

symbols between time n −m and time n + a, the value of the n-th source symbol

is determined. Figure 1.24 depicts a schematic view of a sliding block decoder. It

is not hard to show that sliding-block decodability implies the weaker finite look-

ahead property mentioned above. Note that a sliding block decoder avoids possible

problems with error propagation because any channel error can affect the decoding

only while it is in the decoder window and thus can corrupt at most m + a + 1

source symbols.

Transducers realizing sliding block decoders are of a special kind. An automaton

is called local if the knowledge of a finite number of symbols in the past and in the{a
ut
om
at
on
!l
oc
al
}

{l
oc
al

au
to
ma
to
n}

future determines the current state. More precisely, for given integers m, a ≥ 0 (m

stands for memory and a for anticipation), an automaton is said to be (m, a)-local

if for words u and v of length m and a respectively, p
u→ q

v→ r and p′
u→ q′

v→ r′

imply that q = q′. A transducer is said to be local if its input automaton is local.{l
oc
al

tr
an
sd
uc
er
}

{t
ra
ns
du
ce
r!
lo
ca
l}

A sliding block decoder can be realized by a local transducer with the same

parameters. Conversely, a transducer which is (m, a)-local and such that the input

label and the output label of each edge have the same length is a sliding block

decoder.

Fig. 1.24.: A sliding block decoder.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 39

While input constraints have been imposed in some communication channels,

they arise more commonly in data recording channels, such as those found in mag-

netic and optical disk drives. Constraints on inputs are of various types and have

changed over the course of the fifty-year history of magnetic disk drives. For illus-

tration, we focus on the [d, k]-constraint, where 0 ≤ d ≤ k. A binary sequence is

said to satisfy the [d, k]-constraint if the number of contiguous symbols 0 between

consecutive symbols 1 is at least d and at most k.

These constraints arise for the following reasons. An electrical current in the

write head, situated over the spinning disk, creates a magnetic field which is reversed

when the current polarity is reversed. These write field reversals, in turn, induce

reversals in the orientation of the magnetization along the recorded track on the

disk. During the data recovery process, the read head senses the recorded pattern of

magnetization along the track. Each transition in magnetization direction produces

a correspondingly oriented pulse in the readback voltage.

Two problems should be avoided. The first is called intersymbol interference. If

polarity changes are too close together, the induced magnetic fields tend to interfere

and the pulses in the readback signal are harder to detect. The second problem is

called clock drift. This problem arises when the pulses are separated by intervals of

time which are too large. When the read head senses a pulse it sends information

through a phase lock loop which keeps the bit clock running accurately; if the

separation between pulses is too large, the clock can lose synchronization and skip

through a complete bit period.

Several values of the parameters d, k are of practical importance. The simplest

case is the constraint [1, 3]. This means that the blocks 11 and 0000 are forbidden.

The binary sequences satisfying this constraint are those which label paths in the

graph of Figure 1.25.

0 1 2 3
0 0 0

1 1 1

Fig. 1.25.: The [1, 3]-constraint.

We consider an encoding of all binary sequences by sequences satisfying the

[1, 3]-constraint. This encoding is not realizable by a sequential encoder without

modifying the output alphabet, because there are more binary source sequences

of length n than admissible binary channel sequences of length n. However, it is

possible to operate at rate 1 : 2, by encoding a source bit by one of the 2-bit symbols

a = 00, b = 01 or c = 10. A particular way of doing this is the MFM (Modified

Frequency Modulation, see e.g. [47]) code of Figure 1.26, which was used on floppy

disks for many years.

Observe that the second bit of the output is always equal to the input bit, and

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

40 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

1 0

1|b

0|a

1|b

0|c

Fig. 1.26.: The MFM code.

so the decoder can operate symbol by symbol, producing a 1-bit input from a 2-

bit output. The first bit of the output is chosen in such a way that there are no

consecutive 1’s and no block of four 0’s.

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0

1 1 1 1 1 11

Fig. 1.27.: The [2, 7]-constraint.

A more complex example is the [2, 7]-constraint illustrated in Figure 1.27. Again,

the sequences satisfying the constraint are the labels of paths in the graph.

For the purpose of coding arbitrary binary sequences by sequences satisfying

the [2, 7]-constraint, we again consider a representation obtained by changing the

alphabet to a = 00, b = 01 and c = 10, as shown in Figure 1.28.

0 1 2 3 4 5 6 7

a a a a a a

c c c c c c

b b b b b b

Fig. 1.28.: The squared [2, 7]-constraint.

The result of the development that follows will be the sequential transducer

for encoding known as the Franaszek encoder depicted in Figure 1.31. It must

be checked that this encoder satisfies the [2, 7]-constraint and that, for practical

applications, it admits a sliding block decoder. A direct verification is possible but

complicated.

The encoder design process we now describe is the one historically followed by

Franaszek [21]. It starts with the graph in Figure 1.28 which represents the [2, 7]-

constraint of Figure 1.27 in terms of the alphabet a, b, c. More precisely, Figure 1.28

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 41

represents the set of [2, 7]-constrained sequences obtained by writing each such

sequence as a string of non-overlapping 2-bit pairs.

Next, choose the two vertices 2 and 3 (called the poles or the principal states).

The paths of first return from 2 or 3 to 2 or 3 are represented in Figure 1.29.

Observe that the set C of labels of first return paths is independent of the starting

2 3

ba, aba, cba, acba

ca, aca, aaca

ca, aca, aaca

ba, aba, cba, acba

Fig. 1.29.: The poles.

vertex. Thus all concatenations of words in C are produced by paths in the graph

of Figure 1.29 and thus admissible for the [2, 7]-constraint. The set C is a prefix

code called the Franaszek code, shown in the first column of Figure 1.30. It happens {F
ra
na
sz
ek

co
de
}

C P

ba 10

ca 11

aba 000

cba 010

aca 011

acba 0010

aaca 0011

Fig. 1.30.: The Franaszek code.

that the set C has the same length distribution as the maximal binary prefix code

P of words appearing in the right column.

The pair of prefix codes of Figure 1.30 is used as follows to encode a binary word

at rate 1 : 2. A source message is parsed as a sequence of codewords in P , possibly

followed by a prefix of such a word. For example, the word

011011100101110111100010011 · · ·
is parsed as

011 | 011 | 10 | 010 | 11 | 10 | 11 | 11 | 000 | 10 | 011 · · · .
Next, this is encoded row-by-row using the correspondence between P and C as

follows

aca | aca | ba | cba | ca | ba | ca | ca | aba | ba | aca

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

42 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

This stands for the channel encoding

001000|001000|0100|100100|1000|0100|1000|1000|000100|0100|001000 .

Figure 1.31 represents an implementation of this transformation, up to some shift.

The encoder is a deterministic transducer which outputs one symbol for each input

symbol. State 1 is the initial state, and all states are terminal states. All inputs of

at least 2 symbols produce an output sequence that begins with ba, followed by the

sequence generated by the encoder described above, up to the last two symbols. For

example, for the input word 011011, the corresponding path in the deterministic

encoder is

1
0|b→ 2

1|a→ 5
1|a→ 6

0|c→ 2
1|a→ 5

1|a→ 6 .

So, the output is ba|aca|a, which, following the initial ba, corresponds to one code-

word aca followed by the beginning of a second occurrence of aca.

3 2

1

6

4 5

0|a

1|b

1|a

1|c

0|b

0|c

0|a

0|a

1|a

1|a

0|c

1|a

Fig. 1.31.: The Franaszek encoder.

This encoder can be obtained as follows from the pair (C, P) of prefix codes.

Consider first the transducer of Figure 1.32. This is obtained by composing a

decoder for P with an encoder for C, and merging common prefixes. We omit the

details.

We build a deterministic transducer by determinization of the transducer of

Figure 1.32, by the algorithm presented in Section 1.8. In this case, we are able to

maintain a constant rate of output by keeping always in the pairs of the sequential

transducer an output word of length 2 (this represents the two symbols to be output

later). Thus the output is delayed with two symbols.

The states of the result are given in Table 1.3. In this table, and also in Fig-

ure 1.31, we only report the states which have an output delay of exactly two

symbols. They correspond to the strongly connected part of the encoder. In partic-

ular, the initial state (ε, 1) is not represented. Figure 1.33 gives the states reached

by the first two symbols.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 43

4

6

1

2

3

5

1|b

0|c

0|b

0|a 1|b

0|c

0|a

1|c

1|c

1|c

1|a

0|a

Fig. 1.32.: The construction of the Franaszek encoder.

ε, 1

4

5

1

6

0|−
0|−

1|−

1|−
0|−

1|−

Fig. 1.33.: Initial part of the Franaszek encoder.

Table 1.3.: The states of the Franaszek encoder.

state 1 2 3 4 5 6

ba, 1 ac, 4 ab, 6 ac, 4 cb, 6 ca, 1
content aa, 2 ac, 3 ab, 6 ac, 3

aa, 5

output ba ca

Figure 1.34 represents the decoder, which can be realized with a sliding window

of size 4. Indeed, the diagrams of Figure 1.34 show that for any content xyzt of the

window, we can define the output r corresponding to the third symbol. If y = b,

then r = 0. Indeed, an inspection of Table 1.30 shows that any b is followed by an

a which is coded by a 0. In the same way, if y = c, then r = 1. If y = a, then four

cases arise. If z = a, then r = 0 (in particular any initial a of C is coded 0). If

z = c, then r = 0 or 1 according to t = b or a. Finally, if z = b, then r = 0 if z = b

and r = 1 otherwise (the x in the last frame stands for b or c).

There are many approaches to the design of encoder-decoder pairs for input

constraints. The approach illustrated above was extended to a technique called the

method of poles, developed by Béal [6; 7; 8].

Another approach is the state-splitting algorithm, also known as the ACH algo- {s
ta
te
-s
pl
it
ti
ng

al
go
ri
th
m}

{a
lg
or
it
hm
!s
ta
te
-s
pl
it
ti
ng
}

rithm [1], which transforms a finite-state graph representation of a constraint into {A
CH

al
go
ri
th
m}

{a
lg
or
it
hm
!A
CH
}

a sliding-block decodable finite-state encoder. The rough idea is as follows.

One starts with a finite-state graph representation of the constraint and then

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

44 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

b

0

c

1

a a

0

a c a

1

a c b

0

a a b

0

x a b

1

Fig. 1.34.: The associated sliding block decoder.

chooses a feasible encoding rate p : q; here, feasibility means that p/q does not ex-

ceed the capacity of the constraint, which is a measure of the “size” or “complexity”

of the constraint and generalizes the notion of capacity of a variable-length code

given in Section 1.5. The capacity can be computed explicitly, and for a feasible

code rate, one can compute a vector, called an approximate eigenvector, which ef-

fectively assigns non-negative integer weights to the states of the graph [45]. Next,

one replaces the original representation with a new one whose symbols are q-bit

strings, just as in the transformation of Figure 1.27 to Figure 1.28 above. Then by

an iterative sequence of state splittings, guided by an approximate eigenvector, one

is guaranteed to arrive at a final representation upon which a sequential finite-state

encoder can be built. The splittings are graph transformations in which states are

split according to partitions of outgoing edges. In the final representation, each

state has at least 2p outgoing edges, enabling an assignment of p-bit input labels

and therefore a sequential finite-state encoder at rate p : q. It is also guaranteed,

under mild conditions, that such an encoder is sliding-block decodable.

The state splitting algorithm has been modified in many ways. For instance,

one could consider finite-state variable-length representations of input constraints

or transform fixed-length representations into more compact variable-length repre-

sentations. There is a variable-length version of the state splitting algorithm, which

again iteratively splits states. In this setting, instead of aiming for a graph with

sufficient out-degree at each state, the sequence of state splittings results in a final

representation in which the lengths of outgoing edges at each state satisfy a reverse

Kraft inequality. This technique was introduced in [2] and further developed in [33].

In the latter reference the method was illustrated with two examples, one of which

is an alternative derivation of the Franaszek code described above.

The theory and practice of coding for constrained channels is very well

developed. For more information, the reader may consult Béal [7], Im-

mink [39], Lind-Marcus [45] and Marcus-Siegel-Roth [47] (or the latest version at

http://www.math.ubc.ca/˜marcus/Handbook/index.html).

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 45

Exercises

Exercise 1.9.1. A code C over the alphabet A is a circular code if, for any words{c
ir
cu
la
r
co
de
}

{c
od
e!
ci
rc
ul
ar
}

u, v on the alphabet A, the cyclically shifted words uv and vu can be in C∗ only

when u and v are. Let C be a circular code and let x be a word of C. Show that a

set D of words of the form xiy, for i ≥ 0 and y in C \ x, is a circular code.

Note: the terminology circular code stems from the fact that the unique deci-

pherability property holds for words written on a circle (see [10]).

Exercise 1.9.2. Use Exercise 1.9.1 to show that the set C = {ba, ca, aba, cba, aca,

acba, aaca} appearing in the first column of Figure 1.30 is a circular code.

1.10. Codes for constrained sources

In the same way as there exist codes for constrained channels, there exist codes

for constrained sources. As for constraints on channels, the constraints on sources

can be expressed by means of finite automata. This leads us to use encodings with

memory.

We limit the presentation to two examples, the first drawn from linguistics, and

the second reflecting a more general point of view.

The first example gives an interesting encoding from a constrained source to

an unconstrained channel [31]. It starts with a simple substitution which is not

uniquely decipherable, but it appears to be uniquely decipherable by taking into

account the constraints on the source. The example is taken from the field of natural

language processing where codings and automata are heavily used (see for instance
[56]).

Example 1.22. We start with a source alphabet composed of a sample set of six

syllable types in the Turkish language. The concatenation of syllables is subject to

constraints that will be explained below. The types of syllables are denoted by A

to F .

Symbol Structure Example

A 0 açik (open)

B 10 baba (father)

C 01 ekmek (bread)

D 101 altin (gold)

E 011 erk (power)

F 1011 türk (turkish)

The structure of a syllable is the binary sequence obtained by coding 0 for a vowel

and 1 for a consonant. We consider the structure of a syllable as its encoding. The

decoding is then to recover the sequence of syllables from the encoding. Thus the

source alphabet is {A, . . . , F}, the channel alphabet is {0, 1}, and the encoding is

A 7→ 0, . . . , F 7→ 1011.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

46 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

There are linguistic constraints on the possible concatenations of syllable types

which come from the fact that a syllable ending with a consonant cannot be fol-

lowed by one which begins with a vowel. These constraints are summarized by the

following matrix, where a 0 in entry x, y means that x cannot be followed by y.

M =

A B C D E F

A 1 1 1 1 1 1

B 1 1 1 1 1 1

C 0 1 0 1 0 1

D 0 1 0 1 0 1

E 0 1 0 1 0 1

F 0 1 0 1 0 1

.

The encoding can be realized in a straightforward manner with a 2-state trans-

ducer given in Figure 1.35 which reflects the legal concatenations of source symbols.

0 1
A|0
B|10

D|101

F |1011

C|01, D|101

E|011, F |1011

B|10

Fig. 1.35.: A 2-state encoder reflecting the legal concatenations.

The decoder is built by applying the methods of Section 1.8 to this transducer.

We start by exchanging input and output labels in Figure 1.35. In a second step,

we introduce additional states in order to get literal output. An edge is broken into

smaller edges. For instance, the edge 0
011|E→ 1 is replaced by the path 0

0|−→ E1
1|−→

E2
1|E→ 1. Each state xi stands for the prefix of length i of the encoding of x. The

state xi can be used for several edges, because the arrival state depends only on x.

The transducer is given in Figure 1.36.

It happens that the resulting transducer can be transformed into a sequential

one. The result is shown in Figure 1.37. The correspondence is given in Table 1.4.

The value of the output function is given in the node.

The decoder is deterministic in its input and it outputs the decoded sequence

with finite delay (this means that it uses a finite look-ahead on the input). On

termination of a correct input sequence, the last symbol to be produced is indicated

by the corresponding state. This coding is used in [31] to build a syllabification

algorithm which produces for each word a parsing in syllables.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 47

0 D1 D2 1
1|− 0|− 1|D

1|−
C1

0|−

1|−

B1

1|−
0|−

1|−

E1 E2

0|−
1|−

1|E0|−

F1 F2 F3

1|−

0|− 1|−

1|F

0|−

Fig. 1.36.: Literal decoder for phonetization.

Table 1.4.: The states of the transducer for the phonetization.

state 0 1 2 3 4 5 6 7 8

content ε, 0

A, 0
ε, C1

ε, E1

A, B1

C, 1
ε, E2

A, D1

A, F1

C, B1

C, D1

C, F1

E, 1

CB, 0
C, D2

C, F2

ε, B1

ε, D1

ε, F1

B, 0
ε, D2

ε, F2

B, B1

B, D1,
B, F1

D, 1
ε, F3

D, D1,
D, F1

D, B1

F, 1

output A C E CB B D F

This kind of problem appears more generally in the framework of hyphenation

in text processing software (see [16] for example), and also in “text-to-speech”

0

1

5

2

6

3

7

4

8

0|−

1|−

0|A

1|−

0|−

1|E
0|B

1|−

1|−

0|−

1|−

0|CB

1|C0|B

1|F

0|D

Fig. 1.37.: A sequential transducer for the phonetization.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

48 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

synthesis ([17]).{t
ex
t-
to
-s
pe
ec
h
sy
nt
he
si
s}

The next example of codes for constrained sources is from [14]. It illustrates

again how an ambiguous substitution can be converted into a uniquely decipherable

encoding.

The three examples below have decoders which are local (that is realizable by

a sliding block decoder) for the first one, sequential for the second one, and simply

unambiguous for the third one.

Example 1.23. Consider the constrained source on the symbols A, B, C with the

constraint that B cannot follow A. We consider the substitution that maps A,

B and C to 0, 1 and 01 respectively. The mapping is realized by the transducer

on the left of Figure 1.38. It is easily seen that the constraint implies the unique

decipherability property. Actually, a decoder can be computed by using the deter-

minization algorithm. This yields the sequential decoder represented on the right

of Figure 1.38. It is even (1, 0)-local since the last letter determines the state.

i t

B|1, C|01

A|0

C|01

A|0

A

1|B
0|−

1|C

0|A

Fig. 1.38.: An encoder and a local decoder.

We now give a second, slightly more involved example. The source has four

symbols A, B, C, D with the constraints of concatenation given by the matrix

M2 =

A B C D

A 1 0 1 0

B 0 1 0 1

C 1 1 1 1

D 1 1 1 1

.

We consider the encoding assigning 0, 1, 01 and 10 to A, B, C and D respectively.

The decoder is given in Figure 1.39. This transducer is sequential with output

function indicated in the states. However, it is not local in input since there are

two cycles labeled by 01.

The third example uses the same substitution but a different set of constraints

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 49

A B

0|−

1|C
0|A

1|−

0|D
1|B

Fig. 1.39.: A sequential decoder.

given by the matrix

M3 =

A B C D

A 1 0 1 1

B 0 1 1 1

C 0 1 1 1

D 1 0 1 1

The substitution is realized by the transducer shown on the left of Figure 1.40. The

transducer shown on the right is a decoder. It can be checked to be unambiguous.

However, it is not equivalent to a sequential transducer because a sequence 0101 · · ·
has two potential decodings as ADDD · · · and as CCCC · · · .

A, D

B, C

C|01

A|0 D|10

D|10

C|01 B|1

A, D

B, C

0|−
0|A

1|C0|−

1|B
1|−

1|−0|D

Fig. 1.40.: An encoder and an unambiguous decoder.

These examples are variable-length, and in fact variable-rate, codes. In applica-

tions where error propagation may be a problem, one can use fixed-rate block codes
[38] or fixed-rate sliding-block codes [20]. The construction of the latter is dual to

the state splitting method mentioned in the previous section.

The connection between variable-length codes, unambiguous automata and local

constraints has been further developed in [53; 52; 9].

1.11. Bifix codes

Recall that a set of words C is a suffix code if no element of C is a proper suffix of

another one. A set of words is called a bifix code if it is at the same time a prefix {b
if
ix

co
de
}

{c
od
e!
bi
fi
x}

code and a suffix code. Bifix codes are also known as reversible variable-length codes

(RVLC) . The idea to study bifix codes goes back to [59] and [26]. These papers {R
VL
C
co
de
s}

{r
ev
er
si
bl
e
va
ri
ab
le
-l
en
gt
h
co
de
s}

already contain significant results. The first systematic study is in [61], [60]. The

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

50 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

development of codes for video recording has renewed the interest in bifix codes [27;

69; 70].

One example is given by prefix codes which are equal to their reversal. The

reversal of a word w = a1 · · ·an, where a1, . . . , an are symbols, is the word w̃ ={r
ev
er
sa
l}

an · · · a1 obtained be reading w from right to left. The reversal of a set C, denoted

C̃, is the set of reversals of its elements. For example, 01∗0 is a bifix code since it

is prefix and equal to its reversal.

The use of bifix codes for transmission is linked with the possibility of limiting the

consequences of errors occurring in the transmission using a bidirectional decoding

scheme as follows. Assume that we use a binary bifix code to transmit data and

that for the transmission, messages are grouped into blocks of N source symbols,

encoded as N codewords. The block of N codewords is first decoded by using

→
x1 x2 · · · xi−1 xi · · · xN

←

Fig. 1.41.: The transmission of a block of codewords.

an ordinary left-to-right sequential decoding. Suppose that the codewords x1 up

to xi−1 are correctly decoded, but that an error has occurred during transmission

that makes it impossible to identify the next codeword in the rest of the message.

Then a new decoding process is started, this time from right to left. If at most one

error has occurred, then again the codewords from xN down to xi+1 are decoded

correctly. Thus, in a block of N encoded source symbols, at most one codeword will

be read incorrectly.

These codes are used for the compression of moving pictures. Indeed, there are

reversible codes with the same length distribution as the Golomb–Rice codes, as

shown in [68]. The Advanced Video Coding (AVC) standard mentioned previously

recommends the use of these codes instead of the ordinary Golomb–Rice codes to

obtain an error resilient coding (see [55]). The difference from the ordinary codes

is that, in the base, the word 1i0 is replaced by 10i−11 for i ≥ 1. Since the set of

bases forms a bifix code, the set of all codewords is also a bifix code. Figure 1.42

represents the reversible Golomb–Rice codes of orders 0, 1, 2.

There is also a reversible version of the exponential Golomb codes, denoted by

REGk, which are bifix codes with the same length distribution. The code REG0 is

given by

REG0 = {0} ∪ 1{00, 10}∗{0, 1}1 .

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 51

Fig. 1.42.: The reversible Golomb–Rice codes of orders 0, 1, 2.

It is a bifix code because it is equal to its reversal. This comes from the fact that

the set {00, 10}∗{0, 1} is equal to its reversal because it is the set of words of odd

length which have a 0 at each even position, starting at position 1.

The code of order k is

REGk = REG0{0, 1}k .

The codes REGk are represented for k = 0 and 2 on Figure 1.43.

Fig. 1.43.: The reversible exponential Golomb codes of orders 0 and 1.

We now consider the length distribution of bifix codes. In contrast to the case

of codes or of prefix codes, it is not true that any sequence (un)n≥1 of non-negative

integers such that
∑

n≥1 unk−n ≤ 1 is the length distribution of a bifix code on k

letters. For instance, there is no bifix code on the alphabet {a, b} which has the

same distribution as the prefix code {a, ba, bb}. Indeed, such a code must contain a

letter, say a, and then the only possible word of length 2 is bb. On the other hand,

the following result provides a sufficient condition for a length distribution to be

realizable by a bifix code [4].

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

52 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Proposition 1.1. For any sequence (un)n≥1 of non-negative integers such that

∑

n≥1

unk−n ≤ 1

2
(1.17) {D

ou
bl
eK
ra
ft
}

there exists a bifix code on an alphabet of k letters with length distribution (un)n≥1.

Proof. We show by induction on n ≥ 1 that there exists a bifix code Xn of length

distribution (ui)1≤i≤n on an alphabet A of k symbols. It is true for n = 1 since

u1k
−1 ≤ 1/2 and thus u1 < k. Assume that the property is true for n. We have by

Inequality (1.17)

n+1
∑

i=1

uik
−i ≤ 1

2

or equivalently, multiplying both sides by 2kn+1,

2(u1k
n + . . . + unk + un+1) ≤ kn+1

whence

un+1 ≤ 2un+1 ≤ kn+1 − 2(u1k
n + . . . + unk) . (1.18){e

q-
in
te
rm
ed
ia
ir
e}

Since Xn is bifix by the induction hypothesis, we have

Card(XnA∗ ∩An+1) = Card(A∗Xn ∩An+1) = u1k
n + . . . + unk.

Thus, we have

Card((XnA∗ ∪A∗Xn) ∩An+1) ≤ Card(XnA∗ ∩An+1) + Card(A∗Xn ∩An+1)

≤ 2(u1k
n + . . . + unk) .

It follows from Inequality (1.18) that

un+1 ≤ kn+1 − 2(u1k
n + . . . + unk)

≤ Card(An+1)− Card((XnA∗ ∪A∗Xn) ∩An+1)

= Card(An+1 − (XnA∗ ∪A∗Xn)) .

This shows that we can choose a set Y of un+1 words of length n + 1 on the

alphabet A which do not have a prefix or a suffix in Xn. Then Xn+1 = Y ∪Xn is

bifix, which ends the proof. �

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 53

Table 1.5.: Maximal 2-realizable length distributions of length N = 2, 3 and 4.

N 2 3 4

u1 u2 u(1/2) u1 u2 u3 u(1/2) u1 u2 u3 u4 u(1/2)

2 0 1.0000 2 0 0 1.0000 2 0 0 0 1.0000
1 1 0.7500 1 1 1 0.8750 1 1 1 1 0.9375

1 0 2 0.7500 1 0 2 1 0.8125
1 0 1 3 0.8125
1 0 0 4 0.7500

0 4 1.0000 0 4 0 1.0000 0 4 0 0 1.0000
0 3 1 0.8750 0 3 1 0 0.8750

0 3 0 1 0.8125
0 2 2 0.7500 0 2 2 2 0.8750

0 2 1 3 0.8125
0 2 0 4 0.7500

0 1 5 0.8750 0 1 5 1 0.9375
0 1 4 4 1 .0000
0 1 3 5 0.9375
0 1 2 6 0.8750
0 1 1 7 0.8125
0 1 0 9 0.8125

0 0 8 1.0000 0 0 8 0 1.0000
0 0 7 1 0.9375
0 0 6 2 0.8750
0 0 5 4 0.8750
0 0 4 6 0.8750
0 0 3 8 0.8750
0 0 2 10 0.8750
0 0 1 13 0.9375
0 0 0 16 1.0000

The bound 1/2 in the statement of Proposition 1.1 is not the best possible.

It is conjectured in [4] that the statement holds with 3/4 instead of 1/2. Some{c
on
je
ct
ur
e!
Ah
ls
we
de
}

attempts to prove the conjecture have led to improvements over Proposition 1.1.

For example, it is proved in [71] that 1/2 can be replaced by 5/8. Another approach

to the conjecture is presented in [15].

For convenience, we call a sequence (un) of integers k-realizable if there is a bifix

code on k symbols with this length distribution.

We fix N ≥ 1 and we order sequences (un)1≤n≤N of integers by setting (un) ≤
(vn) if and only if un ≤ vn for 1 ≤ n ≤ N . If (un) ≤ (vn) and (vn) is k-realizable

then so is (un). We give in Table 1.5 the values of the maximal 2-realizable sequences

for N ≤ 4, with respect to this order. Set u(z) =
∑

n≥1 unzn. For each value of

N , we list in decreasing lexicographic order the maximal realizable sequence with

the corresponding value of the sum u(1/2) =
∑

un2−n. The distributions with

value 1 correspond to maximal bifix codes. For example, the distribution (0, 1, 4, 4)

highlighted in Table 1.5 corresponds to the maximal bifix code of Figure 1.44.

It can be checked in this table that the minimal value of the sums u(1/2) is 3/4.

Since the distributions listed are maximal for componentwise order, this shows that

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

54 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

for any sequence (un)1≤n≤N with N ≤ 4 such that u(1/2) ≤ 3/4, there exists a

binary bifix code C such that u(z) =
∑

n≥1 unzn is the generating series of lengths

of C.

For a maximal bifix code C which is a regular set, the generating series of the

lengths of the words of C satisfies fC(1/k) = 1, where k is the size of the alphabet.

The average length of C is (1/k)f ′
C(1/k). Indeed, setting fC(z) =

∑

n≥1 unzn, one

gets f ′
C(z) =

∑

n≥1 nunzn−1 and thus (1/k)f ′
C(1/k) =

∑

n≥1 nunk−n. It is known

that the average length of a regular maximal bifix code is an integer, called the

degree of the code [26; 61].

Fig. 1.44.: A maximal bifix code of degree 3.

For example, the maximal bifix code C represented in Figure 1.44 has degree 3.

One has

fC(z) = z2 + 4z3 + 4z4 ,

f ′
C(z) = 2z + 12z2 + 16z3 ,

and thus fC(1/2) = 1 and (1/2)f ′
C(1/2) = 3.

Table 1.6 lists the length distributions of finite maximal bifix codes of degree d ≤
4 over {a, b}. For each degree, the last column contains the number of bifix codes

with this distribution, with a total number of 73 of degree 4. Note that for the

highlighted distribution (0, 1, 4, 4), there are two distinct bifix codes. One is the

code of Figure 1.44, and the other is obtained by exchanging 0 and 1.

We have seen (Equation (1.16)) that the Golomb–Rice code of order k has

average length k + 2 for the uniform Bernoulli distribution on the alphabet. The

same holds of course for the reversible one. The fact that the average length is

an integer is a necessary condition for the existence of a reversible version of any

regular prefix code, as we have already mentioned before. The average length of

the Golomb code G3 is easily seen to be 7/2 for the uniform Bernoulli distribution.

Since this is not an integer, there is no regular bifix code with the same length

distribution (0, 1, 3, 3, . . .). Actually, one may verify that there is not even a binary

bifix code with length distribution (0, 1, 3, 3, 2).

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 55

Table 1.6.: The length distributions of binary finite maximal bifix codes of degree

at most 4.

d 1 2 3 4

2 1 0 4 1 0 0 8 1 0 0 0 16 1
0 0 1 12 4 6
0 0 2 8 8 6
0 0 2 9 4 4 8
0 0 3 5 8 4 6

0 0 3 6 4 8 4
0 0 3 6 5 4 4 4
0 0 4 3 5 8 4 4

0 1 4 4 2 0 1 0 5 12 4 2
0 1 0 6 8 8 2
0 1 0 6 9 4 4 4
0 1 0 7 5 8 4 4
0 1 0 7 6 5 4 4 2
0 1 0 8 2 9 4 4 2
0 1 1 3 9 8 4 4
0 1 1 4 6 8 8 4
0 1 1 4 6 9 4 4 4
0 1 1 5 3 9 8 4 4
0 1 2 2 4 9 12 4 2

1 1 3 73

Exercises

Exercise 1.11.1. The aim of this exercise is to describe a method, due to Girod
[28] (see also [58]), which allows a decoding in both directions for any finite binary

prefix code. Let C be a finite binary prefix code and let L be the maximal length

of the words of C. Consider a concatenation c1c2 · · · cn of codewords. Let

w = c1c2 · · · cn0L ⊕ 0Lc̃1c̃2 · · · c̃n (1.19) {e
qG
ir
od
}

where c̃ is the reverse of the word c and where ⊕ denotes addition mod 2. Show

that w can be decoded in both directions.

1.12. Synchronizing words

A word v is said to be synchronizing for a prefix code C if for any words u, w, one

has uvw in C∗ only if uv and w are in C∗. Thus the decoding of a message where

v appears has to break at the end of v. A prefix code is said to be synchronized {p
re
fi
x
co
de
!s
yn
ch
ro
ni
ze
d}

{s
yn
ch
ro
ni
ze
d!
pr
ef
ix

co
de
}

if there exists a synchronizing word. An occurrence of a synchronizing word limits

the propagation of errors that have occurred during the transmission, as shown in

the following example.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

56 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Example 1.24. Consider the prefix code C = {01, 10, 110, 111}. The word 110 is

not synchronizing. Indeed, it appears in a nontrivial way in the parsing of 111|01.

On the contrary v = 0110 is synchronizing. Indeed, the only possible parsings of v

in some context are · · · 0|110| · · · and · · · |01|10| · · · . In both cases, the parsing has

a cut point at the end of v. To see how an occurrence of v avoids error propagation,

consider the message in the first row below and the corrupted version below it

produced when an error has changed the third bit of the message from 0 to 1.

0 1|0 1|1 0|1 1 1|0 1|1 0|0 1|0 1

0 1|1 1 1|0 1|1 1 0|1 1 0|0 1|0 1

After the occurrence of 0110, the parsings on both rows become identical again.

Thus the occurrence of the word v has stopped the propagation of the error. Note

that it can also happen that the resulting message does not have a decoding any-

more. This happens for example if the second bit of the message is changed from 1

to 0. In this case, the error is detected and some appropriate action may be taken.

In the previous case, the error is not detectable and may propagate for an arbitrary

number of bits.

Example 1.25. The word 010 is synchronizing for the prefix code C used in the

Franaszek code (see Figure 1.30).

A synchronizing word can also be defined for a deterministic automaton. Let

A be a deterministic automaton. A word w is said to be synchronizing for A if{s
yn
ch
ro
ni
zi
ng

wo
rd
}

all paths labeled w end at the same state. Thus the state reached after reading a

synchronizing word is independent of the starting state. A deterministic automaton

is said to be synchronized if there exists a synchronizing word for the automaton.{a
ut
om
at
on
!s
yn
ch
ro
ni
ze
d}

{s
yn
ch
ro
ni
ze
d!
au
to
ma
to
n}

Let i be a state of a strongly connected deterministic automaton A. Let C be

the prefix code of first returns from i to i. Then C has a synchronizing word if and

only if A is synchronized. First, let v be a synchronizing word for C. Then any

path labeled v ends at state i. Indeed, if p
v→ q let u, w be such that i

u→ p and

q
w→ i. Then uvw is in C∗, which implies that uv is in C∗. This implies that q = i

since the automaton is deterministic. Thus v is synchronizing for the automaton A.

Conversely, if v is synchronizing for A, then since A is strongly connected, there is

a word w such that all paths labeled vw end at state i. Then vw is a synchronizing

word for C.

Example 1.26. Let A be the automaton represented on Figure 1.45. Each word

w defines an action on the set of states which is the partial function which maps

a state p to the state reached from p by the path labeled by the input word w.

The set of first returns to state 1 is the maximal prefix code C = {00, 01, 110, 111}
of Example 1.24. In Table 1.7 are listed the actions of words of length at most 4.

The words are ordered by their length, and within words of the same length, by

lexicographic order. Each column is reported only the first time it occurs. We stop

at the first synchronizing word which is 0110.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 57

1 2

3

1

10
1

0

Fig. 1.45.: A synchronized deterministic automaton.

Table 1.7.: The action of words on the states of the automaton A.

0 1 00 01 10 11 001 011 100 101 110 111 0011 0110

1 3 2 1 1 - 3 2 2 - - 1 1 3 1
2 - 3 - - 1 1 - - 3 2 3 2 - -
3 1 1 3 2 3 2 1 3 1 1 - 3 2 1

The road coloring theorem. There are prefix codes which are not synchronized. For

example, if the lengths of the codewords of a nonempty prefix code are all multiples

of some integer p ≥ 2, then the code is not synchronized. The same observation

holds for a strongly connected automaton. If the period of the underlying graph

(i.e. the greatest common divisor of the lengths of its cycles) is not 1, then the

automaton is not synchronized. The road coloring theorem asserts the following.{r
oa
d
co
lo
ri
ng

th
eo
re
m}

Theorem 1.1. Let G be a strongly connected graph with period 1 such that each

vertex has two outgoing edges. Then there exists a binary labeling of the edges of G

which turns it into a synchronized deterministic automaton.

The road coloring theorem was proposed as a conjecture by Adler, Goodwin and

Weiss [3]. It was proved by Trahtman [65].

The name of this theorem comes from the following interpretation of a synchro-

nizing word: if one assigns a color to each letter of the alphabet, the labeling of the

edges of an automaton can be viewed as a coloring of the edges of the underlying

graph. One may further identify the vertices of the graph with cities and the edges

with roads connecting these cities. A synchronizing word then corresponds to a

sequence of colors which leads to a fixed city regardless of the starting point.

Example 1.27. Consider the automata represented on Figure 1.46. These au-

tomata have the same underlying graph and differ only by the labeling. The au-

tomaton on the left is not synchronized. Indeed, the action of the letters on the

subsets {1, 3} and {2, 4} exchanges these sets as shown on Figure 1.47.

On the other hand, the automaton on the right is synchronized. Indeed, 101 is a

synchronizing word.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

58 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

1 2

34

1

01

1

01
0

0

1 2

34

0

01

1

01
1

0

Fig. 1.46.: Two different labelings: a non-synchronized and a synchronized automa-

ton.

1, 3 2, 41

0

1

0

Fig. 1.47.: The action on the sets {1, 3} and {2, 4}.

It is important to note that for equal letter costs, an optimal prefix code can

always be chosen to be synchronized (provided the greatest common divisor of the

lengths is 1). Indeed, the relabeling of an automaton accepting such a code does

not change its length distribution. The Franaszek code of Section 1.9 is actually

chosen in such a way that the code on the right of Figure 1.30 is synchronized (010

is a synchronizing word).

For unequal letter costs, it has been proved that the result holds for finite max-

imal codes. Indeed, it is proved in [51] (see also [11]) that any finite maximal prefix

code is commutatively equivalent to a synchronized prefix code.

1.13. Directions for future research

The field of variable-length codes and automata has a number of challenging math-

ematical open problems. They are often formulated as conjectures, some of which

have been open for many years. Their solution would increase our understanding

of these objects and give rise to new algorithms. Let us mention the following ones

of particular importance.

The structure of finite maximal codes. It is not known whether it is decidable

whether a finite code is or is not contained in a finite maximal code. In contrast, it

is known that any finite code is contained in a regular maximal code (see e.g. [11]).

Another open question is the status of the conjecture concerning the commuta-

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 59

tive equivalence of any finite maximal code to a prefix code. This conjecture would

itself be solved if one could prove the factorization conjecture asserting that for any

finite maximal code on the alphabet A, there exist two finite sets of words P, Q on

the alphabet A such that any word on the alphabet A has a unique expression of

the form pc1c2 · · · cnq with p ∈ P , ci ∈ C and q ∈ Q.

Optimal prefix codes. There is still some work to be done to derive efficient methods

for building an optimal prefix code corresponding to a source with an infinite number

of elements.

Synchronized automata. It is conjectured that for any synchronized deterministic

automaton with n states, there exists a synchronizing word of length at most (n−
1)2. This conjecture is known as Černy’s conjecture. The length of the shortest

synchronizing word has practical significance since an occurrence of a synchronizing

word has an error-correcting effect. The best known upper bound is cubic. The

conjecture is known to be true in several particular cases.

Constrained channels. For a given constrained channel and allowable code rate, the

problem of designing codes that achieve the minimum possible number of encoder

states or the minimum sliding block decoder window size remains open.

Bifix codes. No method similar to the Huffman algorithm is known for building an

optimal bifix code given a source with weights. It is perhaps related to the fact that

the length distributions of bifix codes are not well understood. In particular, the

question whether any sequence (un)n≥1 such that
∑

n≥1 unk−n ≤ 3/4 is the length

distribution of a bifix code over a k-letter alphabet is still open.

1.14. Conclusion

We have described basic properties of variable-length codes, and some of their uses

in the design of optimal codes under various constraints. We have shown some

of the relations between codes, finite state automata and finite transducers, both

devices for encoding and decoding.

Optimal codes. Among variable-length codes, the most frequently used are prefix

codes. These codes are instantaneously decipherable codes. The Elias, Golomb and

Golomb–Rice codes are examples of prefix codes that are infinite, and that encode

non-negative integers by an algorithm that is easy to implement. Other prefix

codes that encode integers have been designed. For a systematic description, see
[58]. Optimal prefix codes for various constraints have been given in this chapter.

It is interesting to note that the general problem is still open, and the research is

still going on (see [29] for a recent contribution).

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

60 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

General codes. Prefix codes are special codes. Other families of codes have been

studied, and a general theory of variable-length codes addresses the properties of

these codes. In this context, it is natural to associate to any code C an automa-

ton that recognizes the set C∗ of all sequences of codewords. Many properties or

parameters of codes are reflected by features of these automata.

It appears that properties of codes are combinatorial in nature, but they can

also be described in an algebraic way based upon the structural properties of the

associated automaton or the algebraic properties of the transition monoid of the

automaton, also called the syntactic monoid. See [11].

Constrained channels. We have also briefly investigated constraints on the channel.

The theory of sliding block codes is much broader in scope than we could convey

here. Research is motivated by applications, as we have illustrated by the example

of the Franaszek code. For more information along these lines, see [45] and [7].

1.15. Solutions to exercises

Solution to 1.6.1. One has li ≥ log 1/pi and thus

∑

i

2−ℓi ≤
∑

i

2
− log 1

pi =
∑

i

2log pi =
∑

i

pi = 1

Let C be a prefix code with length distribution ℓi. Since ℓi ≤ log 1/pi+1 its average

length W satisfies

W =
∑

piℓi ≤
∑

pi(log
1

pi

+ 1) = pi log
1

pi

+ 1 = H + 1.

Solution to 1.6.2. Each word of P followed by a letter is either in P or in C,

but not in both. Moreover, any nonempty word in C or P is obtained in this way.

This shows that PA ∪ {ǫ} = P ∪ C. Counting the elements on both sides gives

Card(P)Card(A) + 1 = Card(P) + Card(C).

Solution to 1.6.3. Let P be the set of words on the alphabet A which do not have

s as a factor. Then P is also the set of proper prefixes of the words of the maximal

prefix code X . Thus, we have P{0, 1} ∪ {ǫ} = X ∪ P , whence fP (z)(1 − 2z) =

1− fX(z). On the other hand, we have Ps = XQ and thus zpfP (z) = fX(z)fQ(z).

Combining these relations and solving in fX gives the desired solution.

Solution to 1.6.4. One has Q = {ǫ, 01} and thus fQ(z) = 1 + z2.

Solution to 1.6.5. Since zp + 2zfX(z) = fX(z) + fU (z), the result follows from

(1.12). Prefix synchronized codes were introduced by Gilbert [24], who conjectured

that for any n ≥ 1, the maximal cardinality is obtained for an unbordered word such{u
nb
or
de
re
d
wo
rd
}

{w
or
d!
un
bo
rd
er
ed
}

as 11 . . .10 (a word is called unbordered if no nonempty prefix is also a suffix). This

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 61

conjecture was solved positively by Guibas and Odlyzko [32] who also showed that

the generalization to alphabets with k symbols is true for k ≤ 4 but false for k ≥ 5.

Solution to 1.6.6. Consider the cost on B defined by cost(b) = − logπ(b). Then

cost(c) = − logπ(c) for each codeword and thus a code with minimal cost (with

equal weights) will have maximal average length with respect to π.

Solution to 1.7.1. One has, using the fact that
∑

n≥0 npnq = p/q,

H = −
∑

n≥0

pnq log pnq = −
∑

n≥0

pnq log pn −
∑

n≥0

pnq log q

= −
∑

n≥0

npnq log p− log q = −p/q log p− log q

whence the result. If p2k

= 1/2 then p = 2−2−k

. For x ≥ 0, we have 2−x ≥
1− x ln 2 ≥ 1− x. Thus

q = 1− p = 1− 2−2−k ≤ 2−k.

Taking the logarithm of both sides gives log 1
q
≥ k. On the other hand, since

log x ≥ x−1 for 1 ≤ x ≤ 2, we have p/q log(1/p) ≥ 1. Combining these inequalities,

we obtain H ≥ k + 1, whence H + 1 ≥ k + 2 = λGRk
.

Solution to 1.7.2. We use an induction on m. The property clearly holds for

m = 3. Let m ≥ 4 and set w0 = wm−1 + wm. The sequence w0 ≥ w1 ≥ . . . ≥ wm−2

is quasi-uniform since wm−3 + wm−2 ≥ wm−1 + wm. By the induction hypothesis,

an optimal binary tree for the sequence w0 ≥ w1 ≥ . . . ≥ wm−2 has leaves of heights

k and possibly k + 1 for some k ≥ 1. The leaf corresponding to w0 has to be at

height k since it has maximal weight. We replace it by two leaves of level k+1 with

weights wm−1 and wm. The result is clearly an optimal binary tree with leaves at

height k and k + 1. This argument appears in [22].

Solution to 1.8.1. Suppose that c1c2 · · · cn = c′1c
′
2 · · · c′m. We may suppose that

the length of the word c2 · · · cn is larger than d, padding both sides on the right

by an appropriate number of words c from C. Then, the condition implies that

c1 = c2, and so on.

Solution to 1.8.2. The set C is the code of Example 1.4. It is not weakly prefix

since for any n, (10)(00)n is a prefix of (100)(00)n.

The code C′ is weakly prefix. Indeed, the decoding of a word beginning with

001 · · · has to start with 001.

Solution to 1.8.3. Suppose first that C has a sequential decoder. Let d be the

maximal length of the values of the output function. Then C is weakly prefix with

delay dL, where L is the maximal length of the codewords.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

62 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Conversely, if C is a weakly prefix code, the determinization algorithm gives a

sequential decoder.

Solution to 1.9.1. First, observe that D, viewed as a code over the alphabet C,

is a prefix code. Thus D is a code. Assume now that u, v are such that uv and

vu are in D∗. Then, since C is circular, u and v are in C∗. Set u = x1 · · ·xn

and v = xn+1 · · ·xn+m. Since uv is in D∗, we have xn+m 6= x and thus v is in D∗.

Similarly, since vu is in D∗, we have xn 6= x and thus u is in D∗. Thus D is circular.

Solution to 1.9.2. We use repeatedly Exercise 1.9.1 to form a sequence C0, C1, . . .

of circular codes. To form Ci+1, we choose one element xi in Ci and select words of

the form xk
i y with y 6= xi. We start with C0 = {a, b, c} which is obviously circular,

and we choose x0 = c. Then C1 = {a, b, ca, cb} is a circular code. Choosing

next x1 = cb, we build C2 = {a, b, ca, cba}. Then, we choose x2 = b to obtain

C3 = {a, ba, ca, cba}. A final choice of x3 = a shows that C is of the required form.

Note: this construction is used in a more general setting in the study of circular

codes ([10]).

Solution to 1.11.1. The definition of w being symmetrical, it is enough to show

that w can be decoded from left to right. By construction, c1 is a prefix of w and

the first codeword can therefore be decoded. But this also identifies the prefix of

length L + |c1| of the second term of the right side of (1.19). Adding this prefix to

the corresponding prefix of w gives a word beginning with c1c2 and thus identifies

c2, and so on.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 63

1.16. Questions & answers

Question 1.1. Compute the entropy of the source consisting of the five most fre-

quent words in English with the normalized weights given in Table 1.8. Compare

the result with the average length of the prefix code of Example 1.1.

Table 1.8.: Normalized weights of the five most frequent English words.

A AND OF THE TO

0.116 0.174 0.223 0.356 0.131

Answer. One obtains H = 2.197. The average length is λ = 2.29. Thus the

average length is slightly larger than the entropy.

Question 1.2. What is the result of the Huffman algorithm applied to the five most

frequent words in English with the frequencies given in Question 1.1? What is the

average length?

Answer. The result is represented in Figure 1.48. The average length in this case

THE AND OF

A TO

Fig. 1.48.: The result of Huffman’s algorithm.

is λ = 2.247 (which is smaller than for the code of Example 1.1).

Question 1.3. What is the result of the Garsia-Wachs algorithm applied to the

coding of the five most frequent words in English with the distribution given in

Question 1.1?

Answer. The result of the combination step is the tree of Figure 1.49. The recom-

THE OF TO

A AND

Fig. 1.49.: The result of Garsia-Wachs algorithm.

bination step gives the tree of Example 1.1.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

64 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

ε

0

1

10

11

110

0|− 0|a

1|−

0|b

0|−
0|c

1|−

1|d

1|−
0|e

Fig. 1.50.: An unambiguous decoder.

Question 1.4. Consider the source having six symbols of costs 3, 4, . . . , 8 respec-

tively. Show that the capacity C of this source satisfies C > 1/2.

Answer. One has C = log 1
ρ

where ρ is the positive root of f(z) = 1 with f(z) =

z3 + z4 + z5 + z6 + z7 + z8. Since f(z) = z2(z + z2)(1+ z2 + z4), we have f(
√

2/2) >

0.5× 1.2× 1.75 > 1. This shows that ρ <
√

2/2 and thus is C > 1/2.

Question 1.5. What is the value of m corresponding to (1.14) for the geometric

distribution such that p = 0.95? What values of p correspond to m = 8?

Answer. Since − log(1+p)
log p

= 13.35, we obtain m = 14. For m = 8, we have 9.11 <

p < 9.22.

Question 1.6. Write the encoding of the first 10 integers for the Golomb code G4.

Answer. The following table is obtained:

n codeword

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

8 1000

9 1001

Question 1.7. Is the encoding of a, b, c, d, e by 00, 10, 100, 11, 110 uniquely deci-

pherable? Compute a decoder for this encoding.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 65

ε

0

00

0|a

0|−

0|−

1|b
Fig. 1.51.: An unambiguous decoder.

Answer. There are only two possibilities to obtain two factorizations starting at

the same point. Both alternate indefinitely and never come to coincide. Thus, the

code is uniquely decipherable.

1
2101020

1020
1 1

2111020
1020

1

The method described in Section 1.8 gives the unambiguous transducer of Fig-

ure 1.50.

Question 1.8. Design a sequential transducer decoding the weakly prefix code C =

{0, 001}.

Table 1.9.

name output
1 (ǫ, e) ǫ
2 (a, e), (ǫ, 0) a
3 (aa, e), (ǫ, 00) aa

Answer. The general method gives the unambiguous transducer of Figure 1.51

with a = 0 and b = 001. The procedure described in Section 1.8 applied to the

transducer of Figure 1.51 gives the sequential transducer of Figure 1.52. We obtain

three states given in Table 1.16 with the values of the output function in the last

column.

1 2 3

0|a

0|− 0|−

1|b
Fig. 1.52.: A sequential transducer.

Question 1.9. What is the labeled graph corresponding to the [1, 7]-constraint?

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

66 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0

1 1 1 1 1 1 1

Fig. 1.53.: The [1, 7] constraint.

Fig. 1.54.: The reversals of the codes RGRk, for k = 0, 1, 2.

Answer. The graph is the same as for the [2, 7]-constraint with one more arrow to

allow the block 101. See Figure 1.53.

Question 1.10. What is the reversal of the reversible Golomb–Rice code of order 1?

Answer. The expression of the reversal of RGRk is R̃GRk = RGR0{0, 1}k since

RGR0 is its own reversal. The corresponding trees are represented in Figure 1.54.

1.17. Keywords

The following list of keywords is a kind of dictionary of terms used in this chapter

with an explanation of each entry.

finite automaton A finite set of states, together with two distinguished subsets

called the sets of initial and terminal states, and a set of edges which are triples

consisting of a pair of states and a symbol in some (finite) alphabet A.

unambiguous automaton A finite automaton such for every pair of states and

every word over the alphabet, there is at most one path (i.e., sequence of edges)

from the first state of the pair to the second that is labeled with the word.

deterministic automaton A finite automaton with a unique initial state such

that, for each state and each symbol in an alphabet, there is at most one edge

starting in that state and labeled with that symbol.

determinization algorithm An algorithm that transforms any finite automaton

into an equivalent deterministic finite automaton.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 67

regular set A set of words generated by paths in a finite automaton, starting at

an initial state and ending in a terminal state.

transducer A finite state automaton with output realizing a relation between

words on an input alphabet A and words on an output alphabet B. It is similar

to an automaton, but edges are quadruples consisting of a pair of states, a word

over A, and a word over B. The main purpose for transducers is decoding. In

this case, A is the channel alphabet and B is the source alphabet.

literal transducer A transducer such that each input label is a single letter.

unambiguous transducer A literal transducer whose associated input automa-

ton is unambiguous.

deterministic transducer A literal transducer whose associated input automa-

ton is deterministic.

sequential transducer A deterministic transducer and an output function. This

function maps the terminal states of the transducer into words on the output

alphabet. The function realized by a sequential transducer is obtained by

appending, to the value of the deterministic transducer, the image of the output

function on the arrival state.

alphabetic coding An order preserving encoding. The source and the channel

alphabets are ordered, and the codewords are ordered lexicographically.

optimal source coding An encoding which minimizes the weighted cost. The

weights are on the source alphabet and the costs on the channel alphabet.

code A set of nonempty words over an alphabet A such that every concatenation

of codewords is uniquely decipherable.

prefix (suffix) code A set of nonempty words over an alphabet A such that no

word in the set is a proper prefix (suffix) of another one.

reversible code A code which is prefix and which is also prefix when the words

are read from right to left. Such a code is also called bifix.

maximal code A code (the image of an encoding) that is not strictly contained

in another code.

constrained channel A communication channel which imposes input constraints

on the channel symbol sequences that can be transmitted.

constrained source A source that imposes constraints on the sequences of source

alphabet symbols that it generates.

symbolic dynamics The study of symbolic representations of dynamical systems

and code mappings between such representations.

sliding block decoder A decoder that operates on strings of channel symbols

with a window of fixed size. The decoder uses m symbols before the current

one and a symbols after it (m is for memory and a for anticipation). According

to the value of the symbols between time n−m and time n + a, the value of

the n-th source symbol is determined.

state splitting algorithm An algorithm that transforms a finite-state graph rep-

resentation of a constraint into a sliding-block decodable finite-state encoder.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

68 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

commutative equivalence A relation between two codes in which there is a one-

to-one correspondence between codewords such that corresponding pairs of

words have the same number of occurrences of each alphabet symbol (that is,

they are anagrams).

channel capacity The maximum amount of information that can be transmitted

over the channel per unit cost. In many applications, the cost of a symbol

corresponds to the number of channel uses or the time required to transmit

it. The capacity is then a measure of the amount of information that can be

transmitted over the channel per channel use.

binary source entropy A measure of the average number of bits per symbol re-

quired to represent a source with weighted source symbols.

generating series The power series whose coefficients are the number of words or

the probabilities of words of each length.

synchronizing word A word for a finite automaton such that all paths labeled

by this word end in the same state.

geometric distribution A probability distribution π on the set of nonnegative

integers such that π(n + 1)/π(n) is constant.

References

1. Roy L. Adler, Donald Coppersmith, and Martin Hassner. Algorithms for sliding block
codes. IEEE Trans. Inform. Theory, IT-29:5–22, 1983.

2. Roy L. Adler, Joel Friedman, Bruce Kitchens, and Brian H. Marcus. State splitting
for variable-length graphs. IEEE Trans. Inform. Theory, 32(1):108–113, 1986.

3. Roy L. Adler, L. Wayne Goodwyn, and Benjamin Weiss. Equivalence of topological
Markov shifts. Israel J. Math., 27(1):48–63, 1977.

4. Rudolf Ahlswede, Bernhard Balkenhol, and Levon H. Khachatrian. Some properties of
fix-free codes. In Proc. 1st Int. Sem. on Coding Theory and Combinatorics, Thahkad-
zor, Armenia,, pages 20–33, 1996.

5. Robert B. Ash. Information Theory. Dover Publications Inc., New York, 1990. Cor-
rected reprint of the 1965 original.

6. Marie-Pierre Béal. The method of poles: a coding method for constrained channels.
IEEE Trans. Inform. Theory, 36(4):763–772, 1990.

7. Marie-Pierre Béal. Codage symbolique. Masson, 1993.
8. Marie-Pierre Béal. Extensions of the method of poles for code construction. IEEE

Trans. Inform. Theory, 49(6):1516–1523, 2003.
9. Marie-Pierre Béal and Dominique Perrin. Codes, unambiguous automata and sofic

systems. Theoret. Comput. Sci., 356(1-2):6–13, 2006.
10. Jean Berstel and Dominique Perrin. Theory of Codes. Academic Press, 1985.
11. Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata.

Cambridge University Press, 2008. in preparation.
12. Jean Berstel and Christophe Reutenauer. Rational Series and their Languages.

Springer, 1988.
13. Véronique Bruyère and Michel Latteux. Variable-length maximal codes. In Automata,

languages and programming (Paderborn, 1996), volume 1099 of Lecture Notes in Com-
puter Science, pages 24–47. Springer-Verlag, 1996.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 69

14. Marco Dalai and Riccardo Leonardi. Non prefix-free codes for constrained sequences.
In IEEE International Symposium on Information Theory, pages 1534–1538, 2005.

15. Christian Deppe and Holger Schnettler. On q-ary fix-free codes and directed deBrujin
graphs. In IEEE International Symposium on Information Theory, pages 1482–1485,
2006.

16. Jacques Désarménien. La division par ordinateur des mots français: application à
TEX. Technique et Science Informatiques, 5(4):251–265, 1986.

17. Thierry Dutoit. An Introduction to Text-To-Speech Synthesis. Kluwer, 1997.
18. Samuel Eilenberg. Automata, Languages and Machines, volume A. Academic Press,

1974.
19. Peter Elias. Universal codeword sets and representations of the integers. IEEE Trans.

Inform. Theory, 21 (2):194–203, 1975.
20. John L. Fan, Brian H. Marcus, and Ron M. Roth. Lossless sliding-block compression

of constrained systems. IEEE Trans. Inform. Theory, 46(2):624–633, 2000.
21. Peter A. Franaszek. Run-length-limited variable length coding with error propagation

limitation. US Patent 3,689,899, 1972.
22. Robert G. Gallager and David C. van Voorhis. Optimal source codes for geometrically

distributed integer alphabets. IEEE Trans. Inform. Theory, 21:228–230, 1975.
23. Adriano M. Garsia and Michelle L. Wachs. A new algorithm for minimum cost binary

trees. SIAM J. Comput., 6(4):622–642, 1977.
24. Edgar N. Gilbert. Synchronization of binary messages. IRE Trans. Inform. Theory,

IT-6:470– 477, 1960.
25. Edgar N. Gilbert. Coding with digits of unequal cost. IEEE Trans. Inform. Theory,

41(2):596–600, 1995.
26. Edgar N. Gilbert and Edward F. Moore. Variable length binary encodings. Bell System

Tech. J., 38:933–967, 1959.
27. David Gillman and Ronald Rivest. Complete variable length fix-free codes. Designs,

Codes and Cryptography, 5:109–114, 1995.
28. Bernd Girod. Bidirectionally decodable streams of prefix code words. IEEE Commu-

nications Letters, 3(8):245–247, August 1999.
29. Mordecai J. Golin, Claire Kenyon, and Neal E. Young. Huffman coding with unequal

letter costs. In ACM Symp. Theory Comput., pages 785–791, 2002.
30. Solomon W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory, IT-12:399–

401, 1966.
31. Güney Gönenç. Unique decipherability of codes with constraints with application to

syllabification of Turkish words. In COLING 1973: Computational And Mathematical
Linguistics: Proceedings of the International Conference on Computational Linguis-
tics, Firenze, Italy, volume 1, pages 183–193, 1973.

32. Leonidas J. Guibas and Andrew M. Odlyzko. Maximal prefix-synchronized codes.
SIAM J. Appl. Math., 35(2):401–418, 1978.

33. Chris D. Heegard, Brian H. Marcus, and Paul H. Siegel. Variable-length state splitting
with applications to average runlength-constrained (ARC) codes. IEEE Trans. Inform.
Theory, 37(3, part 2):759–777, 1991.

34. Te Chiang Hu and Man-Tak Shing. Combinatorial Algorithms. Dover Publications
Inc., Mineola, NY, second edition, 2002.

35. Te Chiang Hu and Alan Curtis Tucker. Optimal computer search trees and variable-
length alphabetical codes. SIAM J. Appl. Math., 21:514–532, 1971.

36. Te Chiang Hu and Paul A. Tucker. Optimal alphabetic trees for binary search. Inform.
Process. Lett., 67(3):137–140, 1998.

37. David A. Huffman. A method for the construction of minimum redundancy codes.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

70 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

Proceedings of the Institute of Electronics and Radio Engineers, 40(10):1098–1101,
September 1952.

38. Kees A. Schouhamer Immink. A practical method for approaching the channel capac-
ity of constrained channels. IEEE Trans. Inform. Theory, 43(5):1389–1399, 1997.

39. Kees A. Schouhamer Immink. Codes for Mass Data Storage Systems. Shannon Foun-
dation Publishers, 2004. second edition.

40. Alon Itai. Optimal alphabetic trees. SIAM J. Comput., 5(1):9–18, 1976.
41. Richard M. Karp. Minimum redundancy codes for the discrete noiseless channel. IRE

Trans. Inform. Theory, IT-7:27–38, 1961.
42. Jeffrey H. Kingston. A new proof of the Garsia-Wachs algorithm. J. Algorithms,

9(1):129–136, 1988.
43. Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching. Addison-Wesley, second edition, 1998.
44. Zvi Kohavi. Switching and Automata Theory. McGraw-Hill, second edition, 1978.
45. Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding.

Cambridge University Press, Cambridge, 1995.
46. M. Lothaire. Applied Combinatorics on Words, volume 105 of Encyclopedia of Math-

ematics and its Applications. Cambridge University Press, Cambridge, 2005.
47. Brian H. Marcus, Ronald M. Roth, and Paul H. Siegel. Constrained systems and

coding for recording channels. In V. S. Pless and W. C. Huffman, editors, Handbook
of Coding Theory. Elsevier, 1998.

48. Robert J. McEliece. The Theory of Information and Coding, volume 86 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, student
edition, 2004. With a foreword by Mark Kac.

49. Kurt Mehlhorn. An efficient algorithm for constructing nearly optimal prefix codes.
IEEE Trans. Inform. Theory, 26(5):513–517, 1980.

50. Neri Merhav, Gadiel Seroussi, and Marcelo J. Weinberger. Optimal prefix codes
for sources with two-sided geometric distributions. IEEE Trans. Inform. Theory,
46(1):121–135, 2000.

51. Dominique Perrin and Marcel-Paul Schützenberger. Synchronizing prefix codes and
automata and the road coloring problem. In Symbolic dynamics and its applications
(New Haven, CT, 1991), volume 135 of Contemp. Math., pages 295–318. Amer. Math.
Soc., Providence, RI, 1992.

52. Antonio Restivo. Codes and local constraints. Theoret. Comput. Sci., 72(1):55–64,
1990.

53. Christophe Reutenauer. Ensembles libres de chemins dans un graphe. Bull. Soc. Math.
France, 114(2):135–152, 1986.

54. Robert F. Rice. Some practical universal noiseless coding techniques. Technical report,
Jet Propulsion Laboratory, 1979.

55. Iain Richardson. H.264 and MPEG-4 Video Compression: Video Coding for Next-
generation Multimedia. Wiley, 2003.

56. Emmanuel Roche and Yves Schabes, editors. Finite-State Language Processing. MIT
Press, 1997.

57. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2008.

58. David Salomon. Variable-Length Codes for Data Compression. Springer-Verlag, 2007.
59. Marcel-Paul Schützenberger. On an application of semigroup methods to some prob-

lems in coding. IRE Trans. Inform. Theory, IT-2:47–60, 1956.
60. Marcel-Paul Schützenberger. On a family of submonoids. Publ. Math. Inst. Hungar.

Acad. Sci. Ser. A, VI:381–391, 1961.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Codes and Automata 71

61. Marcel-Paul Schützenberger. On a special class of recurrent events. Ann. Math.
Statist., 32:1201– 1213, 1961.

62. C. E. Shannon. A mathematical theory of communication. Bell System Tech. J.,
27:379–423, 623–656, 1948.

63. Peter W. Shor. A counterexample to the triangle conjecture. J. Combin. theory Ser.
A., 38:110–112, 1983.

64. Jukka Teuhola. A compression method for clustered bit-vectors. Inf. Process. Lett.,
7(6):308–311, 1978.

65. Avraham N. Trahtman. The road coloring problem. Israel J. Math., 2008. to appear.
66. Brian Parker Tunstall. Synthesis of noiseless compression codes. PhD thesis, Georgia

Institute of Technology, 1967.
67. Ben Varn. Optimal variable length codes (arbitrary symbol cost and equal code word

probability). Information and Control, 19:289–301, 1971.
68. Jiangtao Wen and John Villasenor. Reversible variable length codes for efficient and

robust image and video coding. In IEEE Data Compression Conference, pages 471–
480, 1998.

69. Masahiro Wada Yasuhiro Takishima and Hitomi Murakami. Reversible variable length
codes. IEEE Trans. Comm., 43:158–162, 1995.

70. Chunxuan Ye and Raymond W. Yeung. Some basic properties of fix-free codes. IEEE
Trans. Inform. Theory, 47(1):72–87, 2001.

71. Sergey Yekhanin. Improved upper bound for the redundancy of fix-free codes. IEEE
Trans. Inform. Theory, 50(11):2815–2818, 2004.

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

72 M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

Index

ACH algorithm, 43
adaptive Huffman coding, 6
adjusted binary representation, 27
algorithm

ACH, 43
determinization, 36
Garsia–Wachs, 16, 19
Huffman, 16, 17

Itai, 16, 22
Karp, 16
state-splitting, 43
Varn, 16

alphabet, 8

channel, 9
source, 9

autocorrelation polynomial, 25
automaton, 32

deterministic, 33
local, 38
synchronized, 56

average length, 15

bifix code, 49
bit-stuffing encoder, 6

canonical Huffman code, 6
capacity of a channel, 13, 16
channel

alphabet, 9
capacity, 13, 16

circular code, 45
code, 9

bifix, 49
circular, 45
maximal, 15
prefix, 10
prefix synchronized, 25

suffix, 10
weakly prefix, 37

with finite deciphering delay, 37

codeword, 9

concatenation, 8

conjecture

Ahlswede, 53

Schützenberger, 15

deciphering delay, 37

decoder

sliding block, 38

2-descending sequence, 20

deterministic

automaton, 33

transducer, 34

determinization algorithm, 36

edge

of a transducer, 32

of an automaton, 32

Elias code, 11, 31

empty word, 8

encoding, 9

alphabetic, 10, 18

ordered, 10, 18

entropy, 13

exponential Golomb code, 31, 33

factor, 8

Franaszek code, 41

Garsia–Wachs algorithm, 16, 19

generating series, 9, 12, 14

of costs, 14

of lengths, 9

weighted, 30

geometric distribution, 28

Golomb code, 27, 33

Golomb-Rice code, 29

73

September 21, 2008 21:54 World Scientific Review Volume - 9.75in x 6.5in handbookcodesindex

74 Index

Hu–Tucker algorithm, 22

Huffman algorithm, 16, 17

Huffman code

adaptive, 6

canonical, 6

input automaton, 34

Itai algorithm, 16, 22

Karp algorithm, 16

Kraft–McMillan inequality, 12

left minimal pair, 20

length

of a word, 8

letter, 8

literal transducer, 33

local automaton, 38

local transducer, 38

look-ahead, 38

Morse code, 11

normalized weights, 13

optimal

alphabetic prefix encoding problem, 18

encoding problem, 15

prefix encoding problem, 15

order on words, 10

path of first return, 33

prefix, 8

prefix code, 10

synchronized, 55

product

unambiguous, 9

quasi-uniform sequence, 32

recognized set, 33

regular expression, 9, 29

regular set, 33

relation realized, 33

reversal, 50

reversible variable-length codes, 49

road coloring theorem, 57

run-length encoding, 28

RVLC codes, 49

Schützenberger covering, 35
sequential transducer, 35
sliding block decoder, 38
source alphabet, 9
state

initial, 32
terminal, 32

state-splitting algorithm, 43
successful path, 33
suffix, 8
suffix code, 10
synchronized

automaton, 56
prefix code, 55

synchronizing word, 56

text-to-speech synthesis, 48
transducer, 32

deterministic, 34
literal, 33
local, 38
relation realized, 33
sequential, 35
unambiguous, 34

Tunstall code, 26

unambiguous
automaton, 33
transducer, 34

unambiguous product, 9
unbordered word, 60
uniquely decipherable, 9

variable-length code, 9
Varn algorithm, 16
Varn coding problem, 24
VLC, 9

weakly prefix code, 37
weighted cost, 14
weighted generating series, 30
word, 8

empty, 8
unbordered, 60

