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Abstrat

We present the state of the art in the �eld of generating series for

formal languages. The emphasis is on regular languages and rational

series. The paper overs aspets inluding regular trees and the Kraft-

MMillan inequality as well as neklaes and zeta funtions.
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1 Introdution

Generating series, also alled generating funtions play an important role in

ombinatorial mathematis. Many enumeration problems an be solved by

transferring the basi operations on sets into algebrai operations on formal

series leading to a solution of an enumeration problem. The famous paper

by Doubilet, Rota and Stanley 'The idea of generating funtion' [41℄, plaes

the subjet in a general mathematial frame allowing to present in a uni�ed

way the diverse sorts of generating funtions from the ordinary ones to the

exponential or even Dirihlet ones.

Their plae within the �eld of ombinatoris on words is partiular. It

was indeed M. P. Sh�utzenberger's point of view that sets of words an be

onsidered as series in several non-ommutative variables. The generating

series of the set appears then as a the image of the non-ommutative series

through an homomorphism. This gives rise to a rih domain in whih an

interplay between lassial ommutative algebra and ombinatoris on words

is present.

In these letures, I will survey on several aspets of these generating

funtions on words. The emphasis is on the most elementary ase orre-

sponding to sets of words whih an be de�ned using a �nite automaton,

usually alled regular. The orresponding series are atually rational. Two

speial ases will be onsidered in turn. The �rst one is the ase of sets of

wodrs orresponding to leaves in a tree and usually alled pre�x odes. A

reent result due to Fr�ed�erique Bassino, Marie-Pierre B�eal and myself [10℄ is

presented. It ompletely haraterizes the generating series of regular pre�x

odes. The seond one is the ase of sets of words onsidered up to a yli

permutation, often alled neklaes. The orresponding generating series

are the zeta funtions of symboli dynamis.

A word on the terminology used here. We onstantly use the term regular

where a riher terminology is often used. In partiular, what we all here a

regular sequene is, in Eilenberg's terminology, an N-rational sequene (see

[22℄, [42℄ or [18℄).
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2 Regular sequenes and automata

We onsider the set A

�

of all words on a given alphabet A. A subset of A

�

is often alled a formal language. For sets X;Y � A

�

, we denote

X + Y = X [ Y;

XY = fxy j x 2 X; y 2 Y g;

X

�

= fx

1

x

2

� � � x

n

j x

i

2 X;n � 0g

We say that the pair (X;Y ) is unambiguous if for eah z 2 XY there is at

most one pair (x; y) 2 X � Y suh that z = xy.

We say that a set of nonempty words X is a ode if for eah x 2 X

�

there is at most one sequene (x

1

; x

2

; : : : ; x

n

) with x

i

2 X suh that x =

x

1

x

2

� � � x

n

(one also says that X is uniquely deipherable). A partiular

ase of a ode is a pre�x ode. It is a set of words X suh that no element

of X is a pre�x of another one. It is easy to see that suh a set is either

redued to the empty word or does not ontain the empty word and is then

a ode.

The length distribution of a set of words X is the sequene u

X

= (u

n

)

n�0

with

u

n

= Card(X \A

n

):

We denote by u

X

the formal series

u

X

(z) =

X

n�0

u

n

z

n

:

whih is the ordinary generating series of the sequene u

X

.

For example, the length distribution of X = A

�

is u(z) =

1

1�kz

where

k = Card(A).

The entropy of a formal language X is

h(X) = log(1=�);

where � is the radius of onvergene of the series u

X

(z). It is well de�ned

provided X is in�nite and thus � is �nite. If the alphabet A has k elements,

we have h(X) � log k.

The following result relates the basi operations on sets with operations

on series.

Proposition 1 The following properties hold for any subsets X;Y of A

�

.

(i) If X \ Y = ;, then u

X+Y

= u

X

+ u

Y

.
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(ii) If the pair (X;Y ) is unambiguous, then u

XY

= u

X

u

Y

.

(iii) If X is a ode, then u

X

�

= 1=(1 � u

X

).

Proof. The �rst two formulae are lear. If X is a ode, every word in X

�

has a unique deomposition as a produt of words in X. This implies that

u

X

n

= (u

X

)

n

and thus,

u

X

�

= 1 + u

X

+ � � �+ u

X

n

+ � � � = 1=(1 � u

X

) :

�

Example 1 The set X = fb; abg is a pre�x ode. The series u

X

�

is

u

X

�

(z) =

1

1� z � z

2

:

Let (F

n

)

n�0

be the sequene of Fibonai numbers de�ned by F

0

= 0, F

1

=

1, and F

n+2

= F

n+1

+ F

n

. It follows from the reurrene relation that

z

1� z � z

2

=

X

n�0

F

n

z

n

:

Consequently, u

X

�

(z) =

P

n�0

F

n+1

z

n

. It an also be proved by a ombina-

torial argument that the number of words of length n in X

�

is F

n+1

.

There are several variants of the generating series onsidered above. One

may �rst de�ne

p

X

(z) =

X

n�0

u

n

k

n

z

n

;

where k = Card(A). The oeÆients of z

n

in p

X

(z) is the probability for

a word of length n to be in the set X. The relation between u

X

and p

X

is

simple sine p

X

(z) = u

X

(z=k). Another variant of the generating series is

the exponential generating series of the sequene (u

n

)

n�0

de�ned as

e(z) =

X

n�0

u

n

n!

z

n

:

We will also use the zeta funtion of a sequene (u

n

)

n�1

de�ned as

�(z) = exp

X

n�1

u

n

n

z

n

:
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2.1 Regular sequenes

We onsider sequenes of natural integers s = (s

n

)

n�0

. We shall not distin-

guish between suh a sequene and the formal series s(z) =

P

n�0

s

n

z

n

:

We usually denote a vetor indexed by elements of a set Q, also alled a

Q-vetor, with boldfae symbols. For v = (v

q

)

q2Q

we say that v is nonneg-

ative, denoted v � 0, (resp. positive, denoted v > 0) if v

q

� 0 (resp. v

q

> 0)

for all q 2 Q. The same onventions are used for matries. A nonnegative

Q � Q-matrix M is said to be irreduible if, for all indies p; q, there is an

integer m suh that (M

m

)

p;q

> 0. The matrix is primitive if there is an

integer m suh that M

m

> 0.

The adjaeny matrix of a graph G = (Q;E) is the Q � Q-matrix M

suh that for eah p; q 2 Q, the integer M

p;q

is the number of edges from

p to q. The adjaeny matrix of a graph G is irreduible i� the graph is

strongly onneted. It is primitive if, moreover, the g..d of lengths of yles

in G is 1.

Let G be a �nite graph and let I, T be two sets of verties. For eah

n � 0, let s

n

be the number of distint paths of length n from a vertex of I

to a vertex of T . The sequene s = (s

n

)

n�0

is alled the sequene reognized

by (G; I; T ) or also by G if I and T are already spei�ed. When I = fig

and T = ftg, we simply denote (G; i; t) instead of (G; fig; ftg).

A sequene s = (s

n

)

n�0

of nonnegative integers is said to be regular if it

is reognized by suh a triple (G; I; T ), where G is �nite. We say that the

triple (G; I; T ) is a representation of the sequene s. The verties of I are

alled initial and those of T terminal. Two representations are said to be

equivalent if they reognize the same sequene.

A representation (G; I; T ) is said to be trim if every vertex of G is on

some path from I to T . It is lear that any representation is equivalent to

a trim one.

A well known result in theory of �nite automata allows one to use a

partiular representation of any regular sequene s suh that s

0

= 0. One

an always hoose in this ase a representation (G; i; t) of s with a unique

initial vertex i, a unique �nal vertex t 6= i suh that no edge is entering

vertex i and no edge is going out of vertex t. Suh a representation is alled

a normalized representation (see for example [37℄ page 14).

Let (G; i; t) be a trim normalized representation. If we merge the initial

vertex i and the �nal vertex t in a single vertex still denoted by i, we obtain

a new graph denoted by G, whih is strongly onneted. The triple (G; i; i)

is alled the losure of (G; i; t).

Let s be a regular sequene suh that s

0

= 0. The star s

�

of the sequene
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s is de�ned by

s

�

(z) =

1

1� s(z)

:

Proposition 2 If (G; i; t) is a normalized representation of s, its losure

(G; i; i) reognizes the sequene s

�

.

Proof. The sequene s is the length distribution of the paths of �rst returns

to vertex i in G, that is of �nite paths going from i to i without going

through vertex i. The length distribution of the set of all returns to i is thus

1 + s(z) + s

2

(z) + : : : = 1=(1 � s(z)). �

An equivalent de�nition of regular sequenes uses vetors instead of sets

I; F . Let i be a Q-row vetor of nonnegative integers and let t be a Q-

olumn vetor of nonnegative integers. We say that (G; i; t) reognizes the

sequene s = (s

n

)

n�0

if for eah integer n � 0

s

n

= iM

n

t;

where M is the adjaeny matrix of G. The proof that both de�nitions are

equivalent follows from the fat that the family of regular sequenes is losed

under addition (see [22℄). A triple (G; i; t) reognizing a sequene s is also

alled a representation of s and two representations are alled equivalent if

they reognize the same sequene.

A sequene s = (s

n

)

n�0

of nonnegative integers is rational if it satis�es

a reurrene relation with integral oeÆients. Equivalently, s is rational

if there exist two polynomials p(z); q(z) with integral oeÆients and with

q(0) = 1 suh that

s(z) =

p(z)

q(z)

:

1 2

Figure 1: The Fibonai graph.

For example, the sequene s de�ned by s(z) =

z

1�z�z

2

is the sequene of

Fibonai numbers also de�ned by s

0

= 0; s

1

= 1 and s

n+1

= s

n

+ s

n�1

. It

is reognized by the graph of Figure 1 with I = f1g and T = f2g.
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Any regular sequene is rational. The onverse is however not true (see

Setion 3.6).

A theorem of Soittola [42℄, also found independently in [27℄ haraterizes

those rational sequenes whih are regular. We say that a rational sequene

has a dominating root, either if it is a polynomial or if it has a real positive

pole whih is stritly smaller than the modulus of any other one. A sequene

r is a merge of the sequenes r

i

if there is an integer p suh that

r(z) =

p�1

X

i=0

z

i

r

i

(z

p

):

Theorem 1 (Soittola) A sequene of nonnegative integers r = (r

n

)

n�0

is

regular if and only if it is a merge of rational sequenes having a dominating

root.

This result shows that it is deidable if a rational series is regular (see

[42℄). In the positive ase, there is an algorithm omputing a representation

of the sequene.

2.2 Finite automata

We present here a brief introdution to the onepts used in automata theory.

For a general referene, see [38℄ or [22℄.

An automaton over the alphabet A is omposed of a set Q of states, a

set E � Q � A � Q of edges or transitions and two sets I; T � Q of initial

and terminal states.

A path in the automaton A is a sequene

(p

1

; a

1

; p

2

); (p

2

; a

2

; p

3

); : : : ; (p

n

; a

n

; p

n+1

)

of onseutive edges. Its label is the word x = a

1

a

2

� � � a

n

. A path is su-

essful if it starts in an initial state and ends in a terminal state. The set

reognized by the automaton is the set of labels of its suessful paths.

An automaton is deterministi if, for eah state p and eah letter a, there

is at most one edge whih starts at p and is labeled by a. The term right

resolving is also used.

Example 2 Let A be the automaton given in Figure 2 with 1 as unique

initial and terminal state. It reognizes the set X

�

where X is the pre�x

ode X = fb; abg:

7



1 2

b

a

b

Figure 2: Golden mean automaton.

A set of words X over A is regular if it an be reognized by a �nite

automaton.

It is a lassial result that a set of words is regular i� it an be obtained

by a �nite number of operations union, produt and star, starting form the

�nite sets.

The following result is also lassial (see [22℄ for example).

Proposition 3 Every regular set an be reognized by a �nite deterministi

automaton having a unique initial state.

The following theorem is of fundamental importane. It belongs to the

early folklore of automata theory.

Theorem 2 The length distributions of regular sets are the regular sequenes.

Proof. Let X be a regular set. By Proposition 3, it an be reognized by a

deterministi automaton A. Sine A is deterministi, there is at most one

path with given label, origin and end. Thus the number of paths of length n

from the initial state to a terminal state is equal to the number u

n

of words

of X of length n.

Conversely, let u be a regular sequene enumerating the paths in a graph

G from I to T . We onsider the graph G as an automaton with all edges

with distint labels. Let X be the set of labels of paths from I to T . The

sequene u is the length distribution of the set X. �

Example 3 If X = a

�

b, then

u

X

(z) =

z

1� z

:

2.3 Beyond regular sequenes

There are several natural lasses of series beyond the rational ones. The

algebrai series are those satisfying an algebrai equation. More generally,

8



the hypergeometri series are those suh that the quotient of two suessive

terms is given by a rational fration (see [26℄).

The lass of algebrai series is linked with the lass of ontext-free sets

(see [23℄). A typial example of a ontext-free set is the set of words on

the binary alphabet fa; bg having as many a's as b's. We ompute below its

length distribution whih is an algebrai series.

Example 4 The set of words on A = fa; bg having an equal number of

ourrenes of a and b is a submonoid of A

�

generated by a pre�x ode D.

Sine any word of D

�

of length 2n is obtained by hoosing n positions among

2n, we have

u

D

�

(z) =

X

n�0

�

2n

n

�

z

2n

:

By a simple appliation of the binomial formula, we obtain

u

D

�

(z) = (1� 4z

2

)

�

1

2

:

This follows indeed, using the simple identity

�

�

1

2

n

�

=

1

(�4)

n

�

2n

n

�

:

We have u

D

(z) = 1� 1=u

D

�

(z) and thus

u

D

(z) = 1�

p

1� 4z

2

:

Thus u

D

(z) is an algebrai series, solution of the equation

f

2

� 2f + 4z

2

= 0:

3 Enumeration on regular trees

We now turn to the study of generating sequenes linked with trees. Atu-

ally, we do not enumerate trees but objets within a tree like the nodes or

the leaves at eah level. This is atually equivalent to the enumeration of

partiular sets of words, namely pre�x-losed sets and pre�x odes, as we

shall see below (Setion 4).
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3.1 Graphs and trees

In this paper, we use direted multigraphs i.e. graphs with possibly several

edges with the same origin and the same end. We simply all them graphs

in all what follows. We denote G = (Q;E) a graph with Q as set of verties

and E as set of edges. We also say that G is a graph on the set Q.

A tree T on a set of nodes N with a root r 2 N is a funtion T :

N � frg �! N whih assoiates to eah node distint from the root its

father T (n), in suh a way that, for eah node n, there is a nonnegative

integer h suh that T

h

(n) = r. The integer h is the height of the node n.

A tree is k-ary if eah node has at most k hildren. A node without

hildren is alled a leaf. A node whih is not a leaf is alled internal. A node

n is a desendant of a node m if m = T

h

(n) for some h � 0. A k-ary tree is

omplete if all internal nodes have exatly k hildren and have at least one

desendant whih is a leaf.

For eah node n of a tree T , the subtree rooted at n, denoted T

n

is the

tree obtained by restriting the set of nodes to the desendants of n.

Two trees S; T are isomorphi, denoted S � T , if there is a map whih

transforms S into T by permuting the hildren of eah node. Equivalently,

S � T if there is a bijetive map f : N ! M from the set of nodes of S

onto the set of nodes of T suh that f Æ S = T Æ f . Suh a map f is alled

an isomorphism.

If T is a tree with N as set of nodes, the quotient graph of T is the graph

G = (Q;E) where Q and E are de�ned as follows. The set Q is the quotient

of N by the equivalene n � m if T

n

� T

m

. Let �m denote the lass of a

node m. The number of edges from �m to �n is the number of hildren of m

equivalent to n.

Conversely, the set of paths in a graph with given origin is a tree. Indeed,

let G = (Q;E) be a graph. Let r 2 Q be a partiular vertex and let N be

the set of paths in G starting at r. The tree T having N as set of nodes and

suh that T (p

0

; p

1

; : : : ; p

n

) = (p

0

; p

1

; : : : ; p

n�1

) is alled the overing tree of

G starting at r.

Both onstrutions are mutually inverse in the sense that any tree T is

isomorphi to the overing tree of its quotient graph starting at the image

of the root.

Proposition 4 Let T be a tree with root r. Let G be its quotient graph and

let i be the vertex of G whih is the lass of the root of T . For eah vertex

q of G and for eah n � 0, the number of paths of length n from i to q is

equal to the number of nodes of T at height n in the lass of q.

10



A tree is said to be regular if it admits only a �nite number of non-

isomorphi subtrees, i.e. if its quotient graph is �nite.

Figure 3: A regular tree.

1 3

42

Figure 4: And its quotient graph.

For example, the in�nite tree represented on Figure 3 is a regular tree.

Its quotient graph is represented on Figure 4.

3.2 Regular sequenes and trees

If T is a tree, its generating sequene of leaves is the sequene of numbers

s = (s

n

)

n�0

, where s

n

is the number of leaves at height n. We also simply

say that s is the generating sequene of T .

The following result is a diret onsequene of the de�nitions.

Theorem 3 The generating sequene of a regular tree is a regular sequene.

Proof. Let T be a regular tree and let G be its quotient graph. Sine T

is regular, G is �nite. The leaves of T form an equivalene lass t. By

11



Proposition 4, the generating sequene of T is reognized by (G; i; t) where

i is the lass of the root of T . �

We say that a sequene s = (s

n

)

n�1

satis�es the Kraft inequality for the

integer k if

X

n�0

s

n

k

�n

� 1;

i.e. using the formal series s(z) =

P

n�0

s

n

z

n

, if

s(1=k) � 1:

We say that s satis�es the strit Kraft inequality for k if s(1=k) < 1.

The following result is well-known (see [4℄ page 35 for example).

Theorem 4 A sequene s is the generating sequene of a k-ary tree i� it

satis�es the Kraft inequality for the integer k.

Let us onsider the Kraft's equality ase. If s(1=k) = 1, then any tree T

having s as generating sequene is omplete. The onverse property is not

true in general (see [22℄ p. 231). However, it is a lassial result that when

T is a omplete regular tree, its generating sequene satis�es s(1=k) = 1 (see

Proposition 8).

For the sake of a omplete desription of the onstrution desribed

above in the proof of Theorem 4, we have to speify the hoie made at eah

step among the leaves at height n. A possible poliy is to hoose to give as

many hildren as possible to the nodes whih are not leaves and of maximal

height.

If we start with a �nite sequene s satisfying Kraft's inequality, the above

method builds a �nite tree with generating sequene equal to s. It is not

true that this inremental method gives a regular tree when we start with a

regular sequene, as shown in the following example.

Let s(z) = z

2

=(1 � 2z

2

). Sine s(1=2) = 1=2, we may apply the Kraft

onstrution to build a binary tree with length distribution s. The result is

the tree T (X) where X is the set of pre�xes of the set

Y =

[

n�0

01

n

0f0; 1g

n

:

whih is not regular.

If s is a regular sequene suh that s

0

= 0, there exists a regular tree T

having s as generating sequene. Indeed, let (G; i; t) be a normalized repre-

sentation of s. The generating sequene of the overing tree of G starting

12



at i is s. If s satis�es moreover the Kraft inequality for an integer k, it is

however not true that the regular overing tree obtained is k-ary, as shown

in the following example.

Let s be the regular sequene reognized by the graph of Figure 5 on

the left with i = 1 and t = 4. We have s(z) = 3z

2

=(1 � z

2

). Furthermore

s(1=2) = 1 and thus s satis�es Kraft's equality for k = 2. However there are

four edges going out of vertex 2 and its regular overing tree starting at 1 is

4-ary. A solution for this example is given by the graph of Figure 5 on the

right. It reognizes s and its overing tree starting at 1 is the regular binary

tree of Figure 3.

1 2 3

4

1 3

42

Figure 5: Graphs reognizing s(z) = 3z

2

=(1 � z

2

).

The aim of Setion 3.5 is to build from a regular sequene s that satis�es

the Kraft inequality for an integer k a tree with generating sequene s whih

is both regular and k-ary.

3.3 Approximate eigenvetor

Let M be the adjaeny matrix of a graph G. By the Perron-Frobenius

theorem (see [25℄, for a general presentation and [30℄, [28℄ or [11℄ for the

link with graphs and regular sequenes), the nonnegative matrix M has a

nonnegative real eigenvalue of maximal modulus denoted by �, also alled

the spetral radius of the matrix.

When G is strongly onneted, the matrix is irreduible and the Perron-

Frobenius theorem asserts that the dimension of the eigenspae of the matrix

M orresponding to � is equal to one, and that there is a positive eigenvetor

assoiated to �.

Let k be an integer. A k-approximate eigenvetor of a nonnegative matrix

M is, by de�nition, an integral vetor v � 0 suh that

Mv � kv:

One has the following result (see [30℄ p. 152).

13



Proposition 5 An irreduible nonnegative matrix M with spetral radius

� admits a positive k-approximate eigenvetor i� k � �.

For a proof, see [30℄ p. 152. When M is the adjaeny matrix of a graph

G, we also say that v is a k-approximate eigenvetor of G. The omputation

of an approximate eigenvetor an be obtained by the use of Franaszek's

algorithm (see for example [30℄). It an be shown that there exists a k-

approximate eigenvetor with elements bounded above by k

2n

where n is

the dimension of M [5℄. Thus the size of the oeÆients of a k-approximate

eigenvetor is bounded above by an exponential in n and an be in the worst

ase of this order of magnitude.

The following result is well-known. It links the radius of onvergene of

a sequene with the spetral radius of the assoiated matrix.

Proposition 6 Let s be a regular sequene reognized by a trim represen-

tation (G; I; T ). Let M be the adjaeny matrix of G. The radius of on-

vergene of s is the inverse of the maximal eigenvalue of M .

Proof. The maximal eigenvalue � ofM is � = lim sup

n�0

n

p

kM

n

k, where k k

is any of the equivalent matrix norms. Let � be the radius of onvergene of

s and, for eah p; q 2 Q, let �

pq

be the radius of onvergene of the sequene

u

pq

= (M

n

pq

)

n�0

. Then 1=� = min�

pq

. Sine (G; I; T ) is trim, we have

�

pq

� � for all p; q 2 Q. On the other hand, � � min�

pq

sine s is a sum of

some of the sequenes u

pq

. Thus �

s

= min�

pq

whih onludes the proof. �

As a onsequene of this result, the radius of onvergene � of a regular

sequene s is a pole. Indeed, with the above notation, s(z) = i(1�Mz)

�1

t.

Then det(I �Mz) is a denominator of the rational fration s, the poles of s

are among the inverses of the eigenvalues of M . And sine 1=� is the radius

of onvergene of s, it has to be a pole of s. In partiular, s diverges for

z = �.

The following result, due to Berstel, is also well-known. It allows one to

ompute the radius of onvergene of the star of a sequene.

Proposition 7 Let s be a regular sequene. The radius of onvergene of

the series s

�

(z) = 1=(1�s(z)) is the unique real number r suh that s(r) = 1:

For a proof, see [22℄ pp 211-214, [18℄ p. 82 or [11℄ p. 84. As a onsequene,

we obtain the following result.

14



Proposition 8 Let s be a regular sequene and let � be the inverse of the

radius of onvergene of s

�

. The sequene s satis�es the Kraft strit in-

equality s(1=k) < 1 (resp. equality s(1=k) = 1) if and only if � < k (resp.

� = k).

We have thus proved the following result, whih is the basis of the on-

strutions of the next setions.

Proposition 9 Let s be a regular sequene satisfying Kraft's inequality

s(1=k) � 1. Let (G; i; t) be a normalized representation of s and let (G; i; i)

be the losure of (G; i; t). The adjaeny matrix M of G admits a k-approxi-

mate eigenvetor.

Atually, under the hypothesis of Proposition 9, the graph G itself also

admits a k-approximate eigenvetor. Indeed, let w = (w

q

)

q2Q�t

be a k-

approximate eigenvetor of G. Then the vetor w = (w

q

)

q2Q

de�ned by

w

q

= w

q

for q 6= t and w

t

= w

i

is a k-approximate eigenvetor of G. This is

illustrated in the following example.

1 2 3

4

1 2 3

Figure 6: The graphs G and G.

Let us for example onsider again s(z) = 3z

2

=(1�z

2

) (see Figure 5). The

sequene s is reognized by the normalized representation (G; 1; 4) where G

is the graph represented on the left of Figure 6. The graph G is represented

on the right. The vetors

w =

2

6

6

4

3

2

1

3

3

7

7

5

;w =

2

4

3

2

1

3

5

are 2-approximate eigenvetors of G and G respetively.
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3.4 The multiset onstrution

In this setion, we present the main onstrution used in this paper. It

an be onsidered as a version with multipliities of the subset onstrution

used in automata theory to replae a �nite automaton by an equivalent

deterministi one. We use only unlabeled graphs but the onstrution an be

easily generalized to graphs with edges labeled by symbols from an alphabet.

Our onstrution is also linked with one used by D. Lind to build a pos-

itive matrix with given spetral radius (see [30℄, espeially Lemma 11.1.9).

We use for onveniene the term multiset of elements of a set Q as a

synonym of Q-vetor. If u = (u

q

)

q2Q

is suh a multiset, the oeÆient u

q

is

also alled the multipliity of q. The degree of u is the sum

P

q2Q

u

q

of all

multipliities.

We start with a triple (G; i; t) where G = (Q;E) is a �nite graph and i

(resp. t) is a row (resp. olumn) Q-vetor. We denote by M the adjaeny

matrix of G.

Let m be a positive integer. We de�ne another triple (H;J;X) whih

is said to be obtained by the multiset onstrution. The graph H is alled

an extension of the graph G. The extension is not unique and depends

as we shall see on some arbitrary hoies. The set S of verties of H is

formed of multisets of elements of Q of total degree at most m. Thus, an

element of S is a nonnegative vetor u = (u

q

)

q2Q

with indies in Q suh

that

P

q2Q

u

q

� m. This ondition ensures that H is a �nite graph.

We now desribe the set of edges of the graphH by de�ning its adjaeny

matrix N . Let U be the S�Q-matrix de�ned by U

u;q

= u

q

. Then N is any

nonnegative S � S-matrix whih satis�es

NU = UM:

Equivalently, for all u 2 S,

X

v2S

N

u;v

v = uM:

Let us omment informally the above formula. We an desribe the on-

strution of the graph H as a sequene of hoies. If we reah a vertex u

of H, we partition the multiset uM of verties reahable from the verties

omposing u into multisets of degree at most m to de�ne the verties reah-

able from u in H. The integer N

u;v

is the multipliity of v in the partition.

The formula simply expresses the fat that the result is indeed a partition.

In general, there are several possible partitions. The matrix U is alled the

transfer matrix of the extension.
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We further de�ne the S-row vetor J and the S-olumn vetor X. Let

J be the S-row vetor suh that J

i

= 1 and J

u

= 0 for u 6= i. Let X be the

S-olumn vetor suh that X

u

= u � t.

Thus

JU = i; X = Ut:

To avoid unneessary omplexity, we only keep in S the verties reahable

from i. Thus, we replae the set S by the set of elements u of S suh that

there is a path from i to u.

The number of multisets of degree at most m on a set Q with n elements

is

n

m+1

�1

n�1

. Thus the number of verties of a multiset extension is of order

n

m

. It is polynomial in n if m is taken as a onstant.

1 2 1 12

Figure 7: The graphs G and H.

Let for example G be the graph represented on Figure 7 on the left. The

graph H represented on the right is a multiset extension of G with

i =

�

1 0

�

; j =

�

0

1

�

:

The matries M;N and U are

M =

�

2 1

0 1

�

; N =

�

1 1

0 2

�

; U =

�

1 0

1 1

�

;J =

�

1 0

�

;X =

�

0

1

�

:

In this ase, the matrix U is invertible and the matriesM;N are onjugate.

The basi property of an extension is the following one.

Proposition 10 Let H be an extension of G. The triple (H;J;X) is equiv-

alent to (G; i; t).

Proof. For eah n � 0, we have

UM

n

= N

n

U:

17



Consequently, for eah integer n � 0,

JN

n

X = JN

n

Ut

= JUM

n

t

= iM

n

t:

This shows that (H;J;X) reognizes s. �

We will also make use of the following additional property of extensions.

Proposition 11 Let H be an extension of G. Let M (resp. N) be the

adjaeny matrix of G (resp. H) and let U be the transfer matrix. If w is

a k-approximate eigenvetor of M , the vetor W = Uw is a k-approximate

eigenvetor of N . If w is positive, then W is also positive.

Proof. We have

NW = NUw = UMw � kUw = kW:

Sine all rows of U are distint from 0, the vetor W is positive whenever

w is positive. �

In the next setion, we will hoose a partiular extension of the graph

G alled admissible and whih is de�ned as follows. Let w be a positive

Q-vetor and let m be a positive integer. Let H be an extension of G, let U

be the transfer matrix, and let W = Uw. We say that H is admissible with

respet to w and m if for eah u 2 S, all but possibly one of the verties v

suh that (u;v) is an edge of H satisfy W

v

� 0 mod m.

Theorem 5 For any graph G on Q, any positive Q-vetor w and any in-

teger m > 0, the graph G admits an admissible extension with respet to w

and m.

The proof relies on the following ombinatorial lemma. This lemma is

also used in a similar ontext by Adler et al. and Marus [34℄,[1℄. It is

atually presented in [3℄ as a nie variant of the pigeon-hole priniple.

Lemma 1 Let w

1

; w

2

; : : : ; w

m

be positive integers. Then there is a non-

empty subset S � f1; 2; : : : ;mg suh that

P

q2S

w

q

is divisible by m.

Proof. The partial sums w

1

; w

1

+w

2

; w

1

+w

2

+w

3

; : : : ; w

1

+w

2

+ � � �+w

m

either are all distint (modm), or two are ongruent (modm). In the former

18



ase, at least one partial sum must be ongruent to 0 (modm). In the latter,

there are 1 � p < r � m suh that

w

1

+ w

2

+ � � � + w

p

� w

1

+ w

2

+ � � �+ w

r

( mod m)

Hene w

p+1

+ w

p+2

+ � � �+ w

r

� 0 (mod m). �

Proof. of Theorem 5. We build progressively the set of edges of H. Let u be

an element of S. We prove by indution on the degree d(uM) =

P

q2Q

(uM)

q

of uM that there exists v

1

; : : : ;v

n

2 S suh that uM =

P

n

i=1

v

i

and

W

v

i

� 0 mod m for 1 � i � n � 1. If uM 2 S, i.e. if d(uM) � m,

we hoose n = 1 and v

1

= uM . Otherwise, there exists a deomposition

uM = v + u

0

suh that d(v) = m. Let w

1

; w

2

; : : : ; w

m

be the sequene of

integers formed by the w

q

repeated v

q

times. By Lemma 1 applied to the

sequene of integers w

i

, there is a deomposition v = v

0

+ r with v

0

6= 0

suh that W

v

0

� 0 mod m. We have uM = v

0

+w

0

with w

0

= r+ u

0

. Sine

d(w

0

) < d(uM), we an apply the indution hypothesis to w

0

, giving the

desired result. �

For an S-vetor W, we denote by d

W

m

e the S-vetor Z suh that for eah

u in S,

Z

u

= d

W

u

m

e:

Summing up the previous results, we obtain the following statement.

Proposition 12 Let H be an admissible extension of G with respet to w

and m. Let M (resp. N) be the adjaeny matrix of G (resp. H), let U

be the transfer matrix and let W = Uw. If w is a positive k-approximate

eigenvetor of M , then d

W

m

e is a positive k-approximate eigenvetor of N .

Proof. By Proposition 3.4, the vetor W is a positive k-approximate eigen-

vetor of N . Thus

NW � kW:

Let u be an element of S. We have W

v

� 0 mod m for all indies v suh

that N

u;v

> 0 exept possibly for an index v

0

. The previous inequality

implies that

X

v2S�fv

0

g

N

u;v

W

v

m

+N

u;v

0

W

v

0

m

� k

W

u

m

:

19



Sine

W

v

m

is a nonnegative integer for v 2 Q� fv

0

g, we get

X

v2S�fv

0

g

N

u;v

W

v

m

+N

u;v

0

d

W

v

0

m

e � k d

W

u

m

e:

This proves that

Nd

W

m

e � kd

W

m

e:

�

3.5 Generating sequene of leaves

In what follows, we show how the multiset onstrution allows one to prove

the main result of [10℄ onerning the generating sequenes of regular trees.

We begin with the following lemma, whih is also used in the next setion.

We use the term leaf for a vertex of a graph without outgoing edges.

Lemma 2 Let G be a graph on a set Q of verties. Let i 2 Q and T � Q.

If G admits a k-approximate eigenvetor w, there is a graph G

0

and a set of

verties I

0

of G

0

suh that

1. G

0

admits the k-approximate eigenvetor w

0

with all omponents equal

to 1.

2. the triple (G; i;w) is equivalent to the triple (G

0

; I

0

;w

0

);

3. If w

p

= 1 for all p 2 T , there is a set of verties T

0

of G

0

suh that the

triple (G; i; T ) is equivalent to the triple (G

0

; I

0

; T

0

). Moreover, if T is

the set of leaves of G, we an hoose for T

0

the set of leaves of G

0

.

We now state the main result of [10℄.

Theorem 6 Let s = (s

n

)

n�0

be a regular sequene of nonnegative integers

and let k be a positive integer suh that

P

n�0

s

n

k

�n

� 1. Then there is a

k-ary rational tree having s as its generating sequene.

Proof. Let us onsider a regular sequene s and an integer k suh that

P

n�0

s

n

k

�n

� 1. Sine the result holds trivially for s(z) = 1, we may

suppose that s

0

= 0. Let (G; i; t) be a normalized representation of s and

let G be the losure of G as de�ned at the beginning of Setion 2.1. We

denote byM (resp.M) the adjaeny matrix of G (resp. G). Let Q = Q�ftg
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be the vertex set of G. Let � be the spetral radius of M . By Proposition 8,

the matrixM admits a positive k-approximate eigenvetor w. By de�nition,

we have Mw � kw.

Let w be the Q-vetor de�ned by w

q

= w

q

for all q 2 Q and w

t

= w

i

.

Then, sine there is no edge going out of t inG, w is a positive k-approximate

eigenvetor of M . Let t be the Q-vetor whih is the harateristi vetor

of the vertex t. Let m = w

i

.

By Theorem 5 there exists an admissible extension H of G with respet

to w and m. Let U be the transfer matrix and let W = Uw. Sine w

t

�

0 mod m, we may hoose H with the following additional property. For all

u 2 S either u

t

= 0 or u = t.

Aording to Proposition 10, the sequene s is reognized by (H;J;X)

where J is the harateristi row vetor of i and X is the harateristi

olumn vetor of t. This means that s is reognized by the normalized

representation onsisting in the graphH, the initial vertex i, that we identify

to i, and the terminal vertex t, that we identify to t.

Let N be the adjaeny matrix of H. By Proposition 12, the vetor d

W

m

e

is a positive k-approximate eigenvetor of N . Remark that d

W

m

e

i

= d

W

m

e

t

=

1.

We may now apply Lemma 2 to onstrut a triple (H

0

; I

0

; T

0

) equivalent

to (H; i; t). The set T

0

is the set of leaves of H

0

. Sine d

W

m

e

i

= 1, I

0

is

redued to one vertex i

0

. Sine H

0

admits a k-approximate eigenvetor with

all omponents equal to one, the graph H

0

is of outdegree at most k. Finally

s is the generating sequene of the overing tree of H

0

starting at i

0

. This

tree is k-ary and regular. �

Let us onsider the above onstrutions in the partiular ase of the

equality in Kraft's inequality. In this ase, the result is a omplete k-ary

tree. Indeed, by Proposition 8, the matrix M admits a positive integral

eigenvetor w for the eigenvalue k. We have for all p 2 Q,

X

q2Q

M

p;q

w

q

= kw

p

:

As a onsequene, for any u 6= t, we have

X

v2S

N

u;v

W

v

= kW

u

:

Then the graph onstruted in Lemma 2 is of onstant outdegree k. Thus

the k-ary tree obtained is omplete.
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Let us onsider the omplexity of the onstrution used in the proof

of Theorem 6. Let n be the number of verties of the graph G giving a

normalized representation of s. The size of the integer m = w

i

is exponential

in n (see Setion 3.3). Thus the number of verties of the graphH is bounded

by a double exponential in n. The �nal regular tree is the overing tree of

a graph whose set of verties has the same size in order of magnitude.

Let for example s be the sequene de�ned by

s(z) =

z

2

(1� z

2

)

+

z

2

(1� 5z

3

)

:

Sine s(1=2) = 1, it satis�es the Kraft equality for k = 2. The sequene

s is reognized by (G; i; t) where G = (Q;E) is the graph given in Figure

3.5 with Q = f1; 2; 3; 4; 5; 6; 7g, i = 1, t = 4. The adjaeny matrix of G

admits the 2-approximate eigenvetor represented on Figure 3.5, where the

oeÆients of w are represented in squares beside the verties. Thus m = 3.

3

3

1

5

4

7 62 1

2

3 1

2

4

Figure 8: A normalized representation of s

An admissible extension H of G with respet to w and m is given in

Figure 9. In this �gure, eah multiset of S is represented by a sequene of

verties with repetitions orresponding to the multipliity. For example, the

multiset u = (0; 0; 1; 0; 0; 2; 0) is represented by (3; 6; 6). The sequene s is

reognized by the normalized representation (H; 1; 4), where the initial and

�nal verties are named as they appear on Figure 9. The oeÆients of W

are represented in squares beside the verties.

A regular binary tree T having s as generating sequene of leaves, is

given in Figure 10. In this �gure, the nodes have been renumbered, with

the hildren of a node with a given label represented only one. The leaves
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1

3

1

2

2

4

1

1

1

2

1

6 6 6 2 5 

7 7 7

5 5 5

 3 73 6 6

2 7 7

3 5 5

2 6 

1

4

Figure 9: An admissible extension H.

of the tree are indiated by blak boxes. The tree itself is obtained from

the graph of Figure 9 by appliation of the onstrution of Lemma 2. For

example, the vertex (2; 5), whih has oeÆient 6 in W, is split into two

verties named 2 and 3 in the tree.

This example was suggested to us by Christophe Reutenauer [39℄. To

hek diretly that the length distribution is equal to s(z), one may ompute

from the graph the following regular expression of s(z) and hek by an

elementary omputation (possibly with the help of a symboli omputation

system) that it is equal to s(z).

s(z) = (z

6

)

�

(2z

2

+ z

4

+ 2z

5

+ z

6

+ (z

2

+ 3z

5

)(5z

3

)

�

3z

3

): (1)

(note for a reader unfamiliar with regular expressions: the �rst fator (z

6

)

�

orresponds to the vertex labeled 1 at level 6 of the tree. The term 2z

2

+

z

4

+ 2z

5

+ z

6

orresponds to the leaves reahed by a path whih does not

use a vertex labeled 5. The fator (z

2

+3z

5

)(5z

3

)

�

orresponds to the paths

from the root to a vertex labeled 5. Finally, the fator 3z

3

orresponds to

the diret paths from 5 to a leaf.)

This example shows an interesting feature of this problem. In fat, from

the point of view of regular expressions, the diÆult operation in this prob-

lem is the sum. It would be a simple matter to build a rational tree for eah

term of the sum in the expression (1) (see the example of Figure 5). The

diÆulty would then be to merge these trees to obtain one orresponding to

the sum.
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1

2

3

�

4

5

�

6

7

8

9

10

11

12

�

10

13

12

12

�

�

14

5

5

5

�

5

�

1

Figure 10: A regular binary tree with length distribution s.

A urious onsequene of Theorem 6 is the following property of regular

sequenes.

Corollary 1 Let k � 2 be an integer and let u be a regular sequene

suh that u(1=k) � 1 and u(0) = 0. Then there exist k regular sequenes

u

1

; : : : ; u

k

suh that u

i

(1=k) � 1 and

u(z) =

k

X

i=1

zu

i

(z):

Proof. It is a simple onsequene of Theorem 6. Indeed, if X is a regular

pre�x ode on the k element alphabet A, then X =

P

a2A

aX

a

where eah

X

a

is a regular pre�x ode on the alphabet A. �

We don't know of a diret proof of this result.

3.6 Generating sequene of nodes

In this setion, we onsider the generating sequene of the set of all nodes

in a tree instead of just the set of leaves. This is motivated by the fat that

in searh trees, the information an either be arried by the leaves or by

all the nodes of the tree. We will see that the omplete haraterization
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of the generating sequenes of nodes in regular trees (Theorem 7) is more

ompliated than the one for leaves.

Soittola (see [42℄ p. 104) has haraterized the series whih are the gen-

erating sequenes of nodes in a regular tree. We haraterize the ones that

orrespond to k-ary trees (Theorem 7). We also give a more diret onstru-

tion in a partiular ase (Theorem 8).

Let T be a tree. The generating sequene of nodes of the tree T is the

sequene t = (t

n

)

n�0

, where t

n

is the number of nodes of T at height n. The

sequene t satis�es t

0

� 1 and, moreover, if T is a k-ary tree, the ondition

t

n

� kt

n�1

for all n � 1. If T is a regular tree, then t is a regular sequene. We

now ompletely haraterize the regular sequenes t that are the generating

sequenes of nodes of a k-ary regular tree.

Theorem 7 Let t = (t

n

)

n�0

be a regular sequene and let k be a positive

integer. The sequene (t

n

)

n�0

is the generating sequene of nodes of a k-ary

regular tree i� it satis�es the following onditions.

(i) the onvergene radius of t is stritly greater than 1=k,

(ii) the sequene s(z) = t(z)(kz � 1) + 1 is regular.

Proof. Let us �rst show that the onditions are neessary. Let T be the

omplete k-ary tree obtained by adding i new leaves to eah node that has

k � i hildren. Sine T is a regular tree, T is also regular.

Let s be the generating sequene of leaves of T . Sine T is omplete,

s(1=k) = 1. Sine kt

n

= s

n+1

+ t

n+1

for all n � 0, we have

1� s(z) = t(z)(1 � kz):

Sine s is a regular sequene, its radius of onvergene is stritly larger than

1=k (see Setion 3.3). Sine the value of the derivative of s at z = 1=k is

kt(1=k), the same holds for t. This proves the neessity of the onditions.

Conversely, if t satis�es the onditions of the theorem, the regular series

s(z) = t(z)(kz � 1) + 1 satis�es s(1=k) = 1. Thus, by Theorem 6, s is the

generating sequene of leaves of a omplete k-ary regular tree. The internal

nodes of this tree form a k-ary regular tree whose generating sequene of

nodes is t. �

The sequene s de�ned by ondition (ii) is rational as soon as t is regular

and therefore rational. Given a regular sequene t, ondition (ii) is deidable

in view of the theorem of Soittola (Theorem 1).
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We may observe that ondition (ii) of the theorem implies the non-

negativity of the oeÆients of the series s and thus the inequality 8n �

1; t

n

� kt

n�1

. It also implies that t

0

� 1.

We now show that there are regular sequenes t satisfying t

n

� kt

n�1

for all n � 1, and ondition (i) of the theorem and suh that the sequene

s(z) = t(z)(kz � 1) + 1 is not regular. The example is based on an example

of a rational sequene with nonnegative oeÆients and whih is not regular

(see [18℄ page 95). Let

r

n

= b

2n

os

2

(n�)

with os(�) =

a

b

where the integers a; b are suh that b 6= 2a and 0 < a < b.

The sequene r is rational, has nonnegative integer oeÆients and is not

regular. Its poles are

1

b

2

,

1

b

2

e

2i�

and

1

b

2

e

�2i�

. We now de�ne the sequene t

as follows:

t

2h

= k

h

;

t

2h+1

= k

h

+ r

h

:

We also assume that b

2

< k. By Soittola's theorem, the sequene t is

regular sine it is a merge of rational sequenes having a dominating root.

The onvergene radius of t is

1

p

k

>

1

k

. Therefore the sequene t satis�es

the �rst ondition of Theorem 7. Let s be the sequene de�ned by s(z) =

t(z)(kz � 1) + 1. If h = 2p is even,

s

h

= kt

h�1

� t

h

= kk

p�1

+ kr

p�1

� k

p

+ 1 = kr

p�1

+ 1:

Thus the sequene s is not regular.

The above example does not work for the small values of k (the least

value is k = 10). We do not know of similar examples for 2 � k � 9.

We �nally desribe a partiular ase of Theorem 7 in whih one has a

relatively simple method, based on the multiset onstrution, to build the

regular tree with a given generating sequene of nodes. This avoids the use

of Soittola's haraterization whih leads to a method of higher omplexity.

A primitive representation of a regular sequene s is a representation

(G; i; t) suh that the adjaeny matrix of G is primitive. The following re-

sult is proved in [8℄ with a di�erent proof using the state-splitting method of

symboli dynamis. The proof given in [10℄ relies on a simpler onstrution.

Theorem 8 Let t = (t

n

)

n�0

be a regular sequene and let k be a positive

integer suh that t

0

= 1, t

n

� kt

n�1

for all n � 1 and suh that
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(i) the onvergene radius of t is stritly greater than 1=k,

(ii) t has a primitive representation.

Then (t

n

)

n�0

is the generating sequene of nodes by height of a k-ary regular

tree.

The proof of this theorem given in [10℄ uses the multiset onstrution.

It relies on the following lemma.

Lemma 3 Let M be a primitive matrix with spetral radius �. Let v be a

non-null and nonnegative integral vetor and let k be an integer suh that

� < k. Then there is a positive integer n suh that M

n

v is a positive k-

approximate eigenvetor of M .

Proof. For a primitive matrixM with spetral radius �, it is known that the

sequene ((

M

�

)

n

)

n�0

onverges to r:l where r is a positive right eigenvetor

and l a positive left eigenvetor of M for the eigenvalue � with l � r = 1 (see

for example [30℄ p. 130). Thus (

M

n

�

n

v)

n�0

onverges to r:l:v whih is equal

to �r where � is a nonnegative real number. Sine Mr = �r, we get, for a

large enough integer n,

M

M

n

�

n

v � k

M

n

�

n

v

or equivalently MM

n

v � kM

n

v. If n is large enough, we moreover have

M

n

v > 0 sine M is primitive. �

The proof of Theorem 8 uses a shift of indies of the sequene to obtain

a new sequene to whih a simple appliation of the multiset onstrution

an be applied. We illustrate it on an example.

1 2 3

Figure 11: A primitive representation G of t.
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Let t be the series reognized by the graph G of Figure 11 with

i =

�

1 0 0

�

and t =

2

4

1

1

0

3

5

:

The adjaeny matrix M of G is the primitive matrix

M =

2

4

1 1 0

0 0 1

1 0 0

3

5

:

Its spetral radius is less than 2. The hypothesis of Theorem 8 are thus

satis�ed. We have

M

2

t =

2

4

2

1

2

3

5

and M

3

t =

2

4

3

2

2

3

5

:

Sine M

3

t � 2M

2

t, the vetor W = M

2

t is an approximate eigenvetor of

M (the existene of suh a vetor is asserted by Lemma 3). Let w =M

2

t.

Applying Lemma 2, we obtain from G the graph G

0

represented on the

left side of Figure 12 . Moreover, (G; i;w) is equivalent to (G

0

; I

0

;w

0

) where

I

0

is the set of initial verties indiated on Figure 12 and w is the vetor with

all omponents equal to 1. The overing trees T

1;1

and T

1;2

of G

0

starting

at the verties of I

0

give, with the appropriate shift of indies, the binary

regular tree T represented on the right side of Figure 12 (the nodes of the

tree have been renumbered).

4 Generating sequenes of pre�x odes

There is a lose onnexion between trees and pre�x odes or pre�x-losed

sets of words. We present below the translation of some of the notions and

results seen before in terms of pre�x odes.

4.1 Trees and pre�x odes

Let R be a set of words on the alphabet A = f0; 1; : : : ; k � 1g. The set R

is said to be pre�x-losed if any pre�x of an element of R is also in R. The

set X of words whih are not a proper pre�x of a word in R is a pre�x ode,

alled the pre�x ode assoiated to R.
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Figure 12: The graph G

0

and the tree T .

When R is pre�x losed, we an build a tree T (R) as follows. The set of

nodes is R, the root is the empty word � and T (a

1

a

2

� � � a

n

) = a

1

a

2

� � � a

n�1

.

The leaves of T from a pre�x ode whih is the pre�x ode assoiated to R.

The generating sequene of T is the gerating sequene of X.

Let for example R = f�; 0; 1; 10; 11g. The tree T (R) is represented on

Figure 13. The assoiated pre�x ode is X = f0; 10; 11g.

Figure 13: The tree T (X).

Let X be a pre�x ode on an alphabet with k symbols. It is lear that

29



its length distribution u = (u

n

)

n�1

satis�es Kraft's inequality

X

n�1

u

n

k

�n

� 1;

or equivalently u(1=k) � 1. The number u(1=k) an atually be interpreted

as the probability that a long enough word has a pre�x in X.

There is also a onnexion with the notion of entropy. Atually, if X is

a pre�x ode, the entropy of X

�

is equal to log(1=�) where � is the solution

of the equation u

X

(�) = 1. Thus Kraft's inequality expresses the fat that

h(X

�

) � log k.

Conversely, Kraft-MMillan's theorem states that for any suh sequene

u = (u

n

)

n�1

, there exists a pre�x ode X on a k-symbol alphabet suh that

u = u

X

.

The equality ase in Kraft's inequality orresponds to a partiular lass

of pre�x odes often alled omplete. A pre�x ode X on the alphabet A is

omplete if any word on A has either a pre�x in X or is a pre�x of a word

of X.

Theorem 6 shows that the generating sequenes of regular pre�x odes

are exatly the regular sequenes satisfying Kraft's inequality.

4.2 Bi�x odes

We investigate here the length distributions of a partiular lass of pre�x

odes, alled bi�x. Several other lasses of pre�x odes ould give rise to a

similar study (for a desription to these lasses, see [21℄).

The de�nition of a suÆx ode is symmetri to the de�nition of a pre�x

ode. It is a set of words X suh that no element of X is a suÆx of another

one. The notion of a omplete suÆx ode is also symmetri. A bi�x ode is

a set X of words whih is both a pre�x and a suÆx ode.

Any set of words of �xed length is obviously a bi�x ode but there are

more ompliated examples.

Example 5 The set

X = faaa; aaba; aabb; ab; baa; baba; babb; bba; bbbg

is a omplete pre�x ode pitured in Figure 14. It is also a omplete suÆx

ode as one may hek by reading its words bakwards.

Surprisingly, it is an open problem to haraterize the length distribu-

tions of bi�x odes. The following simple example shows that they are more

onstrained than those of pre�x odes.
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Figure 14: The bi�x ode X.

Example 6 The sequene u(z) = z+2z

2

is not realizable as the length dis-

tribution of a bi�x ode on a binary alphabet although u(1=2) = 1. Indeed,

one of the symbols has to be in X, say a. Then bb is the only word of length

2 that an be added.

The following nie partial result is due to Ahlswede, Balkenhol and

Khahatrian [2℄. We state the result for a binary alphabet. It an be readily

generalized to k symbols but it presents less interest.

Theorem 9 For any integer sequene u suh that

u(1=2) � 1=2;

there is a bi�x ode X suh that u = u

X

.

Proof. The proof is by indution. We suppose that we have already built a

bi�x ode X formed of words of length at most n�1 with length distribution

(u

1

; u

2

; : : : ; u

n�1

). We have

n

X

i=1

u

i

2

�i

� 1=2;
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and thus

2

n

X

i=1

u

i

2

n�i

� 2

n

:

Finally, we obtain

u

n

� 2

n

� 2

n�1

X

i=1

u

i

2

n�i

:

The expression of the right handside is at most equal to the number of

elements of the set A

n

� XA

�

� A

�

X. Thus, we an hoose u

n

words of

length n whih do not have a pre�x or a suÆx in X. This proves the result

by indution. �

The authors of [2℄ formulate the interesting onjeture that Theorem 9

is still true if the hypothesis u(1=2) � 1=2 is replaed by u(1=2) � 3=4.

There are known additional onditions imposed on length distributions

of bi�x odes. For example, one has the following result, originally due to

Sh�utzenberger (see [16℄).

Theorem 10 If X is a �nite omplete bi�x ode on k symbols, then u

X

(1=k) =

1 and

1

k

u

0

X

(1=k) is an integer.

The number

1

k

u

0

X

(1=k) an be interpreted as the average length of the

words of X. Indeed

zu

0

X

(z) =

X

x2X

jxjz

jxj

:

Example 7 For the bi�x ode of Example 5, we have

u

X

(z) = z

2

+ 4z

3

+ 4z

4

and thus

u

0

X

(z) = 2z + 12z

2

+ 16z

3

:

Hene

1

2

u

0

X

(1=2) = 3:

The onditions of Theorem 10 show diretly that the sequene of Example

6 is not realizable. Indeed, it satis�es the �rst ondition but not the seond

one. The onditions of Theorem 10 are not suÆient. Indeed, if u(z) =

z+4z

3

we have u(1=2) = 1 and u

0

(1=2) = 4 although it is learly impossible

that u = u

X

for a bi�x ode X.

Reently, Ye and Yeung [45℄ have made some progress on this prob-

lem. They are in partiular able to prove that Theorem 9 still holds when

u(1=2) � 5=8.
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5 Zeta funtions, subshifts of �nite type and ir-

ular odes

In this setion, we present a number of results on interrelated objets whih

are onneted with yli permutation of words. The link with enumera-

tive ombinatoris was developped in Lothaire's volume [31℄ and later in R.

Stanley's book [44℄. We begin with notions lassial in symboli dynamis

(see [30℄ or [28℄ for a general referene; see [15℄ or [24℄ for the link with �nite

automata).

5.1 Subshifts of �nite type

A subshift is a set of biin�nite words on a �nite alphabet A whih avoids a

given set F of forbidden words. It is a topologial spae as a losed subset

of the spae A

Z

of funtions from Z into the set A. The full shift on A is

the set of all biin�nite words on A. It orresponds to the ase F = ;.

A so� subshift is the set of biin�nite labels of paths in a �nite automa-

ton. A so� subshift is alled irreduible if the automaton an be hosen

strongly onneted. A subshift of �nite type is the set of biin�nite words

avoiding a �nite set of �nite words. Any subshift of �nite type is so� but

the onverse is not true. The edge shift of a �nite graph G is the set S

G

of biin�nite paths in G (viewed as biin�nite sequenes of edges). It is a

subshift of �nite type.

The shift � is the funtion on a subshift S whih maps a point x to the

point y = �(x) whose ith oordinate is y

i

= x

i+1

.

A morphism from a subshift S into a subshift T is a funtion f : S ! T

whih is ontinuous and invariant under the shift. A bijetive morphism is

alled a onjugay. Any subshift of �nite type is onjugate to some edge

shift.

The entropy h(S) of a subshift S is the entropy of the formal language

formed by the �nite bloks ourring in words of S. It an be shown that the

entropy is a topologial invariant, in the sense that two onjugate subshifts

have the same entropy.

While the entropy is a measure of number of forbidden words, it is possi-

ble to study the number of minimal forbidden words. It gives rise to another

invariant of subshifts [13℄, [14℄.

An integer p is a period of a point x = (a

n

)

n2Z

if a

n+p

= a

n

for all n 2 Z.

Equivalently, p is a period of x if �

p

(x) = x. The zeta funtion of a subshift
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S, is de�ned as the series

�(S) = exp

X

n�1

p

n

n

z

n

where p

n

is the number of words with period n in S. It is also a topologial

invariant, sine a point of period n is mapped by a onjugay on a point of

the same period.

The following result due to Bowen and Lanford [19℄ is lassial (see [30℄).

Proposition 13 Let G be a �nite graph and let M be the adjaeny matrix

of G. Then

�(S

G

) = det(I �Mz)

�1

:

Proof. We �rst have for eah n � 1

Tr(M

n

) = p

n

sine the oeÆient (i; j) of M

n

is the number of paths from i to j. Thus

�(S

G

) = exp

X

n�1

p

n

n

z

n

= exp

X

n�1

Tr(M

n

)

n

z

n

= expTr(log(I �Mz)

�1

)

= det(I �Mz)

�1

sine, by the formula of Jaobi, expTr = det exp. �

Example 8 Let S be the edge shift of the graph G of Figure 15. We have

M =

2

4

1 1 0

0 0 1

1 0 0

3

5

:

Consequently

�(S) =

1

1� z � z

3

:
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1

2

3

Figure 15: A subshift of �nite type

Let S be a subshift of �nite type and let p

n

be the number of points

with period n. Let q

n

be the number of points with least period n. Sine

q

n

is a multiple of n, we also denote q

n

= nl

n

. We have then the formula

expressing the zeta funtion as an in�nite produt using the integers l

n

as

exponents.

�(S) = �

n�1

(1� z

n

)

�l

n

;

as one may verify using p

n

=

P

djn

dl

d

and the de�nition of �(S).

A lassial result, related with what follows, is the following statement,

known as Krieger's embedding theorem.

Theorem 11 Let S; T be two subshifts of �nite type. There exists an inje-

tive morphism f : S ! T with f(S) 6= T i�

1. h(S) < h(T )

2. for eah n � 1, q

n

(S) � q

n

(T ) where q

n

(S) (resp. q

n

(T )) is the number

of points of S (resp. T ) of least period n.

The following result is the basis of many appliations of symboli dy-

namis to oding. It is due to Adler, Coppersmith and Hassner [1℄.

Theorem 12 If S is an irreduible subshift of �nite type suh that h(S) �

log k, it is onjugate to a subshift of �nite type S

G

where the graph G has

outdegree at least k.

The proof is based on a state-splitting algorithm using approximate

eigenvetors and Lemma 1. This result is part of a number of onstru-

tions leading to sliding blok odes used in magneti reording (see [35℄, [11℄

or [30℄). It gives at the same time the following result.

Theorem 13 It S is a subshift of �nite type suh that h(S) � log k, then

there is a graph G of outdegree at most k suh that S is onjugate to S

G

.
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There is a onnexion between this theorem and Theorem 6. Let indeed

u be a regular sequene of integers suh that u(1=k) � 1. Let G be a

normalized graph reognizing u (in the sense of Setion 2.1). Let

�

G be the

graph obtained by merging the initial and terminal vertex. Then h(S

�

G

) �

log k. We an apply Theorem 13 to obtain a graphH with outdegree at most

k suh that S

G

and S

H

are onjugate. This gives the onlusion of Theorem

6 provided the initial-terminal vertex did not split in the onstrution. The

following examples show both ases (for details, see [7℄ and [8℄).

Example 9 Let G be the graph of Figure 5. The splitting of vertex 2 gives

a graph of outdegree 2. A normalization gives the automaton on the right.

Example 10 The sequene of the example given in Figure 6 is reognized

by a graph G suh that

�

G has three yles of length 2. The solution as a

binary tree has only two yles of length 2 and thus ould not be obtained

by state-splitting.

5.2 Cirular odes

A irular word, or neklae, is the equivalene lass of a word under yli

permutation. For a word w, we denote by �w the irular word represented

by w.

Let X be a set of words and w = x

1

x

2

� � � x

n

with x

i

2 X. The set of

yli permutations of the sequene (x

1

; x

2

; : : : ; x

n

) is alled a fatorization

of the irular word �w.

A irular ode is a set X of words suh that the fatorization of irular

words is unique.

Example 11 The set X = fa; abag is a irular ode. Indeed, the position

of the symbols b determines uniquely the ourrenes of aba.

Example 12 The set X = fab; bag is not a irular ode. Indeed, the

irular word �w for w = abab has two fatorizations namely (ab; ab) and

(ba; ba).

The following haraterization is useful (see [16℄).

Proposition 14 A set X is a irular ode if and only if it is a ode and

for all u; v 2 A

�

,

uv; vu 2 X

�

) u; v 2 X

�
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Example 13 We obtain another way to prove that the set X = fab; bag

is not a irular ode. Indeed, otherwise we would have a; b 2 X

�

whih is

ontraditory.

Let X be a �nite ode. The ower automaton of X, denoted A

X

, is the

following automaton. The set of its states is

Q = f(u; v) 2 A

+

�A

+

j uv 2 Xg [ (1; 1)

The transitions are of the form (u; av)

a

�! (ua; v) or (1; 1)

a

�! (a; v) or

(u; a)

a

�! (1; 1). The unique initial and �nal state is (1; 1).

Example 14 The ower automaton of the irular ode fa; abag is pitured

in Figure 16.

1

2

3

a

a

b

a

Figure 16: The ower automaton of fa; abag.

The following result is easy to prove.

Proposition 15 The ower automaton A

X

reognizes X

�

. The ode X is

irular i� for eah word w, there is at most one yle with label w.

We now study the length distributions of irular odes. Let X be a

irular ode and let u

(

z) = (u

n

)

n�1

be its length distribution. For eah

n � 1, let p

n

be the number of words w of length n suh that �w has a

fatorization in words of X.

Proposition 16 The sequenes (p

n

)

n�1

and (u

n

)

n�1

are related by

exp

X

n�1

p

n

n

z

n

=

1

1� u(z)

: (2)
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Proof. Eah (p

n

) depends only on the �rst n terms of the sequene (u

n

).

It is therefore possible to suppose that the sequene (u

n

) is �nite, i.e. that

the ode X is �nite. Let A be the ower automaton of X. Let S be

the subshift of �nite type assoiated with the graph of A. Then p

n

is the

number of elements of period n in S. Indeed, eah word w suh that �w has

a fatorization is ounted exatly one as the label of a yle in A. We have

also

det(I �Mz) = 1� u(z):

Thus, the result follows from Proposition 13. �

The expliit relation between the numbers u

n

and p

n

is the following. For

eah i � 1, let u

(i)

= (u

(i)

n

)

n�1

be the length distribution ofX

i

. Equivalently,

u

(i)

n

is the oeÆient of degree n of u(z)

i

. Then for eah n � 1

p

n

=

n

X

i=1

n

i

u

(i)

n

:

We also have for eah n � 1

p

n

= nu

n

+

n�1

X

i=1

p

i

u

n�i

: (3)

This formula an be easily dedued from Formula (2) by taking the loga-

rithmi derivative of eah side of the formula. It shows diretly that for

any sequene (u

n

)

n�1

of nonnegative integers, the sequene p

n

de�ned by

Formula (2) is formed of nonnegative integers.

Formula (3) is known as Newton's formula in the �eld of symmetri

funtions. Atually, the numbers u

n

an be onsidered, up to the sign, as

elementary symmetri funtions and the p

n

as the sums of powers (see [32℄).

The link between Witt vetors and symmetri funtions was established in

[43℄.

Let p

n

=

P

djn

dl

d

. Then l

n

is the number of non-periodi irular words

of length n with a fatorization. In terms of generating series, we have

exp

X

n�1

p

n

n

z

n

=

Y

n�1

(1� z

n

)

�l

n

: (4)

Putting together Formulae (2) and (4), we obtain

1

1� u(z)

=

Y

n�1

(1� z

n

)

�l

n

: (5)
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For any sequene (u

n

)

n�1

of nonnegative integers, the sequene l = (l

n

)

n�1

thus de�ned is formed of nonnegative integers. This an be proved either by

a diret omputation or by a ombinatorial argument sine any sequene u

of nonnegative integers is the length distribution of a irular ode on a large

enough alphabet. We denote l = �(u) and we say that l is the �-transform

of the sequene u.

We denote by '

n

(k) the number of non-periodi irular words of length

n on k symbols. The numbers '

n

(k) are alled the Witt numbers. It is lear

that the sequene ('

n

(k))

n�1

is the �-transform of the sequene (k

n

)

n�1

.

The orresponding partiular ase of Identity (5)

1� kz =

Y

n�1

(1� z

n

)

'

n

(k)

is known as the ylotomi identity.

The following arrays display a tabulation of the Witt numbers for small

values of n and k.

n '

n

(2) '

n

(3) '

n

(4)

1 2 3 4

2 1 3 6

3 2 8 20

4 3 18 60

5 6 48 204

6 9 116 670

7 18 312 2340

8 30 810 8160

9 56 2184 29120

10 99 5880 104754

The value '

3

(4) = 20 is famous beause of the geneti ode: there are

preisely 20 amino-aids oded by words of length 3 over a 4-symbol alphabet

A,C,G,U.

For any sequene a = (a

n

)

n�1

, let

p

n

=

X

djn

da

n=d

d

:

The pair (a; p) is alled a Witt vetor (see [29℄ or [36℄). The numbers p

n

are

the ghost omponents. In terms of generating series, one has

exp

X

n�1

p

n

n

z

n

=

Y

n�1

(1� a

n

z

n

)

�1

:
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The following result is due to Sh�utzenberger (see [16℄).

Theorem 14 Let u = (u

n

)

n�1

be a sequene of nonnegative integers and

let l = (l

n

)

n�1

be the �-transform of u. The sequene (u

n

)

n�1

is the length

distribution of a irular ode on k symbols i� for all (n � 1)

l

n

� '

n

(k):

Several omplements to Theorem 14 appear in [6℄. In partiular, the

relation with Kraft's inequality is studied. The equality ase in Kraft's

inequality is haraterized in terms of the sequene of inequalities above.

There is a onnexion between Theorem 14 and Krieger's embedding the-

orem (Theorem 11), in the sense that Theorem 14 gives a simple proof of

Theorem 11 in a partiular ase. Atually, let us onsider the partiular

ase of subshift of �nite type, alled a renewal system.

A renewal system S is the edge shift of a graph G made up of yles

sharing exatly one vertex. Suh a graph is determined by the sequene

u = (u

i

)

1�i�n

where u

i

is the number of loops with length i. Let T

k

be the

full shift on k symbols. Suppose that the pair formed by S and T

k

satis�es

the hypotheses of Krieger's theorem. The number q

n

(S) of points of least

period n is nl

n

where l = (l

n

)

n�1

is the �-transform of the sequene u and

q

n

(T

k

) = n'

n

(k). Thus, the sequene u satis�es the hypotheses of Theorem

14. Consequently, there is irular ode X suh that u

X

= u. The ower

automaton of X de�nes an embedding of S

G

into the full shift on k symbols.

This gives an alternative proof of Krieger's theorem in this ase.

It would be interesting to have a proof of Krieger's theorem along the

same lines in the general ase.

To lose this setion, we mention the following open problem: If the

sequene u is regular and satis�es the inequalities

l

n

� '

n

(k) (n � 1);

where l = �(u), does there exist a rational irular ode on k symbols suh

that u = u

X

?

5.3 Zeta funtions

Theorem 13 admits the following generalization due to Reutenauer [40℄.

Theorem 15 The zeta funtion of a so� subshift is regular.
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We have seen already (Theorem 13) that the zeta funtion of a subshift

of �nite type is a rational fration, and indeed the inverse of a polynomial.

The stronger statement that it is regular follows from the following formula

allowing to ompute det(I�Mz) whenM is the adjaeny matrix of a n�n

graph G. One has

det(I �Mz) = (1� v

1

(z)) � � � (1� v

n

(z));

where v

i

(z) is the length distribution of the set of �rst returns to state i

using only states fi; i + 1; : : : ; ng (see [12℄).

The proof that the zeta funtion of a so� subshift is rational is a result

of Manning and Bowen [33℄, [20℄. For an exposition, see [30℄ or [12℄. A

generalization appears in [17℄.
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