N

N
N

HAL

open science

Mbotifs in Sequences: Localization and Extraction

Maxime Crochemore, Marie-France Sagot

» To cite this version:

Maxime Crochemore, Marie-France Sagot.

New York, pp.47-97, 2004. hal-00620799

Motifs in Sequences: Localization and Extraction.
Konopka A. K., Crabbe M. J. C. Compact Handbook of Computational Biology, Marcel Dekker,

HAL Id: hal-00620799
https://hal.science/hal-00620799
Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00620799
https://hal.archives-ouvertes.fr

Motifs in sequences: localization and extraction

Maxime Crochemore* and Marie-France Sagot!

November 6, 2000

Contents
1 Motifs in sequences 1

2 Notions of similarity 4
2.1 Preliminary definitions oL 4
2.2 Identity 4
2.3 Non transitive relation oL oL)
24 Allowing forerrors oo 6

3 Motif localization 10
3.1 Searching for a fixed motif o o000 10
3.2 Approximate matchings oL 13
3.3 Indexing 17
3.4 Structural motifs 22

4 Repeated motifs identification 24
4.1 Exact repetitions Lo oL 24
4.2 Inexact repetitions — The particular case of tandem arrays (satel-

lites) 26

5 Motif extraction 32
5.1 Spelling simple models 32
5.2 Structured models Lo 34

1 Motifs in sequences

Conserved patterns of any kind are of great interest in biology as they are likely
to represent objects upon which strong constraints are potentially acting and

*Maxime.Crochemore@univ-mlv.fr, http://www-igm.univ-mlv.fr/~mac, Institut Gas-
pard-Monge, University of Marne-la-Vallée, F-77454 Marne-la-Vallée CEDEX 2.

fMarie-France.Sagot@pasteur.fr, http://www-igm.univ-mlv.fr/~sagot, Institut Pas-
teur, 25 28, rue du Docteur Roux, F-75724 Paris CEDEX 15, and Institut Gaspard-Monge.

may therefore perform a biological function. Among the objects which may
model biological entities, we shall consider in this chapter strings only. As is
by now well known, biological sequences, whether DNA, RNA or proteins, may
be represented as strings over an alphabet of 4 letters (DNA/RNA) or 20 letters
(proteins). Some of the basic problems encountered in classical text analysis
have their counterpart when the texts are biological sequences, among them is
pattern matching. However, this problem comes with a twist once we are in the
realm of biology: exact patterns hardly make sense in this case. By ezact above,
we mean identical; and there are in fact at least two types of “non-identical”
patterns one must consider in biology. One comes from looking at what “hides”
behind each letter of the DNA/RNA or protein alphabet while the other corre-
sponds to the more familiar notion of “errors”. The errors concern mutational
events which may affect a molecule during DNA replication. Those of interest
to us are point mutations, that is, mutations operating each time on single let-
ters of a biological sequence: substitution, insertion or deletion. Considering
substitutions only is sometimes enough for dealing with some problems.

There are basically two questions that may be addressed when trying to
search for known or predicted patterns in any text. Both are discussed in
general computational biology books such as Durbin’s et al. [1], Gusfield’s [2],
Meidanis and Setubal’s [3] or Waterman’s [4]. One, rather ancillary, is the
question of position: where are these patterns localized (pattern localization
prediction) 7 The second question, more conceptual, concerns identifying and
modeling the patterns ab initio: what would be a consensual motif for them
(pattern consensus prediction)? In biology, it is often the second question which
is the most interesting although the first is far from being either trivial or solved.
Indeed, in general what is interesting to discover is which patterns, unknown
at start, match the string(s) more often than “expected” and have therefore
a “chance” of representing an interesting biological entity. This entity may
correspond to a binding site, i.e. to a (in general small) part of a molecule that
will interact with another, or it may represent an element that is repeated in
a dispersed or periodic fashion (for instance, tandemly). The role played by a
repetition of whatever type is often unknown: some repeats, in particular small
tandem ones, have been implicated in a number of genetic diseases and are also
interesting for the purposes of studying polymorphism; other types of repeats,
such as short inverted ones, seem to be hotspots for recombination.

We address both kinds of problems (pattern localization prediction and pat-
tern consensus prediction) after having discussed some notions of “non-identity”,
that is, of similarity, that we shall be considering. These are presented in Section
2. We start with the identity, both because it may sometimes be of interest and
because this allows us to introduce some notations that are used throughout the
paper. Such notations are based on those adopted by Karp et al. in a pioneering
paper on finding dispersed exact repeats in a string [5]. From there, it is easy to
derive a definition of similarity based, not on the identity, but on any relation
between the letters of the alphabet for the strings. In particular, this relation
can be, and in general is, non transitive (contrary to equality). This was in-
troduced by Soldano et al. [6]. Finally, definitions of similarity taking errors

(substitutions, insertions and deletions) into account are discussed and the idea
of models is presented. This idea was initially formally defined by Sagot et al.
[7].

We review the pattern localization prediction question in Section 3. Since
many methods used to locate patterns are inspired from algorithms developed
for matching fixed patterns with equality, we state the main results concerning
this problem. Complexity bounds have been intensively studied and are known
with a good accuracy. This is the background for broader methods aimed at
locating approximate patterns. The most widely used approximation is based
on the three alignment operations recalled in Section 2. The general method
designed to match an approximate pattern is an extension of the dynamic pro-
gramming method used for aligning strings. Improving this method has also
been intensively investigated because of the multitude of applications it gener-
ates. The fastest known algorithms are for a specialization of the problem with
weak but extra conditions on the scores of edit operations.

For fixed texts, pattern matching is more efficiently solved by using some
kind of index. Indexes are classical data structures aimed at providing a fast
access to textual databases. As such, they can be considered as abstract data
types or objects. They consist both of data structures to store useful information
and of operations on the data (see Salton [8], or Baeza-Yates and Ribero-Neto
[9]). The structures often memorize a set of keys as is the case of an index at
the end of a technical book. Selecting keys is a difficult question that sometimes
requires human action. In the chapter, we consider full indexes, which contain all
possible factors (segments) of the original text, and we refer to these structures
as factor or suffix structures. These structures help finding repetitions in strings,
search for other regularities, solve approximate matchings, or even match two-
dimensional patterns, to quote a few applications. Additional or deeper analysis
of pattern matching problems may be found in books by Apostolico and Galil
[10], Crochemore and Rytter [11], Gusfield [2], and Stephen [12].

Section 4 deals with the problem of finding repeats, exact or approximate,
dispersed or appearing in a regular fashion along a string. Perhaps the most
interesting work as concerns this area is that of Karp et al. [5] for identifying
exact, dispersed repeats. This is discussed in some detail. Combinatorial algo-
rithms also exist for finding tandem repeats. The most interesting ones are due
to Landau [13] and Kannan and Myers [14], which allows for any error scoring
system, and to Kurtz et al. [15], which uses a suffix tree for locating such re-
peats and comes with a very convenient visualisation tool. In biology, so called
satellites constitute another important type of repetitions. Satellites are tandem
arrays of approximate repeats varying in the number of occurrences between two
and a few millions and in length between two and a few hundreds, sometimes
thousands of letters. Only one combinatorial formulation of the problem has
been given to this date [16], which we describe at some length.

Finally, motif extraction is considered in Section 5. A lot of the initial work
done in this area used a definition of similarity that is based on the relative
entropy of the occurrences of a motif in the considered set of strings. This
produces often good results for relatively small data-sets, and the method has

therefore being continuously improved. Such a definition, however, leads to
exact algorithms that are exponential in the number of strings and heuristics
have therefore to be employed. These do not guarantee optimality, that is, they
do not guarantee that the set of occurrences given as a final solution is the one
having maximal relative entropy. We do not treat such methods in the chapter.
The author is referred to [17] for a survey of these and other methods from the
point of view of biology.

A definition of similarity based on the idea of models (which are objects that
are external to the strings) and of a maximum error rate between such models
and their occurrences in strings can lead to combinatorial algorithms. Some
algorithms in this category are efficient enough to be used for more complex
models. An algorithm for extracting simple models as well as more complex
ones, called structured models, elaborated by Marsan et al. [18] is treated in
some detail.

2 Notions of similarity

2.1 Preliminary definitions

If s is a string of length |s| = n over an alphabet X, that is, s € X", its individual
elements are noted s; for 1 < i < n, so that we have s = s1s5...s,. A non
empty word u € X* is a factor of s if u = s;s;41 ... s; for a given pair (i, j) such
that 1 <4 < j < n. The empty word, denoted by A, is also a factor of s.

2.2 Identity

Although identity is seldom an appropriate notion of similarity to consider when
working with biological objects, it may sometimes be of interest. This is a
straightforward notion we nevertheless define properly as this allows us to in-
troduce some notations that is used throughout the paper.

The identity concerns words in a string and we therefore adopt Karp et al.
[5] identification of such words by their start position in the string. To facilitate
exposition, this and all other notions of similarity are given for words inside a
single string. It is straightforward to adapt them to the case of more than one
string (for instance, by considering the string resulting from the concatenation
of the initial ones with a distinct forbidden symbol separating any two adjacent
strings). Let us note E the identity relation on the alphabet ¥ (the E stands
for “Equivalence”).

Relation E between elements of ¥ may then be extended to a relation Ej
between factors of length k in a string s in the following way:

Definition 2.1 Given a string s € X" and i,j two positions in s such that
1,7 <n—k+1, then:

i Ex j © sip1 E sjqq for alll such that 0 <1< (k—1).

Y E R P Q W
: NS .
F D K C N H
T M

Figure 1: Example of a relation of similarity between the letters of the protein
alphabet (called amino acids).

In other words, iF}j if and only if s;8;41...8i4k-1 = SjSj4+1...8j4k—1. For
each k > 1, Fj establishes an equivalence relation that corresponds to a relation
between occurrences of words of length k in s. This provides a first definition
of similarity between such occurrences. Indeed, each equivalence class of Ej
having cardinality greater than one is the witness of a repetition in s.

2.3 Non transitive relation

When dealing with biological strings, one has to consider that the “letters”
represented by such strings are complex biological objects with physico-chemical
properties, as, for instance, electrical charge, polarity, size, different levels of
acidity, etc. Some, but seldom all, of these properties may be shared by two or
more objects. This applies more to proteins than to DNA/RNA but is true to
some extent for both.

A more realistic relation to establish between the letters of the protein
or DNA/RNA alphabet (respectively called amino acids and nucleotides) would
therefore be reflexive, symmetric but non transitive [6]. An example of such a
relation, noted R, is given below.

Example 1 Let ¥ = {A,C,D,E,F,G,HIK,L,M,N,P,Q,R,S,T,V,W,Y} be the
alphabet of amino acids and R be the relation of similarity between these amino
acids given by the graph given in Figure 1. The mazximal cliques of R are the
sets: {A,S,G}, {A, T}, {LL,V}, {L,M}, {F,Y}, {D,E}, {K,R}, {C}, {P}, {N},
{Qy, {H}, {W}.

It may be represented by a graph whose nodes are the elements of ¥ and
where an edge links two nodes if the elements of ¥ labeling the nodes corre-
spond to biological objects sharing enough physico-chemical properties to be
considered similar.

As previously, the relation R between elements of ¥ may easily be extended
to a relation Ry, between factors of length k in a string s.

Definition 2.2 Given a string s € X" and i,j two positions in s such that
1,7 <n—k+1, then:

i Ry j < siyi R sjy for alll such that 0 <1< (k—1).

For each k > 1, Ry establishes a relation that is no longer an equivalence be-
tween positions (factors of length k) in a string s. The concept that is important
here is that of a (maximal) clique.

Definition 2.3 Given an alphabet ¥ and a non transitive relation on X, a set
C of elements of ¥ is a (mazximal) clique of relation R if for all ., € C, a R
B and for ally € T\ C, C | {7} is not a clique.

Definition 2.4 Given a string s € X", a set C}, of positions in s is a clique of
relation Ry, if for all i,j € Cy, i Ry, j and for alll € [1.n]\ Ck, Cr U {1} is
not a clique.

Cliques of Ry give us then a second way of establishing a definition of simi-
larity between factors of length & in a string.

2.4 Allowing for errors
Introducing the idea of a model

Let us initially assume that the only authorized errors are substitutions. In
view of the definitions established in previous sections, one would be tempted
to define a relation of similarity H between two factors of length k in a string
s, that is, between two positions 7 and j in s, the following way.

Definition 2.5 Given a string s € X" and i,j two positions in s such that
1,7 <n—k+1, then:

7 Hk] f== dZ'StH(Si...Si+k,1, S5) S e

S Sik—1

where dist g (u,v) is the Hamming distance (hence the H) between u and v (that
is, the minimum number of substitutions one has to operate on w in order to
obtain v) and e is a non negative integer that is fized.

Parameter e corresponds to the maximum number of substitutions that are
tolerated. In the same way as in Section 2.3, cliques of Hy provide us with
another possible definition of similarity between factors of length k in a string.

Eevn before trying to consider how to adapt the above definition to the case
of a Levenshtein (or any other type of) distance where insertions and deletions
are permitted besides substitutions (this is not completely trivial: indeed, given
two words u and v respectively starting at positions ¢ and j in s and such that
iLyj, what is the meaning of k7), one may intuitively note that calculating Hy
(and, a fortiori, Ly) is no longer as easy as computing Ej or Rj.

The reason is that, although the definitions given in Sections 2.2 and 2.3
involve pairs of positions in a string s, it is possible to rewrite them in such a
way that, given a position ¢ in s and a length k, it is immediate to determine
to which class or clique(s) i belongs in the sense that the class or clique(s)

can be uniquely identified just by “reading” s;...s;yx—1. Let us consider first
the simpler case of an identity. Straightforwardly, position ¢ belongs to the
class whose label is s;...s;4+x—1. In the case of a non transitive relation R
between letters of ¥, let us name C the set of (maximal) cliques of R and note
cliqueg(a) the cliques of R to which a letter « belongs. Then, position i belongs
to all the sets of Ry whose labels may be spelled from the (regular) expression
cliqueg(s;) . ..cliqueg(s;1r_1) and that are maximal under Ry. Note the small
difference here with the identity relation: maximality of a validly labeled set
has to be checked [6].

No such easy rewriting and verification are possible in the case of the def-
inition of Hj, (or Ly had we already written it) if we wish to build the notion
of similarity between factors in a string upon that of the cliques of Hy. Indeed,
obtaining such cliques needs comparing (a possibly great number of) pairs of
positions between themselves. This is expensive.

One may, however, rewrite the definition of Hj, in a way that refers to labels
as we did above for Fy and Ry, although such labels are no longer as immediately
identifiable. A possible definition (still for the case where substitutions only are
considered) is the following.

Definition 2.6 Given a string s € X" and i, j two different positions in s such
thati,7 <n —k+1, then:

i Hy j < 3m € XF such that disty (m,s; ...8i45 1) < € and
dZ'StH(m,S]' PN S]‘+k,1) S (&

where disty(u,v) and e are as before.
Generalizing this, gives the following definition.

Definition 2.7 A set Sj of positions in s represents a set of factors in s of
length k that are all similar between themselves if, and only if, there exists (at
least) a string m € XF such that, for all elements i in Sy, disty (m,s; ... Sith-1)
< e and, for all j € [1.n]\ Sk, distg (m,s;...Sitk—1) > €.

Observe that extension of both definitions to a Levenshtein distance becomes
now straightforward. We reproduce below, after modification, just the last
definition.

Definition 2.8 A set Sy of positions in s represents a set of factors of length
k that are similar if, and only if, there exists (at least) a string m € ¥* such
that, for all elements i in Sy, distr,(m,s;...) < e and, for all j € [1..n]\ Sk,
distr,(m,s;...) > e.

Since the length of an occurrence of a model m may now be different from
that of m itself (it varies between |m| — e and |m|+ e) we denote the occurrence
by (s;...) leaving indefinite its right-end point.

Observe also that it remains possible, given a position ¢ in s and a length k,
to obtain the label of the group(s) of the relation Hy, (or L) i belongs to. Such

labels are represented by all strings m € %* such that distg(or distr)(m,s; .. .)
< e, that is, such that their distance from the word starting at position i in s
is no more than e.

We call models such group labels. Positions in s indicating the start of a
factor of length k are e-occurrences (or simply occurrences where there is no
ambiguity) of a model m if dist(m,s;...) < e where dist is either the Hamming
or Levenshtein distance. Observe that a model m may have no exact occurrence
in s.

Finally, we have considered so far what is called a “unitary cost distance”
(unitary because the cost of each operation, substitution, insertion or deletion,
is one unit). We could have used instead a “weighted cost distance”, that is,
we could have used any cost for each operation, in the range of integers or real
numbers.

Expanding on the idea of models — Two more possible definitions of
similarity

Non transitive relation and errors Models allow us to considerably enrich
the notion of conservation. For instance, it enables us to simultaneously consider
a non relative transition between the letters of the alphabet (amino acids or
nucleotides) and the possibility of errors. In order to do that, it suffices to
permit, the model to be written over an extended alphabet composed of a subset,
of the set of all subsets of ¥ (noted P(X)) where ¥ is the alphabet of amino
acids or nucleotides. Such an alphabet can be, for instance, one defined by the
maximal cliques of the relation R given in Figure 1. Definition 2.8 of Section 2.4
then becomes:

Definition 2.9 A set Sy of positions in s represents a set of factors of length
k that are all similar between themselves if, and only if, there exists (at least)
one element M € P* with P C P(X) such that, for all elements i in Sy,
setdist(M,s;...) < e and, for all j € [1.n]\ Sk, setdist(M,s;...) > e, where
setdist(M,v) for M € P and u € ¥ is the minimum Hamming or Levenshtein
distance between v and all u € M.

Among the subsets allowed in P, the alphabet of models, may be {X} itself,
that is the wild card. Tt is obvious that this may lead to trivial models. Alphabet
P may then come with weights attached to each of its elements indicating how
many times (possibly infinite) it may appear in an interesting model. Observe
that another way of describing the alphabet P of models is as the set of edges
of a (possibly weighted) hypergraph whose nodes are the elements of X.

When e is zero, we obtain a definition of similarity between factors in the
string that closely resembles that given in Section 2.3. Note however that, given
two models M; and Ms, we may well have that the set of occurrences of My is
included in that of Ms. The cliques of Definition 2.4 correspond to the sets of
occurrences that are maximal.

A word instead of symbol-based similarity FErrors between a group of
similar words and the model of which they are occurrences can either be counted
as unitary events (possibly with different weights) as was done in the previous
sections, or they can be given a score. The main idea behind scoring a resem-
blance between two objects is that it allows to average the differences that may
exist between them. It may thus provide a more flexible function for measuring
the similarity between words. A simple example illustrates this point.

Example 2 Let ¥ = {A,B,C} and:

score(i, 1) =1, Vielx;
score(A,B) = score(B,A) =-1;
score(A,C) = score(C,A) = -1;
score(B,C) = score(C,B) = -1.

If we say that 2 words are similar either if:

- the number of substitutions between them is < 1,

- their score is > 1,
then by the first criterion the words AABAB and AACCB are not similar, while
by the second criterion they are, the second substitution being allowed because
the two words on the average share enough resemblance.

In the example and in the definition of similarity introduced in this section,
gaps are not allowed, only substitutions are. This is done essentially for the
sake of clarity. Gaps may, however, be authorized, the reader is referred to [19]
for details.

Let a numerical matrix M of size | ¥ | x | £ | be given such that:

M(a,b) = score between a and b for all a, b € X.

If this score measures a similarity between a and b, we talk of a similarity matrix
(two well-known examples of which in biology are PAM250 [20] and BLOSUM62
[21]), while if the score measures a dissimilarity between a and b we talk of a
dissimilarity matrix. A special case of this latter matrix is when the dissimilarity
measure is a metric, that is when the scores obey, among other conditions, the
triangular inequality. In that situation, we talk of a distance matrix (an example
of which is the matrix proposed by J.-L. Risler [22]).
In what follows, we consider that M is a similarity matrix.

Definition 2.10 Given u = ujus...ux € ¥, m = mima..my € ¥ a model of
length k and M a matriz, we note:

k
scorep(u,m) = Z M(u;, my).

i=1

Definition 2.11 A set Sy, of positions in s represents a set of factors of length
k that are similar if, and only if, given w a positive integer such that w < k and
t a threshold value:

1. there exists (at least) one element m € X such that, for all elements i in S
and for all j € {1,...,| m | —w+1}, scorep(mj..mjtw_1, Si---Sitw—1) > t;

2. for alli € [1..n]\ Sk, there exists at least one j € {1,....| m | —w+ 1} such
that scorea (mj...mj w1, Si...Sitw-1) < t.

An example is given below.

Example 3 Let ¥ = {A,B,C}, w = 3 and t = 6. Let M be the following
matriz:

A
B
C

NQQ

S|~ ol
NwNm

o

Given the three strings:

sl = ABCBBABBBACABACBBBAB

s2 = CABACAACBACCABCACCACCC

$3 = BBBACACCABABACABACABA
then the longest model that is present in all strings is CACACACC (at positions
9, 1 and 12 respectively).

3 Motif localization

We review in this section the main results and combinatorial methods used
to locate patterns in strings. The problem is of main importance for several
reasons. From a theoretical point of view, it is a paradigm for the design of
efficient algorithms. From a practical point of view, the algorithms developed
in this chapter often serve as basic components in string facility software. In
particular, some techniques are used for the extraction of unknown motifs.

We consider two instances of the question, depending on whether the motif is
fixed or the string is fixed. In the first case, preprocessing the pattern accelerates
the search for it in any string. Searching a fixed string is made faster if a kind of
index on it is preprocessed. At the end of the section, we sketch how to search
structural motifs for the identification of tRNAmotifs in biological sequences.

3.1 Searching for a fixed motif

String searching or string matching is the problem of locating all the occur-
rences of a string x of length p, called the pattern, in another string s of length
n, called the sequence or the text. The algorithmic complexity of the prob-
lem is analyzed by means of standard measures: running time and amount of
memory space required by the computations. This section deals with solutions
in which the pattern is assumed to be fixed. There are mainly three kinds of
methods to solve the problem: sequential methods (simulating a finite automa-
ton), practically-fast methods, and time-space optimal methods. Methods that

10

search for occurrences of approximate patterns are discussed in the next subsec-
tion. Alternative solutions based on a preprocessing of the text are described
in a following subsection.

Efficient algorithms for the problem have a running time that is linear in the
size of the input (i.e. O(n +p)). Most algorithms require an additional amount
of memory space that is linear in the size of the pattern (i.e. O(p)). Information
stored in this space is computed during the preprocessing phase, and later used
during the search phase. The time spent during the search phase is particularly
important. The number of comparisons made and the number of inspections
executed have therefore been evaluated with great care. For most algorithms,
the maximum number of comparisons (or number of inspections) made during
the execution of the search is less than 2n. The minimum number of comparison
necessary is |n/p|, and some algorithms reach that bound in ideal situations.

The complexity of the string searching problem is given by the following the-
orem due to Galil and Seiferas (1983). The proof is based on space-economical
methods that are outside the scope of this chapter (see [11], for example). Linear
time is however met by many other algorithms. Note that in the “O” notation,
coefficients are independent of the alphabet size.

Theorem 1 The string searching problem, locating all occurrences of a pattern
x in a text s, can be solved in linear time, O(|s| + |z|), with a constant amount
of additional memory space.

The average running time of the search phase is sometimes considered as
more significant than the worst-case time complexity. Despite the fact that it
is usually difficult to model the probability distribution of specific texts, results
for a few algorithms (with a hypothesis on what “average” means) are known.
Equiprobability of symbols and independence between their occurrences in texts
represent a common hypothesis used in this context and gives the next result
(Yao, 1979). Although the hypothesis is too strong, the result reflects the actual
running time of algorithms based on the method described below. In addition,
it is rather simple to design a string searching algorithm working in this time
span.

Theorem 2 Searching a text of length n for a preprocessed pattern of length p
can be done in optimal expected time O(h’% X n).

String searching algorithms can be classified into three classes. In the first
class, the text is searched sequentially, one symbol at a time from beginning
to end. Thus all symbols of the text (except perhaps p — 1 of them at the
end) are inspected. Algorithms simulate a recognition process using a finite
automaton. The second class contains algorithms that are practically fast. The
time complexity of the search phase can even be sublinear, under the assumption
that both the text and the pattern reside in main memory. Algorithms from the
first two classes usually require O(p) extra memory space to work. Algorithms
from the third class show that the additional space can be reduced to a few

11

integers stored in a constant amount of memory space. Their interest is mainly
theoretical so far.

The above classification can be somehow refined by considering the way the
search phases of algorithms are designed. It is convenient to consider that the
text is examined through a window. The window is assimilated to the segment
of the text it contains and it has usually the length of the pattern. It runs
along the text from beginning to end. This scheme is called the sliding window
strategy and is described below. It uses a scan-and-shift mechanism.

1. put window at the beginning of text;

2. while window on text do

3. scan: if window = pattern then report it;

4 shift: shift window to the right and

5 memorize some information for use during next scans and shifts;

During the search, the window on the text is periodically shifted to the
right according to rules that are specific to each algorithm. When the window
is placed at a certain position on the text, the algorithm checks whether the
pattern occurs there, i.e., if the pattern equals the content of the window.
This is the scan operation during which the algorithm acquires from the text
information that is often used to determine the next shift of the window. Part
of the information can also be kept in memory after the shift operation. This
information is then used for two purposes: first, saving time during the next
scan operations, and, second, increasing the length of further shifts. Thus, the
algorithms operate a series of alternate scans and shifts.

A naive implementation of the scan-and-shift scheme (no memorization, and
uniform shift of length 1) leads to a searching algorithm running in maximum
time O(p X n); the expected number of comparisons is 4n/3 on a four-letter
alphabet. This performance is quite poor as compared to preceding results.

Practically fast searches

We describe a string searching strategy that is considered as the fastest in prac-
tice. Derived algorithms apply when both the text and the pattern reside in
main memory. We thus do not take into account the time to read them. Under
this assumption, some algorithms have a sublinear behavior. The common fea-
ture of these algorithms is that they scan the window in the reverse direction
(from right to left).

The classical string searching algorithm that scans the window in reverse
direction is the BM algorithm (Boyer and Moore, 1977). At a given position in
the text, the algorithm first identifies the longest common suffix u of the window
and the pattern. A match is reported if it equals the pattern. After that, the
algorithm shifts the window to the right. Shifts are done in such a way that
the occurrence of u in the text remains aligned with an equal segment of the
pattern, and are often called match shifts. The length of the shift is determined
by what is called the displacement of u inside z, and denoted by d(u). A sketch
of the BM algorithm is displayed below.

12

while window on text do
u := longest common suffix of window and pattern;
if u = pattern then report a match;
shift window d(u) places to the right;

==

The function d depends only on the pattern z so that it can be precomputed
before the search starts. In the BM algorithm, an additional heuristics on mis-
match symbols of the text is also usually used. This yields another displacement,
function used in conjunction with d. It is a general method that may improve
almost all algorithms in certain real situations.

The BM algorithm is memoryless in the sense that, after a shift, it starts
scanning the window from scratch. No information about previous matches
is kept in memory. When the algorithm is applied to find all occurrences of
AP inside A", the search time becomes proportional to p x n. The reason for
the quadratic behavior is that no memory is used at all. It is, however, very
surprising that BM algorithm turns out to be linear when the search is limited
to the first occurrence of the pattern. By the way, the original algorithm has
been designed for that purpose. Only very periodic patterns may increase the
search time to a quadratic quantity, as shown by the next theorem (Cole, 1990).
The bound it gives is the best possible. Only a modified version of the BM
algorithm can therefore make less than 2n symbol comparisons at search time.

Theorem 3 Assume that pattern x satisfies period(x) > |z|/2. Then, the BM
searching algorithm performs at most 3|s| — |s|/|z| symbol comparisons.

The theorem also suggests that only little information about configurations
encountered during the process has to be kept in memory in order to get a
linear time search for any kind of patterns. This is achieved, for instance,
if prefix memorization is performed each time an occurrence of the pattern is
found. However, this is also achieved with a better bound by an algorithm called
TurBO_BM. This modification of the BM algorithm forgets all the history of
the search, except for the most recent one. Analysis becomes simpler, and the
maximum number of comparisons at search phase becomes less than 2n.

Searching simultaneously for several (a finite number of) patterns can be
done more efficiently than searching for them one at a time. The natural pro-
cedure takes an automaton as pattern. It is an extension of the single-pattern
searching algorithms based on the simulation of an automaton. The standard
solution is from Aho and Corasick [23].

3.2 Approximate matchings

The search for approximate matchings of a fixed pattern produces the position in
the text s of an approximation of the pattern z. Searching texts for approximate
matchings is usually done by methods derived from the exact string searching
problem described above. They either include an exact string matching as
an internal procedure or they transcribe a corresponding algorithm. The two
classical ways to model approximate patterns consist in assuming that a special

13

symbol can match any other symbol, or that operations to transform a pattern
into another are possible.

In the first instance we have, in addition to the symbols of the input al-
phabet 3, a wild card (also called a don’t care symbol) ¢ with the property
that ¢ matches any other character in ¥. This gives rise to variants of the
string searching problem where, in principle, ¢ appears (i) only in the pattern,
(ii) only in the text, or (iii) both in the pattern and the text. Variant (i) is
solved by an adaptation of the multiple string matching and of the pattern-
matching automaton of Aho and Corasick [23]. For other variants, a landmark
solution is by Fischer and Paterson [24]. They transpose the string searching
problem into an integer multiplication problem, thereby obtaining a number of
interesting algorithms. This observation brings string searching into the fam-
ily of boolean, polynomial and integer multiplication problems and leads to an
O(nlog ploglogp) time solution in the presence of wild cards (provided that the
size of ¥ is fixed).

The central notion for comparing strings is based on three basic edit oper-
ations on strings introduced in Section 2. It may be assumed that each edit
operation has an associated nonnegative real number representing the cost of
that operation, so that the cost of deleting from w an occurrence of symbol
a is denoted by D(a), the cost of inserting some symbol a between any two
consecutive positions of w is denoted by I(a) and the cost of substituting some
occurrence of a in w with an occurrence of b is denoted by S(a,b).

The string editing problem for input strings x and s consists in finding a
sequence of edit operations, or edit script, I' of minimum cost that transforms x
into s. The cost of ' is the edit distance between x and s (it is a mathematical
distance under some extra hypotheses on operation costs). Edit distances where
individual operations are assigned unit costs occupy a special place.

It is not difficult to see that the general problem of edit distance computation
can be solved by an algorithm running in O(p X n) time and space through
dynamic programming. Due to the widespread application of the problem,
however, such a solution and a few basic variants were discovered and published
in an extensive literature. The reader can refer to Apostolico and Giancarlo
(1998) [25], or to [10] for a deeper exposition of the question.

The computation of edit distances by dynamic programming is readily set
up. For this, let C(i,5) (0 < i < |s|] and 0 < j < |z|) be the minimum
cost of transforming the prefix of s of length ¢ into the prefix of x of length
j. Then C(0,0) =0, C(i,0) = C(i — 1,0) + D(s;) (i = 1,2,...,|s]), C(0,5) =
C0,j—1)+I(z;) (j=1,2,..,|z]), and C(i, j) equals

min{C(i — 1,j — 1) + S(ss,2;), C(i —1,5) + D(s:), Ci,j — 1) + I(z;)}

for all 4,7, (1 <4 <|s[, 1 < j < |z|). Observe that, of all entries of the C-
matrix, only the three entries C(i — 1,5 — 1), C'(i — 1,j), and C(i,5 — 1) are
involved in the computation of the final value of C'(i, 7). Hence C(i,j) can be
evaluated row-by-row or column-by-column in ©(|s| x |z]) = O(p x n) time.
An optimal edit script can be retrieved at the end by backtracking through the

local decisions made by the algorithm.

14

A few important problems are special cases of string editing, including the
computation of a longest common subsequence, local alignment, i.e., the de-
tection of local similarities in strings, and some important variants of string
searching with errors, or searching for occurrences of approximate patterns in
texts.

String Searching with differences

Consider the problem of computing, for every position of the textstring s, the
best edit distance achievable between z and a substring w of s ending at that
position. Under the unit cost criterion, a solution is readily derived from the
recurrence for string editing given above. The first obvious change consists in
setting all costs to 1 except that S(z;,s;) = 0 for z; = s;. We thus have now,
for all i,j, (1< i< [a],1<j < s]),

S(i,j) =min{S(i—1,j—1)+1, SGi—1,§)+1, S@i,j— 1)+ 1}.

A second change affects the initial conditions, so that we have now S(0,0) =
0, S(i,0) =i (i =1,2,...,p), S(0,5) =0 (j = 1,2,...,n). This has the effect of
setting to zero the cost of prefixing x by any prefix of s. In other words, any
prefix of the text can be skipped at no cost in an optimum edit script.

The computation of S is then performed in much the same way as indicated
in table C' above, thus taking ©(|z| x |s|) = O(p X n) time. We are interested
now in the entire last row of matrix S.

In practice, it is often more interesting to locate only those segments of s that
present a high similarity with 2 under the adopted measure. Formally, given
a pattern z, a text s, and an integer e, this restricted version of the problem
consists in locating all terminal positions of substrings w of s such that the edit
distance between w and z is at most e. The recurrence given above will clearly
produce this information. However, there are more efficient methods to deal
with this restricted case. In fact, a time complexity O(e x n) and even sublinear
expected time are achievable. We refer to, e.g., [10, 11] for detailed discussions.
In the following, we review some of the basic principles behind an O(e x n)
algorithm for string searching with e differences due to Landau and Vishkin
(1986). Note that when e is a constant the corresponding time complexity then
becomes linear.

It is essential here that edit operations have unitary costs. Matrix S has an
interesting property that is intensively used to get the O(e X n) running time:
its values are in increasing order along diagonals, and consecutive values on a
same line or a same column differ by at most one unit (see Figure 2).

Because of the monotonicity property on diagonals and unitary costs, the
interesting positions on diagonals are those corresponding to a strict incrementa-
tion. Computing these values only produces a fast computation in time O(exn).
This is possible if queries on longest common prefixes, as suggested in Figure 2,
are answered in constant time. This, in turn, is possible because strings can be
preprocessed in order to get this time bound.

15

R -1 01 2 3 4 5 6 7 8 9 10 11
C A G A T A A G A G A A

-1 0O o0 0 0 0O 0o 0 0 O

0 G| 1 11 0 1 1 1 1 0

1 A 11 0 1 1 1 1 O

2 T 1 0 1 1 1

3 A 1 0 1 1

4 A 1 1 1

Figure 2: Simulation of fast searching for approximate matchings. Searching
y = CAGATAAGAGAA for z = GATAA with at most one difference. Pattern x
occurs at right positions 6 on y without errors (since R[4,6] = 0), and at right
positions 5, 7 et 11 with one error (since R[4, 5] = R[4,7] = R[4,11] = 1). After
initialization, values are computed diagonalwise, value 0 during the first step
and value 1 during the second step. Value R[4,6] = 0 comes from the fact
that GATAA is the longest common prefix of z and y[2..11]. And, as a second
example, R[4,11] = 1 because AA is the longest common prefix of z[3..4] and
y[10..11]. When queries related to longest common prefixes are answered in
constant time the running time is proportional to bold values in the table.

To do so, we consider the suffix tree (see section 3.3 below), A (Suff(2)), of
z = z8s where § ¢ alph(s). String w = LCP(z[¢+1..p—1],s[d+{+1..n—1])is
also LCP(z[f+1..p—1]8s,s[d+{+1..n—1]) because § ¢ alph(s). Let f and g
be the nodes of A (Suff (z)) associated with strings z[¢+1..p—1]$s and s[d+£+
1..n —1]. Their common prefix of maximal length is then the label of the path
in the suffix tree starting at the root and ending at the lowest common ancestor
of f and g. Longest common prefix queries are thus transformed into lowest
common ancestor queries that are answered in constant time by an algorithm
due to Harel and Tarjan (1984) [26], simplified later by Schieber and Vishkin
(1988) [27]. The consequence of the above discussion is the next theorem.

Theorem 4 On a fized alphabet, after preprocessing x and s, searching s for
occurrences of x with at most e differences can be solved in time O(e x |s]).

In applications to massive data, even a O(e X n) time may be prohibitive. By
using filtration methods, it is possible to set up sublinear expected time queries.
One possibility is to first look for regions with exact replicas of some pattern
segment and then scrutinize those regions. Another possibility is to look for
segments of the text that are within a small distance of some fixed segments of
the pattern. Some of the current top performing software for molecular database
searches are engineered around these ideas [28, 29, 30, 31]. A survey may be
found in [32].

16

Figure 3: Suffix trie of ababbb.

3.3 Indexing

Full indexes are designed to solve the pattern matching problem, searching s for
occurrences of x, when the text s is fixed. Having a static text allows to build
a data structure to which the queries are applied. Efficient solutions require a
preprocessing time O([s|) and need O(|z|) searching time for each query.

Full indexes store the set of factors of the text s. Since factors are begin-
nings of suffixes of s, this is equivalent to storing all suffixes of the text. Basic
operations on the index are: find if pattern x occurs in s, give the number of
occurrences of x in s, and list all positions of these occurrences. But many other
operations admit fast solutions through the use of indexes.

Indexes are commonly implemented by suffix trees, suffix automata (also
called suffix DAWG’s, Directed Acyclic Word Graphs), or suffix arrays. The
latter structure realizes a binary search in the ordered list of suffixes of the text.
The former structures are described in the remaining of the section.

Suffixes of s can be stored in a digital tree called the suffix trie of s. It is
an automaton whose underlying graph is a tree. Branches are labeled by all the
suffixes of s. More precisely, the automaton accepts Suff (s) the set of suffixes
of s. A terminal state outputs the position of its corresponding suffix. Figure 3
displays the suffix trie of s = ababbb.

Compaction The size of a suffix trie can be quadratic in the length of s, even
if pending paths are pruned (it is the case with the word a*bFa*b*, k € N).
To cope with this problem, another structure is considered. It is the compacted
version of the trie, called the suffix tree, and noted ST (s). It keeps from the trie
states that are either terminal states or forks (nodes with outdegree greater than
1). Removing other nodes leads to label arcs with words that are non-empty
segments of s (see Figure 4).

It is fairly straightforward to see that the number of nodes of ST(s) is no
more than 2n (if n > 0), because non-terminal internal nodes have at least

17

Figure 5: Compaction of the suffix trie of Figure 3: implementation of the suffix
tree of ababbb of Figure 4 in which labels of arcs are represented by pairs of
integers.

two children, and there are at most n external nodes. However, if the labels
of arcs are stored explicitly, again the implementation can have quadratic size.
The technical solution is to represent labels by pairs of integers in the form
(position, length) and to keep in main memory both the tree ST(s) and the
textstring s (see Figure 5). The whole process yields a compacted version of the
trie of suffixes that has linear size.

Minimization Another way of reducing the size of the suffix trie is to min-
imize it like an automaton. We then get what is called the suffix automaton
SA(s), which is the minimal automaton accepting Suff(s). It is also called
(suffix) DAWG’s. The automaton can even be further slightly reduced by min-
imization if all states are made terminal, thus producing the factor automaton
of the text.

18

Figure 6: Suffix automaton of ababbb: minimal deterministic automaton ac-
cepting Suff(s).

Certainly the most surprising property of suffix automata, discovered by
Blumer et al. (1983), is the linear size of the automaton. More accurately, it
satisfies the inequalities:

|s] + 1 < #states < 2|s|] — 1,

|s| < Ftarcs < 3|s| — 4.

Efficient constructions The construction of suffix structures can be car-
ried on in linear time. Indeed, running times depend on the implementation
of the structures, and mainly on that of the transition function. If arcs are
implemented by sets of successors, transitions are done by symbol comparisons,
which leads to a O(|s| log card ¥) construction time within O(]s|) memory space.
This is the solution to choose for unbounded alphabets. If arcs are realized
by a transition table which assumes that the alphabet is fixed, transitions are
done by table lookups and the construction time becomes O(|s]) using how-
ever O(|s|card ¥) memory space. These two techniques are referred to as the
comparison model and the branching model respectively.

Classical algorithms that build suffix trees are by Weiner [33], McCreight

[34], and Ukkonen [29]. The latter algorithm is the only one to process the text
in a strictly online manner. DAWG construction was first designed by Blumer
et al. and later extended to suffix and factor automata (see [35] and [36]).

To complete this section, we compare the complexities of the above struc-
tures to the suffix array designed by Manber and Myers [37]. A preliminary
version of the same idea appears in the PAT system of Gonnet et al. [38]. A
suffix array is an alternative implementation of the set of suffixes of a text.
It consists both of a table storing the permutation of suffixes in lexicographic
order, and of a table storing the maximal lengths of common prefixes between
pairs of suffixes (LCP table). Access to the set of suffixes is managed via a
binary search with the help of the LCP table. Storage space is obviously O(|s|),
access time is only O(p + log|s|) to locate a pattern of length p (it would be
O(p x log |s]) without the LCP table). Efficient preprocessing is the most diffi-
cult part of the entire implementation, it takes O(|s|log|s|) time although the
total size of suffixes is O(|s|?).

19

Figure 7: Compact suffix automaton of ababbb with explicit labels on arcs.

(4,2)

(2,4)

o'| Ot

Figure 8: Compact suffix automaton of ababbb. It is the compacted version of
SA(s) and the minimized version of ST(s). Labels of arcs are represented by
pairs of integers as in the suffix tree, see Figure 5.

Efficient storage Among the many implementations of suffix structures, we
can mention the notion of sparse suffix trees due to Kéirkkéinen and Ukkonen [39]
which considers a reduced set of suffixes, the suffix cactus due to Karkkéinen
[40], who degenerates the suffix tree structure without increasing too much
the access time, and the version dedicated to external memory (SB-trees) by
Ferragina and Grossi [41], but several other variations exist (see [42] and [43]
for example).

An excellent solution to save on the size of suffix structures is to simultane-
ously compact and minimize the suffix trie. Compaction and minimization are
commutative operations, and when both are applied, they yield the compact
suffix automaton, denoted by CSA(s). Figures 7 and 8 display an example of
compact suffix automaton. The direct construction of the compact suffix au-
tomaton CSA(s) is possible without building first the suffix automaton SA(s)
nor the suffix tree (see [44]). It can be realized with the same time and space
as that of other structures.

Table 1 gives an idea of the minimum and maximum sizes of suffix structures
(in the comparison model). The average analysis of suffix automata, including
their compact version, was done by Blumer et al. [45] and later completed by
Raffinot [46].

The size of an implementation of the above structures is often evaluated by

3

20

Text of Number of states Number of arcs
length n min max min max
Suffix trie n+1 O(n?) 2n O(n?)
Suffix Tree n+1 2n + 2 n 2n + 1
Suffix Automaton n+1 2n — 1 n 3n—4
Compact SA 2 n+1 n 2n — 2

Table 1: Compared sizes of suffix structures.

the average number of bytes necessary to store one letter of the original text. It
is commonly admitted that these ratios are 4 for suffix arrays, 9 to 11 for suffix
trees and slightly more for suffix automata, provided the text is not too large
(of the order of a few megabytes).

Kurtz [47] provides several implementations of suffix trees having this per-
formance. Holub [48] designs an implementation of compact suffix automata
having ratio 5, a result that is extremely good compared to the space for a suf-
fix array. Recently, Balik [49] gives an implementation of another type of suffix
DAWG, whose ratio is only 4 and sometimes even less.

Indexing for approximate matchings Though approximate pattern match-
ing is much more important than exact string matching for treating real se-
quences, it is quite surprising that no specific data structure exists for this
purpose. Therefore, indexing strategies for approximate pattern matching use
the data structures presented above and adapt the search procedure. This one
is then based on the next result.

Lemma 1 If x and s match with at most e differences, then © and s must have
at least one identical substring of length r = |maz{|z|,|s|}/(e + 1)].

An original solution has been proposed by Manber and Baeza-Yates [50] who
considered the case where the pattern embeds a string of at most e wild cards,
i.e., has the form = = u¢’v, where i < e, u,v € £* and |u| < p for some given e
and m. Their algorithm is off-line (on the text) in the sense that the text s is
preprocessed to build the suffix array associated with it. This operation costs
O(nlog|X]) time in the worst case. Once this is done, the problem reduces to
one of efficient implementation of 2-dimensional orthogonal range queries.

Some other solutions preprocess the text to extract its g-grams or g-samples.
These, possibly their neighbors up to some distance, are memorized in a straight-
forward data structure. This is the strategy used, for example, by the two
famous programs, FastA and BLAST, which makes them run fairly fast.

There is a survey on this aspect of indexing techniques by Navarro [51].

21

3.4 Structural motifs

Real motifs in biological sequences are often not just simple strings. They are
sometimes composed of several strings that come in organized fashion along
the sequence at bounded distances from one another. Possible variations of
bases can be synthetized by regular expressions. There exist efficient methods
allowing to locate motifs described in this manner.

Motifs can also be repetitions of a single seed (tandem repeats) or (biological)
palindromes, again with possible variations on individual bases. Palindromes
for instance represent the basic elements of the secondary structures of RNA
sequences. Contrary to the previous type of motifs, a regular expression cannot
deal with repetitions and palindromes (at least if there is no assumption on their
length).

A typical problem one may wish to address concerns the localization of
tRNAsin DNA sequences. It is an instance of a wider problem which is related to
the identification of functional regions in genomic sequences. The problem is to
find all positions of potential tRNAsin a sequence, given a model obtained from
an alignment of experimentally identified tRNAs.

There are basically two approaches to solve the question: one consists of a
general-purpose method integrating searching and folding, the other consists of
a self-contained method specifically designed for tRNAs. The latter produces
more accurate results and faster programs. This is really needed to explore
complete genomes. We briefly describe the strategy implemented by the pro-
gram FAStRNA of El Mabrouk and Lisacek (see [52] for more information on
other solutions), an algorithmical improvement on the tRNAscan algorithm by
Fichant and Burks (1991).

FAStRNA depends on two main characteristics of tRNAs(at least of the
tRNAsin the training set used by the authors): the relative invariance of some
nucleotides in two highly conserved regions forming the TWC' and D signals;
the cloverleaf structure composed of four stems and three loops (see Figure 9).

In a preliminary step, the program analyzes the training set to build con-
sensus matrices on nucleotides. This provides the invariant bases of the TW(C
and D regions used to localize the two signals. After discovering a signal, the
program tries to fold the stem around it. Other foldings are performed to com-
plete the test for the current position in the DNA sequence. Various parameters
help tuning the program to increase its accuracy, and an appropriate hierarchy
of searching operations enables to decrease the running time of the program.

The built-in strategy produces a very low rate of false positives and false
negatives. Essentially, it fails for tRNAscontaining a very long intron. Searching
for signals is implemented by a fast approximate matching procedure of the
type described above, and folding corresponds to doing an alignment as pre-
sented earlier. The program runs 500 times faster than previous tRNAsearching
programs.

22

Aminoacyl stem ——p-

D loop D stem stem TYC loop

RN T
O@OOOOCBOO %DC
C<_1

Anticodon stem ——- %

Anticodon loop —»

oo O
T 1

Anticodon

Variable loop

Figure 9: Cloverleaf secondary structure of a tRNA.

23

4 Repeated motifs identification

4.1 Exact repetitions
General algorithms

One of the first methods enabling to discover exact repetitions in strings has
been designed by Karp, Miller and Rosenberg [5]. Their algorithm (hencefor-
ward called KMR) runs in O(nlogn) on a string of length n but can not find
all repetitions. However, various solutions based on closely related ideas have
been proposed by Crochemore [53], Apostolico and Preparata [54], and Main
and Lorentz [55]. They all take O(nlogn) time, and any algorithm that lists
all occurrences of squares, or even maximal repetitions in a string, takes at
least Q(nlogn) time because, for example, Fibonacci words contain that many
occurrences of repetitions (see [53]).

A more specific question arises when one considers the problem of detecting
and locating the squares (words of the form wu, for a non-empty string u)
that possibly occur within a given string of length n. The lower bound for
testing squarefreeness of a string is also Q(nlogn) on general alphabets (see
[55]). However, on a fixed alphabet ¥ the problem of testing an occurrence of
a square can be done in O(nlog|X|), which implies linear-time algorithms if
the size of the alphabet is fixed (see [11]). Recently, Kolpakov and Kucherov
[56] proposed a linear-time algorithm to compute all the distinct segments of a
string that are repetitive. A solution based on the use of a suffix tree is due to
Stoye and Gusfield [57].

In the next section, we describe in some detail the KMR. algorithm. Although
this is not the most efficient method for finding all exact repeats, it is a very
elegant algorithm and, more importantly, it allows for an easy generalization to
more flexible types of repeats.

A powerful algorithm for identifying dispersed exact repeats — KMR

The original algorithm Given a string s, KMR solves the following prob-
lems.

Problem 4.1 Identify the positions of all factors of a fixed length k that appear
repeated in s.

Problem 4.2 Find the length k... of the longest repeated factor in s, and solve
problem 4.1 for k = k-

KMR rests on the definition of an equivalence relation given in section 2.2.
Problem 4.1 and the second part of problem 4.2 can then be formulated as
the problem of finding the partition associated with Ej. Problem 4.2 further
requires finding the maximum value of £ such that Fj, is not the identity. The
algorithm is based on an iterative construction of partitions E; for [< k. The
mechanism for performing such constructions rests on the following lemma.

24

Lemma 4.1 Given a,b > 1 two integers with b < a, and i,j two different
positions in s such that i,j <n — (a+b)+ 1, then:

i Bayy j & i Ey j and (i +b) E, (j +b).

The main idea behind the KMR algorithm is to use the lemma with a = b for
as long as possible. The lemma is consequently called the doubling lemma. This
means finding repeats of length 2a by using previously acquired information on
the repeats of length a that may become the prefixes and suffixes of those of
length 2a. If we are dealing with problem 4.1, and if &k is not a power of 2, we
then use the lemma with b < a in a last step in order to obtain Ej. If we are
treating problem 4.2, we may need more than one step to find the value of k42
such that Ej is not the identity but Fy, . ., is. The search for k., from
the smallest power of two that is bigger than k.., let us say it is 2P, can be
done by applying the lemma with b < a in a binary search fashion between 2P~!
and 27,

Building the partitions E, basically corresponds to performing a set inter-
section operation. The intersections may be implemented using, for instance,
stacks. More precisely, we need an array V, of size n which stores, for each
position i in s, the label of the class of E, to which the a-long factor starting
at i belongs. The lemma is applied by means of two arrays of stacks P and Q.
Stacks in P are filled by traversing V,. Such stacks are in fact a dual of V,. Each
one corresponds to a class ¢ of E, and contains the positions i in s belonging
to ¢. Array P serves therefore to sort the prefixes of length a of the repeats
of length 2a one is trying to identify. The content of each stack of P in turn
is then poured into the appropriate stack of). A division separates, within a
same stack of), elements coming from different stacks of P. Like P, array)
has as many stacks as there are classes in E,. It serves to sort the suffixes of
length also a of the repeats of length 2a. One then just needs to orderly pour
@ into V5, the obtain the classes of Es,, checking the quorum as one goes.

As mentioned, KMR time complexity is O(nlogk). When solving prob-
lem 4.2, this leads to an O(nlogn) complexity because of possible degenerate
cases (such as that of a string s composed of a single letter). KMR space
complexity is O(n).

mam

Non-transitive relations without errors KMR may be adapted to deal
with a non transitive relation R [6]. The problems solved are the same as for
KMR.

Lemma 4.1 applies analogously, except that one just needs to substitute
relation F by R.

Lemma 4.2 Given a,b > 1 two integers with b < a, and 1,j two different
positions in s such that i,j <n — (a+b)+ 1, then

i Rotp j & i Ry j and (i +b) Ry (j +).

25

Computing relations R, for | < k requires the same structures as for KMR,
except that, as we saw, a set of positions pairwise-related by R; is no longer an
equivalence class but a clique. The algorithm was in consequence called KMRC
(the “C” standing for Clique) [6]. In particular, a position may belong to two or
more distinct cliques of R;. Array V; must now therefore be an array of stacks,
like P and @. It indicates, for each cell i corresponding to a position in s, the
cliques of relation R; to which i belongs.

The construction itself follows the same schema as indicated for KMR. Some
of the sets of similar factors obtained at the end of each step may not be max-
imal. A further operation is therefore needed to eliminate sets included in
another one so as to get maximal cliques at the end.

To calculate the complexity of the KMRC algorithm, we need to define a
quantity g that measures the “degree of non-transitiveness” of relation R.

Definition 4.1 Given R, a non-transitive relation on X, we call g the greatest
number of cliques of R to which a symbol may belong, that is:

g = Maz {g, | a € X, g, = number of cliques to which a belongs}.

We call g the average value of g, for a € 3, that is:

g = 2afs
ne

where n. is the number of cliques of R.

If one does not count the set inclusion operations to eliminate non-maximal
cliques, KMRC has time complexity O(ng* log k) since each position i in s may
belong to at most g* (or, on the average, g*) cliques of R. Inclusion tests based
on comparing the positions contained in each set take O(n?g?*) time at the end
of step k. At least another approach for testing set inclusion is possible and
may result in a better theoretical (but not necessarily better in practice — this
is discussed in [6]) time complexity. Space complexity is O(ng*).

4.2 Inexact repetitions — The particular case of tandem
arrays (satellites)

Model for tandem arrays (satellites)

Tandem arrays (called tandem repeats when there are only two units) are a
sequence of repeats that appear adjacent in a string. As concerns biology, such
tandemly repeated units are divided into three categories depending on the
length of the repeated element, the span of the repeat region and its location
within the chromosome [58]. Repeats occurring in or near the centromeres
and telomeres are called simply satellites. Their span is large, up to a million
bases, and the length of the repeated element varies greatly, anywhere from 5
to a few hundreds of base pairs. In the remaining, euchromatic region, of the
chromosome the kinds of tandem repeats found are classified as either micro or

26

GTTGCTAGAGGAAGATGGGGTTGGTACTGGTGCTACAGAGCTTTC
AGTGGTGGAGCTGGAT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTTGATGGGGTTGGTACTGGAACAGAAGAGCTTTC
AGTGCTAGAGCTGAATGGGGTTGAAGATGGAGCGGAGGAAGTGAT
GTTGCTAGAGGAAGATGGGGTTGGTACTGGTGCTACAGAGCTTTC
AGTAGTAGAGCTTGATGGGGTTGGTACTGGAGCAGAAGAGCTTTC
GGTAGTAGAGCTGGATGGAGTTGGCACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGGGTTGGTACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTTGATGGGGTTGGAGCTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTTGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTTGATGGAGTTGGCACTGGAGCAGAAGAGCTTTC

AGTGGTGGAGCTGG TT ACTGGAGTAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC

AGTGGTGGAGCTTGATGGGGTTGGAGCTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC

AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC
AGTAGTAGAGCTTGATGGGGTTGGTACTGGAGCAGAAGAGCTTTC
AGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTC

AGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAACTTTC
AGTAGTAGAGCTTGATGGGGTTGGTACTGGAGTAGTAGTCTTCTT

Figure 10: An example of a tandem repeat in chromosome IX of yeast Saccha-
romyces cerevisiae, starting at position 391 131.

mini satellites, according to the length of the repeated element. Micro satellites
are composed of short units, of 2 to 5 base pairs, in copy numbers in general
around 100. Mini satellites on the other hand involve slightly longer repeats,
typically around 15 base pairs, in clusters of variable sizes, comprising between
30 and 2000 elements.

Figure 10 shows an example of a tandem repeat starting at position 391131
on chromosome IX from yeast (in the sequence as recovered from the ftp site
ftp://ftp.mips.embnet.org/pub/yeast/). This repeat is composed of 41 full
units, 16 of which present a deletion of 9 bases against the other elements.
Apart from this, the repeat is well conserved overall (on the average, one mu-
tated base per element), except for the first six units and for the last one. The
repeat is located inside a coding region (in the other strand) corresponding to
a glucoamylase s1/s2 precursor protein (SwissProt id: AMYH_YEAST).

27

Satellites of whatever type ask for a more complex definition of models than
that given in Section 2.4, requiring additional constraints.

We have in fact two definitions related to a satellite model, one called pre-
fix model and the other consensus model. This latter concerns satellite models
strictly speaking while prefix models are in fact models for approximately peri-
odic repetitions that are not necessarily tandem.

Formally, a prefiz model of a satellite is a string m € ¥* (or P(X)) that
approximately matches a train of wagons. A wagon of m is a factor u in s such
that dist(m,u) < e. A train of a satellite model m is a collection of wagons
Ui, us, .. ., u, ordered by their starting positions in s and satisfying the following
properties.

Property 1 p > min_repeat, where min_repeat is a fized parameter that indi-
cates the minimum number of elements a repeating region must contain.

Property 2 left,,
of wagon u in s and

— left,, € JUMP, where left, is the position of the left-end

JUMP = {y : Yy €Upe[t maz_jump] T X [Min_range, mazx_rangel},
with the three parameters min_range, max_range and maz_jump fized.

A prefix model m is said to be wvalid if there is at least one train of m in
the string s. Similarly, a train, when viewed simply as a sequence of substrings
of s, is valid if it is the train for some model m. A prefix model represents the
invariant that must be true as we progressively search for our final goal, which
is to arrive at a consensus model. This is a prefix model which further satisfies
the following property.

Property 3 leftul,+1
end of wagon u, and

— right,, € GAP, where right, is the position of the right-

GAP = {y : y €Uyclo,maz_jump—1] TX [min_range, maz_range]}.

Parameter max_jump allows us to deal with very badly conserved elements
inside a satellite (by actually not counting them) while we require that the
satellite be relatively well conserved globally. Fixing maz_jump at a value
strictly greater than one, means that we allow some wagons (the badly conserved
ones) to be “jumped over”. This may be seen as “meta-errors”, that is as errors
involving not a single letter inside a wagon but a wagon inside a train. Note that
0 € GAP. This guarantees that, when jumps are not authorized, the repeats
found are effectively tandem.

Since mutations affecting a unit concern indels (that is, insertions and dele-
tions) as well as substitutions, it is sometimes interesting to work with a variant
of the above properties where JUMP and GAP are defined as

y € [min_range, mazx_range] or
Y E€Uze2,maz_jump] T X [min_r(mge — g, maxr_range + g

JUMP = {y : |}

28

y € [min_range, mazx_range] or
Y E€Uze1,maz_jump] TX [min_r(mge — g, maxr_range + g

GAP = {y: l 1
and g > e is a fixed value. The idea is to allow the length of the badly conserved
elements to vary in a larger interval than permitted for the detection of “good”
wagons.

The satellite problem we propose to solve is the following.

Problem 1 Given a string s and parameters min_repeat, min_range, mazx_range,
maz_jump, and e (possibly also g), find all consensus models m that are valid
for s, and for each such m.

In fact, the original papers [16] [59] report a set of disjoint “fittest” trains
realizing each model, given a measure of “fitness”.

The algorithm presented below is the only combinatorial, non-heuristical
developed so far for identifying tandem arrays. Other exact approaches either
treat the case of tandem repeats only [13] [14], do not allow for errors [60] [53]
[61] [44], or require generating all possible (not just valid) models of a given

length [62] [63] [64].

Building prefix satellite models

As with all previous cases considered in this paper, satellite models are con-
structed by increasing lengths. In order to determine if a model is valid, we
must have some representation of the train or wagons that make it so. There
are two possibilities:

e we can keep track of each valid train and its associated wagons, or

e we can keep track of individual wagons, and, on the fly, determine if they
can be combined into valid trains.

The first possibility is appealing because model extension is straightforward.
We would just have to verify, for each wagon of each train, whether it can be
extended according to the extended model, and then count how many wagons
remain to check whether the train it belonged to is still a valid train. However,
there are generally many overlapping trains involving many of the same wagons
for a given model. Common wagons may be present more than once in the
list of occurrences of m if this is kept as a list of trains. This approach entails
redundancies that lead to an inefficient algorithm. We therefore adopt the
second approach, of keeping track of wagons and determining if they can be
assembled into trains as needed.

The rules of prefix-model extension are given in Lemma 2 below. A wagon
is identified by a triple (i,7j,d) indicating that it is the substring s;sit1...s;
of s and that it is d < e differences away from its model. Position i indicates
the left-end of the wagon, and j its right-end. Contrary to the other algorithms
presented in this paper, models and their occurrences (the wagons) will be

29

extended to the left. This is just to facilitate verifying Property 2. Strictly
speaking, we should then speak of suffix-models instead of prefix ones. Right
ends of occurrences are calculated but are used only for checking Property 3.

Lemma 2 The triple (i, j,d) encodes a wagon of m' = am with o € ¥ and m
€ Xk if and only if at least one of the following conditions is true:

(match) (i+1,j,d) is a wagon of m and s; = «;
(substitution) (i+1,j,d — 1) is a wagon of m and s; # «;
(deletion) (i,j,d — 1) is a wagon of m;

(insertion) (i+1,5,d—1) is a wagon of am;

and, furthermore, d < e.

For each prefix-model m, we keep a list of wagons of m that are in at least
one train validating m. We describe such wagons as being valid with respect to
m. When we extend a model (to the left) to m' = am, we perform two tasks:

e First, determine which valid wagons of m can be extended as above to
become wagons of m/'.

e Second, of these newly determined wagons of m', we keep only those that
are valid with respect to m'. This requires effectively assembling wagons
into trains, something that is not needed in an approach that would keep
track of trains directly.

Note that we need not actually enumerate the trains in the second step, we
simply must determine if a wagon is part of one. This will allow us to perform
an extension step in time linear with respect to the string length.

As a final insight, consider the directed graph G = (V, E) where V is the set
of all valid wagons and there is an edge from wagon u to v if left, —left, € JUMP.
Then a wagon w is valid if it is part of a path of length min_repeat or more
in G. Determining this property is quite simple as the graph is clearly acyclic.
In the computation that follows, we effectively compute both the length of the
longest path to u in Lent, and the length of the longest path from u in Rent,,.
If Lent, + Rent, > min_repeat then wu is valid.

Consensus satellite models

We encode the collection of all wagons of m in a set, L,, C {1...,n}, and an

(n+ 1) x (2e + 1)-element array D,, as follows:

1. i€ L,, if and only if 7 is the left-end of at least one wagon valid with respect
to m,

2. for each i € L,,, the value D,,[i,d] for 6 € [—e, €] is the edit distance of m
from wagon 8;sit1 ... Siq|m|—1+5-

Intuitively, L,, gives the left-ends of all valid wagons, which is all we need to

verify Properties 1 and 2. D,, gives us the distances we need for extending

models, together with the right-ends needed for verifying Property 3. Formally,

(i,i+|m|—1+44,d) is a valid wagon of m if and only if i € L,, and d = D,,[i,d] <

e.

30

The complete algorithm is given below. When Extend(am) is called, it is
assumed that L,, is known along with the relevant D,, values. The routine
computes these items for the extension am and recursively for the extensions
thereof. Lines 1-6 compute the set of left-ends of wagons for am derivable from
wagons of m that are valid. While Lemma 2 gives us a way to do so, recall that
we are using dynamic programming to compute all extensions simultaneously.
This corresponds to adding the last row to the dynamic programming matrix
of s versus am. At start, L,, gives all the positions in row |m| that have value
e or less (and are valid) and D,, gives their values. From these, we compute
the positions in row |m|+ 1 in the obvious sparse fashion to arrive at the values
Lom and Dg,,.

procedure Extend(am)
1. Lom <0

2. fori+ 1€ Ly, (in decreasing order) do

3. for 6 € [—e,e] do

D,,li +1,6] + (if s; = a then 0 else 1)
Domli, 8] ¢+ ming if i € L, then D,,[i,d + 1]+ 1,

if i4+1€ Loy then Donfi+ 1,6 — 1]+ 1

-

5. if ming{Duomli,0]} < e then

6. Lom < Lom U {i}

7. for i € Ly, (in decreasing order) do

8. cht[l] < manﬂE(H—JUMP)ﬁLQm {cht[k]} + 1

9. fori € Ly, (in increasing order) do

10. L(:nt[i] «— mane(i,JUMp)anm{L(f’n,t[k]} +1

11. for i € L,,, do

12. if Lent[i] + Rent[i] < min_repeat then L, < Lo, — {i}

13. if Loy # 0 then

14. if |am| € [min_range, maz_range] then
15. Record(am)

16. if |am| < maz_range then

17. for 5 € ¥ do

18. Extend(Bam)

Once wagons have been extended whenever possible, we have to eliminate
those that are no longer valid. This is performed by Lines 7 to 12. We com-
pute, for each position i € Ly, the maximum number of wagons in a train
starting with a wagon whose left-end is at i in Rent[i] (including itself), and
the maximum number of wagons in a train ending with a wagon whose left-
end is at i in Lent[i]. The necessary recurrences are given in Lines 8 and 10

31

of the algorithm where we recall that JUMP = {y : y € Ume[l’mm_jump] x X
[min_range, maz_range|} and i + JUMP denotes adding i to each element of
JUMP. Observe that Rent[i] + Lent[i] — 1 is the length of the longest train
containing a wagon whose left-end is at position 1.

Clearly Lines 7-10 take O(|Lam||JUMP|) time. However, when Lgy, is a
very large fraction of n, one can maintain an Rent(Lent)-prioritized queue of
the positions in (i + JUMP) N L, to obtain an O(n maz_jump log |JUMP)|)
bound.

Finally in the remaining steps, Lines 13-18, the algorithm calls Record to
record potential models and then recursively tries to extend the model if possi-
ble. Routine Record confirms that the model is a consensus model by verifying
Property 3 and recording the intervals spanned by trains that are valid for the
consensus model, if any.

The total time taken by the algorithm is O(n (|JUMP| + e) maz_range
N (e,maz_range)) = O(n maxr_range® maz_jump N (e, maz_range)) as e <
mazx_range. The term N (e, maz_range) corresponds to the number of words in
the e-neighbourhood of a word w of length maz_range, that is, words that are
at a Levenshtein distance at most e from w. This number is bounded over by
ke.

The space requirement is that of keeping all the information concerning
at most maz_range models at a time (a model m and all its prefixes). It is
therefore O(n maz_range e) as only O(n e) storage is required to record the
left-end positions and edit-distance at each possible right-end.

5 Motif extraction

5.1 Spelling simple models

We now present increasingly sophisticated models and algorithms for extracting
models which occur in a set of strings (possibly not all). Such models corre-
spond in general to binding sites, that is to sites in a biological molecule that
will come into contact with a site in another molecule thus permitting some
biological process to start (for instance, transcription or translation). We start
by considering simple models.

The problem we wish to solve is the following.

Problem 2 Given a set of N strings S = s1,...,Sn, an integer e > 0 and a
quorum q < N, find all models m such that m is valid, that is, occurs with at
most e errors in at least q strings of set S.

The spelling of models is done using a suffix tree. The idea comes from
the observation that long strings, specially when they are defined over a small
alphabet, may contain many exact repetitions. One does not want to compare
such repeated parts more than once with the potentially valid models. One way
of doing that is using a representation of the strings that allows to put together

32

some of the repetitions, that is, using an index of the strings such as a suffix
tree.

Trees for representing all the suffixes of a set of strings {s;, 1 <i < N for
some N > 2} are called generalized suffiz trees and are constructed in a way
very similar to the construction of the suffix tree for a single string [65] [66]. We
denote such generalized trees by G7. They share all the properties of a suffix
tree given in Section 3.3 with string s substituted by strings sq,...,sn.

In particular, a generalized suffix tree G7 satisfies the fact that every suffix
of every string s; in the set leads to a distinct leaf. When p strings, p > 2, have
a same suffix, the generalized tree has therefore p leaves corresponding to this
suffix, each associated with a different string. To achieve this property during
construction, we just need to concatenate to each string s; of the set a symbol
that is not in ¥ and is specific to that string.

To be able to spell valid models (i.e. models satisfying the quorum con-
straint), we need to add some information to the nodes of the suffix tree.

In the case where we are looking for repeats in a single string s, we just
need to know, for each node z of 7, how many leaves are contained in the
subtree rooted at . Let us denote leaves, this number for each node z. Such
information can be added to the tree by a simple traversal of it.

If we are dealing with IV > 2 strings, and therefore a generalized suffix tree
GT, it is not enough anymore to know the value of leaves, for each node z in
GT in order to be able to verify whether a model remains valid. Indeed, for
each node z, we need this time to know not only the number of leaves in the
subtree of GT having z as root, but that number for each different string the
leaves refer to.

In order to do that, we must associate to each node x in GT an array, denoted
colours,, of dimension N that is defined by:

1 if at least one leaf in the subtree
colours,|i] = rooted at x represents a suffix of s;
0 otherwise

for1<i<N.

The array colours, for all x may also be obtained by a simple traversal of
the tree in which each visit to a node takes O(N) time. The additional space
required is O(N) per node.

One must observe that occurrences are now grouped into classes and “real”
ones, that is, occurrences considered as individual words in the strings, are never
manipulated directly. Present case occurrences of a model are thus in fact nodes
of the generalized suffix tree (we denote them by the term “node-occurrences”)
and are extended in the tree instead of in the string. Once the process of model
spelling has ended, the start positions of the “real” occurrences of the valid
models may be recovered by traversing the subtrees of the nodes reached so far,
and by reading the labels of their leaves.

The algorithm is a development of the recurrence formula given in the lemma
below where 2 denotes a node of the tree, father(z) its father, and d the number

33

of errors between the label of the path going from the root to z as against a
model m.

Lemma 3 (z,d) is a node-occurrence of m' = ma with m € ¥ and a € ¥ if,
and only if, one of the following two conditions is verified:
(match) (father(z),d) is a node-occurrence of m and the label of the
from father(z) to x is «;
(substitution) (father(x),d — 1) is a node-occurrence of m and the label
of the arc from father(z) to x is § # «;
(deletion) (z,d — 1) is a node-occurrence of m;
(insertion) (father(z),d — 1) is a node-occurrence of ma.
and, furthermore, d < e.

The algorithm time complexity is O(nN2N (e, k)).

5.2 Structured models
Introducing structured models

Although the objects defined in the previous section can be reasonable, algorith-
mically tractable models for single binding sites, they do not take into account
the fact that such sites are often not alone (in the case of eukaryotes, they may
even come in clusters) and, specially, that the relative positions of such sites,
when more than one participates in a biological process, are in general not ran-
dom. This is particularly true for some DNA binding sites such as those involved
in the transcription of DNA into RNA (e.g. the so-called promoter sequences).

There is therefore a need for defining biological models as objects that take
such characteristics into account. This has the motivation just mentioned but
presents also interesting algorithmical aspects: exploiting such characteristics
could lead to algorithms that are both more sensitive and more efficient. Models
that incorporate such characteristics are called structured models. They are
related to structured motifs of Section 3.

Formally, a structured model is a pair (m,d) where:

e m is a p-tuple of simple models (my,...,m,) (representing the p parts a
structured model is composed of we shall call these parts bozes),
b dis a (p - 1)_tup1e ((dmzn1 H dmaz1) 61): R (dminp,1 H dmaz,,,1) 6p71)) of

triplets (representing the p — 1 intervals of distance between two successive
boxes in the structured model),

with p a positive integer, m; € ¥7, and dpin;, dmae; (dmaz; > dmin;), 0; non
negative integers.
Given a set of N strings si,...,sy and an integer ¢, 1 < ¢ < N, a

model (m,d) is said to be walid if, for all i, 1 < i < (p — 1), and for all

occurrences u; of m;, there exist occurrences wi,..., wj—1, Wiy1, ...,up of
M1, M1, M1, e e - my such that:

® Ui,...,Ui—1,U;,Uit], ..., Up Delong to the same string of the set,

34

m . m,
valid model m NN ——9-2

g =50%
d+1 —
_ — S
d+1
e S
oneonly | |
_ a—— d e
4
toodistant G Mb/ ‘ unaligned
sequences
_ — d1 E—
1
NO Ooccurrences
d+2
e S

Figure 11: Example of a model with two boxes (p = 2).

e there exists d;, with dy i, + 0; < di < dpae; — 05, such that the distance
between the end position of u; and the start position of u;;1 in the string
is equal to d; + ¢;,

e d; is the same for p-tuples of occurrences present in at least ¢ distinct
strings.

The term d; represents a distance and +¢; an allowed interval around that

distance. When §; = (djaw; — dmin; + 1)/2, then §; is omitted, and d in a

structured model (m,d) is denoted by a pair (dmin; , dmaz;). An example of a

model with p = 2 is given in Figure 11.

Observe that simple models are indeed but a special case of structured ones.

Statement of the structured model problem

Concerning structured models, solutions to variants of increasing generality of a
same basic problem are proposed. Suffix trees are used in all cases. These vari-
ants may be stated as follows; given a set of N strings s, ..., Sy, a nonnegative
integer e and a positive integer q.

Problem 3 Find all models of the form ((mi,ms2), (dmin,,@maz,)) that are
valid.

Problem 4 Find all models of the form ((m1,...,mp), ((dminss dmaz.); ---
(dmingy_1+dmaz,_,))) that are valid, where p > 2.

Problem 5 Find all models of the form ((m1,m2), (dmin, ; dmaz., 01)) that are
valid.

35

Problem 6 Find all models of the form ((m1,...,mp), ((dmint» Amazs,01), - - -,
(dmin,_+>dmaz,_.,0p—1))) that are valid, where p > 2.

The last two problems represent situations where the exact intervals of dis-
tances separating the parts of a structured site are unknown, the only known
fact being that these intervals cover a restricted range of values. How restricted
is indicated by the §; parameters. We present below algorithms for the first two
problems only. Further details on the other two may be found in [18].

To simplify matters, we shall consider that, for 1 < i < p, m; € ¥ where k
is a positive integer, i.e., that each single model m; of a structured model (m, d)
is of fixed, unique length k. In a likewise manner, we shall assume that each
part m; has the same error rate e and, when dealing with models composed of
more than two boxes, that the dpin,, dmaz, and, possibly, d; for 1 <i <p—1
have identical values. We denote by dpmin, dmaez and § these values. Problem 4
is then formulated as finding all models ((ma,...,mp), (dmin, dmaez)) that are
valid and Problem 6 as finding all valid models ((m1,...,mp), (dmin: dmaz,9))-

Besides fixing a maximum error rate for each part in a structured model,
one can also establish a maximum error rate for the whole model. Such a global
error rate allows to consider in a limited way possible correlations between boxes
in a model.

Another possible global, or local, constraint one may wish to consider for
some applications concerns the composition of boxes. One may, for instance,
determine that the frequency of one or more nucleotide in a box (or among all
boxes) is below or above a certain threshold. For structured models composed
of more than p boxes, one may also establish that a box i is palindromic in
relation to a box j for 1 < i < j < p. In algorithmical terms, the two types of
constraints just mentioned are not equivalent. The first type, box composition
whether local or global, can in general be verified only a posteriori while the
second type (palindromic boxes) will result in a, sometimes substantial, pruning
of the virtual trie of models.

Introducing such additional constraints may in some cases ask for changes
to the basic algorithms described below. The interested reader may find the
details concerning such changes in the original papers [18] [67].

We present, in the next section, first a naive approach and then two algo-
rithms that are efficient enough to tackle structured model extraction (Prob-
lem 3) from big datasets. The second algorithm has a better time complexity
than the first but needs more space. The first is easier to understand and imple-
ment. Both are described in more detail than previous algorithms as structured
models in some ways incorporate almost all other kinds of motifs we are con-
sidering. The most notable exception concerns satellites that is discussed in
Section 4.2. We then show how to extend these to treat Problem 4. Details on
the algorithms for solving Problems 5 and 6 may be found in [18].

Other combinatorial approaches were developed for treating somewhat sim-
ilar kinds of structured motifs. They either enumerate all possible (not just
valid) motifs [68], do not allow for errors [69] [70], or are heuristics [71] [72].

36

Algorithms for the special case of a known interval of distance

Naive approach A naive way of solving Problem 3 consists in extracting and
storing all valid single models of length k (given ¢ and ¢), and then, once this is
finished, in verifying which pairs of such models could represent valid structured
models (given an interval of distance [dyin, dmaz))-

The lemma used for building valid single models is similar to Lemma 3
except that in practice, for most biological problems we wish to address [73]
[17], substitutions only are allowed in general. The lemma therefore becomes as
stated.

Lemma 4 (z,d) is a node-occurrence of m' = ma with m € ¥ and a € ¥ if,
and only if, one of the following two conditions is satisfied:
(match) (father(z),d) is a node-occurrence of m and the label of
the arc from father(x) to x is «;
(substitution) (father(z),d — 1) is a node-occurrence of m and the label
of the arc from father(z) to z is § # «.
and, furthermore, d < e.

One way of doing the verification profits from the simple observation that
two single models m; and ms may form a structured one if, and only if, at least
one occurrence of m; is at the right distance of at least one occurrence of ms.
Building an array of size n/N where cell i contains the list of models having an
occurrence starting at that position in s = s1...sn allows to compare models
in cell 7 to models in cells © + dpin, . . ., + dmae only. If the sets of occurrences
of models are ordered, this comparison may be done in an efficient way (in time
proportional to the size of the sets of node-occurrences, which is upper-bounded
by nN).

First algorithm: Jumping in the suffix tree A first non-naive approach
to solving Problem 3 starts by extracting single models of length k. Since we
are traversing the trie of models in depth-first fashion (also in lexicographic
order), models are recursively extracted one by one. At each step, a single
model m (and its prefixes) is considered. Once a valid model m; of length &
is obtained together with its set of T-node-occurrences V; (which are nodes
located at level k in GT), the extraction of all single models my with which
my could form a structured model ((rm1,ms), (dmin, dmaz)) starts. This is done
with ms representing the empty word and having as node-occurrences the set

Vi given by:
Vo = {(w, e =€) | v € Vi with dpin < level(w) — level(v) < dmaz }s

where level(v) indicates the level of node v in G7. From a node-occurrence v
in V7, a jump is therefore made in G7 to all potential start node-occurrences
w of my. These nodes are the dpin- t0 dpa-generation, descendants of v in
GT. Exactly the same recurrence formula given in Lemma 4 may be applied to
the nodes w in V5 to extract all single models ms that, together with m; could

37

Suffix tree of the sequences

For each occurrence of m = K
dmi '
mlﬂl
...do ajump of variable length... to
max,
1
k

...and look for occurrences of m 5

Figure 12: Extracting structured models (in the context of Problem 3) with a
suffix tree — An illustration of Algorithm 1.

form a structured model verifying the conditions of the problem, for all valid
my. An illustration is given in Figure 12 and a pseudo-code is presented below.
The procedure ExtractModels is called with arguments: m equal to the empty
word having as sole node-occurrence the root of G7, and i equal to 1.

procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do

2. if i = 2 then

3. put in Potential Starts the children w of v at levels k + d, i, to
4. else

5. put v (i.e., the root) in Potential Starts

6. for each model m; (and its occurrences) obtained by doing a recursive
depth-first traversal from the root of the virtual model tree M
while simultaneously traversing G7 from the node-occurrences in
Potential Starts (Lemma 4 and quorum constraint) do

7. if i =1 then

8. ExtractModels(m = my, i + 1)

9. else

10. report the complete model m = ((m1, m2), (dmin, dmaz)) as valid

Since the minimum and maximum length of a structured model (m, d) that
may be considered are, respectively, 2k + d,in and 2k + dyq., we need only
build the tree of suffixes of length 2k + d,,;, or more, and for each such suffix

38

to consider at most the first 2k + d;;,4, symbols.

The observation made in the previous paragraph applies also to the second
algorithm (Section 5.2 below). Note that, in both cases, this implies n; < n;y; <
Nn for all i > 1 where n; is the number of nodes at depth i in GT .

Second algorithm: Modifying the suffix tree The second algorithm ini-
tially proceeds like the first: it starts by building single models of length &, one
at a time. For each node-occurrence v of a first part m; considered in turn,
a jump is made in GT down to the descendants of v situated at lower levels.
This time however, the algorithm just passes through the nodes at these lower
levels, grabs some information the nodes contain and jumps back up to level k
again (in a way that is explained below). The information grabbed in passing
is used to temporarily and partially modify GT and start, from the root of GT,
the extraction of the second part ms of a potentially valid structured model
((m1,m2), (dmin, dmaz))- Once the operation of extracting all possible compan-
ions ms for mq has ended, that part of G7 that was modified is restored to its
previous state. The construction of another single model m; of a structured
model ((m1,m2), (dmin, dmae)) then follows, and the whole process unwinds in
a recursive way until all structured models satisfying the initial conditions are
extracted.

More precisely, the operation performed between the spelling of models m;
and my locally alterates GT up to level k to a tree GT' that contains only the
k-long prefixes of suffixes of {s1,...,sn} starting at a position between d,,;,
and d,ne, from the end position in s; of an occurrence of my. Tree GT' is, in a
sense, the union of all the subtrees ¢ of depth at most k rooted at nodes that
represent, start occurrences of a potential companion moy for my.

For each model m; obtained, before spelling all possible companions ms
for m,, the content of colors. for all nodes z at level k£ in GT are stored in
an array L of dimension ny (this is for later restoration of GT). Tree GT' is
then obtained from G7T by considering all nodes w in G7 that may be reached
during a descent of, this time, k + dynin to k + dna, arcs down from the node-
occurrences (v, e,) of my. These correspond to all end node-occurrences (instead
of start as in the first algorithm) of potentially valid models having m; as first
part. The boolean arrays colors,, for all w indicate to which input strings these
occurrences belong. This is the information we grab in passing and take along
the only path of suffix links in G7 that leads back to a node z at level k£ in
GT. If it is the first time z is reached, colors, is assigned colors,,, otherwise
colors,, is added (boolean “or” operation) to colors,. Once all nodes v and w
have been treated, the information contained in the nodes z that were reached
during this operation are propagated up the tree from level k to the root (using
normal tree arcs) in the following way: if Z and Z have same parent z, then
colors, = colorss U colors:;. Any arc from the root that is not visited at least
once in such a traversal up the tree is not part of G7', nor are the subtrees
rooted at its end node.

The extraction of all second parts ms of a structured model (m,d) follows,

39

as for single models in the initial algorithm (Lemma 4 in Section 5.2).

Restoring the tree GT as it was before the operations described above re-
quires restoring the value of colors, preserved in L for all nodes z at level k£ and
propagating the information (state of boolean arrays) from z up to the root.

Since nodes w at level between 2k + d,,;, to 2k + d,,.. Will be solicited for
the same operation over and over again, which consists in following the unique
suffix-link path from w to a node z at level k in GT, GT is pre-treated so that
one single link has to be followed from z. Going from w to z takes then constant
time.

An illustration is given in Figure 13. A pseudo-code of the algorithm is as
follows. The procedure ExtractModels is called, as for the first algorithm, with
both arguments m equal to the empty word having as sole node-occurrence the
root of G7, and i equal to 1.

procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do

2. if i = 2 then
3. put in Potential Ends the children w at levels 2k + d,,,;, to 2k+
dmam

4. for each node-occurrence w in Potential Ends do

5. follow fast suffix-link to node z at level &

6. put z in L

7. if first time 2 is reached then

8. initialize colors, with zero

9. put z in NextEnds

10. add colors,, to colors,

11. do a depth-first traversal of GT to update the boolean arrays from
the root to all z in NextEnds (let GT'
be the k-deep tree obtained by such an operation)

12. if i = 1 then

13. Tree = GT

14. else

15. Tree = GT'

16. for each model m; (and its occurrences) obtained by doing a recursive
depth-first traversal from the root of the virtual model tree M
while simultaneously traversing Tree from the root (Lemma 4 and
quorum constraint) do

17. if i =1 then

18. ExtractModels(m = my, i + 1)

19. else

20. report the complete model m = ((m1,ma2), (dmin, dmaz)) as a valid
one

21. restore tree GT to its original state using L

Proposition 1 The following two statements are true:

40

k+d
m

Figure 13: Extracting structured models (in the context of Problem 3) with
a suffix tree An illustration of Algorithm 2. Fig. 13a corresponds to the
extraction of the first single models m; of structure models (m,d); Fig. 13b to
the jump of k+d,in to k+dy ., down normal tree arcs to grab some information
(to lighten the figure, we made here dyin = dimas = dm); Fig. 13c shows the
jump back up to level k following suffix links with the information grabbed in
passing; Fig. 13d represents the propagation of the information received at level
k up to the root; finally Fig. 13e illustrates the search for second single models
ms of structure models (m,d) in tree 7.

e GT' contains only the k-long prefizes of suffives of {s1,...,sn} that start
at a position between d,in and dp,q. of the end position in {s1,...,sn} of
an occurrence of mq;

e the above algorithm solves Problem 3.

The proof is straightforward and may be found in the original papers [18]
[67].

Complexity The naive approach to solving Problem 3 requires n N2\ (e, k)
time to find single models that could correspond to either part of a structured
model (and nNN (e, k) space to store all potential parts). If we denote by A the
value dyae — dmin + 1, finding which pair of single models may be put together
to produce a structured model could then be done in time proportional to:

N(e, k) AN (e, k) nN nN
—_— ==~
(1) (2) 3 @

41

where (1) is the maximum number of single models to which a position may
belong, (2) is the maximum number of models to which a position at a distance
between k + dpin and k + dya, from the first may belong, (3) is the maximum
number of comparisons that must be done to check whether two single models
may form a structured one and, finally, (4) is the number of starting positions
to consider.

The total time complexity of the second algorithm is O(NngN?3(e, k) +
Nnag+ta,,,,N(e,k)). Space complexity is slightly higher than for the first al-
gorithm: O(N?n + Nny,) where ny < Nn. The second term is for array L.

In either case, the complexity obtained is better both in terms of time and
space than the one given by a naive solution to Problem 3.

Extending the algorithms to extract structured models having p > 2
parts

First algorithm: Jumping in the suffix tree Extending the first algorithm
to extract structured models composed of p > 2 parts, that is solving Problem 4,
is immediate. After extracting the first i parts of a structured model ((m,

s Mp), (dmin, dmasz)) for 1 < i < p — 1, one jumps down in the tree GT
(following normal tree arcs) to get to the dpin- to dpmas-descendants of every
node-occurrence of ((m1,...,m;), (dmin;dma=)) then continues the extraction
from there using Lemma 4.

A pseudo-code is given below.

procedure ExtractModels(Model m, Block 1)
1. for each node-occurrence v of m do

2. if i > 1 then

3. put in Potential Starts the children w of v at levels (1 — 1)k+
(i — Ddmin to (i — Dk + (i — 1)dmax

4. else

5. put v (the root) in Potential Starts

6. for each model m; (and its occurrences) obtained by doing a recursive
depth-first traversal from the root of the virtual model tree M
while simultaneously traversing G7 from the node-occurrences in
Potential Starts (Lemma 4 and quorum constraint) do

7. if i < p then

8. ExtractModels(m =my ---m;, i + 1)

9. else

10. report the complete model m = ((my,---,mp), (dmin, dmaz)) as a
valid one

Second Algorithm: Modifying the Suffix Tree Extending the second
algorithm to solve Problem 4 is slightly more complex and thus calls for a few
remarks. The operations done to modify the tree between building m; and

42

miy1, @ > 1, are almost the same as those described in Section 5.2 except for
two facts. One is that up to (p — 1) arrays L are now needed to restore the tree
after each modification it undergoes. The second difference, more important,
is that we need to keep, for each node v}, at level k reached from an ascent up
G7T’s suffix links, a list, noted Lptr,, , of pointers to those nodes, at lower levels,
that affected the content of v;. The reason for this is that tree G7 is modified
up to level k only (resulting in tree GT') as these are the only levels concerned
by the search for occurrences of each box of a structured model. Lower levels
of GT remain unchanged, in particular the boolean arrays at each node below
level k. To obtain the correct information concerning the potential end node-
occurrences of boxes i for ¢ > 2 (i.e. to which strings such occurrences belong),
we therefore cannot move down G7 from the ends of node-occurrences in G
of box (i — 1). If we did, we would not miss any occurrence but we could get
more occurrences, e.g. the ones that did not have an occurrence of a previous
box in the model. We might thus overcount some strings and consider as valid
a model that, in fact, no longer satisfied the quorum. We have to go down
GT from the ends of node-occurrences in GT, that is from the original ends of
node-occurrences in G7T of the boxes built so far. These are reached from the
list of pointers Lptr,, for the nodes v that are identified as occurrences of the
box just treated. For models composed of p boxes, we need at most (p — 1) lists
Lptr,, for each node vy at level k.
A pseudo-code for the algorithm is as follows.

procedure ExtractModels(Model m, Block 1)

1. for each node-occurrence v of m do

2. if i > 2 then

3. put in Potential Ends the children w at levels ik + (i — 1)dmin
to ik + (i — 1)dmas

4. for each node-occurrence w in Potential Ends do

5. follow fast suffix-link to node z at level &

6. put z in L(i)

7. if first time z is reached then

8. initialize colors, with zero

9. put z in NextEnds

10. add colors,, to colors.

11. do a depth-first traversal of GT to update the boolean arrays
from the root to all z in NextEnds (let GT' be the k-deep tree
obtained by such an operation)

12. if i = 1 then

13. Tree = GT

14. else

15. Tree = GT'

16. for each model m; (and its occurrences) obtained by doing a recursive
depth-first traversal from the root of the virtual model tree M
while simultaneously traversing Tree from the root (Lemma 4 and

43

17.
18.
19.
20.

21.
22.

Complexity The first algorithm requires O(Nn 54 (p—1)q

quorum constraint) do
if i < p then
ExtractModels(m = my ---my, i + 1)
else
report the complete model m = ((my,---,mp), (dmin, dmaz)) as a
valid one
if i > 1 then
restore tree GT to its original state using L(7)

NP(e, k)) time,

maz

where NP(e, k)) < kP¢|Z|P¢. The space complexity remains the same as for
solving Problem 1, that is O(N?n).

The total time complexity of the second algorithm is O(NniANP(e, k) +
Nyt (p—1)dman NP7 '(e, k). The space complexity is O(N?n + N(p — 1)ny).

Acknowledgements

We are grateful to N. El Mabrouk for helpful discussions, and to our research
partners: J. Allali, C. Allauzen, A. Vanet, L. Marsan, N. Pisanti, M. Raffinot,
and A. Viari.

References

[1]

R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison. Biological Sequence
Analysis. Probabilistic Models of Proteins and Nucleic Acids, Cambridge
University Press, 1998.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

J.C. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology, PWS Publisher, 1996.

M.S. Waterman. Introduction to Computational Biology. Maps, Sequences
and Genomes. Chapman and Hall, 1995.

R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of re-
peated patterns in strings, trees and arrays. pages 125 136. Proceedings of
the 4th Annual ACM Symposium Theory of Computing, 1972.

H. Soldano, A. Viari, and M. Champesme. Searching for flexible repeated
patterns using a non transitive similarity relation. Pattern Recognition Let-
ters, 16:233-246, 1995.

M.-F. Sagot, V. Escalier, A. Viari, and H. Soldano. Searching for repeated
words in a text allowing for mismatches and gaps. In R. Baeza-Yates and

44

[15]

U. Manber, editors, Second South American Workshop on String Process-
ing, pages 87-100, Vinias del Mar, Chili, 1995. University of Chili.

G. Salton. Automatic text processing. Addison-Wesley, 1989.

R. Baeza-Yates and B. Ribero-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

A. Apostolico and Z. Galil, Eds. Pattern Matching Algorithms. Oxford
University Press, New York (1997).

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
1994.

G.A. Stephen, String Searching Algorithms, World Scientific, 1994.

G. Landau and J. Schmidt. An algorithm for approximate tandem repeats.
In Z. Galil A. Apostolico, M. Crochemore and U. Manber, editors, Com-
binatorial Pattern Matching, volume 684 of Lecture Notes in Computer
Science, pages 120-133. Springer-Verlag, 1993.

S. K. Kannan and E. W. Myers. An algorithm for locating non-
overlapping regions of maximum alignment, score. In Z. Galil A. Apostolico,
M. Crochemore and U. Manber, editors, Combinatorial Pattern Matching,
volume 684 of Lecture Notes in Computer Science, page 7486. Springer-
Verlag, 1993.

S. Kurtz, E. Ohlebusch, C. Schleiermacher, J. Stoye and R. Giegerich. Com-
putation and visualization of degenerate repeats in complete genomes, In
Eight International Symposium on Intelligent Systems for Molecular Biol-
ogy, La Jolla, California, 2000. AAAT Press.

M.-F. Sagot and E. W. Myers. Identifying satellites and periodic repetitions
in biological sequences. J. of Computational Biology, 10:10 20, 1998.

A. Vanet, L. Marsan, and M.-F. Sagot. Promoter sequences and algorithmi-
cal methods for identifying them. Research in Microbiology, 150:779 799,
1999.

L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs
using a suffix tree with an application to promoter and regulatory site
consensus identification. J. Computational Biology, 7:345-362, 2000.

M.-F. Sagot, A. Viari, and H. Soldano. A distance-based block searching al-
gorithm. In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and
S. Wodak, editors, Third International Symposium on Intelligent Systems
for Molecular Biology, pages 322—-331, Cambridge, England, 1995. AAAT
Press.

45

[20]

M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary
change in proteins. In M.O. Dayhoff, editor, Atlas of Protein Sequence an
Structure, volume 5 suppl.3, pages 345 352. Natl. Biomed. Res. Found.,
1978.

S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from pro-
tein blocks. Proc. Natl. Acad. Sci. USA, 89:10915 10919, 1992.

J.L. Risler, M.O. Delorme, H. Delacroix, and A. Hénaut. Amino acid sub-
stitutions in srtucturally related proteins: a pattern recognition approach.
J. Mol. Biol., 204:1019-1029, 1988.

A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Commun. ACM, 18(6):333-340, 1975.

M. J. Fischer and M. Paterson. String matching and other products. STA M-
AMS Complexity of Computation, R. M. Karp, ed., Providence, RI, 1974,
113 125.

A. Apostolico and R. Giancarlo. Sequence alignment in molecular biology.
Journal of Computational Biology 5:2 (1998) 173 196.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338-355, 1984.

B. Schieber and U. Vishkin. On finding lowest common ancestors: simpli-
fication and parallelization. STAM J. Comput., 17(6):1253-1262, 1988.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A
basic local alignment search tool. .J. Mol. Biol., 215:403—-410, 1990.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-
260, 1995.

R.A. Baeza-Yates and C. Perleberg. Fast and practical aproximate string
matching. In Z. Galil A. Apostolico, M. Crochemore and U. Manber, ed-
itors, Combinatorial Pattern Matching, volume 644 of Lecture Notes in
Computer Science, pages 185—192. Springer-Verlag, 1992.

S. C. Chang and E. L. Lawler. Sublinear expected time approximate string
matching and biological applications. Algorithmica 12 (1994) 327-344.

A. Apostolico and M. Crochemore. String pattern matching for a deluge
survival kit. In J. Abello, P.M. Pardalos and M.G.C. Resende, editors,
Handbook of Massive Data Sets, Kluwer Academic Publishers, 2000) to
appear.

P. Weiner. Linear pattern matching algorithm. Proceedings of the 14th An-
nual IEEE Symposium on Switching and Automata Theory, Washington,
D.C., 1973, 1-11.

46

[34]

[35]

[45]

[46]

[47]

E. M. McCreight. A space-economical suffix tree construction algorithm.
J. Algorithms, 23(2):262-272, 1976.

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen, and
J. Seiferas. The smallest automaton recognizing the subwords of a text.
Theoret. Comput. Sci. 40 (1985) 31 55.

M. Crochemore. Transducers and repetitions. Theoret. Comput. Sci.,
45(1):63 86, 1986.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. STAM J. Comput., 22(5):935-948, 1993.

G. Gonnet, R. Baeza-Yates, and T. Snider. Lezicographical indices for text:
inverted files vs. PAT trees. Technical report OED-91-01, Centre for the
New OED, University of Waterloo, 1991.

J. Karkkéinen and E. Ukkonen. Sparse suffix trees. Proceedings of the 2nd
Annual International Computing and Combinatorics Conference, Lecture
Notes in Computer Science number1090, Springer-Verlag, 1996, 219 230.

J. Kérkkéinen. Suffix cactus: a cross between suffix tree and suffix array. In
Z. Galil and E. Ukkonen, editors, Proceedings of the 6th Annual Symposium
on Combinatorial Pattern Matching, Lecture Notes in Computer Science
number937, Springer-Verlag, 1995, 191-204.

P. Ferragina and R. Grossi. A fully-dynamic data structure for external
substring search. Proceedings of the 27th ACM Symposium on the Theory
of Computing, ACM Press, 1995.

A. Anderson and S. Nilson. Efficient implementation of suffix trees. Softw.
Pract. Exp., 25:129 141, 1995.

R. W. Irving. Suffiz binary search trees. Technical report 1995-7, University
of Glasgow, 1995.

M. Crochemore and R. Vérin. On compact directed acyclic word graphs.
Edited by J. Mycielski, G. Rozenberg, and A. Salomaa. Structures in Logic
and Computer Science. Lecture Notes in Computer Science number1261.
Springer-Verlag, 1997, 192 211.

A. Blumer, A. Ehrenfeucht, and D. Haussler. Average sizes of suffix trees
and DAWGS. Discrete Applied Mathematics 24 (1989) 37 45.

M. Raffinot. Asymptotic estimation of the average number of terminal
states in dawgs. Proceedings of the 4th South American Workshop on String
Processing, Carleton University Press, 1997, 140-148.

S. Kurtz. Reducing the space requirement of suffiz trees. Technical report
98-03, University Bielefeld, 1998.

47

[48]
[49]

[50]

[51]

[52]

J. Holub. Personal communication, 1999.

M. Balik. Searching substrings. Technical report DC-PSR-2000-02, Czech
Technical University, 2000.

U. Manber and R. Baeza-Yates. An algorithm for string matching with a
sequence of don’t cares. Inform. Process. Lett. 37:3 (1991) 133 136.

G. Navarro. Indexing methods for approximate string matching. Technical
report, University of Chile, 2000.

N. El-Mabrouk and F. Lisacek. Very fast identification of RNA motifs in
genomic DNA. Application to tRNA search in the yeast genome. J. Mol.
Biol. 264 (1996) 46-55.

M. Crochemore. An optimal algorithm for computing the repetitions in a
word. Inf. Proc. Letters, 12:244-250, 1981.

A. Apostolico et F. P. Preparata. Optimal off-line detection of repetitions
in a string. Theoret. Comput. Sci., 22(3):297 315, 1983.

M. G. Main et R. J. Lorentz. An O(nlogn) algorithm for finding all repe-
titions in a string. J. Algorithms, 5(3):422 432, 1984.

R. Kolpakov et G. Kucherov. Finding maximal repetitions in a word in lin-
ear time, Symposium on Foundations of Computer Science (FOCS), New-
York (USA), 596-604, IEEE Computer Society, 1999.

J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats
using a suffix tree. In M. Farach-Colton, editor, Proceedings of the 9th
Annual Symposium on Combinatorial Pattern Matching, number 1448 in
Lecture Notes in Computer Science, pages 140-152, Piscataway, N.J, 1998.
Springer-Verlag, Berlin.

B. Charlesworth, P. Sniegowski, and W. Stephan. The evolutionary dynam-
ics of repetitive DNA in eukaryotes. Nature, 371:215 220, 1994.

M.-F. Sagot and E. W. Myers. Identifying satellites in nucleic acid se-
quences. In S. Tstrail, P. Pevzner, and M. Waterman, editors, RECOMB’98.
Proceedings of Second Annual International Conference on Computational
Molecular Biology, pages 234—242. ACM Press, 1998.

B. Clift, D. Haussler, R. McConnell, T. D. Schneider, and G. D. Stormo.
Sequence landscapes. Nucleic Acids Res., 14:141 158, 1986.

A. Milosavljevic and J. Jurka. Discovering simple DNA sequences by the
algorithmic significance method. Comput. Appl. Biosci., 9:407-411, 1993.

O. Delgrange. Un algorithme rapide pour une compression modulaire op-
timale. Application a l'analyse de séquences génétiques. PhD thesis, 1997.
These de doctorat - Université de Lille I.

48

[63]

[64]

[67]

V. Fischetti, G. Landau, J. Schmidt, and P. Sellers. Identifying periodic oc-
currences of a template with applications to protein structure. In Z. Galil
A. Apostolico, M. Crochemore and U. Manber, editors, Combinatorial Pat-
tern Matching, volume 644 of Lecture Notes in Computer Science, pages
111 120. Springer-Verlag, 1992.

E. Rivals and O. Delgrange. A first step toward chromosome analysis by
compression algorithms. In N. G. Bourbakis, editor, First International
IEEE Symposium on Intelligence in Neural and Biological Systems, pages
233 239. IEEE Computer Society Press, 1995.

P. Bieganski, J. Riedl, J. V. Carlis, and E.M. Retzel. Generalized suffix
trees for biological sequence data: applications and implementations. In
Proceedings of the of the 27th Hawai International Conference on Systems
Science, pages 35—44. IEEE Computer Society Press, 1994.

L. C. K. Hui. Color set size problem with applications to string match-
ing. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors,
Combinatorial Pattern Matching, volume 644 of Lecture Notes in Computer
Science, pages 230 243. Springer-Verlag, 1992.

L. Marsan and M.-F. Sagot. Extracting structured motifs using a suffix
tree algorithms and application to promoter consensus identification. In
S. Istrail, P. Pevzner, and M. Waterman, editors, RECOMB’00. Proceedings
of Fourth Annual International Conference on Computational Molecular
Biology. ACM Press, 2000.

J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory
elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids
Res., 28:1808 1818, 2000.

I. Jonassen, J. F. Collins, and D. G. Higgins. Finding flexible patterns in
unaligned protein sequences. Protein Science, 4:1587 1595, 1995.

I. Jonassen. Efficient discovery of conserved patterns using a pattern graph.
Comput. Appl. Biosci., 13:509 522, 1997.

Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit. Identification
of common motifs in unaligned DNA sequences: application to Escherichia
coli lrp regulon. Comput. Appl. Biosci., 11:379-387, 1995.

A. Klingenhoff, K. Frech, K. Quandt, and T. Werner. Functional promoter
modules can be detected by formal models independent of overall nucleotide
sequence similarity. Bioinformatics 1, 15:180 186, 1999.

A. Vanet, L. Marsan, A. Labigne, and M.-F. Sagot. Inferring regulatory
elements from a whole genome. An analysis of the ¢®° family of promoter
signals. J. Mol. Biol., 297:335-353, 2000.

49

