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may therefore perform a biologial funtion. Among the objets whih maymodel biologial entities, we shall onsider in this hapter strings only. As isby now well known, biologial sequenes, whether dna, rna or proteins, maybe represented as strings over an alphabet of 4 letters (dna/rna) or 20 letters(proteins). Some of the basi problems enountered in lassial text analysishave their ounterpart when the texts are biologial sequenes, among them ispattern mathing. However, this problem omes with a twist one we are in therealm of biology: exat patterns hardly make sense in this ase. By exat above,we mean idential; and there are in fat at least two types of \non-idential"patterns one must onsider in biology. One omes from looking at what \hides"behind eah letter of the dna/rna or protein alphabet while the other orre-sponds to the more familiar notion of \errors". The errors onern mutationalevents whih may a�et a moleule during dna repliation. Those of interestto us are point mutations, that is, mutations operating eah time on single let-ters of a biologial sequene: substitution, insertion or deletion. Consideringsubstitutions only is sometimes enough for dealing with some problems.There are basially two questions that may be addressed when trying tosearh for known or predited patterns in any text. Both are disussed ingeneral omputational biology books suh as Durbin's et al. [1℄, Gus�eld's [2℄,Meidanis and Setubal's [3℄ or Waterman's [4℄. One, rather anillary, is thequestion of position: where are these patterns loalized (pattern loalizationpredition) ? The seond question, more oneptual, onerns identifying andmodeling the patterns ab initio: what would be a onsensual motif for them(pattern onsensus predition)? In biology, it is often the seond question whihis the most interesting although the �rst is far from being either trivial or solved.Indeed, in general what is interesting to disover is whih patterns, unknownat start, math the string(s) more often than \expeted" and have thereforea \hane" of representing an interesting biologial entity. This entity mayorrespond to a binding site, i.e. to a (in general small) part of a moleule thatwill interat with another, or it may represent an element that is repeated ina dispersed or periodi fashion (for instane, tandemly). The role played by arepetition of whatever type is often unknown: some repeats, in partiular smalltandem ones, have been impliated in a number of geneti diseases and are alsointeresting for the purposes of studying polymorphism; other types of repeats,suh as short inverted ones, seem to be hotspots for reombination.We address both kinds of problems (pattern loalization predition and pat-tern onsensus predition) after having disussed some notions of \non-identity",that is, of similarity, that we shall be onsidering. These are presented in Setion2. We start with the identity, both beause it may sometimes be of interest andbeause this allows us to introdue some notations that are used throughout thepaper. Suh notations are based on those adopted by Karp et al. in a pioneeringpaper on �nding dispersed exat repeats in a string [5℄. From there, it is easy toderive a de�nition of similarity based, not on the identity, but on any relationbetween the letters of the alphabet for the strings. In partiular, this relationan be, and in general is, non transitive (ontrary to equality). This was in-trodued by Soldano et al. [6℄. Finally, de�nitions of similarity taking errors2



(substitutions, insertions and deletions) into aount are disussed and the ideaof models is presented. This idea was initially formally de�ned by Sagot et al.[7℄.We review the pattern loalization predition question in Setion 3. Sinemany methods used to loate patterns are inspired from algorithms developedfor mathing �xed patterns with equality, we state the main results onerningthis problem. Complexity bounds have been intensively studied and are knownwith a good auray. This is the bakground for broader methods aimed atloating approximate patterns. The most widely used approximation is basedon the three alignment operations realled in Setion 2. The general methoddesigned to math an approximate pattern is an extension of the dynami pro-gramming method used for aligning strings. Improving this method has alsobeen intensively investigated beause of the multitude of appliations it gener-ates. The fastest known algorithms are for a speialization of the problem withweak but extra onditions on the sores of edit operations.For �xed texts, pattern mathing is more eÆiently solved by using somekind of index. Indexes are lassial data strutures aimed at providing a fastaess to textual databases. As suh, they an be onsidered as abstrat datatypes or objets. They onsist both of data strutures to store useful informationand of operations on the data (see Salton [8℄, or Baeza-Yates and Ribero-Neto[9℄). The strutures often memorize a set of keys as is the ase of an index atthe end of a tehnial book. Seleting keys is a diÆult question that sometimesrequires human ation. In the hapter, we onsider full indexes, whih ontain allpossible fators (segments) of the original text, and we refer to these struturesas fator or suÆx strutures. These strutures help �nding repetitions in strings,searh for other regularities, solve approximate mathings, or even math two-dimensional patterns, to quote a few appliations. Additional or deeper analysisof pattern mathing problems may be found in books by Apostolio and Galil[10℄, Crohemore and Rytter [11℄, Gus�eld [2℄, and Stephen [12℄.Setion 4 deals with the problem of �nding repeats, exat or approximate,dispersed or appearing in a regular fashion along a string. Perhaps the mostinteresting work as onerns this area is that of Karp et al. [5℄ for identifyingexat, dispersed repeats. This is disussed in some detail. Combinatorial algo-rithms also exist for �nding tandem repeats. The most interesting ones are dueto Landau [13℄ and Kannan and Myers [14℄, whih allows for any error soringsystem, and to Kurtz et al. [15℄, whih uses a suÆx tree for loating suh re-peats and omes with a very onvenient visualisation tool. In biology, so alledsatellites onstitute another important type of repetitions. Satellites are tandemarrays of approximate repeats varying in the number of ourrenes between twoand a few millions and in length between two and a few hundreds, sometimesthousands of letters. Only one ombinatorial formulation of the problem hasbeen given to this date [16℄, whih we desribe at some length.Finally, motif extration is onsidered in Setion 5. A lot of the initial workdone in this area used a de�nition of similarity that is based on the relativeentropy of the ourrenes of a motif in the onsidered set of strings. Thisprodues often good results for relatively small data-sets, and the method has3



therefore being ontinuously improved. Suh a de�nition, however, leads toexat algorithms that are exponential in the number of strings and heuristishave therefore to be employed. These do not guarantee optimality, that is, theydo not guarantee that the set of ourrenes given as a �nal solution is the onehaving maximal relative entropy. We do not treat suh methods in the hapter.The author is referred to [17℄ for a survey of these and other methods from thepoint of view of biology.A de�nition of similarity based on the idea of models (whih are objets thatare external to the strings) and of a maximum error rate between suh modelsand their ourrenes in strings an lead to ombinatorial algorithms. Somealgorithms in this ategory are eÆient enough to be used for more omplexmodels. An algorithm for extrating simple models as well as more omplexones, alled strutured models, elaborated by Marsan et al. [18℄ is treated insome detail.2 Notions of similarity2.1 Preliminary de�nitionsIf s is a string of length jsj = n over an alphabet �, that is, s 2 �n, its individualelements are noted si for 1 � i � n, so that we have s = s1s2 : : : sn. A nonempty word u 2 �� is a fator of s if u = sisi+1 : : : sj for a given pair (i; j) suhthat 1 � i � j � n. The empty word, denoted by �, is also a fator of s.2.2 IdentityAlthough identity is seldom an appropriate notion of similarity to onsider whenworking with biologial objets, it may sometimes be of interest. This is astraightforward notion we nevertheless de�ne properly as this allows us to in-trodue some notations that is used throughout the paper.The identity onerns words in a string and we therefore adopt Karp et al.[5℄ identi�ation of suh words by their start position in the string. To failitateexposition, this and all other notions of similarity are given for words inside asingle string. It is straightforward to adapt them to the ase of more than onestring (for instane, by onsidering the string resulting from the onatenationof the initial ones with a distint forbidden symbol separating any two adjaentstrings). Let us note E the identity relation on the alphabet � (the E standsfor \Equivalene").Relation E between elements of � may then be extended to a relation Ekbetween fators of length k in a string s in the following way:De�nition 2.1 Given a string s 2 �n and i; j two positions in s suh thati; j � n� k + 1, then:i Ek j , si+l E sj+l for all l suh that 0 � l � (k � 1).4



G S������ A T���I
V������ L M��� FY DE KR C.P. N.Q. H.W.Figure 1: Example of a relation of similarity between the letters of the proteinalphabet (alled amino aids).In other words, iEkj if and only if sisi+1 : : : si+k�1 = sjsj+1 : : : sj+k�1. Foreah k � 1, Ek establishes an equivalene relation that orresponds to a relationbetween ourrenes of words of length k in s. This provides a �rst de�nitionof similarity between suh ourrenes. Indeed, eah equivalene lass of Ekhaving ardinality greater than one is the witness of a repetition in s.2.3 Non transitive relationWhen dealing with biologial strings, one has to onsider that the \letters"represented by suh strings are omplex biologial objets with physio-hemialproperties, as, for instane, eletrial harge, polarity, size, di�erent levels ofaidity, et. Some, but seldom all, of these properties may be shared by two ormore objets. This applies more to proteins than to dna/rna but is true tosome extent for both.A more realisti relation to establish between the letters of the proteinor dna/rna alphabet (respetively alled amino aids and nuleotides) wouldtherefore be reexive, symmetri but non transitive [6℄. An example of suh arelation, noted R, is given below.Example 1 Let � = fA,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Yg be thealphabet of amino aids and R be the relation of similarity between these aminoaids given by the graph given in Figure 1. The maximal liques of R are thesets: fA,S,Gg, fA,Tg, fI,L,Vg, fL,Mg, fF,Yg, fD,Eg, fK,Rg, fCg, fPg, fNg,fQg, fHg, fWg.It may be represented by a graph whose nodes are the elements of � andwhere an edge links two nodes if the elements of � labeling the nodes orre-spond to biologial objets sharing enough physio-hemial properties to beonsidered similar.As previously, the relation R between elements of � may easily be extendedto a relation Rk between fators of length k in a string s.De�nition 2.2 Given a string s 2 �n and i; j two positions in s suh thati; j � n� k + 1, then: 5



i Rk j , si+l R sj+l for all l suh that 0 � l � (k � 1).For eah k � 1, Rk establishes a relation that is no longer an equivalene be-tween positions (fators of length k) in a string s. The onept that is importanthere is that of a (maximal) lique.De�nition 2.3 Given an alphabet � and a non transitive relation on �, a setC of elements of � is a (maximal) lique of relation R if for all �; � 2 C, � R� and for all  2 � n C, C S fg is not a lique.De�nition 2.4 Given a string s 2 �n, a set Ck of positions in s is a lique ofrelation Rk if for all i; j 2 Ck, i Rk j and for all l 2 [1::n℄ n Ck, Ck S flg isnot a lique.Cliques of Rk give us then a seond way of establishing a de�nition of simi-larity between fators of length k in a string.2.4 Allowing for errorsIntroduing the idea of a modelLet us initially assume that the only authorized errors are substitutions. Inview of the de�nitions established in previous setions, one would be temptedto de�ne a relation of similarity H between two fators of length k in a strings, that is, between two positions i and j in s, the following way.De�nition 2.5 Given a string s 2 �n and i; j two positions in s suh thati; j � n� k + 1, then:i Hk j , distH(si : : : si+k�1, sj:::sj+k�1) � ewhere distH(u; v) is the Hamming distane (hene the H) between u and v (thatis, the minimum number of substitutions one has to operate on u in order toobtain v) and e is a non negative integer that is �xed.Parameter e orresponds to the maximum number of substitutions that aretolerated. In the same way as in Setion 2.3, liques of Hk provide us withanother possible de�nition of similarity between fators of length k in a string.Eevn before trying to onsider how to adapt the above de�nition to the aseof a Levenshtein (or any other type of) distane where insertions and deletionsare permitted besides substitutions (this is not ompletely trivial: indeed, giventwo words u and v respetively starting at positions i and j in s and suh thatiLkj, what is the meaning of k?), one may intuitively note that alulating Hk(and, a fortiori, Lk) is no longer as easy as omputing Ek or Rk.The reason is that, although the de�nitions given in Setions 2.2 and 2.3involve pairs of positions in a string s, it is possible to rewrite them in suh away that, given a position i in s and a length k, it is immediate to determineto whih lass or lique(s) i belongs in the sense that the lass or lique(s)6



an be uniquely identi�ed just by \reading" si : : : si+k�1. Let us onsider �rstthe simpler ase of an identity. Straightforwardly, position i belongs to thelass whose label is si : : : si+k�1. In the ase of a non transitive relation Rbetween letters of �, let us name C the set of (maximal) liques of R and noteliqueR(�) the liques of R to whih a letter � belongs. Then, position i belongsto all the sets of Rk whose labels may be spelled from the (regular) expressionliqueR(si) : : : liqueR(si+k�1) and that are maximal under Rk. Note the smalldi�erene here with the identity relation: maximality of a validly labeled sethas to be heked [6℄.No suh easy rewriting and veri�ation are possible in the ase of the def-inition of Hk (or Lk had we already written it) if we wish to build the notionof similarity between fators in a string upon that of the liques of Hk. Indeed,obtaining suh liques needs omparing (a possibly great number of) pairs ofpositions between themselves. This is expensive.One may, however, rewrite the de�nition of Hk in a way that refers to labelsas we did above for Ek and Rk although suh labels are no longer as immediatelyidenti�able. A possible de�nition (still for the ase where substitutions only areonsidered) is the following.De�nition 2.6 Given a string s 2 �n and i; j two di�erent positions in s suhthat i; j � n� k + 1, then:i Hk j , 9m 2 �k suh that distH(m,si : : : si+k�1) � e anddistH(m,sj : : : sj+k�1) � ewhere distH(u; v) and e are as before.Generalizing this, gives the following de�nition.De�nition 2.7 A set Sk of positions in s represents a set of fators in s oflength k that are all similar between themselves if, and only if, there exists (atleast) a string m 2 �k suh that, for all elements i in Sk, distH(m,si : : : si+k�1)� e and, for all j 2 [1::n℄ n Sk, distH(m,si : : : si+k�1) > e.Observe that extension of both de�nitions to a Levenshtein distane beomesnow straightforward. We reprodue below, after modi�ation, just the lastde�nition.De�nition 2.8 A set Sk of positions in s represents a set of fators of lengthk that are similar if, and only if, there exists (at least) a string m 2 �k suhthat, for all elements i in Sk, distL(m,si : : :) � e and, for all j 2 [1::n℄ n Sk,distL(m,si : : :) > e.Sine the length of an ourrene of a model m may now be di�erent fromthat of m itself (it varies between jmj� e and jmj+ e) we denote the ourreneby (si : : :) leaving inde�nite its right-end point.Observe also that it remains possible, given a position i in s and a length k,to obtain the label of the group(s) of the relation Hk (or Lk) i belongs to. Suh7



labels are represented by all strings m 2 �k suh that distH(or distL)(m,si : : :)� e, that is, suh that their distane from the word starting at position i in sis no more than e.We all models suh group labels. Positions in s indiating the start of afator of length k are e-ourrenes (or simply ourrenes where there is noambiguity) of a model m if dist(m,si : : :) � e where dist is either the Hammingor Levenshtein distane. Observe that a model m may have no exat ourrenein s.Finally, we have onsidered so far what is alled a \unitary ost distane"(unitary beause the ost of eah operation, substitution, insertion or deletion,is one unit). We ould have used instead a \weighted ost distane", that is,we ould have used any ost for eah operation, in the range of integers or realnumbers.Expanding on the idea of models { Two more possible de�nitions ofsimilarityNon transitive relation and errors Models allow us to onsiderably enrihthe notion of onservation. For instane, it enables us to simultaneously onsidera non relative transition between the letters of the alphabet (amino aids ornuleotides) and the possibility of errors. In order to do that, it suÆes topermit the model to be written over an extended alphabet omposed of a subsetof the set of all subsets of � (noted P(�)) where � is the alphabet of aminoaids or nuleotides. Suh an alphabet an be, for instane, one de�ned by themaximal liques of the relation R given in Figure 1. De�nition 2.8 of Setion 2.4then beomes:De�nition 2.9 A set Sk of positions in s represents a set of fators of lengthk that are all similar between themselves if, and only if, there exists (at least)one element M 2 P k with P � P(�) suh that, for all elements i in Sk,setdist(M ,si : : :) � e and, for all j 2 [1::n℄ n Sk, setdist(M; si : : :) > e, wheresetdist(M; v) for M 2 P and u 2 � is the minimum Hamming or Levenshteindistane between v and all u 2M .Among the subsets allowed in P , the alphabet of models, may be f�g itself,that is the wild ard. It is obvious that this may lead to trivial models. AlphabetP may then ome with weights attahed to eah of its elements indiating howmany times (possibly in�nite) it may appear in an interesting model. Observethat another way of desribing the alphabet P of models is as the set of edgesof a (possibly weighted) hypergraph whose nodes are the elements of �.When e is zero, we obtain a de�nition of similarity between fators in thestring that losely resembles that given in Setion 2.3. Note however that, giventwo models M1 and M2, we may well have that the set of ourrenes of M1 isinluded in that of M2. The liques of De�nition 2.4 orrespond to the sets ofourrenes that are maximal. 8



A word instead of symbol-based similarity Errors between a group ofsimilar words and the model of whih they are ourrenes an either be ountedas unitary events (possibly with di�erent weights) as was done in the previoussetions, or they an be given a sore. The main idea behind soring a resem-blane between two objets is that it allows to average the di�erenes that mayexist between them. It may thus provide a more exible funtion for measuringthe similarity between words. A simple example illustrates this point.Example 2 Let � = fA,B,Cg and:sore(i; i) = 1, 8 i 2 �;sore(A,B) = sore(B,A) = -1;sore(A,C) = sore(C,A) = -1;sore(B,C) = sore(C,B) = -1.If we say that 2 words are similar either if:- the number of substitutions between them is � 1,- their sore is � 1,then by the �rst riterion the words AABAB and AACCB are not similar, whileby the seond riterion they are, the seond substitution being allowed beausethe two words on the average share enough resemblane.In the example and in the de�nition of similarity introdued in this setion,gaps are not allowed, only substitutions are. This is done essentially for thesake of larity. Gaps may, however, be authorized, the reader is referred to [19℄for details.Let a numerial matrix M of size j � j � j � j be given suh that:M(a; b) = sore between a and b for all a, b 2 �.If this sore measures a similarity between a and b, we talk of a similarity matrix(two well-known examples of whih in biology are PAM250 [20℄ and BLOSUM62[21℄), while if the sore measures a dissimilarity between a and b we talk of adissimilarity matrix. A speial ase of this latter matrix is when the dissimilaritymeasure is a metri, that is when the sores obey, among other onditions, thetriangular inequality. In that situation, we talk of a distane matrix (an exampleof whih is the matrix proposed by J.-L. Risler [22℄).In what follows, we onsider that M is a similarity matrix.De�nition 2.10 Given u = u1u2:::uk 2 �k, m = m1m2:::mk 2 �k a model oflength k and M a matrix, we note:soreM(u;m) = kXi=1M(ui;mi):De�nition 2.11 A set Sk of positions in s represents a set of fators of lengthk that are similar if, and only if, given w a positive integer suh that w � k andt a threshold value: 9



1. there exists (at least) one element m 2 �k suh that, for all elements i in Skand for all j 2 f1,...,j m j �w+1g, soreM(mj :::mj+w�1; si:::si+w�1) � t;2. for all i 2 [1::n℄ nSk, there exists at least one j 2 f1,...,j m j �w+1g suhthat soreM(mj :::mj+w�1; si:::si+w�1) < t.An example is given below.Example 3 Let � = fA,B,Cg, w = 3 and t = 6. Let M be the followingmatrix: A B CA 3 1 0B 1 2 1C 0 1 3Given the three strings:s1 = ABCBBABBBACABACBBBABs2 = CABACAACBACCABCACCACCCs3 = BBBACACCABABACABACABAthen the longest model that is present in all strings is CACACACC (at positions9, 1 and 12 respetively).3 Motif loalizationWe review in this setion the main results and ombinatorial methods usedto loate patterns in strings. The problem is of main importane for severalreasons. From a theoretial point of view, it is a paradigm for the design ofeÆient algorithms. From a pratial point of view, the algorithms developedin this hapter often serve as basi omponents in string faility software. Inpartiular, some tehniques are used for the extration of unknown motifs.We onsider two instanes of the question, depending on whether the motif is�xed or the string is �xed. In the �rst ase, preproessing the pattern aeleratesthe searh for it in any string. Searhing a �xed string is made faster if a kind ofindex on it is preproessed. At the end of the setion, we sketh how to searhstrutural motifs for the identi�ation of trnamotifs in biologial sequenes.3.1 Searhing for a �xed motifString searhing or string mathing is the problem of loating all the our-renes of a string x of length p, alled the pattern, in another string s of lengthn, alled the sequene or the text. The algorithmi omplexity of the prob-lem is analyzed by means of standard measures: running time and amount ofmemory spae required by the omputations. This setion deals with solutionsin whih the pattern is assumed to be �xed. There are mainly three kinds ofmethods to solve the problem: sequential methods (simulating a �nite automa-ton), pratially-fast methods, and time-spae optimal methods. Methods that10



searh for ourrenes of approximate patterns are disussed in the next subse-tion. Alternative solutions based on a preproessing of the text are desribedin a following subsetion.EÆient algorithms for the problem have a running time that is linear in thesize of the input (i.e. O(n+ p)). Most algorithms require an additional amountof memory spae that is linear in the size of the pattern (i.e. O(p)). Informationstored in this spae is omputed during the preproessing phase, and later usedduring the searh phase. The time spent during the searh phase is partiularlyimportant. The number of omparisons made and the number of inspetionsexeuted have therefore been evaluated with great are. For most algorithms,the maximum number of omparisons (or number of inspetions) made duringthe exeution of the searh is less than 2n. The minimum number of omparisonneessary is bn=p, and some algorithms reah that bound in ideal situations.The omplexity of the string searhing problem is given by the following the-orem due to Galil and Seiferas (1983). The proof is based on spae-eonomialmethods that are outside the sope of this hapter (see [11℄, for example). Lineartime is however met by many other algorithms. Note that in the \O" notation,oeÆients are independent of the alphabet size.Theorem 1 The string searhing problem, loating all ourrenes of a patternx in a text s, an be solved in linear time, O(jsj+ jxj), with a onstant amountof additional memory spae.The average running time of the searh phase is sometimes onsidered asmore signi�ant than the worst-ase time omplexity. Despite the fat that itis usually diÆult to model the probability distribution of spei� texts, resultsfor a few algorithms (with a hypothesis on what \average" means) are known.Equiprobability of symbols and independene between their ourrenes in textsrepresent a ommon hypothesis used in this ontext and gives the next result(Yao, 1979). Although the hypothesis is too strong, the result reets the atualrunning time of algorithms based on the method desribed below. In addition,it is rather simple to design a string searhing algorithm working in this timespan.Theorem 2 Searhing a text of length n for a preproessed pattern of length pan be done in optimal expeted time O( log pp � n).String searhing algorithms an be lassi�ed into three lasses. In the �rstlass, the text is searhed sequentially, one symbol at a time from beginningto end. Thus all symbols of the text (exept perhaps p � 1 of them at theend) are inspeted. Algorithms simulate a reognition proess using a �niteautomaton. The seond lass ontains algorithms that are pratially fast. Thetime omplexity of the searh phase an even be sublinear, under the assumptionthat both the text and the pattern reside in main memory. Algorithms from the�rst two lasses usually require O(p) extra memory spae to work. Algorithmsfrom the third lass show that the additional spae an be redued to a few11



integers stored in a onstant amount of memory spae. Their interest is mainlytheoretial so far.The above lassi�ation an be somehow re�ned by onsidering the way thesearh phases of algorithms are designed. It is onvenient to onsider that thetext is examined through a window. The window is assimilated to the segmentof the text it ontains and it has usually the length of the pattern. It runsalong the text from beginning to end. This sheme is alled the sliding windowstrategy and is desribed below. It uses a san-and-shift mehanism.1. put window at the beginning of text;2. while window on text do3. san: if window = pattern then report it;4. shift: shift window to the right and5. memorize some information for use during next sans and shifts;During the searh, the window on the text is periodially shifted to theright aording to rules that are spei� to eah algorithm. When the windowis plaed at a ertain position on the text, the algorithm heks whether thepattern ours there, i.e., if the pattern equals the ontent of the window.This is the san operation during whih the algorithm aquires from the textinformation that is often used to determine the next shift of the window. Partof the information an also be kept in memory after the shift operation. Thisinformation is then used for two purposes: �rst, saving time during the nextsan operations, and, seond, inreasing the length of further shifts. Thus, thealgorithms operate a series of alternate sans and shifts.A naive implementation of the san-and-shift sheme (no memorization, anduniform shift of length 1) leads to a searhing algorithm running in maximumtime O(p � n); the expeted number of omparisons is 4n=3 on a four-letteralphabet. This performane is quite poor as ompared to preeding results.Pratially fast searhesWe desribe a string searhing strategy that is onsidered as the fastest in pra-tie. Derived algorithms apply when both the text and the pattern reside inmain memory. We thus do not take into aount the time to read them. Underthis assumption, some algorithms have a sublinear behavior. The ommon fea-ture of these algorithms is that they san the window in the reverse diretion(from right to left).The lassial string searhing algorithm that sans the window in reversediretion is the BM algorithm (Boyer and Moore, 1977). At a given position inthe text, the algorithm �rst identi�es the longest ommon suÆx u of the windowand the pattern. A math is reported if it equals the pattern. After that, thealgorithm shifts the window to the right. Shifts are done in suh a way thatthe ourrene of u in the text remains aligned with an equal segment of thepattern, and are often alled math shifts. The length of the shift is determinedby what is alled the displaement of u inside x, and denoted by d(u). A skethof the BM algorithm is displayed below.12



1. while window on text do2. u := longest ommon suÆx of window and pattern;3. if u = pattern then report a math;4. shift window d(u) plaes to the right;The funtion d depends only on the pattern x so that it an be preomputedbefore the searh starts. In the BM algorithm, an additional heuristis on mis-math symbols of the text is also usually used. This yields another displaementfuntion used in onjuntion with d. It is a general method that may improvealmost all algorithms in ertain real situations.The BM algorithm is memoryless in the sense that, after a shift, it startssanning the window from srath. No information about previous mathesis kept in memory. When the algorithm is applied to �nd all ourrenes ofAp inside An, the searh time beomes proportional to p � n. The reason forthe quadrati behavior is that no memory is used at all. It is, however, verysurprising that BM algorithm turns out to be linear when the searh is limitedto the �rst ourrene of the pattern. By the way, the original algorithm hasbeen designed for that purpose. Only very periodi patterns may inrease thesearh time to a quadrati quantity, as shown by the next theorem (Cole, 1990).The bound it gives is the best possible. Only a modi�ed version of the BMalgorithm an therefore make less than 2n symbol omparisons at searh time.Theorem 3 Assume that pattern x satis�es period(x) > jxj=2. Then, the BMsearhing algorithm performs at most 3jsj � jsj=jxj symbol omparisons.The theorem also suggests that only little information about on�gurationsenountered during the proess has to be kept in memory in order to get alinear time searh for any kind of patterns. This is ahieved, for instane,if pre�x memorization is performed eah time an ourrene of the pattern isfound. However, this is also ahieved with a better bound by an algorithm alledTurbo BM. This modi�ation of the BM algorithm forgets all the history ofthe searh, exept for the most reent one. Analysis beomes simpler, and themaximum number of omparisons at searh phase beomes less than 2n.Searhing simultaneously for several (a �nite number of) patterns an bedone more eÆiently than searhing for them one at a time. The natural pro-edure takes an automaton as pattern. It is an extension of the single-patternsearhing algorithms based on the simulation of an automaton. The standardsolution is from Aho and Corasik [23℄.3.2 Approximate mathingsThe searh for approximate mathings of a �xed pattern produes the position inthe text s of an approximation of the pattern x. Searhing texts for approximatemathings is usually done by methods derived from the exat string searhingproblem desribed above. They either inlude an exat string mathing asan internal proedure or they transribe a orresponding algorithm. The twolassial ways to model approximate patterns onsist in assuming that a speial13



symbol an math any other symbol, or that operations to transform a patterninto another are possible.In the �rst instane we have, in addition to the symbols of the input al-phabet �, a wild ard (also alled a don't are symbol) � with the propertythat � mathes any other harater in �. This gives rise to variants of thestring searhing problem where, in priniple, � appears (i) only in the pattern,(ii) only in the text, or (iii) both in the pattern and the text. Variant (i) issolved by an adaptation of the multiple string mathing and of the pattern-mathing automaton of Aho and Corasik [23℄. For other variants, a landmarksolution is by Fisher and Paterson [24℄. They transpose the string searhingproblem into an integer multipliation problem, thereby obtaining a number ofinteresting algorithms. This observation brings string searhing into the fam-ily of boolean, polynomial and integer multipliation problems and leads to anO(n log p log log p) time solution in the presene of wild ards (provided that thesize of � is �xed).The entral notion for omparing strings is based on three basi edit oper-ations on strings introdued in Setion 2. It may be assumed that eah editoperation has an assoiated nonnegative real number representing the ost ofthat operation, so that the ost of deleting from w an ourrene of symbola is denoted by D(a), the ost of inserting some symbol a between any twoonseutive positions of w is denoted by I(a) and the ost of substituting someourrene of a in w with an ourrene of b is denoted by S(a; b).The string editing problem for input strings x and s onsists in �nding asequene of edit operations, or edit sript, � of minimum ost that transforms xinto s. The ost of � is the edit distane between x and s (it is a mathematialdistane under some extra hypotheses on operation osts). Edit distanes whereindividual operations are assigned unit osts oupy a speial plae.It is not diÆult to see that the general problem of edit distane omputationan be solved by an algorithm running in O(p � n) time and spae throughdynami programming. Due to the widespread appliation of the problem,however, suh a solution and a few basi variants were disovered and publishedin an extensive literature. The reader an refer to Apostolio and Gianarlo(1998) [25℄, or to [10℄ for a deeper exposition of the question.The omputation of edit distanes by dynami programming is readily setup. For this, let C(i; j) (0 � i � jsj and 0 � j � jxj) be the minimumost of transforming the pre�x of s of length i into the pre�x of x of lengthj. Then C(0; 0) = 0, C(i; 0) = C(i � 1; 0) + D(si) (i = 1; 2; :::; jsj), C(0; j) =C(0; j � 1) + I(xj) (j = 1; 2; :::; jxj), and C(i; j) equalsminfC(i� 1; j � 1) + S(si; xj); C(i� 1; j) +D(si); C(i; j � 1) + I(xj)gfor all i; j, (1 � i � jsj, 1 � j � jxj). Observe that, of all entries of the C-matrix, only the three entries C(i � 1; j � 1), C(i � 1; j), and C(i; j � 1) areinvolved in the omputation of the �nal value of C(i; j). Hene C(i; j) an beevaluated row-by-row or olumn-by-olumn in �(jsj � jxj) = �(p � n) time.An optimal edit sript an be retrieved at the end by baktraking through theloal deisions made by the algorithm.14



A few important problems are speial ases of string editing, inluding theomputation of a longest ommon subsequene, loal alignment, i.e., the de-tetion of loal similarities in strings, and some important variants of stringsearhing with errors, or searhing for ourrenes of approximate patterns intexts.String Searhing with di�erenesConsider the problem of omputing, for every position of the textstring s, thebest edit distane ahievable between x and a substring w of s ending at thatposition. Under the unit ost riterion, a solution is readily derived from thereurrene for string editing given above. The �rst obvious hange onsists insetting all osts to 1 exept that S(xi; sj) = 0 for xi = sj . We thus have now,for all i; j, (1 � i � jxj; 1 � j � jsj),S(i; j) = minfS(i� 1; j � 1) + 1; S(i� 1; j) + 1; S(i; j � 1) + 1g:A seond hange a�ets the initial onditions, so that we have now S(0; 0) =0, S(i; 0) = i (i = 1; 2; :::; p), S(0; j) = 0 (j = 1; 2; :::; n). This has the e�et ofsetting to zero the ost of pre�xing x by any pre�x of s. In other words, anypre�x of the text an be skipped at no ost in an optimum edit sript.The omputation of S is then performed in muh the same way as indiatedin table C above, thus taking �(jxj � jsj) = �(p � n) time. We are interestednow in the entire last row of matrix S.In pratie, it is often more interesting to loate only those segments of s thatpresent a high similarity with x under the adopted measure. Formally, givena pattern x, a text s, and an integer e, this restrited version of the problemonsists in loating all terminal positions of substrings w of s suh that the editdistane between w and x is at most e. The reurrene given above will learlyprodue this information. However, there are more eÆient methods to dealwith this restrited ase. In fat, a time omplexity O(e�n) and even sublinearexpeted time are ahievable. We refer to, e.g., [10, 11℄ for detailed disussions.In the following, we review some of the basi priniples behind an O(e � n)algorithm for string searhing with e di�erenes due to Landau and Vishkin(1986). Note that when e is a onstant the orresponding time omplexity thenbeomes linear.It is essential here that edit operations have unitary osts. Matrix S has aninteresting property that is intensively used to get the O(e � n) running time:its values are in inreasing order along diagonals, and onseutive values on asame line or a same olumn di�er by at most one unit (see Figure 2).Beause of the monotoniity property on diagonals and unitary osts, theinteresting positions on diagonals are those orresponding to a strit inrementa-tion. Computing these values only produes a fast omputation in time O(e�n).This is possible if queries on longest ommon pre�xes, as suggested in Figure 2,are answered in onstant time. This, in turn, is possible beause strings an bepreproessed in order to get this time bound.15



R �1 0 1 2 3 4 5 6 7 8 9 10 11C A G A T A A G A G A A�1 0 0 0 0 0 0 0 0 00 G 1 1 1 0 1 1 1 1 01 A 1 1 0 1 1 1 1 02 T 1 0 1 1 13 A 1 0 1 14 A 1 0 1 1Figure 2: Simulation of fast searhing for approximate mathings. Searhingy = CAGATAAGAGAA for x = GATAA with at most one di�erene. Pattern xours at right positions 6 on y without errors (sine R[4; 6℄ = 0), and at rightpositions 5, 7 et 11 with one error (sine R[4; 5℄ = R[4; 7℄ = R[4; 11℄ = 1). Afterinitialization, values are omputed diagonalwise, value 0 during the �rst stepand value 1 during the seond step. Value R[4; 6℄ = 0 omes from the fatthat GATAA is the longest ommon pre�x of x and y[2 : : 11℄. And, as a seondexample, R[4; 11℄ = 1 beause AA is the longest ommon pre�x of x[3 : : 4℄ andy[10 : :11℄. When queries related to longest ommon pre�xes are answered inonstant time the running time is proportional to bold values in the table.To do so, we onsider the suÆx tree (see setion 3.3 below), AC(Su� (z)), ofz = x$s where $ =2 alph(s). String w = LCP(x[`+1 : : p�1℄; s[d+`+1 : :n�1℄) isalso LCP(x[`+1 : : p�1℄$s; s[d+`+1 : :n�1℄) beause $ =2 alph(s). Let f and gbe the nodes of AC(Su� (z)) assoiated with strings x[`+1 : : p�1℄$s and s[d+`+1 : : n� 1℄. Their ommon pre�x of maximal length is then the label of the pathin the suÆx tree starting at the root and ending at the lowest ommon anestorof f and g. Longest ommon pre�x queries are thus transformed into lowestommon anestor queries that are answered in onstant time by an algorithmdue to Harel and Tarjan (1984) [26℄, simpli�ed later by Shieber and Vishkin(1988) [27℄. The onsequene of the above disussion is the next theorem.Theorem 4 On a �xed alphabet, after preproessing x and s, searhing s forourrenes of x with at most e di�erenes an be solved in time O(e� jsj).In appliations to massive data, even a O(e�n) time may be prohibitive. Byusing �ltration methods, it is possible to set up sublinear expeted time queries.One possibility is to �rst look for regions with exat replias of some patternsegment and then srutinize those regions. Another possibility is to look forsegments of the text that are within a small distane of some �xed segments ofthe pattern. Some of the urrent top performing software for moleular databasesearhes are engineered around these ideas [28, 29, 30, 31℄. A survey may befound in [32℄.
16
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bFigure 3: SuÆx trie of ababbb.3.3 IndexingFull indexes are designed to solve the pattern mathing problem, searhing s forourrenes of x, when the text s is �xed. Having a stati text allows to builda data struture to whih the queries are applied. EÆient solutions require apreproessing time O(jsj) and need O(jxj) searhing time for eah query.Full indexes store the set of fators of the text s. Sine fators are begin-nings of suÆxes of s, this is equivalent to storing all suÆxes of the text. Basioperations on the index are: �nd if pattern x ours in s, give the number ofourrenes of x in s, and list all positions of these ourrenes. But many otheroperations admit fast solutions through the use of indexes.Indexes are ommonly implemented by suÆx trees, suÆx automata (alsoalled suÆx DAWG's, Direted Ayli Word Graphs), or suÆx arrays. Thelatter struture realizes a binary searh in the ordered list of suÆxes of the text.The former strutures are desribed in the remaining of the setion.SuÆxes of s an be stored in a digital tree alled the suÆx trie of s. It isan automaton whose underlying graph is a tree. Branhes are labeled by all thesuÆxes of s. More preisely, the automaton aepts Su� (s) the set of suÆxesof s. A terminal state outputs the position of its orresponding suÆx. Figure 3displays the suÆx trie of s = ababbb.Compation The size of a suÆx trie an be quadrati in the length of s, evenif pending paths are pruned (it is the ase with the word akbkakbk, k 2 N).To ope with this problem, another struture is onsidered. It is the ompatedversion of the trie, alled the suÆx tree, and noted ST (s). It keeps from the triestates that are either terminal states or forks (nodes with outdegree greater than1). Removing other nodes leads to label ars with words that are non-emptysegments of s (see Figure 4).It is fairly straightforward to see that the number of nodes of ST (s) is nomore than 2n (if n > 0), beause non-terminal internal nodes have at least17
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(2; 4)(4; 2)(2; 4)(4; 1) (5; 1) i 0 1 2 3 4 5s[i℄ a b a b b bFigure 5: Compation of the suÆx trie of Figure 3: implementation of the suÆxtree of ababbb of Figure 4 in whih labels of ars are represented by pairs ofintegers.two hildren, and there are at most n external nodes. However, if the labelsof ars are stored expliitly, again the implementation an have quadrati size.The tehnial solution is to represent labels by pairs of integers in the form(position, length) and to keep in main memory both the tree ST (s) and thetextstring s (see Figure 5). The whole proess yields a ompated version of thetrie of suÆxes that has linear size.Minimization Another way of reduing the size of the suÆx trie is to min-imize it like an automaton. We then get what is alled the suÆx automatonSA(s), whih is the minimal automaton aepting Su� (s). It is also alled(suÆx) DAWG's. The automaton an even be further slightly redued by min-imization if all states are made terminal, thus produing the fator automatonof the text. 18



0 1 2 3 4 5 620 50a b a bb b bb a b bFigure 6: SuÆx automaton of ababbb: minimal deterministi automaton a-epting Su� (s).Certainly the most surprising property of suÆx automata, disovered byBlumer et al. (1983), is the linear size of the automaton. More aurately, itsatis�es the inequalities: jsj+ 1 � #states � 2jsj � 1,jsj � #ars � 3jsj � 4:EÆient onstrutions The onstrution of suÆx strutures an be ar-ried on in linear time. Indeed, running times depend on the implementationof the strutures, and mainly on that of the transition funtion. If ars areimplemented by sets of suessors, transitions are done by symbol omparisons,whih leads to a O(jsj log ard�) onstrution time within O(jsj) memory spae.This is the solution to hoose for unbounded alphabets. If ars are realizedby a transition table whih assumes that the alphabet is �xed, transitions aredone by table lookups and the onstrution time beomes O(jsj) using how-ever O(jsj ard�) memory spae. These two tehniques are referred to as theomparison model and the branhing model respetively.Classial algorithms that build suÆx trees are by Weiner [33℄, MCreight[34℄, and Ukkonen [29℄. The latter algorithm is the only one to proess the textin a stritly online manner. DAWG onstrution was �rst designed by Blumeret al. and later extended to suÆx and fator automata (see [35℄ and [36℄).To omplete this setion, we ompare the omplexities of the above stru-tures to the suÆx array designed by Manber and Myers [37℄. A preliminaryversion of the same idea appears in the PAT system of Gonnet et al. [38℄. AsuÆx array is an alternative implementation of the set of suÆxes of a text.It onsists both of a table storing the permutation of suÆxes in lexiographiorder, and of a table storing the maximal lengths of ommon pre�xes betweenpairs of suÆxes (LCP table). Aess to the set of suÆxes is managed via abinary searh with the help of the LCP table. Storage spae is obviously O(jsj),aess time is only O(p + log jsj) to loate a pattern of length p (it would beO(p� log jsj) without the LCP table). EÆient preproessing is the most diÆ-ult part of the entire implementation, it takes O(jsj log jsj) time although thetotal size of suÆxes is O(jsj2). 19
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(1; 1) (2; 4)(4; 1) (5; 1) i 0 1 2 3 4 5s[i℄ a b a b b bFigure 8: Compat suÆx automaton of ababbb. It is the ompated version ofSA(s) and the minimized version of ST (s). Labels of ars are represented bypairs of integers as in the suÆx tree, see Figure 5.EÆient storage Among the many implementations of suÆx strutures, wean mention the notion of sparse suÆx trees due to K�arkk�ainen and Ukkonen [39℄whih onsiders a redued set of suÆxes, the suÆx atus due to K�arkk�ainen[40℄, who degenerates the suÆx tree struture without inreasing too muhthe aess time, and the version dediated to external memory (SB-trees) byFerragina and Grossi [41℄, but several other variations exist (see [42℄ and [43℄,for example).An exellent solution to save on the size of suÆx strutures is to simultane-ously ompat and minimize the suÆx trie. Compation and minimization areommutative operations, and when both are applied, they yield the ompatsuÆx automaton, denoted by CSA(s). Figures 7 and 8 display an example ofompat suÆx automaton. The diret onstrution of the ompat suÆx au-tomaton CSA(s) is possible without building �rst the suÆx automaton SA(s)nor the suÆx tree (see [44℄). It an be realized with the same time and spaeas that of other strutures.Table 1 gives an idea of the minimum and maximum sizes of suÆx strutures(in the omparison model). The average analysis of suÆx automata, inludingtheir ompat version, was done by Blumer et al. [45℄ and later ompleted byRaÆnot [46℄.The size of an implementation of the above strutures is often evaluated by20



Text of Number of states Number of arslength n min max min maxSuÆx trie n+ 1 O(n2) 2n O(n2)SuÆx Tree n+ 1 2n+ 2 n 2n+ 1SuÆx Automaton n+ 1 2n� 1 n 3n� 4Compat SA 2 n+ 1 n 2n� 2Table 1: Compared sizes of suÆx strutures.the average number of bytes neessary to store one letter of the original text. Itis ommonly admitted that these ratios are 4 for suÆx arrays, 9 to 11 for suÆxtrees and slightly more for suÆx automata, provided the text is not too large(of the order of a few megabytes).Kurtz [47℄ provides several implementations of suÆx trees having this per-formane. Holub [48℄ designs an implementation of ompat suÆx automatahaving ratio 5, a result that is extremely good ompared to the spae for a suf-�x array. Reently, Bal��k [49℄ gives an implementation of another type of suÆxDAWG, whose ratio is only 4 and sometimes even less.Indexing for approximate mathings Though approximate pattern math-ing is muh more important than exat string mathing for treating real se-quenes, it is quite surprising that no spei� data struture exists for thispurpose. Therefore, indexing strategies for approximate pattern mathing usethe data strutures presented above and adapt the searh proedure. This oneis then based on the next result.Lemma 1 If x and s math with at most e di�erenes, then x and s must haveat least one idential substring of length r = bmaxfjxj; jsjg=(e+ 1).An original solution has been proposed by Manber and Baeza-Yates [50℄ whoonsidered the ase where the pattern embeds a string of at most e wild ards,i.e., has the form x = u�iv, where i � e, u; v 2 �� and juj � p for some given eand m. Their algorithm is o�-line (on the text) in the sense that the text s ispreproessed to build the suÆx array assoiated with it. This operation ostsO(n log j�j) time in the worst ase. One this is done, the problem redues toone of eÆient implementation of 2-dimensional orthogonal range queries.Some other solutions preproess the text to extrat its q-grams or q-samples.These, possibly their neighbors up to some distane, are memorized in a straight-forward data struture. This is the strategy used, for example, by the twofamous programs, FastA and BLAST, whih makes them run fairly fast.There is a survey on this aspet of indexing tehniques by Navarro [51℄.
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3.4 Strutural motifsReal motifs in biologial sequenes are often not just simple strings. They aresometimes omposed of several strings that ome in organized fashion alongthe sequene at bounded distanes from one another. Possible variations ofbases an be synthetized by regular expressions. There exist eÆient methodsallowing to loate motifs desribed in this manner.Motifs an also be repetitions of a single seed (tandem repeats) or (biologial)palindromes, again with possible variations on individual bases. Palindromesfor instane represent the basi elements of the seondary strutures of rnasequenes. Contrary to the previous type of motifs, a regular expression annotdeal with repetitions and palindromes (at least if there is no assumption on theirlength).A typial problem one may wish to address onerns the loalization oftrnasin dna sequenes. It is an instane of a wider problem whih is related tothe identi�ation of funtional regions in genomi sequenes. The problem is to�nd all positions of potential trnasin a sequene, given a model obtained froman alignment of experimentally identi�ed trnas.There are basially two approahes to solve the question: one onsists of ageneral-purpose method integrating searhing and folding, the other onsists ofa self-ontained method spei�ally designed for trnas. The latter produesmore aurate results and faster programs. This is really needed to exploreomplete genomes. We briey desribe the strategy implemented by the pro-gram FAStRNA of El Mabrouk and Lisaek (see [52℄ for more information onother solutions), an algorithmial improvement on the tRNAsan algorithm byFihant and Burks (1991).FAStRNA depends on two main harateristis of trnas(at least of thetrnasin the training set used by the authors): the relative invariane of somenuleotides in two highly onserved regions forming the T	C and D signals;the loverleaf struture omposed of four stems and three loops (see Figure 9).In a preliminary step, the program analyzes the training set to build on-sensus matries on nuleotides. This provides the invariant bases of the T	Cand D regions used to loalize the two signals. After disovering a signal, theprogram tries to fold the stem around it. Other foldings are performed to om-plete the test for the urrent position in the dna sequene. Various parametershelp tuning the program to inrease its auray, and an appropriate hierarhyof searhing operations enables to derease the running time of the program.The built-in strategy produes a very low rate of false positives and falsenegatives. Essentially, it fails for trnasontaining a very long intron. Searhingfor signals is implemented by a fast approximate mathing proedure of thetype desribed above, and folding orresponds to doing an alignment as pre-sented earlier. The program runs 500 times faster than previous trnasearhingprograms.
22
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Figure 9: Cloverleaf seondary struture of a tRNA.
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4 Repeated motifs identi�ation4.1 Exat repetitionsGeneral algorithmsOne of the �rst methods enabling to disover exat repetitions in strings hasbeen designed by Karp, Miller and Rosenberg [5℄. Their algorithm (henefor-ward alled KMR) runs in O(n logn) on a string of length n but an not �ndall repetitions. However, various solutions based on losely related ideas havebeen proposed by Crohemore [53℄, Apostolio and Preparata [54℄, and Mainand Lorentz [55℄. They all take O(n logn) time, and any algorithm that listsall ourrenes of squares, or even maximal repetitions in a string, takes atleast 
(n logn) time beause, for example, Fibonai words ontain that manyourrenes of repetitions (see [53℄).A more spei� question arises when one onsiders the problem of detetingand loating the squares (words of the form uu, for a non-empty string u)that possibly our within a given string of length n. The lower bound fortesting squarefreeness of a string is also 
(n logn) on general alphabets (see[55℄). However, on a �xed alphabet � the problem of testing an ourrene ofa square an be done in O(n log j�j), whih implies linear-time algorithms ifthe size of the alphabet is �xed (see [11℄). Reently, Kolpakov and Kuherov[56℄ proposed a linear-time algorithm to ompute all the distint segments of astring that are repetitive. A solution based on the use of a suÆx tree is due toStoye and Gus�eld [57℄.In the next setion, we desribe in some detail the KMR algorithm. Althoughthis is not the most eÆient method for �nding all exat repeats, it is a veryelegant algorithm and, more importantly, it allows for an easy generalization tomore exible types of repeats.A powerful algorithm for identifying dispersed exat repeats { KMRThe original algorithm Given a string s, KMR solves the following prob-lems.Problem 4.1 Identify the positions of all fators of a �xed length k that appearrepeated in s.Problem 4.2 Find the length kmax of the longest repeated fator in s, and solveproblem 4.1 for k = kmax.KMR rests on the de�nition of an equivalene relation given in setion 2.2.Problem 4.1 and the seond part of problem 4.2 an then be formulated asthe problem of �nding the partition assoiated with Ek. Problem 4.2 furtherrequires �nding the maximum value of k suh that Ek is not the identity. Thealgorithm is based on an iterative onstrution of partitions El for l � k. Themehanism for performing suh onstrutions rests on the following lemma.24



Lemma 4.1 Given a; b � 1 two integers with b � a, and i; j two di�erentpositions in s suh that i; j � n� (a+ b) + 1, then:i Ea+b j , i Ea j and (i+ b) Ea (j + b).The main idea behind the KMR algorithm is to use the lemma with a = b foras long as possible. The lemma is onsequently alled the doubling lemma. Thismeans �nding repeats of length 2a by using previously aquired information onthe repeats of length a that may beome the pre�xes and suÆxes of those oflength 2a. If we are dealing with problem 4.1, and if k is not a power of 2, wethen use the lemma with b < a in a last step in order to obtain Ek. If we aretreating problem 4.2, we may need more than one step to �nd the value of kmaxsuh that Ekmax is not the identity but Ekmax+1 is. The searh for kmax fromthe smallest power of two that is bigger than kmax, let us say it is 2p, an bedone by applying the lemma with b < a in a binary searh fashion between 2p�1and 2p.Building the partitions Ea basially orresponds to performing a set inter-setion operation. The intersetions may be implemented using, for instane,staks. More preisely, we need an array Va of size n whih stores, for eahposition i in s, the label of the lass of Ea to whih the a-long fator startingat i belongs. The lemma is applied by means of two arrays of staks P and Q.Staks in P are �lled by traversing Va. Suh staks are in fat a dual of Va. Eahone orresponds to a lass  of Ea and ontains the positions i in s belongingto . Array P serves therefore to sort the pre�xes of length a of the repeatsof length 2a one is trying to identify. The ontent of eah stak of P in turnis then poured into the appropriate stak of Q. A division separates, within asame stak of Q, elements oming from di�erent staks of P . Like P , array Qhas as many staks as there are lasses in Ea. It serves to sort the suÆxes oflength also a of the repeats of length 2a. One then just needs to orderly pourQ into V2a the obtain the lasses of E2a heking the quorum as one goes.As mentioned, KMR time omplexity is O(n log k). When solving prob-lem 4.2, this leads to an O(n logn) omplexity beause of possible degenerateases (suh as that of a string s omposed of a single letter). KMR spaeomplexity is O(n).Non-transitive relations without errors KMR may be adapted to dealwith a non transitive relation R [6℄. The problems solved are the same as forKMR.Lemma 4.1 applies analogously, exept that one just needs to substituterelation E by R.Lemma 4.2 Given a; b � 1 two integers with b � a, and i; j two di�erentpositions in s suh that i; j � n� (a+ b) + 1, theni Ra+b j , i Ra j and (i+ b) Ra (j + b).25



Computing relations Rl for l � k requires the same strutures as for KMR,exept that, as we saw, a set of positions pairwise-related by Rl is no longer anequivalene lass but a lique. The algorithm was in onsequene alled KMRC(the \C" standing for Clique) [6℄. In partiular, a position may belong to two ormore distint liques of Rl. Array Vl must now therefore be an array of staks,like P and Q. It indiates, for eah ell i orresponding to a position in s, theliques of relation Rl to whih i belongs.The onstrution itself follows the same shema as indiated for KMR. Someof the sets of similar fators obtained at the end of eah step may not be max-imal. A further operation is therefore needed to eliminate sets inluded inanother one so as to get maximal liques at the end.To alulate the omplexity of the KMRC algorithm, we need to de�ne aquantity g that measures the \degree of non-transitiveness" of relation R.De�nition 4.1 Given R, a non-transitive relation on �, we all g the greatestnumber of liques of R to whih a symbol may belong, that is:g = Max fga j a 2 �, ga = number of liques to whih a belongsg.We all �g the average value of ga for a 2 �, that is:�g = Pa gan ;where n is the number of liques of R.If one does not ount the set inlusion operations to eliminate non-maximalliques, KMRC has time omplexity O(ngk log k) sine eah position i in s maybelong to at most gk (or, on the average, �gk) liques of Rk. Inlusion tests basedon omparing the positions ontained in eah set take O(n2g2k) time at the endof step k. At least another approah for testing set inlusion is possible andmay result in a better theoretial (but not neessarily better in pratie { thisis disussed in [6℄) time omplexity. Spae omplexity is O(ngk).4.2 Inexat repetitions { The partiular ase of tandemarrays (satellites)Model for tandem arrays (satellites)Tandem arrays (alled tandem repeats when there are only two units) are asequene of repeats that appear adjaent in a string. As onerns biology, suhtandemly repeated units are divided into three ategories depending on thelength of the repeated element, the span of the repeat region and its loationwithin the hromosome [58℄. Repeats ourring in or near the entromeresand telomeres are alled simply satellites. Their span is large, up to a millionbases, and the length of the repeated element varies greatly, anywhere from 5to a few hundreds of base pairs. In the remaining, euhromati region, of thehromosome the kinds of tandem repeats found are lassi�ed as either miro or26



GTTGCTAGAGGAAGATGGGGTTGGTACTGGTGCTACAGAGCTTTCAGTGGTGGAGCTGGAT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAACAGAAGAGCTTTCAGTGCTAGAGCTGAATGGGGTTGAAGATGGAGCGGAGGAAGTGATGTTGCTAGAGGAAGATGGGGTTGGTACTGGTGCTACAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAGCAGAAGAGCTTTCGGTAGTAGAGCTGGATGGAGTTGGCACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGGGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGAGCTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGAGTTGGCACTGGAGCAGAAGAGCTTTCAGTGGTGGAGCTGG TT ACTGGAGTAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTGGAGCTTGATGGGGTTGGAGCTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAACTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAGTAGTAGTCTTCTTFigure 10: An example of a tandem repeat in hromosome IX of yeast Saha-romyes erevisiae, starting at position 391 131.mini satellites, aording to the length of the repeated element. Miro satellitesare omposed of short units, of 2 to 5 base pairs, in opy numbers in generalaround 100. Mini satellites on the other hand involve slightly longer repeats,typially around 15 base pairs, in lusters of variable sizes, omprising between30 and 2000 elements.Figure 10 shows an example of a tandem repeat starting at position 391131on hromosome IX from yeast (in the sequene as reovered from the ftp siteftp://ftp.mips.embnet.org/pub/yeast/). This repeat is omposed of 41 fullunits, 16 of whih present a deletion of 9 bases against the other elements.Apart from this, the repeat is well onserved overall (on the average, one mu-tated base per element), exept for the �rst six units and for the last one. Therepeat is loated inside a oding region (in the other strand) orresponding toa gluoamylase s1/s2 preursor protein (SwissProt id: AMYH YEAST).27



Satellites of whatever type ask for a more omplex de�nition of models thanthat given in Setion 2.4, requiring additional onstraints.We have in fat two de�nitions related to a satellite model, one alled pre-�x model and the other onsensus model. This latter onerns satellite modelsstritly speaking while pre�x models are in fat models for approximately peri-odi repetitions that are not neessarily tandem.Formally, a pre�x model of a satellite is a string m 2 �� (or P(�)) thatapproximately mathes a train of wagons. A wagon of m is a fator u in s suhthat dist(m;u) � e. A train of a satellite model m is a olletion of wagonsu1; u2; : : : ; up ordered by their starting positions in s and satisfying the followingproperties.Property 1 p � min repeat, where min repeat is a �xed parameter that indi-ates the minimum number of elements a repeating region must ontain.Property 2 leftui+1 � leftui 2 JUMP, where leftu is the position of the left-endof wagon u in s andJUMP = fy : y2[x2[1;max jump℄ x� [min range;max range℄g;with the three parameters min range, max range and max jump �xed.A pre�x model m is said to be valid if there is at least one train of m inthe string s. Similarly, a train, when viewed simply as a sequene of substringsof s, is valid if it is the train for some model m. A pre�x model represents theinvariant that must be true as we progressively searh for our �nal goal, whihis to arrive at a onsensus model. This is a pre�x model whih further satis�esthe following property.Property 3 leftui+1 � rightui 2 GAP, where rightu is the position of the right-end of wagon u, andGAP = fy : y2[x2[0;max jump�1℄ x� [min range;max range℄g:Parameter max jump allows us to deal with very badly onserved elementsinside a satellite (by atually not ounting them) while we require that thesatellite be relatively well onserved globally. Fixing max jump at a valuestritly greater than one, means that we allow some wagons (the badly onservedones) to be \jumped over". This may be seen as \meta-errors", that is as errorsinvolving not a single letter inside a wagon but a wagon inside a train. Note that0 2 GAP. This guarantees that, when jumps are not authorized, the repeatsfound are e�etively tandem.Sine mutations a�eting a unit onern indels (that is, insertions and dele-tions) as well as substitutions, it is sometimes interesting to work with a variantof the above properties where JUMP and GAP are de�ned asJUMP = fy : y2 [min range;max range℄ ory2[x2[2;max jump℄ x� [min range� g;max range+ g℄ g28



GAP = fy : y2 [min range;max range℄ ory2[x2[1;max jump℄ x� [min range� g;max range+ g℄ g;and g � e is a �xed value. The idea is to allow the length of the badly onservedelements to vary in a larger interval than permitted for the detetion of \good"wagons.The satellite problem we propose to solve is the following.Problem 1 Given a string s and parameters min repeat, min range, max range,max jump, and e (possibly also g), �nd all onsensus models m that are validfor s, and for eah suh m.In fat, the original papers [16℄ [59℄ report a set of disjoint \�ttest" trainsrealizing eah model, given a measure of \�tness".The algorithm presented below is the only ombinatorial, non-heuristialdeveloped so far for identifying tandem arrays. Other exat approahes eithertreat the ase of tandem repeats only [13℄ [14℄, do not allow for errors [60℄ [53℄[61℄ [44℄, or require generating all possible (not just valid) models of a givenlength [62℄ [63℄ [64℄.Building pre�x satellite modelsAs with all previous ases onsidered in this paper, satellite models are on-struted by inreasing lengths. In order to determine if a model is valid, wemust have some representation of the train or wagons that make it so. Thereare two possibilities:� we an keep trak of eah valid train and its assoiated wagons, or� we an keep trak of individual wagons, and, on the y, determine if theyan be ombined into valid trains.The �rst possibility is appealing beause model extension is straightforward.We would just have to verify, for eah wagon of eah train, whether it an beextended aording to the extended model, and then ount how many wagonsremain to hek whether the train it belonged to is still a valid train. However,there are generally many overlapping trains involving many of the same wagonsfor a given model. Common wagons may be present more than one in thelist of ourrenes of m if this is kept as a list of trains. This approah entailsredundanies that lead to an ineÆient algorithm. We therefore adopt theseond approah, of keeping trak of wagons and determining if they an beassembled into trains as needed.The rules of pre�x-model extension are given in Lemma 2 below. A wagonis identi�ed by a triple (i; j; d) indiating that it is the substring sisi+1 : : : sjof s and that it is d � e di�erenes away from its model. Position i indiatesthe left-end of the wagon, and j its right-end. Contrary to the other algorithmspresented in this paper, models and their ourrenes (the wagons) will be29



extended to the left. This is just to failitate verifying Property 2. Stritlyspeaking, we should then speak of suÆx-models instead of pre�x ones. Rightends of ourrenes are alulated but are used only for heking Property 3.Lemma 2 The triple (i; j; d) enodes a wagon of m0 = �m with � 2 � and m2 �k if and only if at least one of the following onditions is true:(math) (i+ 1; j; d) is a wagon of m and si = �;(substitution) (i+ 1; j; d� 1) is a wagon of m and si 6= �;(deletion) (i; j; d� 1) is a wagon of m;(insertion) (i+ 1; j; d� 1) is a wagon of �m;and, furthermore, d � e.For eah pre�x-model m, we keep a list of wagons of m that are in at leastone train validating m. We desribe suh wagons as being valid with respet tom. When we extend a model (to the left) to m0 = �m, we perform two tasks:� First, determine whih valid wagons of m an be extended as above tobeome wagons of m0.� Seond, of these newly determined wagons of m0, we keep only those thatare valid with respet to m0. This requires e�etively assembling wagonsinto trains, something that is not needed in an approah that would keeptrak of trains diretly.Note that we need not atually enumerate the trains in the seond step, wesimply must determine if a wagon is part of one. This will allow us to performan extension step in time linear with respet to the string length.As a �nal insight, onsider the direted graph G = (V;E) where V is the setof all valid wagons and there is an edge from wagon u to v if leftv�leftu 2 JUMP.Then a wagon u is valid if it is part of a path of length min repeat or morein G. Determining this property is quite simple as the graph is learly ayli.In the omputation that follows, we e�etively ompute both the length of thelongest path to u in Lntu and the length of the longest path from u in Rntu.If Lntu +Rntu > min repeat then u is valid.Consensus satellite modelsWe enode the olletion of all wagons of m in a set, Lm � f1 : : : ; ng, and an(n+ 1)� (2e+ 1)-element array Dm as follows:1. i 2 Lm if and only if i is the left-end of at least one wagon valid with respetto m,2. for eah i 2 Lm, the value Dm[i; Æ℄ for Æ 2 [�e; e℄ is the edit distane of mfrom wagon sisi+1 : : : si+jmj�1+Æ.Intuitively, Lm gives the left-ends of all valid wagons, whih is all we need toverify Properties 1 and 2. Dm gives us the distanes we need for extendingmodels, together with the right-ends needed for verifying Property 3. Formally,(i; i+jmj�1+Æ; d) is a valid wagon ofm if and only if i 2 Lm and d = Dm[i; Æ℄ �e. 30



The omplete algorithm is given below. When Extend(�m) is alled, it isassumed that Lm is known along with the relevant Dm values. The routineomputes these items for the extension �m and reursively for the extensionsthereof. Lines 1-6 ompute the set of left-ends of wagons for �m derivable fromwagons of m that are valid. While Lemma 2 gives us a way to do so, reall thatwe are using dynami programming to ompute all extensions simultaneously.This orresponds to adding the last row to the dynami programming matrixof s versus �m. At start, Lm gives all the positions in row jmj that have valuee or less (and are valid) and Dm gives their values. From these, we omputethe positions in row jmj+1 in the obvious sparse fashion to arrive at the valuesL�m and D�m.proedure Extend(�m)1. L�m  ;2. for i+ 1 2 Lm (in dereasing order) do3. for Æ 2 [�e; e℄ do4. D�m[i; Æ℄ min8<: Dm[i+ 1; Æ℄ + (if si = � then 0 else 1);if i 2 Lm then Dm[i; Æ + 1℄ + 1;if i+1 2 L�m then D�m[i+ 1; Æ � 1℄ + 1 9=;5. if minÆfD�m[i; Æ℄g � e then6. L�m  L�m [ fig7. for i 2 L�m (in dereasing order) do8. Rnt[i℄ maxk2(i+JUMP)\L�mfRnt[k℄g+ 19. for i 2 L�m (in inreasing order) do10. Lnt[i℄ maxk2(i�JUMP)\L�mfLnt[k℄g+ 111. for i 2 L�m do12. if Lnt[i℄ +Rnt[i℄ � min repeat then L�m  L�m � fig13. if L�m 6= ; then14. if j�mj 2 [min range;max range℄ then15. Reord(�m)16. if j�mj < max range then17. for � 2 � do18. Extend(��m)One wagons have been extended whenever possible, we have to eliminatethose that are no longer valid. This is performed by Lines 7 to 12. We om-pute, for eah position i 2 L�m, the maximum number of wagons in a trainstarting with a wagon whose left-end is at i in Rnt[i℄ (inluding itself), andthe maximum number of wagons in a train ending with a wagon whose left-end is at i in Lnt[i℄. The neessary reurrenes are given in Lines 8 and 1031



of the algorithm where we reall that JUMP = fy : y 2 Sx2[1;max jump℄ x�[min range;max range℄g and i + JUMP denotes adding i to eah element ofJUMP. Observe that Rnt[i℄ + Lnt[i℄ � 1 is the length of the longest trainontaining a wagon whose left-end is at position i.Clearly Lines 7-10 take O(jL�mjjJUMPj) time. However, when L�m is avery large fration of n, one an maintain an Rnt(Lnt)-prioritized queue ofthe positions in (i + JUMP) \ L�m, to obtain an O(n max jump log jJUMPj)bound.Finally in the remaining steps, Lines 13-18, the algorithm alls Reord toreord potential models and then reursively tries to extend the model if possi-ble. Routine Reord on�rms that the model is a onsensus model by verifyingProperty 3 and reording the intervals spanned by trains that are valid for theonsensus model, if any.The total time taken by the algorithm is O(n (jJUMPj + e) max rangeN (e;max range)) = O(n max range2 max jump N (e;max range)) as e <max range. The term N (e;max range) orresponds to the number of words inthe e-neighbourhood of a word w of length max range, that is, words that areat a Levenshtein distane at most e from w. This number is bounded over byke. The spae requirement is that of keeping all the information onerningat most max range models at a time (a model m and all its pre�xes). It istherefore O(n max range e) as only O(n e) storage is required to reord theleft-end positions and edit-distane at eah possible right-end.5 Motif extration5.1 Spelling simple modelsWe now present inreasingly sophistiated models and algorithms for extratingmodels whih our in a set of strings (possibly not all). Suh models orre-spond in general to binding sites, that is to sites in a biologial moleule thatwill ome into ontat with a site in another moleule thus permitting somebiologial proess to start (for instane, transription or translation). We startby onsidering simple models.The problem we wish to solve is the following.Problem 2 Given a set of N strings S = s1; : : : ; sN , an integer e � 0 and aquorum q � N , �nd all models m suh that m is valid, that is, ours with atmost e errors in at least q strings of set S.The spelling of models is done using a suÆx tree. The idea omes fromthe observation that long strings, speially when they are de�ned over a smallalphabet, may ontain many exat repetitions. One does not want to omparesuh repeated parts more than one with the potentially valid models. One wayof doing that is using a representation of the strings that allows to put together32



some of the repetitions, that is, using an index of the strings suh as a suÆxtree.Trees for representing all the suÆxes of a set of strings fsi, 1 � i � N forsome N � 2g are alled generalized suÆx trees and are onstruted in a wayvery similar to the onstrution of the suÆx tree for a single string [65℄ [66℄. Wedenote suh generalized trees by GT . They share all the properties of a suÆxtree given in Setion 3.3 with string s substituted by strings s1; : : : ; sN .In partiular, a generalized suÆx tree GT satis�es the fat that every suÆxof every string si in the set leads to a distint leaf. When p strings, p � 2, havea same suÆx, the generalized tree has therefore p leaves orresponding to thissuÆx, eah assoiated with a di�erent string. To ahieve this property duringonstrution, we just need to onatenate to eah string si of the set a symbolthat is not in � and is spei� to that string.To be able to spell valid models (i.e. models satisfying the quorum on-straint), we need to add some information to the nodes of the suÆx tree.In the ase where we are looking for repeats in a single string s, we justneed to know, for eah node x of T , how many leaves are ontained in thesubtree rooted at x. Let us denote leavesx this number for eah node x. Suhinformation an be added to the tree by a simple traversal of it.If we are dealing with N � 2 strings, and therefore a generalized suÆx treeGT , it is not enough anymore to know the value of leavesx for eah node x inGT in order to be able to verify whether a model remains valid. Indeed, foreah node x, we need this time to know not only the number of leaves in thesubtree of GT having x as root, but that number for eah di�erent string theleaves refer to.In order to do that, we must assoiate to eah node x in GT an array, denotedoloursx, of dimension N that is de�ned by:oloursx[i℄ = 8<: 1 if at least one leaf in the subtreerooted at x represents a suÆx of si0 otherwisefor 1 � i � N .The array oloursx for all x may also be obtained by a simple traversal ofthe tree in whih eah visit to a node takes O(N) time. The additional spaerequired is O(N) per node.One must observe that ourrenes are now grouped into lasses and \real"ones, that is, ourrenes onsidered as individual words in the strings, are nevermanipulated diretly. Present ase ourrenes of a model are thus in fat nodesof the generalized suÆx tree (we denote them by the term \node-ourrenes")and are extended in the tree instead of in the string. One the proess of modelspelling has ended, the start positions of the \real" ourrenes of the validmodels may be reovered by traversing the subtrees of the nodes reahed so far,and by reading the labels of their leaves.The algorithm is a development of the reurrene formula given in the lemmabelow where x denotes a node of the tree, father(x) its father, and d the number33



of errors between the label of the path going from the root to x as against amodel m.Lemma 3 (x; d) is a node-ourrene of m0 = m� with m 2 �k and � 2 � if,and only if, one of the following two onditions is veri�ed:(math) (father(x); d) is a node-ourrene of m and the label of thefrom father(x) to x is �;(substitution) (father(x); d � 1) is a node-ourrene of m and the labelof the ar from father(x) to x is � 6= �;(deletion) (x; d� 1) is a node-ourrene of m;(insertion) (father(x); d � 1) is a node-ourrene of m�.and, furthermore, d � e.The algorithm time omplexity is O(nN2N (e; k)).5.2 Strutured modelsIntroduing strutured modelsAlthough the objets de�ned in the previous setion an be reasonable, algorith-mially tratable models for single binding sites, they do not take into aountthe fat that suh sites are often not alone (in the ase of eukaryotes, they mayeven ome in lusters) and, speially, that the relative positions of suh sites,when more than one partiipates in a biologial proess, are in general not ran-dom. This is partiularly true for some dna binding sites suh as those involvedin the transription of dna into rna (e.g. the so-alled promoter sequenes).There is therefore a need for de�ning biologial models as objets that takesuh harateristis into aount. This has the motivation just mentioned butpresents also interesting algorithmial aspets: exploiting suh harateristisould lead to algorithms that are both more sensitive and more eÆient. Modelsthat inorporate suh harateristis are alled strutured models. They arerelated to strutured motifs of Setion 3.Formally, a strutured model is a pair (m; d) where:� m is a p-tuple of simple models (m1; : : : ;mp) (representing the p parts astrutured model is omposed of { we shall all these parts boxes),� d is a (p � 1)-tuple ((dmin1 ; dmax1 ; Æ1), . . . , (dminp�1 ; dmaxp�1 ; Æp�1)) oftriplets (representing the p� 1 intervals of distane between two suessiveboxes in the strutured model),with p a positive integer, mi 2 �+, and dmini , dmaxi (dmaxi � dmini), Æi nonnegative integers.Given a set of N strings s1; : : : ; sN and an integer q, 1 � q � N , amodel (m; d) is said to be valid if, for all i, 1 � i � (p � 1), and for allourrenes ui of mi, there exist ourrenes u1; : : : ; ui�1; ui+1; : : : ; up ofm1; : : : ;mi�1;mi+1; : : : ;mp suh that:� u1; : : : ; ui�1; ui; ui+1; : : : ; up belong to the same string of the set,34



m   

unaligned
sequences

m   
2d+_1

q = 50%

2

d

d-1

d+2

d+1

d+1

d+6

no occurrences

one only

too distant

valid model m

Figure 11: Example of a model with two boxes (p = 2).� there exists di, with dmini + Æi � di � dmaxi � Æi, suh that the distanebetween the end position of ui and the start position of ui+1 in the stringis equal to di � Æi,� di is the same for p-tuples of ourrenes present in at least q distintstrings.The term di represents a distane and �Æi an allowed interval around thatdistane. When Æi = (dmaxi � dmini + 1)=2, then Æi is omitted, and d in astrutured model (m; d) is denoted by a pair (dmini ; dmaxi). An example of amodel with p = 2 is given in Figure 11.Observe that simple models are indeed but a speial ase of strutured ones.Statement of the strutured model problemConerning strutured models, solutions to variants of inreasing generality of asame basi problem are proposed. SuÆx trees are used in all ases. These vari-ants may be stated as follows; given a set of N strings s1; : : : ; sN , a nonnegativeinteger e and a positive integer q.Problem 3 Find all models of the form ((m1;m2); (dmin1 ; dmax1)) that arevalid.Problem 4 Find all models of the form ((m1; : : : ;mp), ((dmin1 , dmax1), . . . ,(dminp�1 ; dmaxp�1))) that are valid, where p � 2.Problem 5 Find all models of the form ((m1;m2); (dmin1 ; dmax1 ; Æ1)) that arevalid. 35



Problem 6 Find all models of the form ((m1; : : : ;mp), ((dmin1 ; dmax1 ; Æ1), . . . ,(dminp�1 ; dmaxp�1 ; Æp�1))) that are valid, where p � 2.The last two problems represent situations where the exat intervals of dis-tanes separating the parts of a strutured site are unknown, the only knownfat being that these intervals over a restrited range of values. How restritedis indiated by the Æi parameters. We present below algorithms for the �rst twoproblems only. Further details on the other two may be found in [18℄.To simplify matters, we shall onsider that, for 1 � i � p, mi 2 �k where kis a positive integer, i.e., that eah single model mi of a strutured model (m; d)is of �xed, unique length k. In a likewise manner, we shall assume that eahpart mi has the same error rate e and, when dealing with models omposed ofmore than two boxes, that the dmini , dmaxi and, possibly, Æi for 1 � i � p� 1have idential values. We denote by dmin, dmax and Æ these values. Problem 4is then formulated as �nding all models ((m1; : : : ;mp); (dmin; dmax)) that arevalid and Problem 6 as �nding all valid models ((m1; : : : ;mp); (dmin; dmax; Æ)).Besides �xing a maximum error rate for eah part in a strutured model,one an also establish a maximum error rate for the whole model. Suh a globalerror rate allows to onsider in a limited way possible orrelations between boxesin a model.Another possible global, or loal, onstraint one may wish to onsider forsome appliations onerns the omposition of boxes. One may, for instane,determine that the frequeny of one or more nuleotide in a box (or among allboxes) is below or above a ertain threshold. For strutured models omposedof more than p boxes, one may also establish that a box i is palindromi inrelation to a box j for 1 � i < j � p. In algorithmial terms, the two types ofonstraints just mentioned are not equivalent. The �rst type, box ompositionwhether loal or global, an in general be veri�ed only a posteriori while theseond type (palindromi boxes) will result in a, sometimes substantial, pruningof the virtual trie of models.Introduing suh additional onstraints may in some ases ask for hangesto the basi algorithms desribed below. The interested reader may �nd thedetails onerning suh hanges in the original papers [18℄ [67℄.We present, in the next setion, �rst a naive approah and then two algo-rithms that are eÆient enough to takle strutured model extration (Prob-lem 3) from big datasets. The seond algorithm has a better time omplexitythan the �rst but needs more spae. The �rst is easier to understand and imple-ment. Both are desribed in more detail than previous algorithms as struturedmodels in some ways inorporate almost all other kinds of motifs we are on-sidering. The most notable exeption onerns satellites that is disussed inSetion 4.2. We then show how to extend these to treat Problem 4. Details onthe algorithms for solving Problems 5 and 6 may be found in [18℄.Other ombinatorial approahes were developed for treating somewhat sim-ilar kinds of strutured motifs. They either enumerate all possible (not justvalid) motifs [68℄, do not allow for errors [69℄ [70℄, or are heuristis [71℄ [72℄.36



Algorithms for the speial ase of a known interval of distaneNaive approah A naive way of solving Problem 3 onsists in extrating andstoring all valid single models of length k (given q and e), and then, one this is�nished, in verifying whih pairs of suh models ould represent valid struturedmodels (given an interval of distane [dmin; dmax℄).The lemma used for building valid single models is similar to Lemma 3exept that in pratie, for most biologial problems we wish to address [73℄[17℄, substitutions only are allowed in general. The lemma therefore beomes asstated.Lemma 4 (x; d) is a node-ourrene of m0 = m� with m 2 �k and � 2 � if,and only if, one of the following two onditions is satis�ed:(math) (father(x); d) is a node-ourrene of m and the label ofthe ar from father(x) to x is �;(substitution) (father(x); d � 1) is a node-ourrene of m and the labelof the ar from father(x) to x is � 6= �.and, furthermore, d � e.One way of doing the veri�ation pro�ts from the simple observation thattwo single models m1 and m2 may form a strutured one if, and only if, at leastone ourrene of m1 is at the right distane of at least one ourrene of m2.Building an array of size nN where ell i ontains the list of models having anourrene starting at that position in s = s1 : : : sN allows to ompare modelsin ell i to models in ells i+ dmin; : : : ; i+ dmax only. If the sets of ourrenesof models are ordered, this omparison may be done in an eÆient way (in timeproportional to the size of the sets of node-ourrenes, whih is upper-boundedby nN).First algorithm: Jumping in the suÆx tree A �rst non-naive approahto solving Problem 3 starts by extrating single models of length k. Sine weare traversing the trie of models in depth-�rst fashion (also in lexiographiorder), models are reursively extrated one by one. At eah step, a singlemodel m (and its pre�xes) is onsidered. One a valid model m1 of length kis obtained together with its set of T -node-ourrenes V1 (whih are nodesloated at level k in GT ), the extration of all single models m2 with whihm1 ould form a strutured model ((m1;m2); (dmin; dmax)) starts. This is donewith m2 representing the empty word and having as node-ourrenes the setV2 given by:V2 = f(w; ew = ev) j 9v 2 V1 with dmin � level(w)� level(v) � dmaxg;where level(v) indiates the level of node v in GT . From a node-ourrene vin V1, a jump is therefore made in GT to all potential start node-ourrenesw of m2. These nodes are the dmin- to dmax-generation, desendants of v inGT . Exatly the same reurrene formula given in Lemma 4 may be applied tothe nodes w in V2 to extrat all single models m2 that, together with m1 ould37
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Figure 12: Extrating strutured models (in the ontext of Problem 3) with asuÆx tree { An illustration of Algorithm 1.form a strutured model verifying the onditions of the problem, for all validm1. An illustration is given in Figure 12 and a pseudo-ode is presented below.The proedure ExtratModels is alled with arguments: m equal to the emptyword having as sole node-ourrene the root of GT , and i equal to 1.proedure ExtratModels(Model m, Blok i)1. for eah node-ourrene v of m do2. if i = 2 then3. put in PotentialStarts the hildren w of v at levels k + dmin tok + dmax4. else5. put v (i.e., the root) in PotentialStarts6. for eah model mi (and its ourrenes) obtained by doing a reursivedepth-�rst traversal from the root of the virtual model treeMwhile simultaneously traversing GT from the node-ourrenes inPotentialStarts (Lemma 4 and quorum onstraint) do7. if i = 1 then8. ExtratModels(m = m1, i+ 1)9. else10. report the omplete model m = ((m1;m2); (dmin; dmax)) as validSine the minimum and maximum length of a strutured model (m; d) thatmay be onsidered are, respetively, 2k + dmin and 2k + dmax, we need onlybuild the tree of suÆxes of length 2k + dmin or more, and for eah suh suÆx38



to onsider at most the �rst 2k + dmax symbols.The observation made in the previous paragraph applies also to the seondalgorithm (Setion 5.2 below). Note that, in both ases, this implies ni � ni+1 �Nn for all i � 1 where ni is the number of nodes at depth i in GT .Seond algorithm: Modifying the suÆx tree The seond algorithm ini-tially proeeds like the �rst: it starts by building single models of length k, oneat a time. For eah node-ourrene v of a �rst part m1 onsidered in turn,a jump is made in GT down to the desendants of v situated at lower levels.This time however, the algorithm just passes through the nodes at these lowerlevels, grabs some information the nodes ontain and jumps bak up to level kagain (in a way that is explained below). The information grabbed in passingis used to temporarily and partially modify GT and start, from the root of GT ,the extration of the seond part m2 of a potentially valid strutured model((m1;m2); (dmin; dmax)). One the operation of extrating all possible ompan-ions m2 for m1 has ended, that part of GT that was modi�ed is restored to itsprevious state. The onstrution of another single model m1 of a struturedmodel ((m1;m2); (dmin; dmax)) then follows, and the whole proess unwinds ina reursive way until all strutured models satisfying the initial onditions areextrated.More preisely, the operation performed between the spelling of models m1and m2 loally alterates GT up to level k to a tree GT 0 that ontains only thek-long pre�xes of suÆxes of fs1; : : : ; sNg starting at a position between dminand dmax from the end position in si of an ourrene of m1. Tree GT 0 is, in asense, the union of all the subtrees t of depth at most k rooted at nodes thatrepresent start ourrenes of a potential ompanion m2 for m1.For eah model m1 obtained, before spelling all possible ompanions m2for m1, the ontent of olorsz for all nodes z at level k in GT are stored inan array L of dimension nk (this is for later restoration of GT ). Tree GT 0 isthen obtained from GT by onsidering all nodes w in GT that may be reahedduring a desent of, this time, k + dmin to k + dmax ars down from the node-ourrenes (v; ev) ofm1. These orrespond to all end node-ourrenes (insteadof start as in the �rst algorithm) of potentially valid models having m1 as �rstpart. The boolean arrays olorsw for all w indiate to whih input strings theseourrenes belong. This is the information we grab in passing and take alongthe only path of suÆx links in GT that leads bak to a node z at level k inGT . If it is the �rst time z is reahed, olorsz is assigned olorsw, otherwiseolorsw is added (boolean \or" operation) to olorsz . One all nodes v and whave been treated, the information ontained in the nodes z that were reahedduring this operation are propagated up the tree from level k to the root (usingnormal tree ars) in the following way: if �z and ẑ have same parent z, thenolorsz = olors�z [ olorsẑ . Any ar from the root that is not visited at leastone in suh a traversal up the tree is not part of GT 0, nor are the subtreesrooted at its end node.The extration of all seond parts m2 of a strutured model (m; d) follows,39



as for single models in the initial algorithm (Lemma 4 in Setion 5.2).Restoring the tree GT as it was before the operations desribed above re-quires restoring the value of olorsz preserved in L for all nodes z at level k andpropagating the information (state of boolean arrays) from z up to the root.Sine nodes w at level between 2k + dmin to 2k + dmax will be soliited forthe same operation over and over again, whih onsists in following the uniquesuÆx-link path from w to a node z at level k in GT , GT is pre-treated so thatone single link has to be followed from z. Going from w to z takes then onstanttime.An illustration is given in Figure 13. A pseudo-ode of the algorithm is asfollows. The proedure ExtratModels is alled, as for the �rst algorithm, withboth arguments m equal to the empty word having as sole node-ourrene theroot of GT , and i equal to 1.proedure ExtratModels(Model m, Blok i)1. for eah node-ourrene v of m do2. if i = 2 then3. put in PotentialEnds the hildren w at levels 2k + dmin to 2k+dmax4. for eah node-ourrene w in PotentialEnds do5. follow fast suÆx-link to node z at level k6. put z in L7. if �rst time z is reahed then8. initialize olorsz with zero9. put z in NextEnds10. add olorsw to olorsz11. do a depth-�rst traversal of GT to update the boolean arrays fromthe root to all z in NextEnds (let GT 0be the k-deep tree obtained by suh an operation)12. if i = 1 then13. Tree = GT14. else15. Tree = GT 016. for eah model mi (and its ourrenes) obtained by doing a reursivedepth-�rst traversal from the root of the virtual model treeMwhile simultaneously traversing Tree from the root (Lemma 4 andquorum onstraint) do17. if i = 1 then18. ExtratModels(m = m1, i+ 1)19. else20. report the omplete model m = ((m1;m2); (dmin; dmax)) as a validone21. restore tree GT to its original state using LProposition 1 The following two statements are true:40



m

b c

d e

a
k

k

k k

k+d
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where (1) is the maximum number of single models to whih a position maybelong, (2) is the maximum number of models to whih a position at a distanebetween k + dmin and k + dmax from the �rst may belong, (3) is the maximumnumber of omparisons that must be done to hek whether two single modelsmay form a strutured one and, �nally, (4) is the number of starting positionsto onsider.The total time omplexity of the seond algorithm is O(NnkN 2(e; k) +Nn2k+dmaxN (e; k)). Spae omplexity is slightly higher than for the �rst al-gorithm: O(N2n+Nnk) where nk � Nn. The seond term is for array L.In either ase, the omplexity obtained is better both in terms of time andspae than the one given by a naive solution to Problem 3.Extending the algorithms to extrat strutured models having p > 2partsFirst algorithm: Jumping in the suÆx tree Extending the �rst algorithmto extrat strutured models omposed of p > 2 parts, that is solving Problem 4,is immediate. After extrating the �rst i parts of a strutured model ((m1;: : : ; mp); (dmin; dmax)) for 1 � i < p � 1, one jumps down in the tree GT(following normal tree ars) to get to the dmin- to dmax-desendants of everynode-ourrene of ((m1; : : : ;mi); (dmin; dmax)) then ontinues the extrationfrom there using Lemma 4.A pseudo-ode is given below.proedure ExtratModels(Model m, Blok i)1. for eah node-ourrene v of m do2. if i > 1 then3. put in PotentialStarts the hildren w of v at levels (i� 1)k+(i� 1)dmin to (i� 1)k + (i� 1)dmax4. else5. put v (the root) in PotentialStarts6. for eah model mi (and its ourrenes) obtained by doing a reursivedepth-�rst traversal from the root of the virtual model tree Mwhile simultaneously traversing GT from the node-ourrenes inPotentialStarts (Lemma 4 and quorum onstraint) do7. if i < p then8. ExtratModels(m = m1 � � �mi, i+ 1)9. else10. report the omplete model m = ((m1; � � � ;mp); (dmin; dmax)) as avalid oneSeond Algorithm: Modifying the SuÆx Tree Extending the seondalgorithm to solve Problem 4 is slightly more omplex and thus alls for a fewremarks. The operations done to modify the tree between building mi and42



mi+1, i � 1, are almost the same as those desribed in Setion 5.2 exept fortwo fats. One is that up to (p� 1) arrays L are now needed to restore the treeafter eah modi�ation it undergoes. The seond di�erene, more important,is that we need to keep, for eah node vk at level k reahed from an asent upGT 's suÆx links, a list, noted Lptrvk , of pointers to those nodes, at lower levels,that a�eted the ontent of vk. The reason for this is that tree GT is modi�edup to level k only (resulting in tree GT 0) as these are the only levels onernedby the searh for ourrenes of eah box of a strutured model. Lower levelsof GT remain unhanged, in partiular the boolean arrays at eah node belowlevel k. To obtain the orret information onerning the potential end node-ourrenes of boxes i for i > 2 (i.e. to whih strings suh ourrenes belong),we therefore annot move down GT from the ends of node-ourrenes in GT 0of box (i � 1). If we did, we would not miss any ourrene but we ould getmore ourrenes, e.g. the ones that did not have an ourrene of a previousbox in the model. We might thus overount some strings and onsider as valida model that, in fat, no longer satis�ed the quorum. We have to go downGT from the ends of node-ourrenes in GT , that is from the original ends ofnode-ourrenes in GT of the boxes built so far. These are reahed from thelist of pointers Lptrvk for the nodes vk that are identi�ed as ourrenes of thebox just treated. For models omposed of p boxes, we need at most (p� 1) listsLptrvk for eah node vk at level k.A pseudo-ode for the algorithm is as follows.proedure ExtratModels(Model m, Blok i)1. for eah node-ourrene v of m do2. if i > 2 then3. put in PotentialEnds the hildren w at levels ik + (i� 1)dminto ik + (i� 1)dmax4. for eah node-ourrene w in PotentialEnds do5. follow fast suÆx-link to node z at level k6. put z in L(i)7. if �rst time z is reahed then8. initialize olorsz with zero9. put z in NextEnds10. add olorsw to olorsz11. do a depth-�rst traversal of GT to update the boolean arraysfrom the root to all z in NextEnds (let GT 0 be the k-deep treeobtained by suh an operation)12. if i = 1 then13. Tree = GT14. else15. Tree = GT 016. for eah model mi (and its ourrenes) obtained by doing a reursivedepth-�rst traversal from the root of the virtual model treeMwhile simultaneously traversing Tree from the root (Lemma 4 and43
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