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may therefore perform a biologi
al fun
tion. Among the obje
ts whi
h maymodel biologi
al entities, we shall 
onsider in this 
hapter strings only. As isby now well known, biologi
al sequen
es, whether dna, rna or proteins, maybe represented as strings over an alphabet of 4 letters (dna/rna) or 20 letters(proteins). Some of the basi
 problems en
ountered in 
lassi
al text analysishave their 
ounterpart when the texts are biologi
al sequen
es, among them ispattern mat
hing. However, this problem 
omes with a twist on
e we are in therealm of biology: exa
t patterns hardly make sense in this 
ase. By exa
t above,we mean identi
al; and there are in fa
t at least two types of \non-identi
al"patterns one must 
onsider in biology. One 
omes from looking at what \hides"behind ea
h letter of the dna/rna or protein alphabet while the other 
orre-sponds to the more familiar notion of \errors". The errors 
on
ern mutationalevents whi
h may a�e
t a mole
ule during dna repli
ation. Those of interestto us are point mutations, that is, mutations operating ea
h time on single let-ters of a biologi
al sequen
e: substitution, insertion or deletion. Consideringsubstitutions only is sometimes enough for dealing with some problems.There are basi
ally two questions that may be addressed when trying tosear
h for known or predi
ted patterns in any text. Both are dis
ussed ingeneral 
omputational biology books su
h as Durbin's et al. [1℄, Gus�eld's [2℄,Meidanis and Setubal's [3℄ or Waterman's [4℄. One, rather an
illary, is thequestion of position: where are these patterns lo
alized (pattern lo
alizationpredi
tion) ? The se
ond question, more 
on
eptual, 
on
erns identifying andmodeling the patterns ab initio: what would be a 
onsensual motif for them(pattern 
onsensus predi
tion)? In biology, it is often the se
ond question whi
his the most interesting although the �rst is far from being either trivial or solved.Indeed, in general what is interesting to dis
over is whi
h patterns, unknownat start, mat
h the string(s) more often than \expe
ted" and have thereforea \
han
e" of representing an interesting biologi
al entity. This entity may
orrespond to a binding site, i.e. to a (in general small) part of a mole
ule thatwill intera
t with another, or it may represent an element that is repeated ina dispersed or periodi
 fashion (for instan
e, tandemly). The role played by arepetition of whatever type is often unknown: some repeats, in parti
ular smalltandem ones, have been impli
ated in a number of geneti
 diseases and are alsointeresting for the purposes of studying polymorphism; other types of repeats,su
h as short inverted ones, seem to be hotspots for re
ombination.We address both kinds of problems (pattern lo
alization predi
tion and pat-tern 
onsensus predi
tion) after having dis
ussed some notions of \non-identity",that is, of similarity, that we shall be 
onsidering. These are presented in Se
tion2. We start with the identity, both be
ause it may sometimes be of interest andbe
ause this allows us to introdu
e some notations that are used throughout thepaper. Su
h notations are based on those adopted by Karp et al. in a pioneeringpaper on �nding dispersed exa
t repeats in a string [5℄. From there, it is easy toderive a de�nition of similarity based, not on the identity, but on any relationbetween the letters of the alphabet for the strings. In parti
ular, this relation
an be, and in general is, non transitive (
ontrary to equality). This was in-trodu
ed by Soldano et al. [6℄. Finally, de�nitions of similarity taking errors2



(substitutions, insertions and deletions) into a

ount are dis
ussed and the ideaof models is presented. This idea was initially formally de�ned by Sagot et al.[7℄.We review the pattern lo
alization predi
tion question in Se
tion 3. Sin
emany methods used to lo
ate patterns are inspired from algorithms developedfor mat
hing �xed patterns with equality, we state the main results 
on
erningthis problem. Complexity bounds have been intensively studied and are knownwith a good a

ura
y. This is the ba
kground for broader methods aimed atlo
ating approximate patterns. The most widely used approximation is basedon the three alignment operations re
alled in Se
tion 2. The general methoddesigned to mat
h an approximate pattern is an extension of the dynami
 pro-gramming method used for aligning strings. Improving this method has alsobeen intensively investigated be
ause of the multitude of appli
ations it gener-ates. The fastest known algorithms are for a spe
ialization of the problem withweak but extra 
onditions on the s
ores of edit operations.For �xed texts, pattern mat
hing is more eÆ
iently solved by using somekind of index. Indexes are 
lassi
al data stru
tures aimed at providing a fasta

ess to textual databases. As su
h, they 
an be 
onsidered as abstra
t datatypes or obje
ts. They 
onsist both of data stru
tures to store useful informationand of operations on the data (see Salton [8℄, or Baeza-Yates and Ribero-Neto[9℄). The stru
tures often memorize a set of keys as is the 
ase of an index atthe end of a te
hni
al book. Sele
ting keys is a diÆ
ult question that sometimesrequires human a
tion. In the 
hapter, we 
onsider full indexes, whi
h 
ontain allpossible fa
tors (segments) of the original text, and we refer to these stru
turesas fa
tor or suÆx stru
tures. These stru
tures help �nding repetitions in strings,sear
h for other regularities, solve approximate mat
hings, or even mat
h two-dimensional patterns, to quote a few appli
ations. Additional or deeper analysisof pattern mat
hing problems may be found in books by Apostoli
o and Galil[10℄, Cro
hemore and Rytter [11℄, Gus�eld [2℄, and Stephen [12℄.Se
tion 4 deals with the problem of �nding repeats, exa
t or approximate,dispersed or appearing in a regular fashion along a string. Perhaps the mostinteresting work as 
on
erns this area is that of Karp et al. [5℄ for identifyingexa
t, dispersed repeats. This is dis
ussed in some detail. Combinatorial algo-rithms also exist for �nding tandem repeats. The most interesting ones are dueto Landau [13℄ and Kannan and Myers [14℄, whi
h allows for any error s
oringsystem, and to Kurtz et al. [15℄, whi
h uses a suÆx tree for lo
ating su
h re-peats and 
omes with a very 
onvenient visualisation tool. In biology, so 
alledsatellites 
onstitute another important type of repetitions. Satellites are tandemarrays of approximate repeats varying in the number of o

urren
es between twoand a few millions and in length between two and a few hundreds, sometimesthousands of letters. Only one 
ombinatorial formulation of the problem hasbeen given to this date [16℄, whi
h we des
ribe at some length.Finally, motif extra
tion is 
onsidered in Se
tion 5. A lot of the initial workdone in this area used a de�nition of similarity that is based on the relativeentropy of the o

urren
es of a motif in the 
onsidered set of strings. Thisprodu
es often good results for relatively small data-sets, and the method has3



therefore being 
ontinuously improved. Su
h a de�nition, however, leads toexa
t algorithms that are exponential in the number of strings and heuristi
shave therefore to be employed. These do not guarantee optimality, that is, theydo not guarantee that the set of o

urren
es given as a �nal solution is the onehaving maximal relative entropy. We do not treat su
h methods in the 
hapter.The author is referred to [17℄ for a survey of these and other methods from thepoint of view of biology.A de�nition of similarity based on the idea of models (whi
h are obje
ts thatare external to the strings) and of a maximum error rate between su
h modelsand their o

urren
es in strings 
an lead to 
ombinatorial algorithms. Somealgorithms in this 
ategory are eÆ
ient enough to be used for more 
omplexmodels. An algorithm for extra
ting simple models as well as more 
omplexones, 
alled stru
tured models, elaborated by Marsan et al. [18℄ is treated insome detail.2 Notions of similarity2.1 Preliminary de�nitionsIf s is a string of length jsj = n over an alphabet �, that is, s 2 �n, its individualelements are noted si for 1 � i � n, so that we have s = s1s2 : : : sn. A nonempty word u 2 �� is a fa
tor of s if u = sisi+1 : : : sj for a given pair (i; j) su
hthat 1 � i � j � n. The empty word, denoted by �, is also a fa
tor of s.2.2 IdentityAlthough identity is seldom an appropriate notion of similarity to 
onsider whenworking with biologi
al obje
ts, it may sometimes be of interest. This is astraightforward notion we nevertheless de�ne properly as this allows us to in-trodu
e some notations that is used throughout the paper.The identity 
on
erns words in a string and we therefore adopt Karp et al.[5℄ identi�
ation of su
h words by their start position in the string. To fa
ilitateexposition, this and all other notions of similarity are given for words inside asingle string. It is straightforward to adapt them to the 
ase of more than onestring (for instan
e, by 
onsidering the string resulting from the 
on
atenationof the initial ones with a distin
t forbidden symbol separating any two adja
entstrings). Let us note E the identity relation on the alphabet � (the E standsfor \Equivalen
e").Relation E between elements of � may then be extended to a relation Ekbetween fa
tors of length k in a string s in the following way:De�nition 2.1 Given a string s 2 �n and i; j two positions in s su
h thati; j � n� k + 1, then:i Ek j , si+l E sj+l for all l su
h that 0 � l � (k � 1).4
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V������ L M��� FY DE KR C.P. N.Q. H.W.Figure 1: Example of a relation of similarity between the letters of the proteinalphabet (
alled amino a
ids).In other words, iEkj if and only if sisi+1 : : : si+k�1 = sjsj+1 : : : sj+k�1. Forea
h k � 1, Ek establishes an equivalen
e relation that 
orresponds to a relationbetween o

urren
es of words of length k in s. This provides a �rst de�nitionof similarity between su
h o

urren
es. Indeed, ea
h equivalen
e 
lass of Ekhaving 
ardinality greater than one is the witness of a repetition in s.2.3 Non transitive relationWhen dealing with biologi
al strings, one has to 
onsider that the \letters"represented by su
h strings are 
omplex biologi
al obje
ts with physi
o-
hemi
alproperties, as, for instan
e, ele
tri
al 
harge, polarity, size, di�erent levels ofa
idity, et
. Some, but seldom all, of these properties may be shared by two ormore obje
ts. This applies more to proteins than to dna/rna but is true tosome extent for both.A more realisti
 relation to establish between the letters of the proteinor dna/rna alphabet (respe
tively 
alled amino a
ids and nu
leotides) wouldtherefore be re
exive, symmetri
 but non transitive [6℄. An example of su
h arelation, noted R, is given below.Example 1 Let � = fA,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Yg be thealphabet of amino a
ids and R be the relation of similarity between these aminoa
ids given by the graph given in Figure 1. The maximal 
liques of R are thesets: fA,S,Gg, fA,Tg, fI,L,Vg, fL,Mg, fF,Yg, fD,Eg, fK,Rg, fCg, fPg, fNg,fQg, fHg, fWg.It may be represented by a graph whose nodes are the elements of � andwhere an edge links two nodes if the elements of � labeling the nodes 
orre-spond to biologi
al obje
ts sharing enough physi
o-
hemi
al properties to be
onsidered similar.As previously, the relation R between elements of � may easily be extendedto a relation Rk between fa
tors of length k in a string s.De�nition 2.2 Given a string s 2 �n and i; j two positions in s su
h thati; j � n� k + 1, then: 5



i Rk j , si+l R sj+l for all l su
h that 0 � l � (k � 1).For ea
h k � 1, Rk establishes a relation that is no longer an equivalen
e be-tween positions (fa
tors of length k) in a string s. The 
on
ept that is importanthere is that of a (maximal) 
lique.De�nition 2.3 Given an alphabet � and a non transitive relation on �, a setC of elements of � is a (maximal) 
lique of relation R if for all �; � 2 C, � R� and for all 
 2 � n C, C S f
g is not a 
lique.De�nition 2.4 Given a string s 2 �n, a set Ck of positions in s is a 
lique ofrelation Rk if for all i; j 2 Ck, i Rk j and for all l 2 [1::n℄ n Ck, Ck S flg isnot a 
lique.Cliques of Rk give us then a se
ond way of establishing a de�nition of simi-larity between fa
tors of length k in a string.2.4 Allowing for errorsIntrodu
ing the idea of a modelLet us initially assume that the only authorized errors are substitutions. Inview of the de�nitions established in previous se
tions, one would be temptedto de�ne a relation of similarity H between two fa
tors of length k in a strings, that is, between two positions i and j in s, the following way.De�nition 2.5 Given a string s 2 �n and i; j two positions in s su
h thati; j � n� k + 1, then:i Hk j , distH(si : : : si+k�1, sj:::sj+k�1) � ewhere distH(u; v) is the Hamming distan
e (hen
e the H) between u and v (thatis, the minimum number of substitutions one has to operate on u in order toobtain v) and e is a non negative integer that is �xed.Parameter e 
orresponds to the maximum number of substitutions that aretolerated. In the same way as in Se
tion 2.3, 
liques of Hk provide us withanother possible de�nition of similarity between fa
tors of length k in a string.Eevn before trying to 
onsider how to adapt the above de�nition to the 
aseof a Levenshtein (or any other type of) distan
e where insertions and deletionsare permitted besides substitutions (this is not 
ompletely trivial: indeed, giventwo words u and v respe
tively starting at positions i and j in s and su
h thatiLkj, what is the meaning of k?), one may intuitively note that 
al
ulating Hk(and, a fortiori, Lk) is no longer as easy as 
omputing Ek or Rk.The reason is that, although the de�nitions given in Se
tions 2.2 and 2.3involve pairs of positions in a string s, it is possible to rewrite them in su
h away that, given a position i in s and a length k, it is immediate to determineto whi
h 
lass or 
lique(s) i belongs in the sense that the 
lass or 
lique(s)6




an be uniquely identi�ed just by \reading" si : : : si+k�1. Let us 
onsider �rstthe simpler 
ase of an identity. Straightforwardly, position i belongs to the
lass whose label is si : : : si+k�1. In the 
ase of a non transitive relation Rbetween letters of �, let us name C the set of (maximal) 
liques of R and note
liqueR(�) the 
liques of R to whi
h a letter � belongs. Then, position i belongsto all the sets of Rk whose labels may be spelled from the (regular) expression
liqueR(si) : : : 
liqueR(si+k�1) and that are maximal under Rk. Note the smalldi�eren
e here with the identity relation: maximality of a validly labeled sethas to be 
he
ked [6℄.No su
h easy rewriting and veri�
ation are possible in the 
ase of the def-inition of Hk (or Lk had we already written it) if we wish to build the notionof similarity between fa
tors in a string upon that of the 
liques of Hk. Indeed,obtaining su
h 
liques needs 
omparing (a possibly great number of) pairs ofpositions between themselves. This is expensive.One may, however, rewrite the de�nition of Hk in a way that refers to labelsas we did above for Ek and Rk although su
h labels are no longer as immediatelyidenti�able. A possible de�nition (still for the 
ase where substitutions only are
onsidered) is the following.De�nition 2.6 Given a string s 2 �n and i; j two di�erent positions in s su
hthat i; j � n� k + 1, then:i Hk j , 9m 2 �k su
h that distH(m,si : : : si+k�1) � e anddistH(m,sj : : : sj+k�1) � ewhere distH(u; v) and e are as before.Generalizing this, gives the following de�nition.De�nition 2.7 A set Sk of positions in s represents a set of fa
tors in s oflength k that are all similar between themselves if, and only if, there exists (atleast) a string m 2 �k su
h that, for all elements i in Sk, distH(m,si : : : si+k�1)� e and, for all j 2 [1::n℄ n Sk, distH(m,si : : : si+k�1) > e.Observe that extension of both de�nitions to a Levenshtein distan
e be
omesnow straightforward. We reprodu
e below, after modi�
ation, just the lastde�nition.De�nition 2.8 A set Sk of positions in s represents a set of fa
tors of lengthk that are similar if, and only if, there exists (at least) a string m 2 �k su
hthat, for all elements i in Sk, distL(m,si : : :) � e and, for all j 2 [1::n℄ n Sk,distL(m,si : : :) > e.Sin
e the length of an o

urren
e of a model m may now be di�erent fromthat of m itself (it varies between jmj� e and jmj+ e) we denote the o

urren
eby (si : : :) leaving inde�nite its right-end point.Observe also that it remains possible, given a position i in s and a length k,to obtain the label of the group(s) of the relation Hk (or Lk) i belongs to. Su
h7



labels are represented by all strings m 2 �k su
h that distH(or distL)(m,si : : :)� e, that is, su
h that their distan
e from the word starting at position i in sis no more than e.We 
all models su
h group labels. Positions in s indi
ating the start of afa
tor of length k are e-o

urren
es (or simply o

urren
es where there is noambiguity) of a model m if dist(m,si : : :) � e where dist is either the Hammingor Levenshtein distan
e. Observe that a model m may have no exa
t o

urren
ein s.Finally, we have 
onsidered so far what is 
alled a \unitary 
ost distan
e"(unitary be
ause the 
ost of ea
h operation, substitution, insertion or deletion,is one unit). We 
ould have used instead a \weighted 
ost distan
e", that is,we 
ould have used any 
ost for ea
h operation, in the range of integers or realnumbers.Expanding on the idea of models { Two more possible de�nitions ofsimilarityNon transitive relation and errors Models allow us to 
onsiderably enri
hthe notion of 
onservation. For instan
e, it enables us to simultaneously 
onsidera non relative transition between the letters of the alphabet (amino a
ids ornu
leotides) and the possibility of errors. In order to do that, it suÆ
es topermit the model to be written over an extended alphabet 
omposed of a subsetof the set of all subsets of � (noted P(�)) where � is the alphabet of aminoa
ids or nu
leotides. Su
h an alphabet 
an be, for instan
e, one de�ned by themaximal 
liques of the relation R given in Figure 1. De�nition 2.8 of Se
tion 2.4then be
omes:De�nition 2.9 A set Sk of positions in s represents a set of fa
tors of lengthk that are all similar between themselves if, and only if, there exists (at least)one element M 2 P k with P � P(�) su
h that, for all elements i in Sk,setdist(M ,si : : :) � e and, for all j 2 [1::n℄ n Sk, setdist(M; si : : :) > e, wheresetdist(M; v) for M 2 P and u 2 � is the minimum Hamming or Levenshteindistan
e between v and all u 2M .Among the subsets allowed in P , the alphabet of models, may be f�g itself,that is the wild 
ard. It is obvious that this may lead to trivial models. AlphabetP may then 
ome with weights atta
hed to ea
h of its elements indi
ating howmany times (possibly in�nite) it may appear in an interesting model. Observethat another way of des
ribing the alphabet P of models is as the set of edgesof a (possibly weighted) hypergraph whose nodes are the elements of �.When e is zero, we obtain a de�nition of similarity between fa
tors in thestring that 
losely resembles that given in Se
tion 2.3. Note however that, giventwo models M1 and M2, we may well have that the set of o

urren
es of M1 isin
luded in that of M2. The 
liques of De�nition 2.4 
orrespond to the sets ofo

urren
es that are maximal. 8



A word instead of symbol-based similarity Errors between a group ofsimilar words and the model of whi
h they are o

urren
es 
an either be 
ountedas unitary events (possibly with di�erent weights) as was done in the previousse
tions, or they 
an be given a s
ore. The main idea behind s
oring a resem-blan
e between two obje
ts is that it allows to average the di�eren
es that mayexist between them. It may thus provide a more 
exible fun
tion for measuringthe similarity between words. A simple example illustrates this point.Example 2 Let � = fA,B,Cg and:s
ore(i; i) = 1, 8 i 2 �;s
ore(A,B) = s
ore(B,A) = -1;s
ore(A,C) = s
ore(C,A) = -1;s
ore(B,C) = s
ore(C,B) = -1.If we say that 2 words are similar either if:- the number of substitutions between them is � 1,- their s
ore is � 1,then by the �rst 
riterion the words AABAB and AACCB are not similar, whileby the se
ond 
riterion they are, the se
ond substitution being allowed be
ausethe two words on the average share enough resemblan
e.In the example and in the de�nition of similarity introdu
ed in this se
tion,gaps are not allowed, only substitutions are. This is done essentially for thesake of 
larity. Gaps may, however, be authorized, the reader is referred to [19℄for details.Let a numeri
al matrix M of size j � j � j � j be given su
h that:M(a; b) = s
ore between a and b for all a, b 2 �.If this s
ore measures a similarity between a and b, we talk of a similarity matrix(two well-known examples of whi
h in biology are PAM250 [20℄ and BLOSUM62[21℄), while if the s
ore measures a dissimilarity between a and b we talk of adissimilarity matrix. A spe
ial 
ase of this latter matrix is when the dissimilaritymeasure is a metri
, that is when the s
ores obey, among other 
onditions, thetriangular inequality. In that situation, we talk of a distan
e matrix (an exampleof whi
h is the matrix proposed by J.-L. Risler [22℄).In what follows, we 
onsider that M is a similarity matrix.De�nition 2.10 Given u = u1u2:::uk 2 �k, m = m1m2:::mk 2 �k a model oflength k and M a matrix, we note:s
oreM(u;m) = kXi=1M(ui;mi):De�nition 2.11 A set Sk of positions in s represents a set of fa
tors of lengthk that are similar if, and only if, given w a positive integer su
h that w � k andt a threshold value: 9



1. there exists (at least) one element m 2 �k su
h that, for all elements i in Skand for all j 2 f1,...,j m j �w+1g, s
oreM(mj :::mj+w�1; si:::si+w�1) � t;2. for all i 2 [1::n℄ nSk, there exists at least one j 2 f1,...,j m j �w+1g su
hthat s
oreM(mj :::mj+w�1; si:::si+w�1) < t.An example is given below.Example 3 Let � = fA,B,Cg, w = 3 and t = 6. Let M be the followingmatrix: A B CA 3 1 0B 1 2 1C 0 1 3Given the three strings:s1 = ABCBBABBBACABACBBBABs2 = CABACAACBACCABCACCACCCs3 = BBBACACCABABACABACABAthen the longest model that is present in all strings is CACACACC (at positions9, 1 and 12 respe
tively).3 Motif lo
alizationWe review in this se
tion the main results and 
ombinatorial methods usedto lo
ate patterns in strings. The problem is of main importan
e for severalreasons. From a theoreti
al point of view, it is a paradigm for the design ofeÆ
ient algorithms. From a pra
ti
al point of view, the algorithms developedin this 
hapter often serve as basi
 
omponents in string fa
ility software. Inparti
ular, some te
hniques are used for the extra
tion of unknown motifs.We 
onsider two instan
es of the question, depending on whether the motif is�xed or the string is �xed. In the �rst 
ase, prepro
essing the pattern a

eleratesthe sear
h for it in any string. Sear
hing a �xed string is made faster if a kind ofindex on it is prepro
essed. At the end of the se
tion, we sket
h how to sear
hstru
tural motifs for the identi�
ation of trnamotifs in biologi
al sequen
es.3.1 Sear
hing for a �xed motifString sear
hing or string mat
hing is the problem of lo
ating all the o

ur-ren
es of a string x of length p, 
alled the pattern, in another string s of lengthn, 
alled the sequen
e or the text. The algorithmi
 
omplexity of the prob-lem is analyzed by means of standard measures: running time and amount ofmemory spa
e required by the 
omputations. This se
tion deals with solutionsin whi
h the pattern is assumed to be �xed. There are mainly three kinds ofmethods to solve the problem: sequential methods (simulating a �nite automa-ton), pra
ti
ally-fast methods, and time-spa
e optimal methods. Methods that10



sear
h for o

urren
es of approximate patterns are dis
ussed in the next subse
-tion. Alternative solutions based on a prepro
essing of the text are des
ribedin a following subse
tion.EÆ
ient algorithms for the problem have a running time that is linear in thesize of the input (i.e. O(n+ p)). Most algorithms require an additional amountof memory spa
e that is linear in the size of the pattern (i.e. O(p)). Informationstored in this spa
e is 
omputed during the prepro
essing phase, and later usedduring the sear
h phase. The time spent during the sear
h phase is parti
ularlyimportant. The number of 
omparisons made and the number of inspe
tionsexe
uted have therefore been evaluated with great 
are. For most algorithms,the maximum number of 
omparisons (or number of inspe
tions) made duringthe exe
ution of the sear
h is less than 2n. The minimum number of 
omparisonne
essary is bn=p
, and some algorithms rea
h that bound in ideal situations.The 
omplexity of the string sear
hing problem is given by the following the-orem due to Galil and Seiferas (1983). The proof is based on spa
e-e
onomi
almethods that are outside the s
ope of this 
hapter (see [11℄, for example). Lineartime is however met by many other algorithms. Note that in the \O" notation,
oeÆ
ients are independent of the alphabet size.Theorem 1 The string sear
hing problem, lo
ating all o

urren
es of a patternx in a text s, 
an be solved in linear time, O(jsj+ jxj), with a 
onstant amountof additional memory spa
e.The average running time of the sear
h phase is sometimes 
onsidered asmore signi�
ant than the worst-
ase time 
omplexity. Despite the fa
t that itis usually diÆ
ult to model the probability distribution of spe
i�
 texts, resultsfor a few algorithms (with a hypothesis on what \average" means) are known.Equiprobability of symbols and independen
e between their o

urren
es in textsrepresent a 
ommon hypothesis used in this 
ontext and gives the next result(Yao, 1979). Although the hypothesis is too strong, the result re
e
ts the a
tualrunning time of algorithms based on the method des
ribed below. In addition,it is rather simple to design a string sear
hing algorithm working in this timespan.Theorem 2 Sear
hing a text of length n for a prepro
essed pattern of length p
an be done in optimal expe
ted time O( log pp � n).String sear
hing algorithms 
an be 
lassi�ed into three 
lasses. In the �rst
lass, the text is sear
hed sequentially, one symbol at a time from beginningto end. Thus all symbols of the text (ex
ept perhaps p � 1 of them at theend) are inspe
ted. Algorithms simulate a re
ognition pro
ess using a �niteautomaton. The se
ond 
lass 
ontains algorithms that are pra
ti
ally fast. Thetime 
omplexity of the sear
h phase 
an even be sublinear, under the assumptionthat both the text and the pattern reside in main memory. Algorithms from the�rst two 
lasses usually require O(p) extra memory spa
e to work. Algorithmsfrom the third 
lass show that the additional spa
e 
an be redu
ed to a few11



integers stored in a 
onstant amount of memory spa
e. Their interest is mainlytheoreti
al so far.The above 
lassi�
ation 
an be somehow re�ned by 
onsidering the way thesear
h phases of algorithms are designed. It is 
onvenient to 
onsider that thetext is examined through a window. The window is assimilated to the segmentof the text it 
ontains and it has usually the length of the pattern. It runsalong the text from beginning to end. This s
heme is 
alled the sliding windowstrategy and is des
ribed below. It uses a s
an-and-shift me
hanism.1. put window at the beginning of text;2. while window on text do3. s
an: if window = pattern then report it;4. shift: shift window to the right and5. memorize some information for use during next s
ans and shifts;During the sear
h, the window on the text is periodi
ally shifted to theright a

ording to rules that are spe
i�
 to ea
h algorithm. When the windowis pla
ed at a 
ertain position on the text, the algorithm 
he
ks whether thepattern o

urs there, i.e., if the pattern equals the 
ontent of the window.This is the s
an operation during whi
h the algorithm a
quires from the textinformation that is often used to determine the next shift of the window. Partof the information 
an also be kept in memory after the shift operation. Thisinformation is then used for two purposes: �rst, saving time during the nexts
an operations, and, se
ond, in
reasing the length of further shifts. Thus, thealgorithms operate a series of alternate s
ans and shifts.A naive implementation of the s
an-and-shift s
heme (no memorization, anduniform shift of length 1) leads to a sear
hing algorithm running in maximumtime O(p � n); the expe
ted number of 
omparisons is 4n=3 on a four-letteralphabet. This performan
e is quite poor as 
ompared to pre
eding results.Pra
ti
ally fast sear
hesWe des
ribe a string sear
hing strategy that is 
onsidered as the fastest in pra
-ti
e. Derived algorithms apply when both the text and the pattern reside inmain memory. We thus do not take into a

ount the time to read them. Underthis assumption, some algorithms have a sublinear behavior. The 
ommon fea-ture of these algorithms is that they s
an the window in the reverse dire
tion(from right to left).The 
lassi
al string sear
hing algorithm that s
ans the window in reversedire
tion is the BM algorithm (Boyer and Moore, 1977). At a given position inthe text, the algorithm �rst identi�es the longest 
ommon suÆx u of the windowand the pattern. A mat
h is reported if it equals the pattern. After that, thealgorithm shifts the window to the right. Shifts are done in su
h a way thatthe o

urren
e of u in the text remains aligned with an equal segment of thepattern, and are often 
alled mat
h shifts. The length of the shift is determinedby what is 
alled the displa
ement of u inside x, and denoted by d(u). A sket
hof the BM algorithm is displayed below.12



1. while window on text do2. u := longest 
ommon suÆx of window and pattern;3. if u = pattern then report a mat
h;4. shift window d(u) pla
es to the right;The fun
tion d depends only on the pattern x so that it 
an be pre
omputedbefore the sear
h starts. In the BM algorithm, an additional heuristi
s on mis-mat
h symbols of the text is also usually used. This yields another displa
ementfun
tion used in 
onjun
tion with d. It is a general method that may improvealmost all algorithms in 
ertain real situations.The BM algorithm is memoryless in the sense that, after a shift, it startss
anning the window from s
rat
h. No information about previous mat
hesis kept in memory. When the algorithm is applied to �nd all o

urren
es ofAp inside An, the sear
h time be
omes proportional to p � n. The reason forthe quadrati
 behavior is that no memory is used at all. It is, however, verysurprising that BM algorithm turns out to be linear when the sear
h is limitedto the �rst o

urren
e of the pattern. By the way, the original algorithm hasbeen designed for that purpose. Only very periodi
 patterns may in
rease thesear
h time to a quadrati
 quantity, as shown by the next theorem (Cole, 1990).The bound it gives is the best possible. Only a modi�ed version of the BMalgorithm 
an therefore make less than 2n symbol 
omparisons at sear
h time.Theorem 3 Assume that pattern x satis�es period(x) > jxj=2. Then, the BMsear
hing algorithm performs at most 3jsj � jsj=jxj symbol 
omparisons.The theorem also suggests that only little information about 
on�gurationsen
ountered during the pro
ess has to be kept in memory in order to get alinear time sear
h for any kind of patterns. This is a
hieved, for instan
e,if pre�x memorization is performed ea
h time an o

urren
e of the pattern isfound. However, this is also a
hieved with a better bound by an algorithm 
alledTurbo BM. This modi�
ation of the BM algorithm forgets all the history ofthe sear
h, ex
ept for the most re
ent one. Analysis be
omes simpler, and themaximum number of 
omparisons at sear
h phase be
omes less than 2n.Sear
hing simultaneously for several (a �nite number of) patterns 
an bedone more eÆ
iently than sear
hing for them one at a time. The natural pro-
edure takes an automaton as pattern. It is an extension of the single-patternsear
hing algorithms based on the simulation of an automaton. The standardsolution is from Aho and Corasi
k [23℄.3.2 Approximate mat
hingsThe sear
h for approximate mat
hings of a �xed pattern produ
es the position inthe text s of an approximation of the pattern x. Sear
hing texts for approximatemat
hings is usually done by methods derived from the exa
t string sear
hingproblem des
ribed above. They either in
lude an exa
t string mat
hing asan internal pro
edure or they trans
ribe a 
orresponding algorithm. The two
lassi
al ways to model approximate patterns 
onsist in assuming that a spe
ial13



symbol 
an mat
h any other symbol, or that operations to transform a patterninto another are possible.In the �rst instan
e we have, in addition to the symbols of the input al-phabet �, a wild 
ard (also 
alled a don't 
are symbol) � with the propertythat � mat
hes any other 
hara
ter in �. This gives rise to variants of thestring sear
hing problem where, in prin
iple, � appears (i) only in the pattern,(ii) only in the text, or (iii) both in the pattern and the text. Variant (i) issolved by an adaptation of the multiple string mat
hing and of the pattern-mat
hing automaton of Aho and Corasi
k [23℄. For other variants, a landmarksolution is by Fis
her and Paterson [24℄. They transpose the string sear
hingproblem into an integer multipli
ation problem, thereby obtaining a number ofinteresting algorithms. This observation brings string sear
hing into the fam-ily of boolean, polynomial and integer multipli
ation problems and leads to anO(n log p log log p) time solution in the presen
e of wild 
ards (provided that thesize of � is �xed).The 
entral notion for 
omparing strings is based on three basi
 edit oper-ations on strings introdu
ed in Se
tion 2. It may be assumed that ea
h editoperation has an asso
iated nonnegative real number representing the 
ost ofthat operation, so that the 
ost of deleting from w an o

urren
e of symbola is denoted by D(a), the 
ost of inserting some symbol a between any two
onse
utive positions of w is denoted by I(a) and the 
ost of substituting someo

urren
e of a in w with an o

urren
e of b is denoted by S(a; b).The string editing problem for input strings x and s 
onsists in �nding asequen
e of edit operations, or edit s
ript, � of minimum 
ost that transforms xinto s. The 
ost of � is the edit distan
e between x and s (it is a mathemati
aldistan
e under some extra hypotheses on operation 
osts). Edit distan
es whereindividual operations are assigned unit 
osts o

upy a spe
ial pla
e.It is not diÆ
ult to see that the general problem of edit distan
e 
omputation
an be solved by an algorithm running in O(p � n) time and spa
e throughdynami
 programming. Due to the widespread appli
ation of the problem,however, su
h a solution and a few basi
 variants were dis
overed and publishedin an extensive literature. The reader 
an refer to Apostoli
o and Gian
arlo(1998) [25℄, or to [10℄ for a deeper exposition of the question.The 
omputation of edit distan
es by dynami
 programming is readily setup. For this, let C(i; j) (0 � i � jsj and 0 � j � jxj) be the minimum
ost of transforming the pre�x of s of length i into the pre�x of x of lengthj. Then C(0; 0) = 0, C(i; 0) = C(i � 1; 0) + D(si) (i = 1; 2; :::; jsj), C(0; j) =C(0; j � 1) + I(xj) (j = 1; 2; :::; jxj), and C(i; j) equalsminfC(i� 1; j � 1) + S(si; xj); C(i� 1; j) +D(si); C(i; j � 1) + I(xj)gfor all i; j, (1 � i � jsj, 1 � j � jxj). Observe that, of all entries of the C-matrix, only the three entries C(i � 1; j � 1), C(i � 1; j), and C(i; j � 1) areinvolved in the 
omputation of the �nal value of C(i; j). Hen
e C(i; j) 
an beevaluated row-by-row or 
olumn-by-
olumn in �(jsj � jxj) = �(p � n) time.An optimal edit s
ript 
an be retrieved at the end by ba
ktra
king through thelo
al de
isions made by the algorithm.14



A few important problems are spe
ial 
ases of string editing, in
luding the
omputation of a longest 
ommon subsequen
e, lo
al alignment, i.e., the de-te
tion of lo
al similarities in strings, and some important variants of stringsear
hing with errors, or sear
hing for o

urren
es of approximate patterns intexts.String Sear
hing with di�eren
esConsider the problem of 
omputing, for every position of the textstring s, thebest edit distan
e a
hievable between x and a substring w of s ending at thatposition. Under the unit 
ost 
riterion, a solution is readily derived from there
urren
e for string editing given above. The �rst obvious 
hange 
onsists insetting all 
osts to 1 ex
ept that S(xi; sj) = 0 for xi = sj . We thus have now,for all i; j, (1 � i � jxj; 1 � j � jsj),S(i; j) = minfS(i� 1; j � 1) + 1; S(i� 1; j) + 1; S(i; j � 1) + 1g:A se
ond 
hange a�e
ts the initial 
onditions, so that we have now S(0; 0) =0, S(i; 0) = i (i = 1; 2; :::; p), S(0; j) = 0 (j = 1; 2; :::; n). This has the e�e
t ofsetting to zero the 
ost of pre�xing x by any pre�x of s. In other words, anypre�x of the text 
an be skipped at no 
ost in an optimum edit s
ript.The 
omputation of S is then performed in mu
h the same way as indi
atedin table C above, thus taking �(jxj � jsj) = �(p � n) time. We are interestednow in the entire last row of matrix S.In pra
ti
e, it is often more interesting to lo
ate only those segments of s thatpresent a high similarity with x under the adopted measure. Formally, givena pattern x, a text s, and an integer e, this restri
ted version of the problem
onsists in lo
ating all terminal positions of substrings w of s su
h that the editdistan
e between w and x is at most e. The re
urren
e given above will 
learlyprodu
e this information. However, there are more eÆ
ient methods to dealwith this restri
ted 
ase. In fa
t, a time 
omplexity O(e�n) and even sublinearexpe
ted time are a
hievable. We refer to, e.g., [10, 11℄ for detailed dis
ussions.In the following, we review some of the basi
 prin
iples behind an O(e � n)algorithm for string sear
hing with e di�eren
es due to Landau and Vishkin(1986). Note that when e is a 
onstant the 
orresponding time 
omplexity thenbe
omes linear.It is essential here that edit operations have unitary 
osts. Matrix S has aninteresting property that is intensively used to get the O(e � n) running time:its values are in in
reasing order along diagonals, and 
onse
utive values on asame line or a same 
olumn di�er by at most one unit (see Figure 2).Be
ause of the monotoni
ity property on diagonals and unitary 
osts, theinteresting positions on diagonals are those 
orresponding to a stri
t in
rementa-tion. Computing these values only produ
es a fast 
omputation in time O(e�n).This is possible if queries on longest 
ommon pre�xes, as suggested in Figure 2,are answered in 
onstant time. This, in turn, is possible be
ause strings 
an beprepro
essed in order to get this time bound.15



R �1 0 1 2 3 4 5 6 7 8 9 10 11C A G A T A A G A G A A�1 0 0 0 0 0 0 0 0 00 G 1 1 1 0 1 1 1 1 01 A 1 1 0 1 1 1 1 02 T 1 0 1 1 13 A 1 0 1 14 A 1 0 1 1Figure 2: Simulation of fast sear
hing for approximate mat
hings. Sear
hingy = CAGATAAGAGAA for x = GATAA with at most one di�eren
e. Pattern xo

urs at right positions 6 on y without errors (sin
e R[4; 6℄ = 0), and at rightpositions 5, 7 et 11 with one error (sin
e R[4; 5℄ = R[4; 7℄ = R[4; 11℄ = 1). Afterinitialization, values are 
omputed diagonalwise, value 0 during the �rst stepand value 1 during the se
ond step. Value R[4; 6℄ = 0 
omes from the fa
tthat GATAA is the longest 
ommon pre�x of x and y[2 : : 11℄. And, as a se
ondexample, R[4; 11℄ = 1 be
ause AA is the longest 
ommon pre�x of x[3 : : 4℄ andy[10 : :11℄. When queries related to longest 
ommon pre�xes are answered in
onstant time the running time is proportional to bold values in the table.To do so, we 
onsider the suÆx tree (see se
tion 3.3 below), AC(Su� (z)), ofz = x$s where $ =2 alph(s). String w = LCP(x[`+1 : : p�1℄; s[d+`+1 : :n�1℄) isalso LCP(x[`+1 : : p�1℄$s; s[d+`+1 : :n�1℄) be
ause $ =2 alph(s). Let f and gbe the nodes of AC(Su� (z)) asso
iated with strings x[`+1 : : p�1℄$s and s[d+`+1 : : n� 1℄. Their 
ommon pre�x of maximal length is then the label of the pathin the suÆx tree starting at the root and ending at the lowest 
ommon an
estorof f and g. Longest 
ommon pre�x queries are thus transformed into lowest
ommon an
estor queries that are answered in 
onstant time by an algorithmdue to Harel and Tarjan (1984) [26℄, simpli�ed later by S
hieber and Vishkin(1988) [27℄. The 
onsequen
e of the above dis
ussion is the next theorem.Theorem 4 On a �xed alphabet, after prepro
essing x and s, sear
hing s foro

urren
es of x with at most e di�eren
es 
an be solved in time O(e� jsj).In appli
ations to massive data, even a O(e�n) time may be prohibitive. Byusing �ltration methods, it is possible to set up sublinear expe
ted time queries.One possibility is to �rst look for regions with exa
t repli
as of some patternsegment and then s
rutinize those regions. Another possibility is to look forsegments of the text that are within a small distan
e of some �xed segments ofthe pattern. Some of the 
urrent top performing software for mole
ular databasesear
hes are engineered around these ideas [28, 29, 30, 31℄. A survey may befound in [32℄.
16
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ab b b bb

bFigure 3: SuÆx trie of ababbb.3.3 IndexingFull indexes are designed to solve the pattern mat
hing problem, sear
hing s foro

urren
es of x, when the text s is �xed. Having a stati
 text allows to builda data stru
ture to whi
h the queries are applied. EÆ
ient solutions require aprepro
essing time O(jsj) and need O(jxj) sear
hing time for ea
h query.Full indexes store the set of fa
tors of the text s. Sin
e fa
tors are begin-nings of suÆxes of s, this is equivalent to storing all suÆxes of the text. Basi
operations on the index are: �nd if pattern x o

urs in s, give the number ofo

urren
es of x in s, and list all positions of these o

urren
es. But many otheroperations admit fast solutions through the use of indexes.Indexes are 
ommonly implemented by suÆx trees, suÆx automata (also
alled suÆx DAWG's, Dire
ted A
y
li
 Word Graphs), or suÆx arrays. Thelatter stru
ture realizes a binary sear
h in the ordered list of suÆxes of the text.The former stru
tures are des
ribed in the remaining of the se
tion.SuÆxes of s 
an be stored in a digital tree 
alled the suÆx trie of s. It isan automaton whose underlying graph is a tree. Bran
hes are labeled by all thesuÆxes of s. More pre
isely, the automaton a

epts Su� (s) the set of suÆxesof s. A terminal state outputs the position of its 
orresponding suÆx. Figure 3displays the suÆx trie of s = ababbb.Compa
tion The size of a suÆx trie 
an be quadrati
 in the length of s, evenif pending paths are pruned (it is the 
ase with the word akbkakbk, k 2 N).To 
ope with this problem, another stru
ture is 
onsidered. It is the 
ompa
tedversion of the trie, 
alled the suÆx tree, and noted ST (s). It keeps from the triestates that are either terminal states or forks (nodes with outdegree greater than1). Removing other nodes leads to label ar
s with words that are non-emptysegments of s (see Figure 4).It is fairly straightforward to see that the number of nodes of ST (s) is nomore than 2n (if n > 0), be
ause non-terminal internal nodes have at least17
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abbbbbabbbb bFigure 4: SuÆx tree of ababbb.
0 1

23 45 67
(0; 2)(1; 1)

(2; 4)(4; 2)(2; 4)(4; 1) (5; 1) i 0 1 2 3 4 5s[i℄ a b a b b bFigure 5: Compa
tion of the suÆx trie of Figure 3: implementation of the suÆxtree of ababbb of Figure 4 in whi
h labels of ar
s are represented by pairs ofintegers.two 
hildren, and there are at most n external nodes. However, if the labelsof ar
s are stored expli
itly, again the implementation 
an have quadrati
 size.The te
hni
al solution is to represent labels by pairs of integers in the form(position, length) and to keep in main memory both the tree ST (s) and thetextstring s (see Figure 5). The whole pro
ess yields a 
ompa
ted version of thetrie of suÆxes that has linear size.Minimization Another way of redu
ing the size of the suÆx trie is to min-imize it like an automaton. We then get what is 
alled the suÆx automatonSA(s), whi
h is the minimal automaton a

epting Su� (s). It is also 
alled(suÆx) DAWG's. The automaton 
an even be further slightly redu
ed by min-imization if all states are made terminal, thus produ
ing the fa
tor automatonof the text. 18



0 1 2 3 4 5 620 50a b a bb b bb a b bFigure 6: SuÆx automaton of ababbb: minimal deterministi
 automaton a
-
epting Su� (s).Certainly the most surprising property of suÆx automata, dis
overed byBlumer et al. (1983), is the linear size of the automaton. More a

urately, itsatis�es the inequalities: jsj+ 1 � #states � 2jsj � 1,jsj � #ar
s � 3jsj � 4:EÆ
ient 
onstru
tions The 
onstru
tion of suÆx stru
tures 
an be 
ar-ried on in linear time. Indeed, running times depend on the implementationof the stru
tures, and mainly on that of the transition fun
tion. If ar
s areimplemented by sets of su

essors, transitions are done by symbol 
omparisons,whi
h leads to a O(jsj log 
ard�) 
onstru
tion time within O(jsj) memory spa
e.This is the solution to 
hoose for unbounded alphabets. If ar
s are realizedby a transition table whi
h assumes that the alphabet is �xed, transitions aredone by table lookups and the 
onstru
tion time be
omes O(jsj) using how-ever O(jsj 
ard�) memory spa
e. These two te
hniques are referred to as the
omparison model and the bran
hing model respe
tively.Classi
al algorithms that build suÆx trees are by Weiner [33℄, M
Creight[34℄, and Ukkonen [29℄. The latter algorithm is the only one to pro
ess the textin a stri
tly online manner. DAWG 
onstru
tion was �rst designed by Blumeret al. and later extended to suÆx and fa
tor automata (see [35℄ and [36℄).To 
omplete this se
tion, we 
ompare the 
omplexities of the above stru
-tures to the suÆx array designed by Manber and Myers [37℄. A preliminaryversion of the same idea appears in the PAT system of Gonnet et al. [38℄. AsuÆx array is an alternative implementation of the set of suÆxes of a text.It 
onsists both of a table storing the permutation of suÆxes in lexi
ographi
order, and of a table storing the maximal lengths of 
ommon pre�xes betweenpairs of suÆxes (LCP table). A

ess to the set of suÆxes is managed via abinary sear
h with the help of the LCP table. Storage spa
e is obviously O(jsj),a

ess time is only O(p + log jsj) to lo
ate a pattern of length p (it would beO(p� log jsj) without the LCP table). EÆ
ient prepro
essing is the most diÆ-
ult part of the entire implementation, it takes O(jsj log jsj) time although thetotal size of suÆxes is O(jsj2). 19



0 12 320ab abbbbb
b abbbb bFigure 7: Compa
t suÆx automaton of ababbb with expli
it labels on ar
s.0 12 320(0; 2) (2; 4)(4; 2)

(1; 1) (2; 4)(4; 1) (5; 1) i 0 1 2 3 4 5s[i℄ a b a b b bFigure 8: Compa
t suÆx automaton of ababbb. It is the 
ompa
ted version ofSA(s) and the minimized version of ST (s). Labels of ar
s are represented bypairs of integers as in the suÆx tree, see Figure 5.EÆ
ient storage Among the many implementations of suÆx stru
tures, we
an mention the notion of sparse suÆx trees due to K�arkk�ainen and Ukkonen [39℄whi
h 
onsiders a redu
ed set of suÆxes, the suÆx 
a
tus due to K�arkk�ainen[40℄, who degenerates the suÆx tree stru
ture without in
reasing too mu
hthe a

ess time, and the version dedi
ated to external memory (SB-trees) byFerragina and Grossi [41℄, but several other variations exist (see [42℄ and [43℄,for example).An ex
ellent solution to save on the size of suÆx stru
tures is to simultane-ously 
ompa
t and minimize the suÆx trie. Compa
tion and minimization are
ommutative operations, and when both are applied, they yield the 
ompa
tsuÆx automaton, denoted by CSA(s). Figures 7 and 8 display an example of
ompa
t suÆx automaton. The dire
t 
onstru
tion of the 
ompa
t suÆx au-tomaton CSA(s) is possible without building �rst the suÆx automaton SA(s)nor the suÆx tree (see [44℄). It 
an be realized with the same time and spa
eas that of other stru
tures.Table 1 gives an idea of the minimum and maximum sizes of suÆx stru
tures(in the 
omparison model). The average analysis of suÆx automata, in
ludingtheir 
ompa
t version, was done by Blumer et al. [45℄ and later 
ompleted byRaÆnot [46℄.The size of an implementation of the above stru
tures is often evaluated by20



Text of Number of states Number of ar
slength n min max min maxSuÆx trie n+ 1 O(n2) 2n O(n2)SuÆx Tree n+ 1 2n+ 2 n 2n+ 1SuÆx Automaton n+ 1 2n� 1 n 3n� 4Compa
t SA 2 n+ 1 n 2n� 2Table 1: Compared sizes of suÆx stru
tures.the average number of bytes ne
essary to store one letter of the original text. Itis 
ommonly admitted that these ratios are 4 for suÆx arrays, 9 to 11 for suÆxtrees and slightly more for suÆx automata, provided the text is not too large(of the order of a few megabytes).Kurtz [47℄ provides several implementations of suÆx trees having this per-forman
e. Holub [48℄ designs an implementation of 
ompa
t suÆx automatahaving ratio 5, a result that is extremely good 
ompared to the spa
e for a suf-�x array. Re
ently, Bal��k [49℄ gives an implementation of another type of suÆxDAWG, whose ratio is only 4 and sometimes even less.Indexing for approximate mat
hings Though approximate pattern mat
h-ing is mu
h more important than exa
t string mat
hing for treating real se-quen
es, it is quite surprising that no spe
i�
 data stru
ture exists for thispurpose. Therefore, indexing strategies for approximate pattern mat
hing usethe data stru
tures presented above and adapt the sear
h pro
edure. This oneis then based on the next result.Lemma 1 If x and s mat
h with at most e di�eren
es, then x and s must haveat least one identi
al substring of length r = bmaxfjxj; jsjg=(e+ 1)
.An original solution has been proposed by Manber and Baeza-Yates [50℄ who
onsidered the 
ase where the pattern embeds a string of at most e wild 
ards,i.e., has the form x = u�iv, where i � e, u; v 2 �� and juj � p for some given eand m. Their algorithm is o�-line (on the text) in the sense that the text s isprepro
essed to build the suÆx array asso
iated with it. This operation 
ostsO(n log j�j) time in the worst 
ase. On
e this is done, the problem redu
es toone of eÆ
ient implementation of 2-dimensional orthogonal range queries.Some other solutions prepro
ess the text to extra
t its q-grams or q-samples.These, possibly their neighbors up to some distan
e, are memorized in a straight-forward data stru
ture. This is the strategy used, for example, by the twofamous programs, FastA and BLAST, whi
h makes them run fairly fast.There is a survey on this aspe
t of indexing te
hniques by Navarro [51℄.
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3.4 Stru
tural motifsReal motifs in biologi
al sequen
es are often not just simple strings. They aresometimes 
omposed of several strings that 
ome in organized fashion alongthe sequen
e at bounded distan
es from one another. Possible variations ofbases 
an be synthetized by regular expressions. There exist eÆ
ient methodsallowing to lo
ate motifs des
ribed in this manner.Motifs 
an also be repetitions of a single seed (tandem repeats) or (biologi
al)palindromes, again with possible variations on individual bases. Palindromesfor instan
e represent the basi
 elements of the se
ondary stru
tures of rnasequen
es. Contrary to the previous type of motifs, a regular expression 
annotdeal with repetitions and palindromes (at least if there is no assumption on theirlength).A typi
al problem one may wish to address 
on
erns the lo
alization oftrnasin dna sequen
es. It is an instan
e of a wider problem whi
h is related tothe identi�
ation of fun
tional regions in genomi
 sequen
es. The problem is to�nd all positions of potential trnasin a sequen
e, given a model obtained froman alignment of experimentally identi�ed trnas.There are basi
ally two approa
hes to solve the question: one 
onsists of ageneral-purpose method integrating sear
hing and folding, the other 
onsists ofa self-
ontained method spe
i�
ally designed for trnas. The latter produ
esmore a

urate results and faster programs. This is really needed to explore
omplete genomes. We brie
y des
ribe the strategy implemented by the pro-gram FAStRNA of El Mabrouk and Lisa
ek (see [52℄ for more information onother solutions), an algorithmi
al improvement on the tRNAs
an algorithm byFi
hant and Burks (1991).FAStRNA depends on two main 
hara
teristi
s of trnas(at least of thetrnasin the training set used by the authors): the relative invarian
e of somenu
leotides in two highly 
onserved regions forming the T	C and D signals;the 
loverleaf stru
ture 
omposed of four stems and three loops (see Figure 9).In a preliminary step, the program analyzes the training set to build 
on-sensus matri
es on nu
leotides. This provides the invariant bases of the T	Cand D regions used to lo
alize the two signals. After dis
overing a signal, theprogram tries to fold the stem around it. Other foldings are performed to 
om-plete the test for the 
urrent position in the dna sequen
e. Various parametershelp tuning the program to in
rease its a

ura
y, and an appropriate hierar
hyof sear
hing operations enables to de
rease the running time of the program.The built-in strategy produ
es a very low rate of false positives and falsenegatives. Essentially, it fails for trnas
ontaining a very long intron. Sear
hingfor signals is implemented by a fast approximate mat
hing pro
edure of thetype des
ribed above, and folding 
orresponds to doing an alignment as pre-sented earlier. The program runs 500 times faster than previous trnasear
hingprograms.
22
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23



4 Repeated motifs identi�
ation4.1 Exa
t repetitionsGeneral algorithmsOne of the �rst methods enabling to dis
over exa
t repetitions in strings hasbeen designed by Karp, Miller and Rosenberg [5℄. Their algorithm (hen
efor-ward 
alled KMR) runs in O(n logn) on a string of length n but 
an not �ndall repetitions. However, various solutions based on 
losely related ideas havebeen proposed by Cro
hemore [53℄, Apostoli
o and Preparata [54℄, and Mainand Lorentz [55℄. They all take O(n logn) time, and any algorithm that listsall o

urren
es of squares, or even maximal repetitions in a string, takes atleast 
(n logn) time be
ause, for example, Fibona

i words 
ontain that manyo

urren
es of repetitions (see [53℄).A more spe
i�
 question arises when one 
onsiders the problem of dete
tingand lo
ating the squares (words of the form uu, for a non-empty string u)that possibly o

ur within a given string of length n. The lower bound fortesting squarefreeness of a string is also 
(n logn) on general alphabets (see[55℄). However, on a �xed alphabet � the problem of testing an o

urren
e ofa square 
an be done in O(n log j�j), whi
h implies linear-time algorithms ifthe size of the alphabet is �xed (see [11℄). Re
ently, Kolpakov and Ku
herov[56℄ proposed a linear-time algorithm to 
ompute all the distin
t segments of astring that are repetitive. A solution based on the use of a suÆx tree is due toStoye and Gus�eld [57℄.In the next se
tion, we des
ribe in some detail the KMR algorithm. Althoughthis is not the most eÆ
ient method for �nding all exa
t repeats, it is a veryelegant algorithm and, more importantly, it allows for an easy generalization tomore 
exible types of repeats.A powerful algorithm for identifying dispersed exa
t repeats { KMRThe original algorithm Given a string s, KMR solves the following prob-lems.Problem 4.1 Identify the positions of all fa
tors of a �xed length k that appearrepeated in s.Problem 4.2 Find the length kmax of the longest repeated fa
tor in s, and solveproblem 4.1 for k = kmax.KMR rests on the de�nition of an equivalen
e relation given in se
tion 2.2.Problem 4.1 and the se
ond part of problem 4.2 
an then be formulated asthe problem of �nding the partition asso
iated with Ek. Problem 4.2 furtherrequires �nding the maximum value of k su
h that Ek is not the identity. Thealgorithm is based on an iterative 
onstru
tion of partitions El for l � k. Theme
hanism for performing su
h 
onstru
tions rests on the following lemma.24



Lemma 4.1 Given a; b � 1 two integers with b � a, and i; j two di�erentpositions in s su
h that i; j � n� (a+ b) + 1, then:i Ea+b j , i Ea j and (i+ b) Ea (j + b).The main idea behind the KMR algorithm is to use the lemma with a = b foras long as possible. The lemma is 
onsequently 
alled the doubling lemma. Thismeans �nding repeats of length 2a by using previously a
quired information onthe repeats of length a that may be
ome the pre�xes and suÆxes of those oflength 2a. If we are dealing with problem 4.1, and if k is not a power of 2, wethen use the lemma with b < a in a last step in order to obtain Ek. If we aretreating problem 4.2, we may need more than one step to �nd the value of kmaxsu
h that Ekmax is not the identity but Ekmax+1 is. The sear
h for kmax fromthe smallest power of two that is bigger than kmax, let us say it is 2p, 
an bedone by applying the lemma with b < a in a binary sear
h fashion between 2p�1and 2p.Building the partitions Ea basi
ally 
orresponds to performing a set inter-se
tion operation. The interse
tions may be implemented using, for instan
e,sta
ks. More pre
isely, we need an array Va of size n whi
h stores, for ea
hposition i in s, the label of the 
lass of Ea to whi
h the a-long fa
tor startingat i belongs. The lemma is applied by means of two arrays of sta
ks P and Q.Sta
ks in P are �lled by traversing Va. Su
h sta
ks are in fa
t a dual of Va. Ea
hone 
orresponds to a 
lass 
 of Ea and 
ontains the positions i in s belongingto 
. Array P serves therefore to sort the pre�xes of length a of the repeatsof length 2a one is trying to identify. The 
ontent of ea
h sta
k of P in turnis then poured into the appropriate sta
k of Q. A division separates, within asame sta
k of Q, elements 
oming from di�erent sta
ks of P . Like P , array Qhas as many sta
ks as there are 
lasses in Ea. It serves to sort the suÆxes oflength also a of the repeats of length 2a. One then just needs to orderly pourQ into V2a the obtain the 
lasses of E2a 
he
king the quorum as one goes.As mentioned, KMR time 
omplexity is O(n log k). When solving prob-lem 4.2, this leads to an O(n logn) 
omplexity be
ause of possible degenerate
ases (su
h as that of a string s 
omposed of a single letter). KMR spa
e
omplexity is O(n).Non-transitive relations without errors KMR may be adapted to dealwith a non transitive relation R [6℄. The problems solved are the same as forKMR.Lemma 4.1 applies analogously, ex
ept that one just needs to substituterelation E by R.Lemma 4.2 Given a; b � 1 two integers with b � a, and i; j two di�erentpositions in s su
h that i; j � n� (a+ b) + 1, theni Ra+b j , i Ra j and (i+ b) Ra (j + b).25



Computing relations Rl for l � k requires the same stru
tures as for KMR,ex
ept that, as we saw, a set of positions pairwise-related by Rl is no longer anequivalen
e 
lass but a 
lique. The algorithm was in 
onsequen
e 
alled KMRC(the \C" standing for Clique) [6℄. In parti
ular, a position may belong to two ormore distin
t 
liques of Rl. Array Vl must now therefore be an array of sta
ks,like P and Q. It indi
ates, for ea
h 
ell i 
orresponding to a position in s, the
liques of relation Rl to whi
h i belongs.The 
onstru
tion itself follows the same s
hema as indi
ated for KMR. Someof the sets of similar fa
tors obtained at the end of ea
h step may not be max-imal. A further operation is therefore needed to eliminate sets in
luded inanother one so as to get maximal 
liques at the end.To 
al
ulate the 
omplexity of the KMRC algorithm, we need to de�ne aquantity g that measures the \degree of non-transitiveness" of relation R.De�nition 4.1 Given R, a non-transitive relation on �, we 
all g the greatestnumber of 
liques of R to whi
h a symbol may belong, that is:g = Max fga j a 2 �, ga = number of 
liques to whi
h a belongsg.We 
all �g the average value of ga for a 2 �, that is:�g = Pa gan
 ;where n
 is the number of 
liques of R.If one does not 
ount the set in
lusion operations to eliminate non-maximal
liques, KMRC has time 
omplexity O(ngk log k) sin
e ea
h position i in s maybelong to at most gk (or, on the average, �gk) 
liques of Rk. In
lusion tests basedon 
omparing the positions 
ontained in ea
h set take O(n2g2k) time at the endof step k. At least another approa
h for testing set in
lusion is possible andmay result in a better theoreti
al (but not ne
essarily better in pra
ti
e { thisis dis
ussed in [6℄) time 
omplexity. Spa
e 
omplexity is O(ngk).4.2 Inexa
t repetitions { The parti
ular 
ase of tandemarrays (satellites)Model for tandem arrays (satellites)Tandem arrays (
alled tandem repeats when there are only two units) are asequen
e of repeats that appear adja
ent in a string. As 
on
erns biology, su
htandemly repeated units are divided into three 
ategories depending on thelength of the repeated element, the span of the repeat region and its lo
ationwithin the 
hromosome [58℄. Repeats o

urring in or near the 
entromeresand telomeres are 
alled simply satellites. Their span is large, up to a millionbases, and the length of the repeated element varies greatly, anywhere from 5to a few hundreds of base pairs. In the remaining, eu
hromati
 region, of the
hromosome the kinds of tandem repeats found are 
lassi�ed as either mi
ro or26



GTTGCTAGAGGAAGATGGGGTTGGTACTGGTGCTACAGAGCTTTCAGTGGTGGAGCTGGAT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAACAGAAGAGCTTTCAGTGCTAGAGCTGAATGGGGTTGAAGATGGAGCGGAGGAAGTGATGTTGCTAGAGGAAGATGGGGTTGGTACTGGTGCTACAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAGCAGAAGAGCTTTCGGTAGTAGAGCTGGATGGAGTTGGCACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGGGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGAGCTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGAGTTGGCACTGGAGCAGAAGAGCTTTCAGTGGTGGAGCTGG TT ACTGGAGTAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTGGAGCTTGATGGGGTTGGAGCTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAGCAGAAGAGCTTTCAGTGGTAGAGCTGG TT ACTGGAGCAGAAGAGCTTTCAGTAGTAGAGCTGGATGGAGTTGGTACTGGAGCAGAAGAACTTTCAGTAGTAGAGCTTGATGGGGTTGGTACTGGAGTAGTAGTCTTCTTFigure 10: An example of a tandem repeat in 
hromosome IX of yeast Sa

ha-romy
es 
erevisiae, starting at position 391 131.mini satellites, a

ording to the length of the repeated element. Mi
ro satellitesare 
omposed of short units, of 2 to 5 base pairs, in 
opy numbers in generalaround 100. Mini satellites on the other hand involve slightly longer repeats,typi
ally around 15 base pairs, in 
lusters of variable sizes, 
omprising between30 and 2000 elements.Figure 10 shows an example of a tandem repeat starting at position 391131on 
hromosome IX from yeast (in the sequen
e as re
overed from the ftp siteftp://ftp.mips.embnet.org/pub/yeast/). This repeat is 
omposed of 41 fullunits, 16 of whi
h present a deletion of 9 bases against the other elements.Apart from this, the repeat is well 
onserved overall (on the average, one mu-tated base per element), ex
ept for the �rst six units and for the last one. Therepeat is lo
ated inside a 
oding region (in the other strand) 
orresponding toa glu
oamylase s1/s2 pre
ursor protein (SwissProt id: AMYH YEAST).27



Satellites of whatever type ask for a more 
omplex de�nition of models thanthat given in Se
tion 2.4, requiring additional 
onstraints.We have in fa
t two de�nitions related to a satellite model, one 
alled pre-�x model and the other 
onsensus model. This latter 
on
erns satellite modelsstri
tly speaking while pre�x models are in fa
t models for approximately peri-odi
 repetitions that are not ne
essarily tandem.Formally, a pre�x model of a satellite is a string m 2 �� (or P(�)) thatapproximately mat
hes a train of wagons. A wagon of m is a fa
tor u in s su
hthat dist(m;u) � e. A train of a satellite model m is a 
olle
tion of wagonsu1; u2; : : : ; up ordered by their starting positions in s and satisfying the followingproperties.Property 1 p � min repeat, where min repeat is a �xed parameter that indi-
ates the minimum number of elements a repeating region must 
ontain.Property 2 leftui+1 � leftui 2 JUMP, where leftu is the position of the left-endof wagon u in s andJUMP = fy : y2[x2[1;max jump℄ x� [min range;max range℄g;with the three parameters min range, max range and max jump �xed.A pre�x model m is said to be valid if there is at least one train of m inthe string s. Similarly, a train, when viewed simply as a sequen
e of substringsof s, is valid if it is the train for some model m. A pre�x model represents theinvariant that must be true as we progressively sear
h for our �nal goal, whi
his to arrive at a 
onsensus model. This is a pre�x model whi
h further satis�esthe following property.Property 3 leftui+1 � rightui 2 GAP, where rightu is the position of the right-end of wagon u, andGAP = fy : y2[x2[0;max jump�1℄ x� [min range;max range℄g:Parameter max jump allows us to deal with very badly 
onserved elementsinside a satellite (by a
tually not 
ounting them) while we require that thesatellite be relatively well 
onserved globally. Fixing max jump at a valuestri
tly greater than one, means that we allow some wagons (the badly 
onservedones) to be \jumped over". This may be seen as \meta-errors", that is as errorsinvolving not a single letter inside a wagon but a wagon inside a train. Note that0 2 GAP. This guarantees that, when jumps are not authorized, the repeatsfound are e�e
tively tandem.Sin
e mutations a�e
ting a unit 
on
ern indels (that is, insertions and dele-tions) as well as substitutions, it is sometimes interesting to work with a variantof the above properties where JUMP and GAP are de�ned asJUMP = fy : y2 [min range;max range℄ ory2[x2[2;max jump℄ x� [min range� g;max range+ g℄ g28



GAP = fy : y2 [min range;max range℄ ory2[x2[1;max jump℄ x� [min range� g;max range+ g℄ g;and g � e is a �xed value. The idea is to allow the length of the badly 
onservedelements to vary in a larger interval than permitted for the dete
tion of \good"wagons.The satellite problem we propose to solve is the following.Problem 1 Given a string s and parameters min repeat, min range, max range,max jump, and e (possibly also g), �nd all 
onsensus models m that are validfor s, and for ea
h su
h m.In fa
t, the original papers [16℄ [59℄ report a set of disjoint \�ttest" trainsrealizing ea
h model, given a measure of \�tness".The algorithm presented below is the only 
ombinatorial, non-heuristi
aldeveloped so far for identifying tandem arrays. Other exa
t approa
hes eithertreat the 
ase of tandem repeats only [13℄ [14℄, do not allow for errors [60℄ [53℄[61℄ [44℄, or require generating all possible (not just valid) models of a givenlength [62℄ [63℄ [64℄.Building pre�x satellite modelsAs with all previous 
ases 
onsidered in this paper, satellite models are 
on-stru
ted by in
reasing lengths. In order to determine if a model is valid, wemust have some representation of the train or wagons that make it so. Thereare two possibilities:� we 
an keep tra
k of ea
h valid train and its asso
iated wagons, or� we 
an keep tra
k of individual wagons, and, on the 
y, determine if they
an be 
ombined into valid trains.The �rst possibility is appealing be
ause model extension is straightforward.We would just have to verify, for ea
h wagon of ea
h train, whether it 
an beextended a

ording to the extended model, and then 
ount how many wagonsremain to 
he
k whether the train it belonged to is still a valid train. However,there are generally many overlapping trains involving many of the same wagonsfor a given model. Common wagons may be present more than on
e in thelist of o

urren
es of m if this is kept as a list of trains. This approa
h entailsredundan
ies that lead to an ineÆ
ient algorithm. We therefore adopt these
ond approa
h, of keeping tra
k of wagons and determining if they 
an beassembled into trains as needed.The rules of pre�x-model extension are given in Lemma 2 below. A wagonis identi�ed by a triple (i; j; d) indi
ating that it is the substring sisi+1 : : : sjof s and that it is d � e di�eren
es away from its model. Position i indi
atesthe left-end of the wagon, and j its right-end. Contrary to the other algorithmspresented in this paper, models and their o

urren
es (the wagons) will be29



extended to the left. This is just to fa
ilitate verifying Property 2. Stri
tlyspeaking, we should then speak of suÆx-models instead of pre�x ones. Rightends of o

urren
es are 
al
ulated but are used only for 
he
king Property 3.Lemma 2 The triple (i; j; d) en
odes a wagon of m0 = �m with � 2 � and m2 �k if and only if at least one of the following 
onditions is true:(mat
h) (i+ 1; j; d) is a wagon of m and si = �;(substitution) (i+ 1; j; d� 1) is a wagon of m and si 6= �;(deletion) (i; j; d� 1) is a wagon of m;(insertion) (i+ 1; j; d� 1) is a wagon of �m;and, furthermore, d � e.For ea
h pre�x-model m, we keep a list of wagons of m that are in at leastone train validating m. We des
ribe su
h wagons as being valid with respe
t tom. When we extend a model (to the left) to m0 = �m, we perform two tasks:� First, determine whi
h valid wagons of m 
an be extended as above tobe
ome wagons of m0.� Se
ond, of these newly determined wagons of m0, we keep only those thatare valid with respe
t to m0. This requires e�e
tively assembling wagonsinto trains, something that is not needed in an approa
h that would keeptra
k of trains dire
tly.Note that we need not a
tually enumerate the trains in the se
ond step, wesimply must determine if a wagon is part of one. This will allow us to performan extension step in time linear with respe
t to the string length.As a �nal insight, 
onsider the dire
ted graph G = (V;E) where V is the setof all valid wagons and there is an edge from wagon u to v if leftv�leftu 2 JUMP.Then a wagon u is valid if it is part of a path of length min repeat or morein G. Determining this property is quite simple as the graph is 
learly a
y
li
.In the 
omputation that follows, we e�e
tively 
ompute both the length of thelongest path to u in L
ntu and the length of the longest path from u in R
ntu.If L
ntu +R
ntu > min repeat then u is valid.Consensus satellite modelsWe en
ode the 
olle
tion of all wagons of m in a set, Lm � f1 : : : ; ng, and an(n+ 1)� (2e+ 1)-element array Dm as follows:1. i 2 Lm if and only if i is the left-end of at least one wagon valid with respe
tto m,2. for ea
h i 2 Lm, the value Dm[i; Æ℄ for Æ 2 [�e; e℄ is the edit distan
e of mfrom wagon sisi+1 : : : si+jmj�1+Æ.Intuitively, Lm gives the left-ends of all valid wagons, whi
h is all we need toverify Properties 1 and 2. Dm gives us the distan
es we need for extendingmodels, together with the right-ends needed for verifying Property 3. Formally,(i; i+jmj�1+Æ; d) is a valid wagon ofm if and only if i 2 Lm and d = Dm[i; Æ℄ �e. 30



The 
omplete algorithm is given below. When Extend(�m) is 
alled, it isassumed that Lm is known along with the relevant Dm values. The routine
omputes these items for the extension �m and re
ursively for the extensionsthereof. Lines 1-6 
ompute the set of left-ends of wagons for �m derivable fromwagons of m that are valid. While Lemma 2 gives us a way to do so, re
all thatwe are using dynami
 programming to 
ompute all extensions simultaneously.This 
orresponds to adding the last row to the dynami
 programming matrixof s versus �m. At start, Lm gives all the positions in row jmj that have valuee or less (and are valid) and Dm gives their values. From these, we 
omputethe positions in row jmj+1 in the obvious sparse fashion to arrive at the valuesL�m and D�m.pro
edure Extend(�m)1. L�m  ;2. for i+ 1 2 Lm (in de
reasing order) do3. for Æ 2 [�e; e℄ do4. D�m[i; Æ℄ min8<: Dm[i+ 1; Æ℄ + (if si = � then 0 else 1);if i 2 Lm then Dm[i; Æ + 1℄ + 1;if i+1 2 L�m then D�m[i+ 1; Æ � 1℄ + 1 9=;5. if minÆfD�m[i; Æ℄g � e then6. L�m  L�m [ fig7. for i 2 L�m (in de
reasing order) do8. R
nt[i℄ maxk2(i+JUMP)\L�mfR
nt[k℄g+ 19. for i 2 L�m (in in
reasing order) do10. L
nt[i℄ maxk2(i�JUMP)\L�mfL
nt[k℄g+ 111. for i 2 L�m do12. if L
nt[i℄ +R
nt[i℄ � min repeat then L�m  L�m � fig13. if L�m 6= ; then14. if j�mj 2 [min range;max range℄ then15. Re
ord(�m)16. if j�mj < max range then17. for � 2 � do18. Extend(��m)On
e wagons have been extended whenever possible, we have to eliminatethose that are no longer valid. This is performed by Lines 7 to 12. We 
om-pute, for ea
h position i 2 L�m, the maximum number of wagons in a trainstarting with a wagon whose left-end is at i in R
nt[i℄ (in
luding itself), andthe maximum number of wagons in a train ending with a wagon whose left-end is at i in L
nt[i℄. The ne
essary re
urren
es are given in Lines 8 and 1031



of the algorithm where we re
all that JUMP = fy : y 2 Sx2[1;max jump℄ x�[min range;max range℄g and i + JUMP denotes adding i to ea
h element ofJUMP. Observe that R
nt[i℄ + L
nt[i℄ � 1 is the length of the longest train
ontaining a wagon whose left-end is at position i.Clearly Lines 7-10 take O(jL�mjjJUMPj) time. However, when L�m is avery large fra
tion of n, one 
an maintain an R
nt(L
nt)-prioritized queue ofthe positions in (i + JUMP) \ L�m, to obtain an O(n max jump log jJUMPj)bound.Finally in the remaining steps, Lines 13-18, the algorithm 
alls Re
ord tore
ord potential models and then re
ursively tries to extend the model if possi-ble. Routine Re
ord 
on�rms that the model is a 
onsensus model by verifyingProperty 3 and re
ording the intervals spanned by trains that are valid for the
onsensus model, if any.The total time taken by the algorithm is O(n (jJUMPj + e) max rangeN (e;max range)) = O(n max range2 max jump N (e;max range)) as e <max range. The term N (e;max range) 
orresponds to the number of words inthe e-neighbourhood of a word w of length max range, that is, words that areat a Levenshtein distan
e at most e from w. This number is bounded over byke. The spa
e requirement is that of keeping all the information 
on
erningat most max range models at a time (a model m and all its pre�xes). It istherefore O(n max range e) as only O(n e) storage is required to re
ord theleft-end positions and edit-distan
e at ea
h possible right-end.5 Motif extra
tion5.1 Spelling simple modelsWe now present in
reasingly sophisti
ated models and algorithms for extra
tingmodels whi
h o

ur in a set of strings (possibly not all). Su
h models 
orre-spond in general to binding sites, that is to sites in a biologi
al mole
ule thatwill 
ome into 
onta
t with a site in another mole
ule thus permitting somebiologi
al pro
ess to start (for instan
e, trans
ription or translation). We startby 
onsidering simple models.The problem we wish to solve is the following.Problem 2 Given a set of N strings S = s1; : : : ; sN , an integer e � 0 and aquorum q � N , �nd all models m su
h that m is valid, that is, o

urs with atmost e errors in at least q strings of set S.The spelling of models is done using a suÆx tree. The idea 
omes fromthe observation that long strings, spe
ially when they are de�ned over a smallalphabet, may 
ontain many exa
t repetitions. One does not want to 
omparesu
h repeated parts more than on
e with the potentially valid models. One wayof doing that is using a representation of the strings that allows to put together32



some of the repetitions, that is, using an index of the strings su
h as a suÆxtree.Trees for representing all the suÆxes of a set of strings fsi, 1 � i � N forsome N � 2g are 
alled generalized suÆx trees and are 
onstru
ted in a wayvery similar to the 
onstru
tion of the suÆx tree for a single string [65℄ [66℄. Wedenote su
h generalized trees by GT . They share all the properties of a suÆxtree given in Se
tion 3.3 with string s substituted by strings s1; : : : ; sN .In parti
ular, a generalized suÆx tree GT satis�es the fa
t that every suÆxof every string si in the set leads to a distin
t leaf. When p strings, p � 2, havea same suÆx, the generalized tree has therefore p leaves 
orresponding to thissuÆx, ea
h asso
iated with a di�erent string. To a
hieve this property during
onstru
tion, we just need to 
on
atenate to ea
h string si of the set a symbolthat is not in � and is spe
i�
 to that string.To be able to spell valid models (i.e. models satisfying the quorum 
on-straint), we need to add some information to the nodes of the suÆx tree.In the 
ase where we are looking for repeats in a single string s, we justneed to know, for ea
h node x of T , how many leaves are 
ontained in thesubtree rooted at x. Let us denote leavesx this number for ea
h node x. Su
hinformation 
an be added to the tree by a simple traversal of it.If we are dealing with N � 2 strings, and therefore a generalized suÆx treeGT , it is not enough anymore to know the value of leavesx for ea
h node x inGT in order to be able to verify whether a model remains valid. Indeed, forea
h node x, we need this time to know not only the number of leaves in thesubtree of GT having x as root, but that number for ea
h di�erent string theleaves refer to.In order to do that, we must asso
iate to ea
h node x in GT an array, denoted
oloursx, of dimension N that is de�ned by:
oloursx[i℄ = 8<: 1 if at least one leaf in the subtreerooted at x represents a suÆx of si0 otherwisefor 1 � i � N .The array 
oloursx for all x may also be obtained by a simple traversal ofthe tree in whi
h ea
h visit to a node takes O(N) time. The additional spa
erequired is O(N) per node.One must observe that o

urren
es are now grouped into 
lasses and \real"ones, that is, o

urren
es 
onsidered as individual words in the strings, are nevermanipulated dire
tly. Present 
ase o

urren
es of a model are thus in fa
t nodesof the generalized suÆx tree (we denote them by the term \node-o

urren
es")and are extended in the tree instead of in the string. On
e the pro
ess of modelspelling has ended, the start positions of the \real" o

urren
es of the validmodels may be re
overed by traversing the subtrees of the nodes rea
hed so far,and by reading the labels of their leaves.The algorithm is a development of the re
urren
e formula given in the lemmabelow where x denotes a node of the tree, father(x) its father, and d the number33



of errors between the label of the path going from the root to x as against amodel m.Lemma 3 (x; d) is a node-o

urren
e of m0 = m� with m 2 �k and � 2 � if,and only if, one of the following two 
onditions is veri�ed:(mat
h) (father(x); d) is a node-o

urren
e of m and the label of thefrom father(x) to x is �;(substitution) (father(x); d � 1) is a node-o

urren
e of m and the labelof the ar
 from father(x) to x is � 6= �;(deletion) (x; d� 1) is a node-o

urren
e of m;(insertion) (father(x); d � 1) is a node-o

urren
e of m�.and, furthermore, d � e.The algorithm time 
omplexity is O(nN2N (e; k)).5.2 Stru
tured modelsIntrodu
ing stru
tured modelsAlthough the obje
ts de�ned in the previous se
tion 
an be reasonable, algorith-mi
ally tra
table models for single binding sites, they do not take into a

ountthe fa
t that su
h sites are often not alone (in the 
ase of eukaryotes, they mayeven 
ome in 
lusters) and, spe
ially, that the relative positions of su
h sites,when more than one parti
ipates in a biologi
al pro
ess, are in general not ran-dom. This is parti
ularly true for some dna binding sites su
h as those involvedin the trans
ription of dna into rna (e.g. the so-
alled promoter sequen
es).There is therefore a need for de�ning biologi
al models as obje
ts that takesu
h 
hara
teristi
s into a

ount. This has the motivation just mentioned butpresents also interesting algorithmi
al aspe
ts: exploiting su
h 
hara
teristi
s
ould lead to algorithms that are both more sensitive and more eÆ
ient. Modelsthat in
orporate su
h 
hara
teristi
s are 
alled stru
tured models. They arerelated to stru
tured motifs of Se
tion 3.Formally, a stru
tured model is a pair (m; d) where:� m is a p-tuple of simple models (m1; : : : ;mp) (representing the p parts astru
tured model is 
omposed of { we shall 
all these parts boxes),� d is a (p � 1)-tuple ((dmin1 ; dmax1 ; Æ1), . . . , (dminp�1 ; dmaxp�1 ; Æp�1)) oftriplets (representing the p� 1 intervals of distan
e between two su

essiveboxes in the stru
tured model),with p a positive integer, mi 2 �+, and dmini , dmaxi (dmaxi � dmini), Æi nonnegative integers.Given a set of N strings s1; : : : ; sN and an integer q, 1 � q � N , amodel (m; d) is said to be valid if, for all i, 1 � i � (p � 1), and for allo

urren
es ui of mi, there exist o

urren
es u1; : : : ; ui�1; ui+1; : : : ; up ofm1; : : : ;mi�1;mi+1; : : : ;mp su
h that:� u1; : : : ; ui�1; ui; ui+1; : : : ; up belong to the same string of the set,34
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Figure 11: Example of a model with two boxes (p = 2).� there exists di, with dmini + Æi � di � dmaxi � Æi, su
h that the distan
ebetween the end position of ui and the start position of ui+1 in the stringis equal to di � Æi,� di is the same for p-tuples of o

urren
es present in at least q distin
tstrings.The term di represents a distan
e and �Æi an allowed interval around thatdistan
e. When Æi = (dmaxi � dmini + 1)=2, then Æi is omitted, and d in astru
tured model (m; d) is denoted by a pair (dmini ; dmaxi). An example of amodel with p = 2 is given in Figure 11.Observe that simple models are indeed but a spe
ial 
ase of stru
tured ones.Statement of the stru
tured model problemCon
erning stru
tured models, solutions to variants of in
reasing generality of asame basi
 problem are proposed. SuÆx trees are used in all 
ases. These vari-ants may be stated as follows; given a set of N strings s1; : : : ; sN , a nonnegativeinteger e and a positive integer q.Problem 3 Find all models of the form ((m1;m2); (dmin1 ; dmax1)) that arevalid.Problem 4 Find all models of the form ((m1; : : : ;mp), ((dmin1 , dmax1), . . . ,(dminp�1 ; dmaxp�1))) that are valid, where p � 2.Problem 5 Find all models of the form ((m1;m2); (dmin1 ; dmax1 ; Æ1)) that arevalid. 35



Problem 6 Find all models of the form ((m1; : : : ;mp), ((dmin1 ; dmax1 ; Æ1), . . . ,(dminp�1 ; dmaxp�1 ; Æp�1))) that are valid, where p � 2.The last two problems represent situations where the exa
t intervals of dis-tan
es separating the parts of a stru
tured site are unknown, the only knownfa
t being that these intervals 
over a restri
ted range of values. How restri
tedis indi
ated by the Æi parameters. We present below algorithms for the �rst twoproblems only. Further details on the other two may be found in [18℄.To simplify matters, we shall 
onsider that, for 1 � i � p, mi 2 �k where kis a positive integer, i.e., that ea
h single model mi of a stru
tured model (m; d)is of �xed, unique length k. In a likewise manner, we shall assume that ea
hpart mi has the same error rate e and, when dealing with models 
omposed ofmore than two boxes, that the dmini , dmaxi and, possibly, Æi for 1 � i � p� 1have identi
al values. We denote by dmin, dmax and Æ these values. Problem 4is then formulated as �nding all models ((m1; : : : ;mp); (dmin; dmax)) that arevalid and Problem 6 as �nding all valid models ((m1; : : : ;mp); (dmin; dmax; Æ)).Besides �xing a maximum error rate for ea
h part in a stru
tured model,one 
an also establish a maximum error rate for the whole model. Su
h a globalerror rate allows to 
onsider in a limited way possible 
orrelations between boxesin a model.Another possible global, or lo
al, 
onstraint one may wish to 
onsider forsome appli
ations 
on
erns the 
omposition of boxes. One may, for instan
e,determine that the frequen
y of one or more nu
leotide in a box (or among allboxes) is below or above a 
ertain threshold. For stru
tured models 
omposedof more than p boxes, one may also establish that a box i is palindromi
 inrelation to a box j for 1 � i < j � p. In algorithmi
al terms, the two types of
onstraints just mentioned are not equivalent. The �rst type, box 
ompositionwhether lo
al or global, 
an in general be veri�ed only a posteriori while these
ond type (palindromi
 boxes) will result in a, sometimes substantial, pruningof the virtual trie of models.Introdu
ing su
h additional 
onstraints may in some 
ases ask for 
hangesto the basi
 algorithms des
ribed below. The interested reader may �nd thedetails 
on
erning su
h 
hanges in the original papers [18℄ [67℄.We present, in the next se
tion, �rst a naive approa
h and then two algo-rithms that are eÆ
ient enough to ta
kle stru
tured model extra
tion (Prob-lem 3) from big datasets. The se
ond algorithm has a better time 
omplexitythan the �rst but needs more spa
e. The �rst is easier to understand and imple-ment. Both are des
ribed in more detail than previous algorithms as stru
turedmodels in some ways in
orporate almost all other kinds of motifs we are 
on-sidering. The most notable ex
eption 
on
erns satellites that is dis
ussed inSe
tion 4.2. We then show how to extend these to treat Problem 4. Details onthe algorithms for solving Problems 5 and 6 may be found in [18℄.Other 
ombinatorial approa
hes were developed for treating somewhat sim-ilar kinds of stru
tured motifs. They either enumerate all possible (not justvalid) motifs [68℄, do not allow for errors [69℄ [70℄, or are heuristi
s [71℄ [72℄.36



Algorithms for the spe
ial 
ase of a known interval of distan
eNaive approa
h A naive way of solving Problem 3 
onsists in extra
ting andstoring all valid single models of length k (given q and e), and then, on
e this is�nished, in verifying whi
h pairs of su
h models 
ould represent valid stru
turedmodels (given an interval of distan
e [dmin; dmax℄).The lemma used for building valid single models is similar to Lemma 3ex
ept that in pra
ti
e, for most biologi
al problems we wish to address [73℄[17℄, substitutions only are allowed in general. The lemma therefore be
omes asstated.Lemma 4 (x; d) is a node-o

urren
e of m0 = m� with m 2 �k and � 2 � if,and only if, one of the following two 
onditions is satis�ed:(mat
h) (father(x); d) is a node-o

urren
e of m and the label ofthe ar
 from father(x) to x is �;(substitution) (father(x); d � 1) is a node-o

urren
e of m and the labelof the ar
 from father(x) to x is � 6= �.and, furthermore, d � e.One way of doing the veri�
ation pro�ts from the simple observation thattwo single models m1 and m2 may form a stru
tured one if, and only if, at leastone o

urren
e of m1 is at the right distan
e of at least one o

urren
e of m2.Building an array of size nN where 
ell i 
ontains the list of models having ano

urren
e starting at that position in s = s1 : : : sN allows to 
ompare modelsin 
ell i to models in 
ells i+ dmin; : : : ; i+ dmax only. If the sets of o

urren
esof models are ordered, this 
omparison may be done in an eÆ
ient way (in timeproportional to the size of the sets of node-o

urren
es, whi
h is upper-boundedby nN).First algorithm: Jumping in the suÆx tree A �rst non-naive approa
hto solving Problem 3 starts by extra
ting single models of length k. Sin
e weare traversing the trie of models in depth-�rst fashion (also in lexi
ographi
order), models are re
ursively extra
ted one by one. At ea
h step, a singlemodel m (and its pre�xes) is 
onsidered. On
e a valid model m1 of length kis obtained together with its set of T -node-o

urren
es V1 (whi
h are nodeslo
ated at level k in GT ), the extra
tion of all single models m2 with whi
hm1 
ould form a stru
tured model ((m1;m2); (dmin; dmax)) starts. This is donewith m2 representing the empty word and having as node-o

urren
es the setV2 given by:V2 = f(w; ew = ev) j 9v 2 V1 with dmin � level(w)� level(v) � dmaxg;where level(v) indi
ates the level of node v in GT . From a node-o

urren
e vin V1, a jump is therefore made in GT to all potential start node-o

urren
esw of m2. These nodes are the dmin- to dmax-generation, des
endants of v inGT . Exa
tly the same re
urren
e formula given in Lemma 4 may be applied tothe nodes w in V2 to extra
t all single models m2 that, together with m1 
ould37
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Figure 12: Extra
ting stru
tured models (in the 
ontext of Problem 3) with asuÆx tree { An illustration of Algorithm 1.form a stru
tured model verifying the 
onditions of the problem, for all validm1. An illustration is given in Figure 12 and a pseudo-
ode is presented below.The pro
edure Extra
tModels is 
alled with arguments: m equal to the emptyword having as sole node-o

urren
e the root of GT , and i equal to 1.pro
edure Extra
tModels(Model m, Blo
k i)1. for ea
h node-o

urren
e v of m do2. if i = 2 then3. put in PotentialStarts the 
hildren w of v at levels k + dmin tok + dmax4. else5. put v (i.e., the root) in PotentialStarts6. for ea
h model mi (and its o

urren
es) obtained by doing a re
ursivedepth-�rst traversal from the root of the virtual model treeMwhile simultaneously traversing GT from the node-o

urren
es inPotentialStarts (Lemma 4 and quorum 
onstraint) do7. if i = 1 then8. Extra
tModels(m = m1, i+ 1)9. else10. report the 
omplete model m = ((m1;m2); (dmin; dmax)) as validSin
e the minimum and maximum length of a stru
tured model (m; d) thatmay be 
onsidered are, respe
tively, 2k + dmin and 2k + dmax, we need onlybuild the tree of suÆxes of length 2k + dmin or more, and for ea
h su
h suÆx38



to 
onsider at most the �rst 2k + dmax symbols.The observation made in the previous paragraph applies also to the se
ondalgorithm (Se
tion 5.2 below). Note that, in both 
ases, this implies ni � ni+1 �Nn for all i � 1 where ni is the number of nodes at depth i in GT .Se
ond algorithm: Modifying the suÆx tree The se
ond algorithm ini-tially pro
eeds like the �rst: it starts by building single models of length k, oneat a time. For ea
h node-o

urren
e v of a �rst part m1 
onsidered in turn,a jump is made in GT down to the des
endants of v situated at lower levels.This time however, the algorithm just passes through the nodes at these lowerlevels, grabs some information the nodes 
ontain and jumps ba
k up to level kagain (in a way that is explained below). The information grabbed in passingis used to temporarily and partially modify GT and start, from the root of GT ,the extra
tion of the se
ond part m2 of a potentially valid stru
tured model((m1;m2); (dmin; dmax)). On
e the operation of extra
ting all possible 
ompan-ions m2 for m1 has ended, that part of GT that was modi�ed is restored to itsprevious state. The 
onstru
tion of another single model m1 of a stru
turedmodel ((m1;m2); (dmin; dmax)) then follows, and the whole pro
ess unwinds ina re
ursive way until all stru
tured models satisfying the initial 
onditions areextra
ted.More pre
isely, the operation performed between the spelling of models m1and m2 lo
ally alterates GT up to level k to a tree GT 0 that 
ontains only thek-long pre�xes of suÆxes of fs1; : : : ; sNg starting at a position between dminand dmax from the end position in si of an o

urren
e of m1. Tree GT 0 is, in asense, the union of all the subtrees t of depth at most k rooted at nodes thatrepresent start o

urren
es of a potential 
ompanion m2 for m1.For ea
h model m1 obtained, before spelling all possible 
ompanions m2for m1, the 
ontent of 
olorsz for all nodes z at level k in GT are stored inan array L of dimension nk (this is for later restoration of GT ). Tree GT 0 isthen obtained from GT by 
onsidering all nodes w in GT that may be rea
hedduring a des
ent of, this time, k + dmin to k + dmax ar
s down from the node-o

urren
es (v; ev) ofm1. These 
orrespond to all end node-o

urren
es (insteadof start as in the �rst algorithm) of potentially valid models having m1 as �rstpart. The boolean arrays 
olorsw for all w indi
ate to whi
h input strings theseo

urren
es belong. This is the information we grab in passing and take alongthe only path of suÆx links in GT that leads ba
k to a node z at level k inGT . If it is the �rst time z is rea
hed, 
olorsz is assigned 
olorsw, otherwise
olorsw is added (boolean \or" operation) to 
olorsz . On
e all nodes v and whave been treated, the information 
ontained in the nodes z that were rea
hedduring this operation are propagated up the tree from level k to the root (usingnormal tree ar
s) in the following way: if �z and ẑ have same parent z, then
olorsz = 
olors�z [ 
olorsẑ . Any ar
 from the root that is not visited at leaston
e in su
h a traversal up the tree is not part of GT 0, nor are the subtreesrooted at its end node.The extra
tion of all se
ond parts m2 of a stru
tured model (m; d) follows,39



as for single models in the initial algorithm (Lemma 4 in Se
tion 5.2).Restoring the tree GT as it was before the operations des
ribed above re-quires restoring the value of 
olorsz preserved in L for all nodes z at level k andpropagating the information (state of boolean arrays) from z up to the root.Sin
e nodes w at level between 2k + dmin to 2k + dmax will be soli
ited forthe same operation over and over again, whi
h 
onsists in following the uniquesuÆx-link path from w to a node z at level k in GT , GT is pre-treated so thatone single link has to be followed from z. Going from w to z takes then 
onstanttime.An illustration is given in Figure 13. A pseudo-
ode of the algorithm is asfollows. The pro
edure Extra
tModels is 
alled, as for the �rst algorithm, withboth arguments m equal to the empty word having as sole node-o

urren
e theroot of GT , and i equal to 1.pro
edure Extra
tModels(Model m, Blo
k i)1. for ea
h node-o

urren
e v of m do2. if i = 2 then3. put in PotentialEnds the 
hildren w at levels 2k + dmin to 2k+dmax4. for ea
h node-o

urren
e w in PotentialEnds do5. follow fast suÆx-link to node z at level k6. put z in L7. if �rst time z is rea
hed then8. initialize 
olorsz with zero9. put z in NextEnds10. add 
olorsw to 
olorsz11. do a depth-�rst traversal of GT to update the boolean arrays fromthe root to all z in NextEnds (let GT 0be the k-deep tree obtained by su
h an operation)12. if i = 1 then13. Tree = GT14. else15. Tree = GT 016. for ea
h model mi (and its o

urren
es) obtained by doing a re
ursivedepth-�rst traversal from the root of the virtual model treeMwhile simultaneously traversing Tree from the root (Lemma 4 andquorum 
onstraint) do17. if i = 1 then18. Extra
tModels(m = m1, i+ 1)19. else20. report the 
omplete model m = ((m1;m2); (dmin; dmax)) as a validone21. restore tree GT to its original state using LProposition 1 The following two statements are true:40
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Figure 13: Extra
ting stru
tured models (in the 
ontext of Problem 3) witha suÆx tree { An illustration of Algorithm 2. Fig. 13a 
orresponds to theextra
tion of the �rst single models m1 of stru
ture models (m; d); Fig. 13b tothe jump of k+dmin to k+dmax down normal tree ar
s to grab some information(to lighten the �gure, we made here dmin = dmax = dm); Fig. 13
 shows thejump ba
k up to level k following suÆx links with the information grabbed inpassing; Fig. 13d represents the propagation of the information re
eived at levelk up to the root; �nally Fig. 13e illustrates the sear
h for se
ond single modelsm2 of stru
ture models (m; d) in tree T 0.� GT 0 
ontains only the k-long pre�xes of suÆxes of fs1; : : : ; sNg that startat a position between dmin and dmax of the end position in fs1; : : : ; sNg ofan o

urren
e of m1;� the above algorithm solves Problem 3.The proof is straightforward and may be found in the original papers [18℄[67℄.Complexity The naive approa
h to solving Problem 3 requires nN2N (e; k)time to �nd single models that 
ould 
orrespond to either part of a stru
turedmodel (and nNN (e; k) spa
e to store all potential parts). If we denote by � thevalue dmax� dmin +1, �nding whi
h pair of single models may be put togetherto produ
e a stru
tured model 
ould then be done in time proportional to:N (e; k)| {z }(1) �N (e; k)| {z }(2) nN|{z}(3) nN|{z}(4)41



where (1) is the maximum number of single models to whi
h a position maybelong, (2) is the maximum number of models to whi
h a position at a distan
ebetween k + dmin and k + dmax from the �rst may belong, (3) is the maximumnumber of 
omparisons that must be done to 
he
k whether two single modelsmay form a stru
tured one and, �nally, (4) is the number of starting positionsto 
onsider.The total time 
omplexity of the se
ond algorithm is O(NnkN 2(e; k) +Nn2k+dmaxN (e; k)). Spa
e 
omplexity is slightly higher than for the �rst al-gorithm: O(N2n+Nnk) where nk � Nn. The se
ond term is for array L.In either 
ase, the 
omplexity obtained is better both in terms of time andspa
e than the one given by a naive solution to Problem 3.Extending the algorithms to extra
t stru
tured models having p > 2partsFirst algorithm: Jumping in the suÆx tree Extending the �rst algorithmto extra
t stru
tured models 
omposed of p > 2 parts, that is solving Problem 4,is immediate. After extra
ting the �rst i parts of a stru
tured model ((m1;: : : ; mp); (dmin; dmax)) for 1 � i < p � 1, one jumps down in the tree GT(following normal tree ar
s) to get to the dmin- to dmax-des
endants of everynode-o

urren
e of ((m1; : : : ;mi); (dmin; dmax)) then 
ontinues the extra
tionfrom there using Lemma 4.A pseudo-
ode is given below.pro
edure Extra
tModels(Model m, Blo
k i)1. for ea
h node-o

urren
e v of m do2. if i > 1 then3. put in PotentialStarts the 
hildren w of v at levels (i� 1)k+(i� 1)dmin to (i� 1)k + (i� 1)dmax4. else5. put v (the root) in PotentialStarts6. for ea
h model mi (and its o

urren
es) obtained by doing a re
ursivedepth-�rst traversal from the root of the virtual model tree Mwhile simultaneously traversing GT from the node-o

urren
es inPotentialStarts (Lemma 4 and quorum 
onstraint) do7. if i < p then8. Extra
tModels(m = m1 � � �mi, i+ 1)9. else10. report the 
omplete model m = ((m1; � � � ;mp); (dmin; dmax)) as avalid oneSe
ond Algorithm: Modifying the SuÆx Tree Extending the se
ondalgorithm to solve Problem 4 is slightly more 
omplex and thus 
alls for a fewremarks. The operations done to modify the tree between building mi and42



mi+1, i � 1, are almost the same as those des
ribed in Se
tion 5.2 ex
ept fortwo fa
ts. One is that up to (p� 1) arrays L are now needed to restore the treeafter ea
h modi�
ation it undergoes. The se
ond di�eren
e, more important,is that we need to keep, for ea
h node vk at level k rea
hed from an as
ent upGT 's suÆx links, a list, noted Lptrvk , of pointers to those nodes, at lower levels,that a�e
ted the 
ontent of vk. The reason for this is that tree GT is modi�edup to level k only (resulting in tree GT 0) as these are the only levels 
on
ernedby the sear
h for o

urren
es of ea
h box of a stru
tured model. Lower levelsof GT remain un
hanged, in parti
ular the boolean arrays at ea
h node belowlevel k. To obtain the 
orre
t information 
on
erning the potential end node-o

urren
es of boxes i for i > 2 (i.e. to whi
h strings su
h o

urren
es belong),we therefore 
annot move down GT from the ends of node-o

urren
es in GT 0of box (i � 1). If we did, we would not miss any o

urren
e but we 
ould getmore o

urren
es, e.g. the ones that did not have an o

urren
e of a previousbox in the model. We might thus over
ount some strings and 
onsider as valida model that, in fa
t, no longer satis�ed the quorum. We have to go downGT from the ends of node-o

urren
es in GT , that is from the original ends ofnode-o

urren
es in GT of the boxes built so far. These are rea
hed from thelist of pointers Lptrvk for the nodes vk that are identi�ed as o

urren
es of thebox just treated. For models 
omposed of p boxes, we need at most (p� 1) listsLptrvk for ea
h node vk at level k.A pseudo-
ode for the algorithm is as follows.pro
edure Extra
tModels(Model m, Blo
k i)1. for ea
h node-o

urren
e v of m do2. if i > 2 then3. put in PotentialEnds the 
hildren w at levels ik + (i� 1)dminto ik + (i� 1)dmax4. for ea
h node-o

urren
e w in PotentialEnds do5. follow fast suÆx-link to node z at level k6. put z in L(i)7. if �rst time z is rea
hed then8. initialize 
olorsz with zero9. put z in NextEnds10. add 
olorsw to 
olorsz11. do a depth-�rst traversal of GT to update the boolean arraysfrom the root to all z in NextEnds (let GT 0 be the k-deep treeobtained by su
h an operation)12. if i = 1 then13. Tree = GT14. else15. Tree = GT 016. for ea
h model mi (and its o

urren
es) obtained by doing a re
ursivedepth-�rst traversal from the root of the virtual model treeMwhile simultaneously traversing Tree from the root (Lemma 4 and43



quorum 
onstraint) do17. if i < p then18. Extra
tModels(m = m1 � � �mi, i+ 1)19. else20. report the 
omplete model m = ((m1; � � � ;mp); (dmin; dmax)) as avalid one21. if i > 1 then22. restore tree GT to its original state using L(i)Complexity The �rst algorithm requires O(Nnpk+(p�1)dmax N p(e; k)) time,where N p(e; k)) � kpej�jpe. The spa
e 
omplexity remains the same as forsolving Problem 1, that is O(N2n).The total time 
omplexity of the se
ond algorithm is O(NnkN p(e; k) +Nnpk+(p�1)dmax N p�1(e; k)). The spa
e 
omplexity is O(N2n+N(p� 1)nk).A
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