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RESOLVENT CONDITIONS FOR THE CONTROL OF

UNITARY GROUPS AND THEIR APPROXIMATIONS

LUC MILLER

Abstract. A self-adjoint operator A and an operator C bounded from the
domain D(A) with the graph norm to another Hilbert space are considered.

The admissibility or the exact observability in finite time of the unitary group

generated by iA with respect to the observation operator C are characterized
by some spectral inequalities on A and C. E.g. both properties hold if and only

if x 7→ ‖(A−λ)x‖+‖Cx‖ is a norm on D(A) equivalent to x 7→ ‖(A−λ)x‖+‖x‖
uniformly with respect to λ ∈ R.

This paper generalizes and simplifies some results on the control of uni-

tary groups obtained using these so-called resolvent conditions, also known

as Hautus tests. It proves new theorems on the equivalence (with respect to
admissibility and observability) between first and second order equations, be-

tween groups generated by iA and if(A) for positive A and convex f , and

between a group and its Galerkin approximations. E.g. they apply to the
control of linear Schrödinger, wave and plates equations and to the uniform

control of their finite element semi-discretization.
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1. Introduction

1.1. Resolvent conditions. The notion of resolvent condition considered in this
paper was introduced in control theory by David Russell and George Weiss in
[RW94] as an infinite-dimensional version, for exponentially stable semigroups, of
the Hautus test for controllability. Although this paper is self-contained, we refer
to the monograph [TW09] for an introduction to and a full account of the control
theory of semigroups, e.g. admissibility, exact controllability and the Hautus test,
with applications to PDEs. This paper deals with the controllability of unitary
groups rather than exponentially stable semigroups. We refer to [JZ09] for the
history of this latter issue since [RW94] and the extension of the results on unitary
groups in [Mil05] to more general groups. We refer to [DM09] for the investigation
of resolvent conditions for parabolic semigroups, using §3.2 of the present paper.

Readers more familiar with the spectral theory of semigroups may consider
these resolvent conditions as analogous to the better known resolvent condition
for exponential stability [EN00, theorem V.1.11] due to Jan Prüss [Prü84], Fa Lun
Huang [Hua85] and Günther Greiner, (after a key result on contraction semigroup
by Larry Gearhart [Gea78] generalized to any semigroup in [Her83, How84]). Indeed
the growth abscissa of a semigroup (etG)t>0 satisfies [Prü84, proposition 2]:

ω0(G) := inf
t>0

ln
‖etG‖
t

= inf

{
ω ∈ R | sup

Reλ>ω
‖(λ− G)−1‖ <∞

}
.

The Greiner-Huang-Prüss test [Prü84, corollary 4] for exponential stability follows:

ω0(G) < 0 ⇔ ∃M > 0, ∀λ ∈ C such that Reλ > 0, ‖(λ− G)−1‖ 6M.(1)

The analogous result for exact controllability of unitary group, or equivalently
exact observability, is stated precisely in theorem 2.4. A self-adjoint operator A
on a Hilbert space X and an operator C bounded from the domain D(A) with
the graph norm to another Hilbert space are considered. The resolvent condition
involved for the exact observability in finite time of the unitary group generated by
iA with respect to the observation operator C is

∃M > 0,m > 0, ∀x ∈ D(A), λ ∈ R, ‖x‖2 6M‖(A− λ)x‖2 +m‖Cx‖2.(2)

1.2. Outline. Starting from the basic resolvent conditions characterizing admis-
sibility in theorem 2.3 and exact controllability in theorem 2.4, this paper inves-
tigates various other forms of resolvent conditions, with variable coefficients, with
restricted spectral parameter, with fractional powers of the generator. A quasimode
approach to disproving exact controllability is introduced in §2.7. In §3 and §4, re-
solvent conditions are applied to unitary groups (eitA)t∈R with various positive A
build on the same positive self-adjoint operator denoted A in order to character-
ize and compare their admissibility and controllability properties. This improves
on earlier results in [Liu97, Mil05, RTTT05] linking first and second order equa-
tions, and in [Erv08, Erv09, Erv11] linking infinite-dimensional equations and their
finite-dimensional semi-discretization.
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The first main application is the following rough statement concerning the observ-
ability in time T by the same general operator C (bounded from D(A)):

Wave ẅ +Aw = 0 for some T ⇔ Wave Group iv̇ +
√
Av = 0 for some T

⇓ (for any s > 1)

z̈ +Asz = 0, any T if σess(A) = ∅ ⇔ iψ̇ + (
√
A)sψ = 0, any T if σess(A) = ∅

Plates if s = 2 Schrödinger if s = 2

If for example the resolvent of A is compact then the condition σess(A) = ∅ holds
(i.e. the spectrum of A is formed of isolated eigenvalues with finite multiplicity).
For s = 2, the implication from waves to plates and the bottom equivalence be-
tween plates and Schrödinger are proved in [Liu97, Theorem 5.2] for C bounded
on X using the Greiner-Huang-Prüss test (1) hence without explicit constants,
therefore without information on the time T . Still for s = 2, the implication from
Schrödinger to plates with the same control time T is proved in [TW09, Theo-
rem.6.8.2] for unbounded C but under an extra eigenvalue condition. The proof by
a simple isomorphism with explicit constants of the top equivalence between the
wave equation and the wave group in theorem 3.8 seems to be new. The analysis
of the constants in the downward implication from

√
A to its fractional powers in

theorem 3.5 also seems to be new. Putting these two new facts together proves the
downward implication from the wave equation for some T to the plate equation
with any s > 0 and, if σess(A) = ∅, for any T . Moreover, it yields this full scale of
equivalent resolvent conditions for the observability of the wave equation:
∃s > 1, Ms > 0 and ms > 0,

‖x‖21 6
Ms

λ2(1−1/s)
‖(As/2 − λ)x‖21 +ms‖Cx‖2, x ∈ H1+s, λ > 0.

where Hs = D(As/2) with norm ‖u‖s = ‖As/2u‖, with Sobolev-type index s ∈ R.
Corollary 3.10 proves this result and remark 3.17 provides more background.

The second main application is to obtain filtering scales for the uniform exact
observability of the semi-discretization of exactly observable equations. As surveyed
in [Zua05], exact controllability may be lost under numerical discretization as the
mesh size h tends to zero due to the existence of high-frequency spurious solutions
for which the group velocity vanishes.

One of the remedies, called filtering, is to restrict the semi-discretized equation
to modes with eigenvalues lower than η/hσ for some positive η and σ. It is proved in
[IZ99, LZ02] that σ = 2 is optimal for the boundary observation of one-dimensional
wave and plates equations with constant coefficients discretized on a uniform mesh.
Resolvent conditions were first used in this context by Sylvain Ervedoza to tackle
any dimension and non-uniform meshes. In a framework which applies to the finite-
element discretization on quasi-uniform shape-regular meshes (cf. remark 4.1), he
obtained in [Erv08] a filtering scale σ for the uniform exact observability of approxi-
mations of unitary groups with mildly unbounded observation (excluding boundary
observation), basically σ = 2/5 for interior observation. This was improved by the
author into σ = 2/3 and published in [Erv09, Erv11], cf. remark 4.15.

Section 4 provides a more general framework in which theorems 4.11 and 4.18
yield respectively σ = 1 and σ = 2/3 for the semi-discretization of interior and
boundary observability on shape-regular meshes in the sense of finite elements (for
the observation of the Schrödinger equation this improves respectively into σ = 4/3
and σ = 1 under the geometric condition of [BLR92], which is always satisfied in
one space dimension). Conversely, theorem 4.12 is a kind of Trotter-Kato theorem
deducing admissibility and exact observability of a group from resolvent conditions
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for its filtered approximations. In this framework, theorems 4.14 and 4.19 deduce
from the uniform exact observability of the filtered approximations that the mini-
mal control provided by the Hilbert Uniqueness Method is the limit of the minimal
controls for the filtered approximations. For second order systems, theorems 4.24
and 4.23 yield respectively σ = 4/3 and σ = 2/3 for the semi-discretization of
interior and boundary observability, improving [Erv09], cf. remark 4.26. A forth-
coming paper compares the approximate observation operator (94) introduced in
theorem 4.23 where σ = 2/3 to those in [IZ99, theorems 3.2 and 3.3] which concern
only the simplest system but reach the optimal value σ = 2.

We refer to [CMT11] for a new approximation method for interior control of
second order systems with error estimates.

The bottom-line of this paper is to deal with resolvent conditions in the abstract
unitary group framework and keep track of the coefficients in the most explicit
manner. Some applications to PDEs are briefly given. Many more details and
examples are given in [TW09]. Examples 3.13 and 3.19 seem to be new.

The semiclassical approach to proving these resolvent conditions can be found
in [BZ04, Mil08]. E.g. [BZ04, theorem 8] gives a much simpler proof (based on
stationary semiclassical measures) of the boundary control of Schrödinger equation
under the sharp geometric condition for the wave equation than the original mi-
crolocal proof of [Leb92] (or the proof in [Mil04] based the space-time semiclassical
measures). The proof of [BZ04, theorem 8] combined with the above resolvent con-
dition for s = 2 yields the famous results of [BLR92] on the boundary control of the
wave equation in a simpler way but without estimate on the control time. Indeed,
combining the result of [BLR92] for the wave equation and a control transmutation
method similar to [Phu01], [Mil05, theorem 10.2] yields more information on the
Schrödinger equation (more precisely on the cost of fast controls) than the current
resolvent condition approach.

1.3. Background. The first condition of type (2) was introduced by Kangsheng
Liu in [Liu97, theorem 3.4] for second-order equations like the wave equation (hence
M was replaced by M/λ in (2)) under the name “frequency domain condition”. It
was adapted to first-order equations in [ZY97]. Liu used the Greiner-Huang-Prüss
test (1) with G = iA−C∗C (hence C was replaced by C∗C in (2)) taking advantage of
the equivalence between exact controllability and exponential stabilizability. This
strategy was limited to observations operator C which are bounded on X and did
not give information on the controllability time.

Conditions of type (2) were independently introduced by Nicolas Burq and Ma-
ciej Zworski in [BZ04, theorems 4 and 7] as sufficient to deduce results in the Control
Theory of distributed parameter systems from the Spectral Theory of differential
operators (one of these theorems is both semiclassical and spectrally localized, both
theorems make intricate compatibility assumptions in addition to the resolvent con-
dition). Their direct strategy overcomes both limitations: it allows boundary ob-
servation operators and it links the controllability time to the behavior of M for
high frequency modes.

The final form of the theorem states that the resolvent condition (2) is both
necessary and sufficient for controllability in some time T , with explicit relations
between the constantsM andm in (2) on the one hand, the time T , the admissibility
constant and the control cost on the other hand (it does not assume the boundedness
of C on X or the compactness of the resolvent of A). This theorem and its proof
are repeated here as theorem 2.4 (and e.g. in [TW09, theorem 6.6.1]) from [Mil05,
theorem 5.1]. The proof that the resolvent condition is necessary is close to the proof
in [RW94] of the stronger resolvent condition implied by the stronger assumption of
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exact observability on [0,∞). The proof of sufficiency using the Fourier transform
is close and was inspired by the proof of [BZ04, theorem 7] where the resolvent is
assumed compact. This proof shortcuts the use of the Greiner-Huang-Prüss test in
[Liu97, ZY97].

The analogous result for admissibility is theorem 2.3 first proved under the addi-
tional assumption that the resolvent of A is compact in [Erv11, theorem 2.2]. The
new proof of this theorem 2.3 shortcuts the use of packets of eigenvectors in [Erv11]
and unifies it with the simple proof of theorem 2.4. From reading [Erv11], Marius
Tucsnak proved independently theorem 2.3, explicit constants excepted, as a direct
consequence of older results of George Weiss, cf. remark 2.8.

We emphasize that, as in the proof of Greiner-Huang-Prüss test, the key point
in the proof that the resolvent condition is sufficient (for both admissibility and
exact controllability) is the unitarity of the Fourier transform in Hilbert spaces
(Plancherel theorem) used in lemma 2.7. N.b. the two alternative proofs for admis-
sibility in remark 2.8 both use the Paley-Wiener theorem on the unitarity of the
Laplace transform which is also a consequence of the Plancherel theorem.

Alternatively, the Hautus rank condition for finite-dimensional state space may
be stated as the following eigenvectors condition discussed in §2.6: for all eigenvec-
tor x of A, Cx 6= 0. An infinite-dimensional version was introduced in [CFNS91]
for the exponential stabilizability of unitary groups by a bounded damping pertur-
bation (which is equivalent to the exact observability with bounded observation).
It assumes that the resolvent of A is compact and considers clusters of eigenvectors
of A rather than single ones. This version was called wavepackets conditions in
[RTTT05], where the assumption that C is bounded has been dropped using the
resolvent condition in [Mil05, theorem 5.1]. They are discussed in the more general
framework in §2.5. Sylvain Ervedoza in [Erv11, Erv09] introduced another equiva-
lent version of the resolvent condition obtained by optimizing λ. This paper does
not deal with this condition which he called interpolation inequalities.

2. Resolvent conditions for admissibility and observability

Most of this paper is about resolvent conditions for the observation of unitary
groups. The dual notions of control are recalled in parallel in §2.1, but they are not
used in any statement or proof of §2 and §3. Therefore all considerations of duality
could be skipped (i.e. all statements mentioning X ′, Y ′, A′, B, ξ, A′, B, φ, ζ).

2.1. Framework for the control of unitary groups. In this section, we review
the general setting for control systems conserving some “energy”: admissibility, ob-
servability and controllability notions and their duality (cf. [DR77, Wei89, TW09]).

Let X and Y be Hilbert spaces. Let A : D(A) → X be a self-adjoint operator.
Equivalently, iA generates a strongly continuous group (eitA)t∈R of unitary oper-
ators on X. In particular the norm is conserved: ‖eitAx‖ = ‖x‖, x ∈ X, t ∈ R.
Let X1 denote D(A) with the norm ‖x‖1 = ‖(A − β)x‖ for some β /∈ σ(A) (σ(A)
denotes the spectrum of A, this norm is equivalent to the graph norm and X1 is
densely and continuously embedded in X) and let X−1 be the completion of X with
respect to the norm ‖x‖−1 = ‖(A− β)−1x‖.

Let X ′ be a Hilbert space and J : X ′ → L(X,C) be a conjugate linear Hilbert
space isomorphism defined by some pairing 〈·, ·〉 on X × X ′ which is linear on
X and conjugate-linear on X ′, i.e. (Jξ)x = 〈x, ξ〉 where 〈·, ·〉 is a non-degenerate
sesquilinear form such that |〈x, ξ〉| 6 ‖x‖‖ξ‖ and J is onto, n.b. J(αξ) = ᾱJξ.
From now on, the dual space L(X,C) of X is identified with X ′ by this pairing.
E.g. if this pairing is the inner product of X as in (28), then X = X ′ and this is
the Riesz identification; if this pairing is the inner product of a Hilbert space X0 in
which X is continuously embedded as in (50), then X ′ is the dual of X with respect



6 L. MILLER

to the pivot space X0, cf. [TW09, §2.9]; similarly, if X ′ is continuously embedded
in X0, then X is the dual of X ′ with respect to X0; in (48) this pairing is not an
inner product.

The dual of A is a self-adjoint operator A′ on X ′ (if JR : X → L(X,C) denotes
the Riesz isomorphism as in [TW09, §1.1], then the Hilbert space adjoint of A is
A∗ = J−1

R JA′J−1JR). The dual of X1 is the space X ′−1 which is the completion

of X ′ with respect to the norm ‖ξ‖−1 = ‖(A′ − β̄)−1ξ‖ and the dual of X−1 is the
space X ′1 which is D(A′) with the norm ‖ξ‖1 = ‖(A′ − β̄)ξ‖, cf. [TW09, §2.10].

Let C ∈ L(X1, Y ) and let B ∈ L(Y ′, X ′−1) denote its dual.
We consider the dual observation and control systems with output function y

and input function u:

ẋ(t)− iAx(t) = 0, x(0) = x0 ∈ X, y(t) = Cx(t),(3)

ξ̇(t)− iA′ξ(t) = Bu(t), ξ(0) = ξ0 ∈ X ′, u ∈ L2
loc(R;Y ′).(4)

The following dual admissibility notions for the observation operator C and the
control operator B are equivalent.

Definition 2.1. The system (3) is admissible if for some time T > 0 (an thus for
any times by the group property) there is an admissibility cost KT such that:∫ T

0

‖CeitAx0‖2dt 6 KT ‖x0‖2, x0 ∈ D(A).(5)

The system (4) is admissible if for some time T > 0 (an thus for any times) there
is an admissibility cost KT such that:

‖
∫ T

0

eitA
′
Bu(t)dt‖2 6 KT

∫ T

0

‖u(t)‖2dt, u ∈ L2(R;Y ′).(6)

The admissibility constant in time T is the smallest constant in (5), or equivalently
in (6), still denoted KT .

Under the admissibility assumption, the output map x0 7→ y from D(A) to
L2

loc(R;Y ) has a continuous extension to X. The equations (3) and (4) have unique
solutions x ∈ C(R, X) and ξ ∈ C(R, X ′) defined by:

x(t) = eitAx0, ξ(t) = eitA
′
ξ(0) +

∫ t

0

ei(t−s)ABu(s)ds.(7)

The following dual notions of observability and controllability are equivalent.

Definition 2.2. The system (3) is exactly observable in time T at cost κT if the
following observation inequality holds:

‖x0‖2 6 κT
∫ T

0

‖y(t)‖2dt, x0 ∈ D(A).(8)

The system (4) is exactly controllable in time T at cost κT if for all ξ0 in X ′, there
is a u in L2(R;Y ′) such that u(t) = 0 for t /∈ [0, T ], ξ(T ) = 0 and:∫ T

0

‖u(t)‖2dt 6 κT ‖ξ0‖2.(9)

The controllability cost in time T is the smallest constant in (9), or in (8), still
denoted κT .

N.b. if the system is exactly controllable then, using the group property, for all
ξ0 and ξT in X ′, there is a u in L2(R;Y ′) such that u(t) = 0 for t /∈ [0, T ], ξ(T ) = ξT
and

∫ T
0
‖u(t)‖2dt 6 κT ‖ξ0 − ξT ‖2.
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N.b. the assumption C ∈ L(X1, Y ) covers most applications to PDEs but is not
really necessary to apply this theory since [Wei89, remark 3.7] proves that any
operator C with a dense domain D(C) invariant by (eitA)t>0 satisfying (5) with
D(A) replaced by D(C) is in some sense equivalent to an operator in L(X1, Y ).

2.2. Basic resolvent conditions. In the general framework of §2.1, we consider
the following conditions on C and A which are reminiscent of relative boundedness
of C with respect to A (e.g. [EN00, definition 2.1]) and resolvent estimates for A:

∃L > 0, l > 0, ∀x ∈ D(A), λ ∈ R, ‖Cx‖2 6 L‖(A− λ)x‖2 + l‖x‖2,(10)

∃M > 0,m > 0, ∀x ∈ D(A), λ ∈ R, ‖x‖2 6M‖(A− λ)x‖2 +m‖Cx‖2.(11)

The following theorems say that these conditions are necessary and sufficient for
admissibility and exact controllability respectively.

Theorem 2.3. The system (3) is admissible if and only if the resolvent condition
(10) holds. More precisely, (5) implies (10) with L = TKT and l = 2KT /T .

Conversely (10) implies (5) with KT = lT +
√
Ll.

Theorem 2.4. Assume that the system (3) is admissible. It is exactly observable
if and only if the resolvent condition (11) holds. More precisely, (8) implies (11)

with M = T 2κTKT and m = 2TκT . Conversely (11) implies (8) for all T > π
√
M

with κT = 2mT/(T 2 −Mπ2).

Corollary 2.5. The system (4) is admissible and exactly controllable if and only
if x 7→ ‖(A− λ)x‖+ ‖Cx‖ is a norm on D(A) equivalent to x 7→ ‖(A− λ)x‖+ ‖x‖
uniformly with respect to λ ∈ R.

The proof uses lemmas which do not rely on the assumption thatA is self-adjoint.

Lemma 2.6. For all T > 0, x0 ∈ D(A), λ ∈ R:

T‖Cx0‖2 6 2

∫ T

0

‖CeitAx0‖2dt+ T 2

∫ T

0

‖CeitA(A− λ)x0‖2dt,∫ T

0

‖CeitAx0‖2dt 6 2T‖Cx0‖2 + T 2

∫ T

0

‖CeitA(A− λ)x0‖2dt.

Proof. Set x(t) = eitAx0, z(t) = x(t) − eitλx0 and f = i(A − λ)x0. Since ẋ(t) =
iAx(t) = eitA(iλx0 + f) = iλx(t) + eitAf , we have ż(t) = iλz(t) + eitAf and

therefore z(t) =
∫ t

0
ei(t−s)λeisAf ds.

We plug it in eitλx0 = x(t)− z(t) and x(t) = eitλx0 + z(t) to estimate:∫ T

0

|eitλ|2dt‖Cx0‖2 6 2

∫ T

0

‖Cx(t)‖2dt+ 2

∫ T

0

t

∫ t

0

|ei(t−s)λ|2‖CeisAf‖2 ds dt ,∫ T

0

‖Cx(t)‖2dt 6 2

∫ T

0

|eitλ|2dt‖Cx0‖2 + 2

∫ T

0

t

∫ t

0

|ei(t−s)λ|2‖CeisAf‖2 ds dt.

Since λ ∈ R, we have |eitλ| = |ei(t−s)λ| = 1. Now the inequality:∫ T

0

t

∫ t

0

F (s) ds dt 6
∫ T

0

t

∫ T

0

F (s) ds dt = (T 2/2)

∫ T

0

F (s) ds

with F (s) = ‖CeisAf‖2 completes the proof of the lemma. �

Lemma 2.7. For all Lipschitz function χ with compact support in R, x0 ∈ D(A),

(10)⇒
∫
‖CeitAx0‖2χ2(t)dt 6

∫
‖eitAx0‖2

(
Lχ̇2(t) + lχ2(t)

)
dt,

(11)⇒
∫
‖eitAx0‖2

(
χ2(t)−Mχ̇2(t)

)
dt 6 m

∫
‖CeitAx0‖2χ2(t)dt,
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Proof. Let x0 ∈ D(A), x(t) = eitAx0, z = χx and f = ż − iAz. Since ẋ = iAx, we

have f = χ̇x. The Fourier transform of f is f̂(τ) = −i(A− τ)ẑ(τ). Applying (10)
and (11) with x = ẑ(τ) and λ = τ and integrating with respect to τ yield:∫

‖Cz‖2dt 6 L
∫
‖f‖2dt+ l

∫
‖z‖2dt,

∫
‖z‖2dt 6 m

∫
‖Cz‖2dt+M

∫
‖f‖2dt.

The proof of the lemma is completed by plugging the equations∫
‖z‖2dt =

∫
‖x‖2χ2dt,

∫
‖f‖2dt =

∫
‖x‖2χ̇2dt,

∫
‖Cz‖2dt =

∫
‖Cx‖2χ2dt.

resulting from the unitarity of the Fourier transform, i.e. Plancherel theorem. �

Proof of theorems 2.3 and 2.4. The implications result immediately from lemma 2.6.
The converse results from lemma 2.7 with the following choices of χ.

To prove the converse in theorem 2.3, we take χ(t) = 1 on [0, T ]. We have∫ T

0

‖CeitAx0‖2dt 6
∫
‖CeitAx0‖2χ2(t)dt(12)

and, since (eitA)t>0 is a unitary group, the resolvent condition (10) and lemma 2.7
imply the admissibility inequality (5) with KT =

∫ (
Lχ̇2(t) + lχ2(t)

)
dt. Taking the

support of χ equal to [−τ, T + τ ] and χ(T + t) = χ(−t) = sinh(ω(τ − t))/ sinh(ωτ),

t ∈ [0, τ ], with ω =
√
l/L, yields KT = T l+

√
Ll sinh(2ωτ)/ sinh2(ωτ)→ T l+

√
Ll

as τ → +∞.
To prove the converse in theorem 2.4, we take χ(t) = φ(t/T ) with the support

of φ equal to [0, 1] and φ(t) = sin(πt) for t ∈ [0, 1]. We have∫
‖CeitAx0‖2χ2(t)dt 6 ‖φ‖2L∞

∫ T

0

‖CeitAx0‖2dt =

∫ T

0

‖CeitAx0‖2dt ,

and since (eitA)t>0 is a unitary group:∫
‖eitAx0‖2

(
χ2(t)−Mχ̇2(t)

)
dt = ‖x0‖2IT

with

IT =

∫ (
φ2(

t

T
)− M

T 2
φ̇2(

t

T
)

)
dt =

∫
φ2(t)dt

T

(
T 2 −M

∫
φ̇2(t)dt∫
φ2(t)dt

)
=
T 2 −Mπ2

2T
.

Thus, for all T >
√
Mπ, (11) and lemma 2.7 imply (8) with κT = m/IT . �

Remark 2.8. Concerning the first statement of the admissibility theorem 2.3 (i.e.
without the explicit relation between the constants in (5) and (10)) Marius Tucsnak
pointed out that the necessity of the resolvent condition (10) results directly from
[TW09, theorem 4.3.7], and the sufficient from [TW09, corollary 5.2.4] with α = 1.
For completeness, we recall [TW09, corollary 5.2.4]: if G generates a right-invertible
semigroup, C ∈ L(D(G), Y ), α > ω0(G) and ‖C(α+ iλ−G)−1‖ is bounded for λ ∈ R
then the system (G, C) is admissible. N.b. taking G = iA, since A is self-adjoint,
‖((1 + iλ) − G)x‖2 = ‖(λ − A)x‖2 + ‖x‖2. We also recall that [TW09, corollary
5.2.4] follows from a result of [Wei89], was first explicitly stated in [HW91], and
was given an alternative shorter proof in [Zwa05, theorem 2.2]: as pointed out in
the introduction, both proofs use the unitarity of the Laplace transform between
L2(0,∞) and the Hardy space H2 on the right half-plane.
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2.3. Resolvent conditions with variable coefficients and restricted spec-
tral interval. In this subsection, we consider resolvent conditions more general
than (10) and (11) in two ways.

Firstly we allow the coefficients to vary (e.g. this is necessary to obtain the
characterization for second order systems in §3.2):

‖Cx‖2 6 L(λ)‖(A− λ)x‖2 + l(λ)‖x‖2, x ∈ D(A), λ ∈ R,(13)

‖x‖2 6M(λ)‖(A− λ)x‖2 +m(λ)‖Cx‖2, x ∈ D(A), λ ∈ R,(14)

where l, L, m and M are locally bounded positive functions on R.
N.b. (13) and (14) can be easily extended to λ ∈ C since A is self-adjoint:

‖(A− λ− iµ)x‖2 = ‖(A− λ)x‖2 + µ2‖x‖2 > ‖(A− λ)x‖2 for real λ and µ.
Secondly we restrict the interval for the spectral parameter λ (many proofs of

§3 rely on this). Recall that σ(A) denotes the spectrum of A. Let inf A, supA
and [σ](A) denote its infimum, supremum and convex hull (i.e. the smallest interval
containing it). E.g. if inf A > −∞ and supA = +∞ then [σ](A) = [inf A,+∞).
We always assume inf A 6= supA. The following proposition says that there is no
loss in restricting (13) and (14) to λ ∈ [σ](A):

‖Cx‖2 6 Lσ(λ)‖(A− λ)x‖2 + lσ(λ)‖x‖2, x ∈ D(A), λ ∈ [σ](A),(15)

‖x‖2 6Mσ(λ)‖(A− λ)x‖2 +mσ(λ)‖Cx‖2, x ∈ D(A), λ ∈ [σ](A),(16)

where lσ, Lσ, mσ and Mσ are locally bounded positive functions on [σ](A). This
proposition discusses how to extend the functions lσ, Lσ, mσ and Mσ in (15) and
(16) into l, L, m and M for which (13) and (14) hold (the converse being obvious).

Proposition 2.9. The restricted resolvent condition (16) implies (14) with func-
tions (M,m) which are the following extensions of (Mσ,mσ):

(i) If the spectrum of A is bounded from below but not from above then for each
λ < inf A define (M,m)(λ) = (Mσ,mσ)(2 inf A − λ). N.b. if inf A > 0,
supA = +∞, Mσ and mσ are nonincreasing then one may define more
simply, for λ ∈ R, (M,m)(λ) = (Mσ,mσ)(max{inf A, |λ|}).

(ii) If the spectrum of A is bounded then for each λ /∈ [σ](A) define M and m
as the supremum of Mσ and the supremum of mσ respectively.

(iii) In particular, if Mσ and mσ are constants then (M,m) = (Mσ,mσ) is
always suitable.

With the same extensions of (Lσ, lσ) into (L, l), (15) implies (13).

Proof. The spectral theorem yields for any non-negative self-adjoint operators B:

‖(B − µ)x‖ 6 ‖(B + µ)x‖, x ∈ D(B), µ > 0.(17)

This results from writing B − µ = (B + µ)f(B/µ), where f(t) = (t − 1)/(t + 1)
remains in [−1, 1] for t ∈ [0,∞). Applying (17) with µ = inf A− λ yields,

‖(A− (2 inf A− λ))x‖ 6 ‖(A− λ)x‖, λ 6 inf A.(18)

The choice in (i) results from (18). The last sentence in (i) results from 2 inf A−λ >
max{inf A,−λ} for λ 6 inf A.

To prove (ii) we assume that both inf A and supA are finite, (16) holds and
we define M and m as the supremum of Mσ and mσ respectively. Thanks to
(18), (14) holds for λ ∈ [2 inf A − supA, supA]. Applying (17) recursively with
B = A− (inf A−n(supA− inf A)) and µ = inf A−n(supA− inf A)−λ for n ∈ N
yields that it still holds for λ ∈ [inf A− (n+ 1)(supA− inf A), supA] for all n ∈ N,
i.e. for all λ 6 supA. It still holds for all λ > supA by a similar recurrence with
B = supA+ n(supA− inf A)−A and µ = λ− (supA+ n(supA− inf A)). �
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The following proposition says that there is only a loss of a factor 4 in the main
coefficient in restricting (13) and (14) to the sheer spectrum of A:

‖Cx‖2 6 Lσ(λ)‖(A− λ)x‖2 + lσ(λ)‖x‖2, x ∈ D(A), λ ∈ σ(A),(19)

‖x‖2 6Mσ(λ)‖(A− λ)x‖2 +mσ(λ)‖Cx‖2, x ∈ D(A), λ ∈ σ(A),(20)

where lσ, Lσ, mσ and Mσ are locally bounded positive functions on σ(A).

Proposition 2.10. The system (3) is admissible (resp. exactly observable) if and
only if the resolvent condition (19) (resp. (20)) holds for some constant lσ and Lσ
(resp. for some constant mσ and Mσ).

More precisely, (20) implies (14) with functions (M,m)(λ) = (4Mσ,mσ)(π(λ))
where π(λ) denotes the spectral value closest to λ. When the distance of λ to the
spectrum of A is large enough this improves into (M,m)(λ) = (|λ − π(λ)|−2, 0).
With the same definition of (Lσ, lσ) from (L, l), (19) implies (13).

Proof. If λ /∈ σ(A), then the spectral theorem yields ‖(A− λ)−1‖ 6 |π(λ) − λ|−1.
Hence ‖(A− π(λ))x‖ 6 ‖(A− λ)x‖+ ‖(λ− π(λ))x‖ 6 2‖(A− λ)x‖. �

N.b. the characterization of observability in proposition 2.10 was proved by
contradiction in [ZY97] (for bounded C) without explicit constants.

2.4. Resolvent conditions with variable coefficients and the controllability
time. From theorem 2.4 and proposition 2.9(iii), if the resolvent condition (16)
holds with constant Mσ and mσ then exact controllability holds in time T > π

√
Mσ.

Hence, if the resolvent condition (16) holds with a smaller coefficient Mσ on some
part of the spectrum then the corresponding part of the system is controllable in a
shorter time.

The following proposition ensures that the full system is actually controllable
in this shorter time provided the spectral subspace of the complementary part of
the spectrum is finite dimensional. Although its statement is slightly different from
[TW09, proposition 6.4.4] (which does not assume that A is self-adjoint), its proof
is so close to that of Tucsnak and Weiss that it is omitted here. It is based on their
earlier simultaneous controllability result in [TW00], cf. [TW09, theorem 6.4.2].

Proposition 2.11. Assume that the system (3) is admissible and that there is a
finite set S of eigenvalues λ of A such that Xλ = ker(A− λ) is finite dimensional
and all the eigenvectors xλ ∈ Xλ satisfy Cxλ 6= 0.

If exact observability in time T0 > 0 holds for the restricted system

ẋ(t)− iA0x(t) = 0, x(0) = x0 ∈ X0, y(t) = Cx(t),

where A0 = 1A/∈S A is the restriction of A to the orthogonal space X0 = X⊥S of
XS = 1A∈S X =

⊕
λ∈S Xλ in X, then it also holds for the full system (3).

The following propositions improve the basic time estimate in theorem 2.4. They
says roughly that, when computing the control time from Mσ, any compact part of
the discrete spectrum can be discarded: in other words, only the essential spectrum
matters including ±∞ when they are limit points of the spectrum.

Proposition 2.12. Assume that the system (3) is admissible and that the resolvent
condition (16) holds with a constant coefficient mσ. From the other coefficient Mσ,
define the essential coefficient

Mess = inf
KbR\σess(A)

sup
λ∈[σ(A)\K]

Mσ(λ),

where K bR \ σess(A) means that K is a compact subset of R which does not
intersect the essential spectrum of A.

Then the system (3) is exactly observable for all time T > π
√
Mess.
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N.b. if σ(A) is bounded from below and σess(A) = ∅ then Mess = lim sup
λ→+∞

Mσ(λ).

Proof. Let T0 > π
√
Mess so that M0 := π−2T 2

0 > Mess. By the definition of Mess,
there is a K bR \ σess(A) such that supλ∈[σ(A)\K]Mσ(λ) < M0.

Since the restriction A0 = 1A/∈K A satisfies D(A0) = D(A) ∩ X0 and σ(A0) =
σ(A) \K, the resolvent condition (16) and the definition of K imply

‖x‖2 6M0‖(A0 − λ)x‖2 +mσ‖Cx‖2, x ∈ D(A0), λ ∈ [σ](A0).

By proposition 2.9(iii), this implies that the restricted system in proposition 2.11
is controllable in time T0.

By the definition of σess(A), K ∩ σ(A) is composed of isolated eigenvalues with
finite multiplicities. Since K is compact, the cardinal of K ∩ σ(A) is finite. Since
mσ > 0, the resolvent condition (16) implies Cx 6= 0 for any eigenvector x of A.

Applying proposition 2.11 with S = K completes the proof. �

N.b. the estimate of the controllability cost in theorem 2.4 is lost in proposi-
tion 2.12 due to the contradiction argument in the proof of proposition 2.11. This
was the main reason for replacing it with the control transmutation method in
[Mil05, §9].

The following version of proposition 2.12 is better e.g. when A is neither bounded
from below nor from above. The proof is the same except it uses proposition 2.10
instead of proposition 2.9. A simpler formula for Mess is also given when the
coefficient M in the resolvent condition (11) is continuous (n.b. σess(A) is closed).

Proposition 2.13. Proposition 2.12 still holds if the resolvent condition (16) is
replaced by (20) and the definition of the essential coefficient is replaced by

Mess = 4 inf
KbR\σess(A)

sup
λ∈σ(A)\K

Mσ(λ).

N.b. if σess(A) = ∅ then Mess = 4 lim supMσ(λ) as |λ| → +∞ in σ(A).
Proposition 2.12 still holds if the resolvent condition (16) is replaced by (11) with

continuous M and the definition of the essential coefficient is replaced by

Mess = max

{
sup

λ∈σess(A)

M(λ), lim sup
λ→−∞

M(λ), lim sup
λ→+∞

M(λ)

}
.

Corollary 2.14. If σess(A) = ∅ (e.g. if the resolvent of A is compact), the system
(3) is admissible and the resolvent condition (20) holds with mσ constant and

Mσ(λ)→ 0 as |λ| → +∞, λ ∈ σ(A),

then the system (3) is exactly observable for all times T > 0.

N.b. this corollary is inspired from [BZ04, theorem 7] which makes more involved
assumptions on (A, C) but allows the coefficient m to vary.

Remark 2.15. Under the additional assumption that A is bounded from below,
corollary 2.14 says that M(λ)→ 0 as λ→ +∞ implies observability for all T > 0.
But observability for all T > 0 does not imply M(λ)→ 0 as λ→ +∞ (Schrödinger
equation in a rectangle observed from a strip is a counter-example). What follows
says, in a very vague sense: M(λ) → 0 means fast observability of high modes
at low cost κT ∼ 1

T . We refer to [Mil04, theorem 3.2] for a similar but rigorous
statement about fast observability of high modes at low cost.

Recall the link of M and m to the time T , admissibility KT and cost κT :

T > π
√
M, κT = 2mT/(T 2 −Mπ2), and M = T 2κTKT , m = 2TκT .
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If the resolvent condition holds with M(λ)→ 0 as λ→ +∞, then the restriction of

A to 1|A|>λX is observable in time T (λ) = π
√

2M(λ) at cost κT (λ) = 4m/T (λ).

This should be considered as “low cost” since κT ∼ 1
T whenever C is the identity,

i.e. full observation is available.
Conversely, if the restriction of A to 1|A|>λX is observable in time T (λ) with

T (λ)→ 0 and γ = lim supT (λ)κT (λ) <∞ as λ→ +∞, then the resolvent condition
holds with M(λ) < γK1T (λ) for large λ. In particular, this implies observability
of A for all T > 0.

2.5. Wavepackets condition. The wavepackets condition introduced in [CFNS91,
(H6’)] and [RTTT05, (1.6)] corresponds to (21) with constant d and D. The fol-
lowing proposition generalizes [RTTT05, Theorem 1.3]: the resolvent of A is not
assumed to be compact, the functions in (21) and (14) are not assumed to be con-
stants and their relation is explicit because the proof is direct (does not go through
[RTTT05, (2.2)]).

Proposition 2.16. The observability resolvent condition (14) implies the wavepack-

ets condition, for any function d > m and associated function D =
1−md
M ,

‖x‖2 6 d(λ)‖Cx‖2, x ∈ 1|A−λ|26D(λ)X, λ ∈ R.(21)

The wavepackets condition (21) and the admissibility resolvent estimate (13) imply
the observability resolvent estimate (14) for any function m > d and associated

function M(λ) = δL+ 1+δl
D , where δ =

(
1
d −

1
m

)−1
. N.b. δ > d and m =

(
1
d −

1
δ

)−1
.

Proof. Let x ∈ 1|A−λ|26D(λ)X. By the spectral theorem ‖(A−λ)x‖2 6 D(λ)‖x‖2.
Plugging this in (14) yields (21) with d(λ) = m

1−DM since 1−DM = m
d > 0.

To prove the converse, we introduce the projection xλ = 1|A−λ|26D(λ) x of x ∈
D(A), and x⊥λ = x−xλ. Using ‖Cxλ‖2 6 (1+ε2)‖Cx‖2+(1+ε−2)‖Cx⊥λ ‖2, ε(λ) > 0,
and applying (13) to estimate this last term, then plugging this in (21) yields

‖x‖2 6 d(1 + ε2)‖Cx‖2 + d(1 + ε−2)L‖(A− λ)x⊥λ ‖2 + (1 + dl(1 + ε−2))‖x⊥λ ‖2.

But the spectral theorem implies ‖x⊥λ ‖2 6 1
D‖(A−λ)x⊥λ ‖2, so that (14) holds with

m = d(1 + ε2) and M = (1 + ε−2)dL+ 1+dl(1+ε−2)
D . �

Combining this proposition 2.16 with theorem 2.3, yields this restatement of
theorem 2.4 in terms of wavepackets:

Corollary 2.17. Assume that the system (3) is admissible. It is exactly observable
if and only if the following wavepackets condition holds:

∃D > 0, d > 0, ‖x‖ 6
√
d‖Cx‖, x ∈ 1|A−λ|6

√
DX, λ ∈ R,(22)

More precisely, (8) implies (11) implies (22) with D = 1/(2M) = 1/(2T 2κTKT )
and d = 2m = 4TκT . Conversely (22) implies (8) for all T such that T 2 >
π2
(

1
D + dKT (T + 2

DT )
)
. Moreover, (22) implies (8) with the simpler cost formula

κT = 4dT
ε for all T such that ε := T 2 − π2

(
1
D + 2dKT (T + 2

DT )
)
> 0.

Corollary 2.18. Assume that the system (3) is admissible, that σess(A) = ∅ (e.g.
that the resolvent of A is compact) and that there is a spectral gap γ > 0 in the
following sense: |λ− µ| > γ for all eigenvalues λ and µ.

The system (3) is exactly observable if and only if the following eigenvectors
condition holds:

∃δ > 0, for all eigenvector x of A, ‖x‖ 6 δ‖Cx‖.(23)

More precisely (23) is equivalent to (22) with d = δ2 and any D < γ2.
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Example 2.19. Corollary 2.18 applies to the interior observability of the Schrödinger
(with A = −∆c) and wave equations (with A =

√
−∆c, cf. theorems 3.8 and 3.14)

where ∆c = ∂x(c(x)∂x) is the Laplacian with Dirichlet boundary conditions on a
segment and c is a positive smooth function.

Remark 2.20. Consider the Schrödinger equation on a rectangle [0, a] × [0, 1],
a2 /∈ Q, observed from a smaller rectangle ωx × ωy, ωx ⊂ [0, a], ωy ⊂ [0, 1]. Al-
though the natural orthonormal basis of eigenfunctions satisfies (23) and although
exact controllability does hold (this result due Jaffard has been extended to any
dimension by Komornik, and to partially rectangular billiards in [BZ04, BZ05]),
corollary (2.18) (with A = −∆) does not apply if a2 /∈ Q, since the gap condition
does not hold. It does apply in principle when a2 ∈ Q (the gap condition holds)
but it is not trivial to check (23) since there are eigenspaces with arbitrary large
dimension (it is easy in the case of observation from a strip, i.e. ωy = [0, 1], cf.
[CFNS91, example 3.a]).

2.6. Eigenvectors condition. Although slightly off the topic of this paper, we
comment on the following version of the Hautus test in finite dimension already
mentioned in §1:

for all eigenvector x of A, Cx 6= 0.(24)

When the resolvent of A is compact, [TW09, Proposition 6.9.1] proves that it is
equivalent to the following observability notion.

Definition 2.21. The system (3) is approximately observable in infinite time if
x = 0 is the only x ∈ D(A) such that y(t) = 0 for all t > 0.

N.b. using the homeomorphism (i−A)−1 : X → D(A), this is equivalent to⋂
t∈R

ker(CeitA(i−A)−1) = {0} .(25)

N.b. when C is admissible, this is equivalent to: x = 0 is the only x ∈ X such that
y = 0 in L2

loc(0,∞). This results from considering x as a the limit in X of its usual
smooth approximation xε ∈ D(A) as ε→ 0+:

xε :=
1

ε

∫ ε

0

eitAxdt, yε(T ) := CeiTAxε =
1

ε

∫ ε

0

Cei(T+t)Axdt =

∫ T+ε

T

y(t)dt.

Proposition 2.22. Let B denote the σ-algebra of Borel sets of R. Consider a
set Bσ ⊂ B of bounded sets such that, for any Ω ∈ B, Ω ∩ σ(A) is a countable
disjoint union of elements of Bσ (e.g. if Bσ is the set of bounded Borel subset with
diameter smaller than ε > 0, then any Ω ∈ B can be written Ω =

⊔
k∈Z Ωk with

Ωk = Ω ∩ [kε, (k + 1)ε[∈ Bσ).
The system (3) is approximately observable in infinite time if and only if⋂

Ω∈Bσ

ker(C 1A∈Ω) = {0} .

In particular, assuming σess(A) = ∅ and defining Bσ as the set of singletons {λ}
for all eigenvalues λ of A, we obtain that (3) is approximately observable in infinite
time if and only if the eigenvector test (24) holds.

Proof. The second of the following equalities results from the spectral theorem:

(26)
⋂
t∈R

ker(CeitA(i−A)−1) =
⋂

f∈L∞(R)

ker(Cf(A)(i−A)−1)

=
⋂

Ω∈B
ker(C 1A∈Ω(i−A)−1) =

⋂
Ω∈Bσ

ker(C 1A∈Ω(i−A)−1).
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The first equality (26) results from the Fourier transform in the following way.
Consider x ∈ D(A), such that CeitAx = 0, t > 0. For any f ∈ C∞(R) with compact
support, f is the Fourier transform of an f̌ ∈ L1(R), hence

Cf(A)x = C
∫
f̌(t)e−itAxdt =

∫
f̌(t)Ce−itAxdt = 0.

The property Cf(A)x = 0 extends to the set of continuous function f with compact
support since C∞(R) functions with compact support are dense in this set for the
L∞(R) norm (e.g. by convolution). To extend this property to an f ∈ L∞(R),
first consider a sequence of continuous functions with compact support (fn)n∈N
bounded in L∞(R) and converging pointwise to f (e.g. by Lusin theorem). Since
fn(A) converges to f(A) pointwise in X, fn(A)x converges to f(A)x in D(A).
Hence we still have Cf(A)x = 0 for any f ∈ L∞(R).

If Ω ∈ B can be written as the disjoint union Ω =
⊔
n∈N Ωn with Ωn ∈ Bσ then

1A∈Ω x =
∑
n∈N 1A∈Ωn x converges in X. Since C ∈ L(X1, Y ), this implies the

convergence in Y of C 1A∈Ω(i−A)−1x =
∑
n∈N C 1A∈Ωn(i−A)−1x. Since Ωn ∈ Bσ

is bounded, ker(C 1A∈Ωn) = ker(C 1A∈Ωn(i − A)−1). This completes the proof of
the last equality in (26).

Proposition 2.22 results from (26) and the equivalent definition (25). �

It is not clear that approximate observability in infinite time is an interesting
notion for controllability unless the semigroup is analytic. When the semigroup t 7→
etA is analytic, the output t 7→ CetAx is analytic so that approximate observability
in infinite time is equivalent to approximate observability in any time T > 0, which
is equivalent to approximate controllability in any time T > 0. Nonetheless we
mention the following easy implication in our context of unitary group.

Lemma 2.23. Consider Ω ⊂ R compact and the restriction AΩ of A to the spectral
subspace XΩ = 1A∈ΩX. If the system (3) is approximately observable in infinite
time then the system (4) obtained by replacing A on X by AΩ on XΩ is approxi-
mately observable in any time T > 0.

Proof. The set Ω is compact, hence AΩ is bounded, hence the semigroup t 7→
eitAΩ is analytic, hence y : t 7→ CeitAΩx is analytic. By unique continuation,
(AΩ, C) is approximately observable in infinite time if and only if it is approximately
observable in any time T > 0, i.e. x = 0 is the only x ∈ XΩ such that y(t) = 0 for
all t ∈ [0, T ]. �

2.7. Quasimode condition for the lack of exact controllability. The neces-
sity of resolvent conditions has been widely overlooked as a means to disprove exact
observability. There are two more common means. Firstly, to produce an eigen-
vector which is not observable in the sense that it violates the eigenvector test
(24). Secondly, to produce an approximate solution of the system (3) which is close
enough to an exact solution and little enough observable so that it violates (11), e.g.
the exact observability of the wave equation is disproved in [Ral82] by a space-time
Gaussian beams construction (microlocal measures extend this result from hyper-
bolic to diffractive and gliding geometric rays, cf. [BG97, Mil97]). Here we point
out this intermediate means: to produce an almost not observable approximate
eigenvector (approximate eigenvectors are also known as quasimode).

Definition 2.24. A quasimode for the system (3) at λ ∈ R̄ is a sequence (xn)n∈N
in D(A) such that there is a real sequence (λn)n∈N satisfying

‖xn‖ → 1, ‖Cxn‖ → 0, ‖(A− λn)xn‖ → 0 and λn → λ as n→∞.
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A quasimode for the second order system (47) is a (xn)n∈N in D(A3/2) such that

‖xn‖1 → 1, ‖Cxn‖ = o(1), ‖(A− λn)xλ‖1 = o(
√
λn) and λn → +∞ as n→∞.

This second definition anticipates on the study of second order systems in §3.2
to allow comparison: a quasimode for the wave-like system (47) must only satisfy

‖(A−λ)xλ‖1 = o(
√
λ) whereas a quasimode for the corresponding Schrödinger-like

system (49) with s = 1 must satisfy the stronger condition ‖(A − λ)xλ‖1 = o(1).
The same comparison can be made in the context of interior observation in §3.2.3.

As a direct consequence of definition 2.24, theorem 2.4 and corollary 3.11:

Theorem 2.25. Assume that the system (3) (resp. the second-order system (47))
is admissible. If there is a quasimode for (3) (resp. for (47)) then it is not exactly
observable.

Applying theorem 2.25 to the very large literature on quasimodes provides rel-
evant specific PDEs systems where exact controllability does not hold. We dwell
on this quasimode approach in a forthcoming paper. E.g. it deduces from a con-
struction in [PV99] that the Schrödinger equation is not exactly controllable from
the boundary of a domain where the diffusion constant takes some value outside
a bounded strictly convex smooth subdomain and a lower value inside this subdo-
main, with transmission conditions at the boundary of the subdomain.

In keeping with the topic of this paper, we give two rather abstract applications.
Consider two positive self-adjoint operators A1 and A2 on two Hilbert spaces

H1 and H2. The operator A1⊗ I + I ⊗A2 defined on the algebraic tensor product
D(A1)⊗D(A2) is closable and its closure, denoted A = A1 + A2 is a positive self-
adjoint operator on the closure H1⊗H2 of the algebraic tensor products H1⊗H2.

Theorem 2.26. Assume C1 ∈ L(D(A1);Y ), C = C1⊗ I ∈ L(D(A);Y ⊗H2), and
the second order system (47) with A and C is admissible. If kerC1 6= {0} and A−1

2

is compact then (47) is not exactly observable.

Proof. Since A2 has compact resolvent, there is a sequence Λ of eigenvalues tending

to +∞ and a corresponding sequence (x2
λ)λ∈Λ in D(A

3/2
2 ) of normalized eigenvec-

tors, i.e. (A2 − λ)x2
λ = 0 and ‖x2

λ‖1 = 1. Since kerC1 6= {0} and D(A
3/2
1 ) is dense

in D(A1), there exists x1 ∈ D(A
3/2
1 ) such that C1x

1 = 0 and ‖x1‖0 = 1. Now
xλ = x1⊗x2

λ defines a quasimode for (47), since Cxλ = C1x
1⊗x2

λ = 0,

‖xλ‖21 = ‖
√
Axλ‖20 = 〈Axλ, xλ〉0 = ‖x1‖21‖x2

λ‖20 + ‖x1‖20‖x2
λ‖21

= (‖x1‖21/λ+ ‖x1‖20)‖x2
λ‖21 = 1 + ‖x1‖21/λ→ 1,

and ‖(A− λ)xλ‖21 = ‖A1x
1⊗x2

λ‖21 = ‖A1x
1‖21/λ+ ‖A1x

1‖20 = O(1) = o(λ). �

The same theorem can be stated in the context of interior observation in §3.2.3
and its application to the wave equation was already stated in [Liu97, theorem 4.5].

In the second application X = L2(Rd). Assume the self-adjoint operator A on X
is locally compact, i.e. for all ϕ ∈ C∞comp(Rd) considered as a multiplication operator,

ϕ(A − z)−1 is compact for some hence all z /∈ σ(A). Also assume that A is local,
i.e. there exists a non-negative ϕ ∈ C∞comp(Rd) such that ϕ(q) = 1 for |q| 6 1 and

ϕn(q) = ϕ(q/n) satisfies ϕnD(A) ⊂ D(A) and ‖(Aϕn−ϕnA)(A− i)−1‖ → 0. The
observation operator C ∈ L(D(A);Y ) is compactly supported if there is a compact
K ⊂ Rd such that Cx = 0 for any x ∈ D(A) with support in Rd \K.

Theorem 2.27. Assume A is locally compact and local as above. If σess(A) 6= ∅
then, for all compactly supported C, the system (3) is not exactly observable.
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Proof. Let λ ∈ σess(A). Equivalently by [HS, theorem 10.6], there exists a Zhislin
sequence (xn)n∈N for A and λ, i.e. xn ∈ D(A), ‖xn‖ = 1, the support of xn is
outside the ball of radius n and ‖(A− λ)xn‖ → 0 as n→∞. Since C is supported
in some ball of radius n0, Cxn = 0 for n > n0. Hence (xn)n∈N is a quasimode for
the system (3) and theorem 2.25 completes the proof. �

3. Links between systems with generator build on a positive A

This section investigates the logical links between the control properties of var-
ious systems of the form (3) with various positive A which are defined using the
same building block: a positive self-adjoint operator denoted A.

The framework for this section is more specific than §2.1. Let H0 and Y be
Hilbert spaces with respective norms ‖·‖0 and ‖·‖. When the context is unam-
biguous we shall omit the index 0 in ‖·‖0. Let A be a self-adjoint, positive and
boundedly invertible unbounded operator on H0 with domain D(A).

We introduce the Sobolev scale of spaces based on A. For any positive s, let
Hs denote the Hilbert space D(As/2) with the norm ‖x‖s = ‖As/2x‖0 (which is
equivalent to the graph norm ‖x‖0 + ‖As/2x‖0). We identify H0 and Y with their
duals with respect to their inner product (i.e. we use them as pivot spaces). LetH−s
denote the dual of Hs. Since Hs is densely continuously embedded in H0, the pivot
space H0 is densely continuously embedded in H−s, and H−s is the completion
of H0 with respect to the norm ‖x‖−s = ‖A−s/2x‖0. We still denote by A the
restriction of A to Hs with domain Hs+2. It is self-adjoint with respect to the Hs

scalar product. We denote by A′ its dual with respect to the duality between Hs

and H−s, which is an extension of A to H−s with domain H2−s.
Let C ∈ L(H2;Y ) and let B ∈ L(Y,H−2) denote its dual.
The dual observation and control systems for the generator A are:

ẋ(t)− iAx(t) = 0, x(0) = x0 ∈ H0, y(t) = Cx(t),(27)

ξ̇(t)− iA′ξ(t) = Bu(t), ξ(0) = ξ0 ∈ H0, u ∈ L2
loc(R;Y ).(28)

We consider the following resolvent conditions (which are restricted to the convex
hull [σ](A) of the spectrum of A with variable coefficients l, L, m and M):

‖Cx‖2 6 L(λ)‖(A− λ)x‖20 + l(λ)‖x‖20, x ∈ D(A), λ ∈ [σ](A),(29)

‖x‖20 6M(λ)‖(A− λ)x‖20 +m(λ)‖Cx‖2, x ∈ D(A), λ ∈ [σ](A),(30)

where l, L, m and M are locally bounded positive functions on [σ](A).

Example 3.1. We refer to [TW09, §7.5] for the typical example of the free linear
Schrödinger equation on a domain with Dirichlet boundary condition observed from
a subset of the domain, or from the Neumann derivative on a subset of the boundary.
Systems of such equations can also be written as (27).

3.1. Systems generated by fractional powers of A and other convex func-
tions of A. For any function f of the form f(λ) = λh(λ) where h : σ(A) →
[h0,+∞) is measurable and h0 > 0, the spectral theorem defines a positive self-
adjoint operator f(A) such that D(f(A)) ⊂ D(A) and σ(f(A)) ⊂ f(σ(A)). There-
fore we may consider the systems generated by f(A) fitting the general framework
of §2.1 with X = H0 = X ′, β = 0, C = C and A = f(A):

ẋ(t)− if(A)x(t) = 0, x(0) = x0 ∈ H0, y(t) = Cx(t),(31)

ξ̇(t)− if(A′)ξ(t) = Bu(t), ξ(0) = ξ0 ∈ H0, u ∈ L2
loc(R;Y ′).(32)

This section investigates the link between the control properties of (28) and (32).
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An example of particular interest is f(λ) = λα with α > 1 which defines an
operator f(A) known as the fractional power Aα of the operator A with domain
D(Aα) = H2α ⊂ D(A) = H2:

ẋ(t)− iAαx(t) = 0, x(0) = x0 ∈ H0, y(t) = Cx(t),(33)

ξ̇(t)− i(A′)αξ(t) = Bu(t), ξ(0) = ξ0 ∈ H0, u ∈ L2
loc(R;Y ′).(34)

In deducing control properties of (32) from (28), convexity is the main property
of f : [0,+∞) → [0,+∞) that our argument relies on. E.g. theorem 3.2 applies
to f(λ) = λ ln(1 + λ) which has an interesting application (cf. [DM09]). Although
systems generated by fractional powers of the Laplacian are a well established
modeling tool, we do not know which range of the power-logarithm scale of the
Laplacian has ever been actually considered for modeling purposes. Conversely in
deducing control properties of (28) from (32), we use homogeneity as an additional
property of f , therefore theorem 3.5 only concerns fractional powers.

Throughout this section the norm ‖·‖0 on the state space H0 is simply denoted
‖·‖ as the norm on the observation space Y without ambiguity.

Theorem 3.2. If the system (27) for A is admissible (resp. exactly observable)
then the system (31) for f(A) is admissible (resp. exactly observable) for any convex
function f : [0,+∞)→ [0,+∞) which vanishes only at 0.

More precisely (30) implies the observability resolvent estimate

‖x‖2 6Mf (λ)‖(f(A)− λ)x‖2 +mf (λ)‖Cx‖2, x ∈ D(f(A)), λ ∈ f([σ](A)),

with mf (λ) = m(f−1(λ)) and Mf (λ) = (f−1(λ)/λ)2M(f−1(λ)). N.b. if moreover
f(λ) = λh(λ) then this further simplifies as Mf (λ) = M(f−1(λ))/h2(f−1(λ)).
Similarly (29) implies the admissibility resolvent estimate for f(A) with coefficients
defined from l and L as mf and Mf were defined from m and M .

N.b. f is strictly increasing since 0 < x < y implies f(y)−f(x)
y−x > f(y)

y > 0.

Moreover convexity implies continuity. Hence f is bijective.
N.b. Since f is continuous, the spectrum of f(A) is σ(f(A)) = f(σ(A)). Taking

convex hulls and using the convexity of f yields [σ](f(A)) = [f(σ(A))] = f([σ](A)).
Theorem 3.2 results directly from the following simple convexity inequality.

Lemma 3.3. If f : [0,+∞)→ [0,+∞) is convex and vanishes only at 0 then

‖(A− µ)x‖ 6 µ

f(µ)
‖(f(A)− f(µ))x‖, x ∈ D(f(A)), µ > 0.(35)

Proof. The hypothesis implies that f is continuous and t 7→ t/f(t) is positive
nonincreasing on (0,+∞) hence bounded on [ε,+∞) for all ε > 0. Therefore f(A)
is well defined and D(f(A)) ⊂ D(A).

For all µ > 0, the difference quotient gµ is the left continuous function at t = µ

defined on [0,+∞) by gµ(t) = f(t)−f(µ)
t−µ . Since f is convex, gµ is increasing. Hence

gµ(t) > gµ(0) = f(µ)
µ for t > 0. Therefore, setting hµ := 1/gµ, the spectral theorem

yields ‖hµ(A)‖ 6 µ
f(µ) . Now (35) results from A− µ = hµ(A)(f(A)− f(µ)). �

Example 3.4. E.g. theorem 3.2 applies when f(t) = t logα(1 + t) = th(t), α > 1,
and M is a constant. In this case we check that the coefficient Mf satisfies:

Mf (λ) = M/h2(f−1(λ)) 6 (1 + α)2αM/ log2α(1 + λ).

Setting λ = f(µ) = µ logα(1 + µ), we have 1/h(f−1(λ)) = 1/logα(1 + µ) and
we want to check 1/logα(1 + µ) 6 (1 + α)α/logα(1 + λ), which is equivalent to
1 + λ 6 (1 + µ)1+α. But this results from 1 + µ1+α 6 (1 + µ)1+α and this estimate
of the logarithm: λ = µ logα(1 + µ) 6 µ1+α.
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Applying theorem 3.2 to f(λ) = λα with α > 1 yields Mf (λ) = M(λ
1
α )/λ2−2/α.

This makes the following notations for the resolvent conditions more convenient
when dealing with the fractional powers in (33):

‖Cx‖2 6 Lα(λ)

λ2−2/α
‖(Aα − λ)x‖2 + lα(λ)‖x‖2, x ∈ D(Aα), λ ∈ [σ](Aα),(36)

‖x‖2 6 Mα(λ)

λ2−2/α
‖(Aα − λ)x‖2 +mα(λ)‖Cx‖2, x ∈ D(Aα), λ ∈ [σ](Aα).(37)

where lα, Lα, mα and Mα are locally bounded positive functions on R. The first
part of the following theorem is the application of theorem 3.2 with these notations.
The new feature is the converse in the second part using the homogeneity of f .

Theorem 3.5. If the system (27) for A is admissible (resp. exactly observable)
then the system (33) for Aα is admissible (resp. exactly observable) for any α > 1.
More precisely (30) implies (37) with mα(λ) = m(λ1/α) and Mα(λ) = M(λ1/α).
Similarly (29) implies (36) with lα(λ) = l(λ1/α) and Lα(λ) = L(λ1/α).

The system (27) for A is admissible if and only if the resolvent condition (36)
for Aα holds for some α > 1 and some constant Lα and lα. Assuming that it is
admissible, it is exactly observable if and only if the resolvent condition (37) for Aα

holds for some α > 1 and some constant Mα and mα (if moreover σess(A) = ∅ this
implies that the system (33) for Aα is exactly observable for any positive time).

More precisely, (36) implies (29) with L(λ) = 2 max
{

(2α − 1)2Lα(λα), 4‖C‖2L(H2;Y )

}
and l(λ) = 2lα(λα). Moreover (29) and (37) imply (30) with m(λ) = 2mα(λα) and
M(λ) = max

{
(2α − 1)2Mα(λα),m(λ)L(λ) + (1 +m(λ)l(λ))/ inf A2

}
.

Proof. Thanks to theorem 3.2 and proposition 2.9 (and corollary 2.14 for the state-
ment in parenthesis), we only need to prove the last paragraph. We shall prove (29)
and (30) by density, taking x ∈ D(Aα). Let µ ∈ [σ](A) and ε > 0. In each case we
use some spectral projection xµ of x which depends on ε and take advantage of:

‖x‖2 = ‖xµ‖2 + ‖x− xµ‖2(38)

‖(A− µ)x‖2 = ‖(A− µ)xµ‖2 + ‖(A− µ)(x− xµ)‖2,
α‖(A− µ)xµ‖2 + β‖(A− µ)(x− xµ)‖2 6 max {α, β} ‖(A− µ)x‖2.(39)

Since f(µ) = µα satisfies the homogeneity equality f(tµ) = tαf(µ), the difference
quotient function gµ defined in lemma 3.3 satisfies gµ(µt) = g(t)f(µ)/µ = µα−1g(t)
where g is defined on [0,+∞) by g(1) = α and g(t) = (1− tα)/(1− t).

We first assume only the admissibility condition (36) for Aα. We introduce the
projection xµ = 1A<(1+ε)µ x of x on the spectrum of A below (1+ε)µ. The spectral
theorem yields

‖A(x− xµ)‖ 6 (1 + 1/ε)‖(A− µ)(x− xµ)‖,(40)

1

µα−1
‖(Aα − µα)xµ‖ 6 g(1 + ε)‖(A− µ)xµ‖.(41)

The former inequality results from writing A = (A−µ)h(A/µ) where h(t) = 1/(1−
1/t) is decreasing. The latter inequality results from writing µ1−α(Aα − µα) =
(A− µ)g(A/µ) where g is increasing. Using C ∈ L(H2;Y ) and (40) yields

‖C(x− xµ)‖ 6 (1 + 1/ε)‖C‖‖(A− µ)(x− xµ)‖.(42)

Applying (36) to xµ and plugging (41) yields

‖Cxµ‖2 6 g2(1 + ε)Lα(µα)‖(A− µ)xµ‖2 + lα(µα)‖xµ‖2.(43)
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Plugging (42) and (43) in 1
2‖Cx‖

2 6 ‖Cxµ‖2 + ‖C(x − xµ)‖2 and simplifying by
(39) yields (29) with

l(µ) = 2lα(µα) and L(µ) = 2 max
{
g2(1 + ε)Lα(µα), (1 + 1/ε)2‖C‖2

}
.

Taking ε = 1 completes the statement that (36) implies (29) in theorem 3.5.
Now we assume the admissibility condition (29) for A and the observability

condition (37) for Aα. We introduce the projection xµ = 1A<µ+ε x of x on the
spectrum of A below µ+ ε. The spectral theorem yields

‖x− xµ‖ 6
1

ε
‖(A− µ)(x− xµ)‖,(44)

1

µα−1
‖(Aα − µα)xµ‖ 6 g(1 + ε/µ)‖(A− µ)xµ‖.(45)

Applying (37) to xµ, plugging (45) in, and using the monotony of g yields

‖xµ‖2 6 g2(1 + ε/ inf A)Mα(µα)‖(A− µ)xµ‖2 +mα(µα)‖Cxµ‖2.(46)

To estimate the last term, we apply (29) to x− xµ:

1

2
‖Cxµ‖2 6 ‖Cx‖2 + L(µ)‖(A− µ)(x− xµ)‖2 + l(µ)‖x− xµ‖2.

Plugging this in (46), then plugging the resulting inequality in (38), and simplifying
by (44) and finally by (39) yields (30) with m(µ) = 2mα(µα) and

M(µ) = max

{
g2
(

1 +
ε

inf A

)
Mα(µα), 2mα(µα)L(µ) +

1 + 2mα(µα)l(µ)

ε2

}
.

Taking ε = inf A yields the last statement of in theorem 3.5. �

Remark 3.6. In the particular case of second-order equations, the part of the first
sentence concerning exact observability was proved in [ZY97] (without explicit Mα

and mα).

3.2. Second order systems. In this section we start with the general framework
for second order systems which suits the boundary control of PDEs. We finish with
a framework which suits the interior control of PDEs better.

3.2.1. “Boundary” second order systems. In addition to first order systems for A,
we consider the dual observation and control second order systems:

z̈(t) +Az(t) = 0, z(0) = z0 ∈ H1, ż(0) = z1 ∈ H0, y(t) = Cz(t),(47)

ζ̈(t) +A′ζ(t) = Bv(t), ζ(0) = ζ0 ∈ H0, ζ̇(0) = ζ1 ∈ H−1, v ∈ L2
loc(R;Y ).(48)

Example 3.7. We refer to [TW09, §7.4 and 7.6] for the typical example of the wave
equation on a domain with Dirichlet boundary condition observed from a subset
of the domain, or from the Neumann derivative on a subset of the boundary. We
refer to [TW09, §7.5] for the examples of plate equations.

We shall now explain how they fit in the general framework of §2.1. The states
x(t) and ξ(t) of the systems (47) and (48) at time t and their state spaces X and
X ′ are defined by:

x(t) = (z(t), ż(t)) ∈ X = H1 ×H0, ξ(t) = (ζ(t), ζ̇(t)) ∈ X ′ = H0 ×H−1.

X is a Hilbert space with the “energy norm” defined by ‖(z0, z1)‖2 = ‖
√
Az0‖20 +

‖z1‖20, X ′ is a Hilbert space with norm defined by ‖(ζ0, ζ1)‖2 = ‖ζ0‖20 +‖ζ1‖2−1, and
X is densely continuously embedded in X ′. These spaces are dual with respect to
the pairing 〈(z0, z1), (ζ0, ζ1)〉 = 〈A1/2z0, A

−1/2ζ1〉0 − 〈z1, ζ0〉0.
The dual second-order systems (47) and (48) rewrite as dual first order systems

(3) and (4), where u = v, A is defined on the domain D(A) = D(A) × D(
√
A) by
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A(z0, z1) = i(−z1, Az0), A′ is an extension of A to X ′ with domain X, β = 0, X1 is

H2×H1 with the norm defined by ‖(z0, z1)‖21 = ‖A(z0, z1)‖2 = ‖
√
Az1‖20 + ‖Az0‖20,

C ∈ L(X1, Y ) is defined by C(z0, z1) = Cz0 and B ∈ L(Y,X ′−1) is defined by
By = (0, By).

We also consider the dual observation and control first order systems for As/2,
with s > 1:

ḟ(t)− iAs/2f(t) = 0, f(0) = f0 ∈ H1, y(t) = Cf(t),(49)

φ̇(t)− i(A′)s/2φ(t) = Bu(t), φ(0) = φ0 ∈ H−1, u ∈ L2
loc(R;Y ).(50)

It fits in the general framework of §2.1 : X = H1, X ′ = H−1, C = C, A is As/2

with D(As/2) = H1+s, A′ is (A′)s/2 with D((A′)s/2) = Hs−1, β = 0.
We consider the improved resolvent conditions for (49): ∃Ls, ls, Ms, ms > 0,

‖Cf‖2 6 Ls
λ2(1−1/s)

‖(As/2 − λ)f‖21 + ls‖f‖21, f ∈ H1+s, λ ∈ [σ](As/2),(51)

‖f‖21 6
Ms

λ2(1−1/s)
‖(As/2 − λ)f‖21 +ms‖Cf‖2, f ∈ H1+s, λ ∈ [σ](As/2).(52)

Theorem 3.8. The second order system (47) generated by A is admissible (resp.
exactly observable) if and only if the first order system (49) with s = 1 generated

by
√
A is admissible (resp. exactly observable).

More precisely, (10) implies (51) for s = 1 with L1 = 2L and l1 = 2l; (11)
implies (52) for s = 1 with M1 = M and m1 = m/2; (51) for s = 1 implies
(10) with L = L1 and l = l1; (52) for s = 1 implies (11) with m = 4m1 and

M = max
{
M1, 2m1‖C‖2L(D(A),Y ) + 1/(inf

√
A)2

}
; (51) and (52) for s = 1 implies

(11) with m = 4m1 and M = max
{
M1, 2m1L1 + (2m1l1 + 1)/(inf

√
A)2

}
.

For variable coefficients as in §2.3 the result still holds with inf
√
A replaced by

λ+inf
√
A in the two formulas for M . E.g. if m1 = l1 is constant but M1 = L1 → 0

slower than 1/λ2 as λ→ +∞, then m is constant and M → 0 as fast as M1 in the
second formula for M (whereas the first formula does not even ensure M → 0).

Proof. The theorem follows from the Hilbert spaces isomorphismW from X = H1×
H0 onto W = H1 ×H1 defined by W(z0, z1) = (z0 − iA−1/2z1, z0 + iA−1/2z1)/

√
2,

with inverse W−1(w0, w1) = (w0 + w1, i
√
A(w0 − w1))/

√
2. Unitarity is easily

checked: ‖(w0, w1)‖2W := ‖w0‖21 + ‖w1‖21 = (‖
√
Az0 − iz1‖20 + ‖

√
Az0 + iz1‖20)/2 =

‖
√
Az0‖20 +‖−iz1‖20 = ‖(z0, z1)‖2. The operator A for the second order system (47)

is isomorphic to AH =WAW−1 =
√
A
(

1 0
0 −1

)
.

The resolvent conditions (10) and (11) for (47) write: ∀w0, w1 ∈ H2, λ ∈ [σ](
√
A),

1

2
‖C(w0 + w1)‖2 6 L

(
‖(
√
A− λ)w0‖21 + ‖(

√
A+ λ)w1‖21

)
+ l
(
‖w0‖21 + ‖w1‖21

)
,

‖w0‖21 + ‖w1‖21 6M
(
‖(
√
A− λ)w0‖21 + ‖(

√
A+ λ)w1‖21

)
+
m

2
‖C(w0 + w1)‖2,

(n.b. the symmetry between w0 and w1 allows to let λ vary only in the positive part

of [σ](A) = [σ](
√
A) ∪ [σ](−

√
A)). Taking w1 = 0 proves the first two implications

in the second statement of the theorem.
The converse for admissibility with L = L1 and l = l1 follows from writing

1
2‖C(w0 +w1)‖2 6 ‖Cw0‖2 + ‖Cw1‖2 and applying (51) with s = 1 to f = w0 and
f = w1. To prove the converse for observability, the main step is to apply (52) with
s = 1 to f = w0 and write ‖Cw0‖2 6 2‖C(w0 + w1)‖2 + 2‖Cw1‖2. The following
two alternative subsidiary steps lead to the alternative values for M .

The first value of M results from ‖Cw1‖ 6 ‖C‖‖
√
Aw1‖1, and finally simplifying

by: (inf
√
A+ λ)‖w1‖1 6 ‖(

√
A+ λ)w1‖1.
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To prove the second value of M , apply (51) with s = 1 to f = w1, change the sign

of λ thanks to (17), and finally simplify by ‖w1‖1 6 1
inf
√
A+λ
‖(
√
A+ λ)w1‖1. �

3.2.2. Fractional second order systems. We also consider the dual observation and
control second order systems for As, with s > 1:

z̈(t) +Asz(t) = 0, z(0) = z0 ∈ H1, ż(0) = z1 ∈ H1−s, y(t) = Cz(t),(53)

ζ̈(t) + (A′)sζ(t) = Bv(t), ζ(0) = ζ0 ∈ Hs−1, ζ̇(0) = ζ1 ∈ H−1, v ∈ L2
loc(R;Y ).(54)

They fit the general framework of §2.1: X = H1 ×H1−s, A(z0, z1) = i(−z1, A
sz0)

with the domain X1 = H1+s × H1, X−1 = H1−s × H1−2s, X
′ = Hs−1 × H−1,

〈(z0, z1), (ζ0, ζ1)〉 = 〈A1/2z0, A
−1/2ζ1〉0 − 〈A(1−s)/2z1, A

(s−1)/2ζ0〉0 and therefore
A′(ζ0, ζ1) = i(−ζ1, (A′)sζ0) with X ′1 = H2s−1 × Hs−1, X ′−1 = H−1 × H−1−s,
C(z0, z1) = Cz0 and therefore By = (0, By).

Example 3.9. For the plate equation in case B of [Leb92, §5], s = 2, A is the
Dirichlet Laplacian, C is the Neumann derivative at the boundary.

The following corollary of theorem 3.8 (using theorem 3.5 with H0 and A replaced

by H1 and
√
A, and using corollary 2.14 for the time), characterizes the properties

of the second order system (47) in terms of improved resolvent conditions for the
first order systems (49).

Corollary 3.10. If the second order system (47) is admissible (resp. exactly ob-
servable) then for any s > 1 the first order system (49) and the second order system
(53) are admissible (resp. exactly observable, moreover they are exactly observable
for any positive time T if σess(A) = ∅).

More precisely, the second order system (47) is admissible if and only if (51)
holds for some s > 1. Assuming that it is admissible, it is exactly observable if and
only if (52) holds for some s > 1.

N.b. the constants L, l, M , m in (10) and (11) for (47) on the one hand, and
Ls, ls, Ms, ms in (51) and (52) on the other hand are explicitly related here.

In particular, for s = 2 we have the following (using corollary 2.14 for the time)

Corollary 3.11. Admissibility and exact observability for the wave-like equation
(47) hold if and only if 1√

λ
‖(A− λ)x‖0 + ‖CA− 1

2x‖ is a norm on D(A) equivalent

to 1√
λ
‖(A− λ)x‖0 + ‖x‖0 uniformly for λ > inf A > 0, and it implies admissibility

and exact observability (in any positive time T if moreover σess(A) = ∅) for the
Schrödinger-like equation (49) and the Plate-like equation (53) both with s = 2.

Example 3.12. Combining corollary 3.11 with [BLR92] yields: under the geometric
condition of Bardos, Lebeau and Rauch for the exact observability of the wave
equation in H1

0 × L2 with Neumann observation, exact observability in arbitrary
time holds for the Schrödinger equation in H1

0 with Neumann observation and for
the plate equation in H1

0 ×H−1 with Neumann observation. (this was first proved
in [Leb92, theorem 4.1 and proposition 5.1.B]). N.b. under the same assumption,
the control transmutation method in [Mil05, theorem 10.2] yields more information
on the Schrödinger equation, i.e. it provides a geometric bound on the cost of fast
controls.

Example 3.13. We now use theorems 3.8 and 3.2 to interpret in terms of differential
operators an initially abstract example due to Thomas Duyckaerts of a positive
self-adjoint operator A∗ with observation C∗ ∈ L(D(A∗), Y ), Y = C, such that
the Schrödinger group eitA∗ is exactly observable for all positive time but the heat
semigroup e−tA∗ is not final-observable for any time, cf. [DM09, §5.1]. Let ∆
denotes the Laplacian ∂2

x on the segment [0, 1] with Dirichlet boundary condition,
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which is negative self-adjoint on L2(0, 1) with domain D(∆) = H1
0 (0, 1)∩H2(0, 1).

Let ∂ν denote the derivative at the endpoint 1. It is well-known that the wave
equation ẅ − ∆w = ∂2

tw − ∂2
xw = 0 is observable by the Neumann derivative ∂ν

in any time T > 2 on the energy space H1
0 (0, 1) × L2(0, 1) (by the unitarity of

the discrete Fourier transform known as Parseval’s theorem). Hence theorem 3.8
with A = −∆ and s = 1 yields that

√
−∆ on X = L2(0, 1) is observable by C =

∂ν(−∆)−1/2 ∈ L(H1, Y ), Y = C. Applying theorem 3.2 with A =
√
−∆, f(t) =

t log(1+ t) and constant M as in example 3.4 yields that A∗ :=
√
−∆ log(1+

√
−∆)

satisfies the logarithmically improved resolvent condition:

‖x‖2 6 M∗

log2(1 + λ)
‖(A∗ − λ)x‖2 +m∗‖Cx‖2, x ∈ D(A∗), λ ∈ R.

N.b. D((−∆)ε+1/2) ⊂ D(A∗) ⊂ D(
√
−∆) for all ε > 0 and C ∈ L(D(A∗), Y ).

3.2.3. “Interior” second order systems. The previous theorem 3.8 is adapted to
boundary observability (for wave and Schrödinger equations) since C ∈ L(H2, Y ).
For interior observability, we have C ∈ L(H0, Y ) and admissibility is obvious. In the
following version of theorem 3.8, the assumption made on the observation operator
C is in-between: C ∈ L(H1, Y ), equivalently B ∈ L(Y,H−1). Accordingly, we may
consider a larger space of states (z0, z1) than the previous “energy space”:

z̈(t) +Az(t) = 0, z(0) = z0 ∈ H0, ż(0) = z1 ∈ H−1, y(t) = Cz(t),(55)

ζ̈(t) +A′ζ(t) = Bv(t), ζ(0) = ζ0 ∈ H1, ζ̇(0) = ζ1 ∈ H0, v ∈ L2
loc(R;Y ).(56)

It fits in the general framework of §2.1 : X = H0 ×H−1 with norm ‖(z0, z1)‖2 =
‖z0‖20 + ‖z1‖2−1, X ′ = H1×H0 with the “energy norm” ‖(ζ0, ζ1)‖2 = ‖ζ0‖21 + ‖ζ1‖20,

the duality pairing is 〈(z0, z1), (ζ0, ζ1)〉 = 〈z0, ζ1〉0 − 〈A−1/2z1, A
1/2ζ0〉0.

We rewrite the fractional first order systems (33) and (34) with α = s/2:

ẋ(t)− iAs/2x(t) = 0, x(0) = x0 ∈ H0, y(t) = Cx(t),(57)

ξ̇(t)− i(A′)s/2ξ(t) = Bu(t), ξ(0) = ξ0 ∈ H0, u ∈ L2
loc(R;Y ′).(58)

We also consider the improved resolvent condition for (57): ∃Ls, ls, Ms, ms > 0,

‖Cx‖2 6 Ls
λ2(1−1/s)

‖(As/2 − λ)x‖20 + ls‖x‖20, x ∈ Hs, λ ∈ [σ](As/2),(59)

‖x‖20 6
Ms

λ2(1−1/s)
‖(As/2 − λ)x‖20 +ms‖Cx‖2 x ∈ Hs, λ ∈ [σ](As/2).(60)

Applying theorem 3.8 to the observation operator CA1/2 ∈ L(H2, Y ) and using
theorem 3.5 and corollary 2.14 (as in corollary 3.10) yields

Theorem 3.14. Assume C ∈ L(H1, Y ). The second order system (55) is admissi-
ble (resp. exactly observable) if and only if the first order system (57) with s = 1 is
admissible (resp. exactly observable). These imply that, for any s > 1, (57) is ad-
missible (resp. exactly observable, moreover it is exactly observable for any positive
time T if σess(A) = ∅).

Moreover, (55) is admissible if and only if (59) holds for some s > 1. Assuming
that it is admissible, it is exactly observable if and only if (60) holds for some s > 1.

N.b. the constants L, l, M , m in (10) and (11) for (55) on the one hand, and
Ls, ls, Ms, ms on the other hand are explicitly related. In the following example,
we only state these relations in the case s = 1 (e.g. this is used in [DM09]).
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Example 3.15. Assume the two resolvent conditions for A:

‖Cx‖2 6 L2(λ)

(
1

λ
‖(A− λ)x‖20 + ‖x‖20

)
, x ∈ D(A), λ ∈ [σ](A),

‖x‖2 6M2(λ)

(
1

λ
‖(A− λ)x‖20 + ‖Cx‖20

)
, x ∈ D(A). λ ∈ [σ](A),

where L2 is positively bounded from below and M2 → +∞ as λ→ +∞. We shall
compute the asymptotics as λ→ +∞ of the coefficients in the resolvent conditions
(13) and (14) for the wave-like equation (56). Firstly, the converse in theorem 3.5
with α = 2 yields

‖Cx‖2 6 L1(λ)‖(
√
A− λ)x‖20 + l1(λ)‖x‖20, x ∈ D(

√
A), λ ∈ [σ](

√
A),

‖x‖2 6M1(λ)‖(
√
A− λ)x‖20 +m1(λ)‖Cx‖20, x ∈ D(

√
A), λ ∈ [σ](

√
A),

with l1(λ) = 2L2(λ2), L1(λ) = 2 max
{

9L2(λ2), 4‖C‖2L(H1;Y )

}
, m1(λ) = 2M2(λ2)

and M1(λ) ∼ 2M2(λ2) max
{

9
2 , L1(λ) + l1(λ)

inf A

}
. Secondly, with the same compu-

tations as in theorem 3.8, theorem 3.14 yields (13) and (14) with l(λ) = l1(λ) =

2L2(λ2), L(λ) = L1(λ) = 2 max
{

9L2(λ2), 4‖C‖2L(H1;Y )

}
, m(λ) = 4m1(λ) = 8M2(λ2)

and M(λ) ∼ 2M2(λ2) max
{

9
2 , L(λ) + 2L2(λ2)

inf A , 2L(λ)
}

. In particular, if L2 is a

constant, then L is a constant, and M(λ) ∼ 2M2(λ2) max
{

9
2 , L+ 2L2

inf A , 2L
}

. If

L2 → +∞ as λ→ +∞, then L(λ) ∼ 18L2(λ2) and

M(λ) ∼ 4L2(λ2)M2(λ2) max

{
9 +

1

inf A
, 18

}
.

Similarly to corollary 3.11, we have in the case s = 2:

Corollary 3.16. Admissibility and exact observability for the wave-like equation
(56) hold if and only if 1√

λ
‖(A − λ)x‖0 + ‖Cx‖ is a norm on D(A) equivalent to

1√
λ
‖(A − λ)x‖0 + ‖x‖0 uniformly for λ > inf A > 0, and it implies admissibility

and exact observability (in any positive time T if moreover σess(A) = ∅) for the
Schrödinger-like equation (28).

Remark 3.17. We first discuss earlier results concerning the first part of corol-
lary 3.16, i.e. admissibility and observability resolvent conditions on A for the ad-
missibility and the observability of the wave-like equation. The implication for
observability was proved in [Mil05, proof of theorem 3.4]. The equivalence un-
der the additional assumption that the resolvent of A is compact was proved in
[RTTT05, proposition 4.5] for observability, and in [Erv09, theorem 2.2] for admis-
sibility by a proof through wavepackets conditions which does not relate explicitly
the constants in the resolvent conditions (as partly explained after [Erv09, theorem
2.2], the submitted version of [Erv09, (2.9)] was [Erv08, (7.2.10)] which contains a
spurious term in the right hand side; the privately communicated (51) for s = 2
gets rid of this spurious term and restricts the spectral interval; it was published
as [Erv09, (2.10)]).

Concerning the implication from the wave-like equation to the Schrödinger-like
equation in the second part of corollary 3.16: it was proved in [Mil05, theorem
3.1] for observability (cf. [TW09, theorem 6.7.2] for a simpler proof under the
additional assumption that the resolvent of A is compact, in which the cost cannot
be estimated, cf. remark 3.18); it was proved in [TW09, proposition 6.8.1] for
admissibility.
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Remark 3.18. Concerning the implication from the wave-like equation for some
time L > 0 to the Schrödinger-like equation for all times T > 0 in corollaries 3.11
and 3.16, the following stronger result is proved in [Mil05]: without the assumption
σess(A) = ∅, for all times T > 0, the controllability cost κ1,T for the Schrödinger-
like equation satisfies κ1,T 6 c exp(αL2/T ) where α is a universal constant and the
positive constant c depends only on the uniform lower and upper bounds for the
ratio between the two norms in corollaries 3.11 and 3.16 respectively (e.g. in the
case of boundary observation, c depends only on Ls, ls, Ms, ms in (51) and (52)
for s = 2). Although it is not explicit in [Mil05, theorem 3.1], this statement can
be easily checked on the explicit bound of κ1,T at the end of its proof: α and γ
come from an independent one dimensional problem, κ and d come from [Mil05,
theorem 3.4] hence from [Mil05, theorem 6.1] hence depend only on the observability
constants M2 and m2 of the wave-like equation, the admissibility constant K1,1 of
Schrödinger-like equation in time 1 comes from the corresponding constants L2

and l2 of the wave-like equation. We do not include here the proof of this result
since it combines resolvent conditions with the quite different control transmutation
method.

Example 3.19. Combining corollary 3.16 with the interior control version of [BLR92]
yields: under the geometric condition of Bardos, Lebeau and Rauch for the wave
equation in H1

0 × L2 with L2 interior controls, exact controllability in arbitrary
time holds for the Schrödinger equations generated by fractional Laplacians (−∆)α,
α > 1/2, in L2 with L2 interior controls. Recall that the heat equation generated
by these fractional Laplacians (a.k.a. anomalous diffusion), is null-controllable in
any positive time without geometric condition on the control set, cf. e.g. [Mil10].

4. Semidiscretization of a system with positive A

The framework of this section is the same as the previous section. In particular
we keep the notations introduced at the beginning of section 3: a positive A, its scale
of Sobolev spaces Hs and its observation system (27). This section introduces a
finite-dimensional approximation of this system which encompasses a wide range of
numerical schemes where the state spaceH0 is a space of functions on the continuum
Rd discretized on non-uniform meshes. It investigates the links between the infinite-
dimensional system (27) called the continuous system and such finite-dimensional
approximation called semidiscretized system because it applies to the discretization
of spatial variables but not the time variable.

4.1. Approximation spaces. Let (V h)h>0 be a family of finite-dimensional vector
spaces with injections Jh : V h → H0. We assume that the range Hh := JhVh of the
injection Jh is included in D(

√
A), therefore inducing a Hilbert structure on V h from

each Hs, s 6 1. Let V hs denote V h with the corresponding norm ‖v‖s = ‖Jhv‖s,
v ∈ V h. The dual J∗h : H0 → V h0 , defines the H0-orthogonal projection JhJ

∗
h from

H0 onto Hh, and the identity operator J∗hJh on V h.
Let πh be the H1-orthogonal projection from H1 onto Hh. The only approxima-

tion assumption we make is: ‖(I − πh)A−1/2‖1 = O(h), i.e. ∃c0 > 0,

‖x− πhx‖1 6 c0h‖x‖2, x ∈ D(A), h > 0.(61)

In other words ‖A1/2x−A1/2πhx‖0 6 c0h‖Ax‖0, recalling ‖x‖s = ‖As/2x‖0.
N.b. only the asymptotics h→ 0 matters in this section, hence h can be restricted

to a finite interval h ∈ (0, h0). When the approximation space V h is based on a
finite element, h is usually the maximal cell diameter of the mesh hK , or h = hθK
for some fixed θ > 0.
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Remark 4.1. The approximation assumption (61) is satisfied when Jh is the canon-
ical injection of the H1-conformal approximation space V h = Hh based on the P1

Lagrange finite element for a shape-regular family of affine, simplicial, geometri-
cally conformal meshes, cf. e.g. [EG04, Prop.1.134], where JhJ

∗
h and πh are denoted

Π0,1
c,h and Π1,1

c,h, or [QV94, §3.5] where they are denoted P 1
h and Π1

1,h. N.b. in prac-

tice (61) is weaker than [Erv11, (1.9)] where JhJ
∗
h and h are denoted πhπ

∗
h and

hθ, since [Erv11, (1.9)] is satisfied only for quasi-uniform meshes, cf. e.g. [EG04,
Prop.1.134(iii)] or [QV94, (3.5.21)]. N.b. quasi-uniform meshes satisfy the inverse
inequality (64), cf. [EG04, Remark 1.143(i)] or [QV94, (6.3.21)], which is not as-
sumed here unless explicitly.

Remark 4.2. The following lemma 4.4 proves that (61) is equivalent to: ∃c1 > 0,

inf
v∈V h

(‖x− Jhv‖0 + h‖x− Jhv‖1) 6 c1h
2‖x‖2, x ∈ D(A), h > 0,

or to the existence of an interpolation operator Ih : D(A)→ V h such that: ∃c1 > 0,

‖x− JhIhx‖0 + h‖x− JhIhx‖1 6 c1h2‖x‖2, x ∈ D(A), h > 0.

The approximation assumption appears in the literature in one of these three forms.

Remark 4.3. The framework of this section can be slightly generalized by consider-
ing two bounded linear operators: an injection Jh : V h → H0 and an interpolation
operator J∗h : H0 → V h (not necessarily the adjoint of Jh) such that J∗hJh is the
identity operator on V h. In this case J∗hJh is still a projection from H0 onto Hh

although this projection is not necessarily orthogonal, hence the only failing state-
ments in this section are the first two parts of lemma 4.8. Moreover, in practice
lemma 4.8 holds anyway since interpolation operators are usually required to sat-
isfy (70), e.g. finite element interpolation operators for a shape-regular family of
affine meshes does, cf. e.g. [EG04, Cor.1.109]. This framework also generalizes to
infinite-dimensional Hilbert spaces (V h)h>0. In this case, whenever the admissi-
bility of finite-dimensional systems is used explicitly in a proof, the corresponding
statement should assume the admissibility of the semidiscrete system.

The approximation assumption (61) is the same as [RTT07, (1.7)] (which deals
with stabilization rather than observability, and with second rather than first order
systems) and [CMT11, (1.4)] where h is denoted hθ. Indeed, each of these papers
makes a second approximation assumption: [RTT07, (1.8)] and [CMT11, (1.5)].
They are both a consequence of the first according to the following lemma (which
is a simple version of the Aubin-Nitsche lemma, cf. e.g. [EG04, lemma 2.31]).

Lemma 4.4. The approximation assumption (61) (in H1) implies the approxima-
tion in H0: ‖(I − πh)A−1/2‖0 = O(h) and ‖(I − πh)A−1‖0 = O(h2).

More precisely, (61) implies, with the same constant c0,

‖x− πhx‖0 6 c0h‖x‖1, x ∈ H1, h > 0,(62)

‖x− πhx‖0 6 c20h2‖x‖2, x ∈ H2, h > 0.(63)

Proof. Since A and πh are selfadjoint on H1, the H1-adjoint of (I − πh)A−1/2 is
A−1/2(I − πh), hence they have the same H1 operator norm and its square is the
H1 operator norm of the latter times the former. Therefore

‖(I − πh)A−1/2‖0 = ‖A−1/2(I − πh)‖0 = ‖(I − πh)A−1/2‖0 = c0h,

‖(I − πh)A−1‖0 = ‖(I − πh)2A−1‖0 = ‖A−1/2(I − πh)(I − πh)A−1/2‖1,

= ‖(I − πh)A−1/2‖21 = (c0h)2.

where (I − πh)2 = I − πh since I − πh is an H1-orthogonal projection as πh. �
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4.2. Galerkin approximation of the unitary group. In the framework of § 4.1,
the Ritz-Galerkin variational method considers the finite-dimensional positive self-
adjoint operator Gh = (

√
AJh)∗(

√
AJh) : Vh → Vh and approximates A by the

non-negative selfadjoint operator Ah = (
√
AJhJ

∗
h)∗(
√
AJhJ

∗
h) = JhGhJ

∗
h on H0.

Their spectra are related by σ(Ah) = σ(Gh) ∪ {0}.

Lemma 4.5. The infimum of the spectrum satisfies inf Gh > inf A > 0.
The spectrum satisfies σ(Gh) ⊂ [inf A, η0/h

2] if this inverse inequality holds

h‖x‖1 6
√
η0‖x‖0, x ∈ Hh.(64)

Proof. The first inequality results from (inf
√
A)2 = inf A and

inf Gh = inf
v∈Vh

〈Ghv, v〉0
‖v‖2

= inf
x∈Hh

〈
√
Ax,
√
Ax〉0

‖x‖20
> inf
x∈D(

√
A)

〈
√
Ax,
√
Ax〉0

‖x‖20
= (inf

√
A)2.

Using (64): supGh = supv∈Vh〈Ghv, v〉0/‖v‖
2 = supx∈Hh‖x‖21/‖x‖20 6 η0/h

2. �

N.b. the definition of Gh implies that the norm in V h1 coincides with the “H1

Sobolev norm corresponding to Gh” and the dual norms also coincide, i.e.

‖v‖1 = ‖Jhv‖1 = ‖G1/2
h v‖0 and ‖v‖−1 = ‖Jhv‖−1 = ‖G−1/2

h v‖0, v ∈ V h.(65)

Lemma 4.6. This equality of bounded operators on H0 defines Gh in terms of πh:

πhA
−1 = JhG

−1
h J∗h .(66)

The approximation assumption (61) is ‖(A−1 − JhG−1
h J∗h)x‖1 6 c0h‖x‖0, x ∈ H0.

It implies Ah converges to A in H1 strongly in the resolvent sense, i.e.:

(A− z)−1x→ (Ah − z)−1x in H1, x ∈ H1, Im z 6= 0.

Proof. For all v ∈ V h, 〈πhA−1x, Jhv〉1 = 〈A−1x, Jhv〉1 = 〈x, Jhv〉0 = 〈J∗hx, v〉0 =

〈G−1
h J∗hx, v〉1 = 〈JhG−1

h J∗hx, Jhv〉1. This proves (66).
Let R0(z) = (A − z)−1, z /∈ σ(A), and Rh(z) = Jh(Gh − z)−1J∗h , z /∈ σ(Gh).

According to lemma 4.5, the distance of 0 to σ(A) and to σ(Gh) is greater than
inf A, hence ‖Rh(0)‖ 6 1/ inf A, h > 0. For all z ∈ C such that |z| < inf A, the
Neumann series Rh(z) =

∑∞
k=0 z

kRh(0)k+1 converges for all |z| < inf A and h > 0
and the approximation assumption implies Rh(0)x → R0(0)x in H1 as h → 0,
hence Rh(z)x→ R0(z)x in H1. This property is propagated to all z ∈ C such that
Im z 6= 0 by Neumann series similarly, since the distance of z to σ(A) and to σ(Gh)
is greater than Im z. This completes the proof of the convergence in the strong
resolvent sense, since σ(Ah) ⊂ R and Rh(z) = (Ah − z)−1 for z /∈ σ(Ah). �

This convergence in the strong resolvent sense is called “convergence in the
generalized sense” in [Kat95, §.VIII.1.2] where the following two spectral properties
are deduced. All open set containing a point of σ(A) contains at least a point of
σ(Ah) for sufficiently large h, i.e. the spectrum does not expand suddenly in the limit
(in particular, with lemma 4.5: infh inf Gh = inf A). If λ ∈ R is not an eigenvalue
of A, then the finite dimensional spectral projections 1Ah<λ = Jh 1Gh<λ J

∗
h satisfy:

‖(1A<λ−1Ah<λ)x‖1 → 0, x ∈ H1.(67)

The following theorem is a quantitative version of the semigroup approximation
[Kat95, theorem IX.2.16] (i.e. convergence in the strong resolvent sense implies
strong convergence of the generated semigroups uniformly on finite time intervals).

Theorem 4.7. If xh → x in H0 (resp. in H1) then eitAhxh → eitAx in H0 (resp.
in H1) uniformly on finite intervals of t.
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More precisely, (61) implies these convergence rates in H1 and H0:

‖(eitAh − eitA)x‖1 6 c0h(t‖x‖4 + 2‖x‖2), x ∈ H4, h > 0, t ∈ R,(68)

‖(eitAh − eitA)x‖0 6 c20h2(t‖x‖4 + 2‖x‖2), x ∈ H4, h > 0, t ∈ R.(69)

Proof. We recall the formula [Kat95, (IX.2.27)] which is simply verified by taking
time derivatives: with R(ε) = (ε+A)−1 and Rh(ε) = (ε+Ah)−1,

Rh(ε)
(
eitAh − eitA

)
R(ε) = i

∫ t

0

ei(t−s)Ah (R(ε)−Rh(ε)) eisAds.

Taking the limit ε→ 0 yields, since Rh(ε)→ JhG
−1
h J∗h = πhA

−1 due to (66):(
eitAhπh − πheitA

)
A−2 = i

∫ t

0

ei(t−s)Ah(I − πh)A−1eisAds.

Combining this with (61), (63) and the unitarity of the group first yields

‖(eitAhπh − πheitA)x‖1 6 c0ht‖x‖4, x ∈ H4, h > 0, t ∈ R,

‖(eitAhπh − πheitA)x‖0 6 c20h2‖x‖4, x ∈ H4, h > 0, t ∈ R,

then completes the proof of (68) and (69). These imply the first statement of the
theorem since H4 = D(A2) is dense in H1 and in H0, and the group is unitary. �

The following lemma is used to approximate initial data in theorems 4.14 and 4.19.

Lemma 4.8. The approximation assumption (61) implies

‖x− JhJ∗hx‖0 6 c0h‖x‖1, x ∈ H1, h > 0,(70)

‖x− JhJ∗hx‖−1 6 c0h‖x‖0, x ∈ H0, h > 0,(71)

‖x− JhJ∗hx‖−1 6 c
2
0h

2‖x‖1, x ∈ H1, h > 0, ,(72)

JhJ
∗
hx→ x in H0 for all x ∈ H0 and AhπhA

−1x→ x in H−1 for all x ∈ H−1.

Proof. Using that JhJ
∗
h hence I − JhJ∗h are H0-orthogonal projection, ‖JhJ∗hξ‖0 6

‖ξ‖0, ξ ∈ H0, and ‖x − JhJ∗hx‖0 6 ‖x − πhx‖0, x ∈ H1, Hence (61) implies (70).
Replacing πh by JhJ

∗
h and H1 by H0 in the proof of lemma 4.4 deduces (71), (72).

To prove the first convergence, let x ∈ H0 and ε > 0. There exists xε ∈ H1 such
that ‖x− xε‖0 6 ε. Taking ξ = x− xε yields ‖JhJ∗h(x− xε)‖0 6 ε and (70) yields
‖xε−JhJ∗hxε‖0 6 c0h‖xε‖1. Hence ‖x−JhJ∗hx‖0 6 2ε+ c0h‖xε‖1. Taking first the
lim sup as h→ 0 then the limit ε→ 0 completes the proof of the first convergence.

The second convergence is proved similarly by density of H0 in H−1 since, for
xε ∈ H0, AhπhA

−1xε = JhGhJ
∗
hJhG

−1
h J∗hxε = JhJ

∗
hxε, and, for ξ = x− xε ∈ H−1,

‖AhπhA−1ξ‖−1 = ‖GhJ∗hπhA−1ξ‖−1 = ‖J∗hπhA−1ξ‖1 = ‖πhA−1ξ‖1 6 ‖A−1ξ‖1 =
‖ξ‖−1 using (66), (65) and that πh is an H1-orthogonal projection . �

4.3. “Interior” semidiscrete systems. In order to define the semidiscrete ob-
servation system for the generator Gh:

v̇h(t)− iGhvh(t) = 0, vh(0) = vh0 ∈ Hh, yh(t) = Chv
h(t),(73)

it seems natural to approximate the observation operator C by

Ch = CJh, C ∈ L(H1, Y ).(74)

N.b. in order for this definition of Ch to make sense we must assume C ∈ L(H1, Y ).
As already mentioned in §3.2.3, this assumption is in-between the general case
C ∈ L(H2, Y ) adapted to boundary observability of PDEs and the bounded case
C ∈ L(H0, Y ) adapted to interior observability of PDEs.

N.b. the norm of Ch in L(V h1 , Y ) is the norm of C in L(H1, Y ).
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4.3.1. Convergence of the observation systems. In this framework, the following
proposition discusses the convergence of the discrete observation yh in (73) to the
continuous observation y in (27) depending on the convergence of the initial data
Jhvh0 to x0 in H1. It uses the following lemma.

Lemma 4.9. Assume (27) is admissible. Consider (vh)h>0 in V h and x ∈ H0.
Weakly in L2(0, T ;Y ): Che

itGhG−1
h vh ⇁ CeitAA−1x implies Che

itGhvh ⇁ CeitAx.

Proof. If x ∈ D(A) then CA−1eitAx ∈ C1(0, T ;Y ) hence the following integration
by parts is justified, therefore by admissibility of (27) and density of D(A) in H0:

i

∫ T

0

〈CA−1eitAx, ϕ′(t)〉dt =

∫ T

0

〈CeitAx, ϕ(t)〉dt, x ∈ H0, ϕ ∈ C1
comp(0, T ;Y ).

Since Hh is finite dimensional, (73) is admissible and similarly

i

∫ T

0

〈ChG−1
h eitGhvh, ϕ′(t)〉dt =

∫ T

0

〈CheitGhvh, ϕ(t)〉dt, vh ∈ Hh.

The density of C1
comp(0, T ;Y ) in L2(0, T ;Y ) completes the proof. �

Proposition 4.10. Assume (74). Consider a family (vh)h>0 in V h.
If Jhv

h → x in H1 then Che
itGhvh → CeitAx in Y uniformly on finite intervals.

More precisely, (61) implies the convergence rate

‖(CheitGhJ∗h − CeitA)x‖ 6 ‖C‖L(H1,Y )c0h(t‖x‖4 + 2‖x‖2), x ∈ H4, h > 0, t ∈ R.

If Jhv
h ⇁ x in H1 then Che

itGhvh ⇁ CeitAx in L2(0, T ;Y ) for all T > 0.
If Jhv

h ⇁ x in H−1, x ∈ H0 and (27) is admissible then Che
itGhvh ⇁ CeitAx

in L2(0, T ;Y ) for all T > 0.

Proof. The first implication results from the convergence in H1 in the first part of
theorem 4.7, since Che

itGh = CeitAhJh and C ∈ L(H1, Y ). Moreover (68) implies
the convergence rate since Che

itGhJ∗h − CeitA = C(eitAh − eitA).
The strong convergence implication in the first part of theorem 4.7 also implies

the weak convergence implication: if xh ⇁ x in H1 then eitAhxh ⇁ eitAx in H1

uniformly on finite intervals of t. Using Che
itGh = CeitAhJh and C ∈ L(H1, Y )

again results in the second implication in proposition 4.10.
To prove the third implication, we assume Jhv

h ⇁ x in H−1, equivalently
JhG

−1
h vh ⇁ A−1x in H1. By the second implication, Che

itGhG−1
h vh ⇁ CA−1eitAx

in L2(0, T ;Y ). Lemma 4.9 completes the proof. �

4.3.2. From continuous to filtered discrete observability. We consider improved re-
solvent conditions for (27), s > 0: ∃Ls, ls, Ms, ms > 0,

‖Cx‖2 6 Ls
λs
‖(A− λ)x‖20 + ls‖x‖20, x ∈ H0, λ > inf A,(75)

‖x‖20 6
Ms

λs
‖(A− λ)x‖20 +ms‖Cx‖2, x ∈ H0, λ > inf A.(76)

Unfortunately such conditions do not imply the corresponding conditions for the
semidiscrete system (73) uniformly with respect to h. Therefore we consider uni-
form conditions for the semidiscrete system (73) restricted to the filtered space

1Gh<η/hσ V
h, where η and σ are positive filtering parameters: ∃L′s, l′s, M ′s, m′s > 0,

‖Chv‖2 6
L′s
λs
‖(Gh − λ)v‖20 + l′s‖v‖20, v ∈ 1Gh<η/hσ V

h, η/hσ > λ > inf A,

(77)

‖v‖20 6
M ′s
λs
‖(Gh − λ)v‖20 +m′s‖Chv‖2, v ∈ 1Gh<η/hσ V

h, η/hσ > λ > inf A.

(78)
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Theorem 4.11. Assume (74). Recall the approximation assumption (61) with c0.
If the continuous system (27) is admissible (resp. moreover exactly observable)

then, for all η > 0 (resp. for η > 0 small enough), there exists T > 0 such that the
semidiscrete system (73) restricted to the filtered space 1Gh<η/h V

h is admissible in
time T (resp. moreover exactly observable in time T ) uniformly in h ∈ (0, η).

If the second order system (55) is admissible and exactly observable then, for all
η > 0 small enough, for all T > 0, the semidiscrete system (73) restricted to the
filtered space 1Gh<η/h V

h is admissible and exactly observable in time T uniformly
in h ∈ (0, η).

If C ∈ L(H0;Y ) and the second order system (55) is admissible and exactly
observable then, for all η > 0 small enough, for all T > 0, the semidiscrete sys-
tem (73) restricted to the filtered space 1Gh<η/h4/3 V h is admissible and exactly

observable in time T uniformly in h ∈ (0, η).
More precisely, for σ = 1 and any s > 0, setting cη = max

{
(c0η)2, c0η

}
: for all

η > 0, (75) implies (77) with L′s = 4Ls and l′s = 4ls+2(‖C‖2 +2ls+2Ls/ inf As)c2η;

for η > 0 small enough such that ds = 1− c2η(1+4ms‖C‖2−4Ms/ inf As) > 0, (76)
implies (78) with M ′s = 2Ms/ds and m′s = 2ms/ds.

Proof. According to proposition 2.9, λ > inf A in (75), (76), (77), (78) can be
equivalently replaced by λ > 0 since inf Gh > inf A > 0. For s = 0, the range of λ
can be equivalently replaced by λ ∈ R. Thus, the first (resp. second) implication
of the theorem results from the last part of the theorem with s = 0 (resp. s = 1)
according to theorems 2.3 and 2.4 (resp. theorem 3.14 and remark 3.18).

To prove the last part of the theorem let v ∈ V h and consider xh = A−1JhGhv.
It satisfies Axh = JhGhv and πhx

h = Jhv due to (66), hence xh−Jhv = (I−πh)xh,

(A− λ)xh − Jh(Gh − λ)v = −λ(I − πh)xh, Cxh − Chv = C(I − πh)xh.

Using lemma 4.4, C ∈ L(H1, Y ) and (61), this implies ‖xh − Jhv‖0 6 c20h2‖Axh‖0,

‖(A− λ)xh − Jh(Gh − λ)v‖0 6 c20h2λ‖Axh‖0, ‖Cxh − Chv‖/‖C‖ 6 c0h‖Axh‖0.

Let σ = 1, s > 0, η > 0 and η/h > λ > 0. For v ∈ 1Gh<η/h V
h, ‖Axh‖0 =

‖Ghv‖0 6 (η/h)‖v‖0. Hence all the above norms are bounded by cη‖v‖0 for h < η.
Plugging these bounds in (75) and (76) for xh, and factoring out ‖v‖20 yields (77)
and (78) with the constants stated in the theorem.

To prove the third implication of the theorem, we assume C ∈ L(H0;Y ) and
(75) and (76) with s = 1. The above bound is now replaced by

‖Cxh − Chv‖/‖C‖ 6 c20h2‖Axh‖0,

which is better than λ−s/2‖(A − λ)xh − Jh(Gh − λ)v‖0 6 c20h
2λ1−s/2‖Axh‖0 for

s < 2, λ > 1. For v ∈ 1Gh<η/h4/3 V h, ‖Axh‖0 = ‖Ghv‖0 6 (η/h)4/3‖v‖0. Plugging

these bounds in (75) and (76) with s = 1 for xh, yield (77) and (78) with s = 1
and errors bounded by the square of c20h

2((η/h)4/3)1−1/2+1‖v‖0 for h < η, where
the power of h is zero. �

4.3.3. From filtered discrete to continuous observability. We prove that generalized
resolvent conditions for the continuous system (27),

‖Cx‖2 6 L(λ)‖(A− λ)x‖20 + l(λ)‖x‖20, x ∈ D(A), λ > λ0 > 0,(79)

‖x‖20 6M(λ)‖(A− λ)x‖20 +m(λ)‖Cx‖2, x ∈ D(A), λ > λ0 > 0,(80)

where l, L, m and M are bounded positive functions on (0,+∞), can be obtained
as the h-limit of the following h-uniform resolvent conditions for the semidiscrete
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system (73) restricted to the filtered space 1Gh<f(h) V
h, where f : (0, h0)→ (0,+∞)

decreases and f(h)→ +∞ as h→ 0:

‖Chv‖2 6 L(λ)‖(Gh − λ)v‖20 + l(λ)‖v‖20, v ∈ 1Gh<f(h) V
h, λ ∈ [λ0, f(h)),(81)

‖v‖20 6M(λ)‖(Gh − λ)v‖20 +m(λ)‖Chv‖2, v ∈ 1Gh<f(h) V
h, λ ∈ [λ0, f(h)).(82)

Theorem 4.12. Assume (74). The semidiscrete admissibility (resp. observability)
resolvent condition (81) implies (79) (resp. (82) implies (80)).

Proof. Consider x ∈ D(A) and µ > λ > λ0. It is enough to prove (79) and (80)
for x replaced by 1A<µ x since ‖x− 1A<µ x‖2 = ‖A1A>µ x‖0 → 0 as µ → ∞. Let
hµ > 0 such that f(hµ) > µ, and let vh = 1Gh<µ J

∗
hπhx ∈ 1Gh<f(h) V

h for all
h ∈ (0, hµ). Since 1Ah<µ πh − 1A<µ = (1Ah<µ−1A<µ)πh + 1Ah<µ(I − πh), using
(67) and (61) yields ‖Jhvh − 1A<µ x‖1 = ‖(1Ah<µ πh − 1A<µ)x‖1 → 0 as h → 0.
Since C ∈ L(H1, Y ), this convergence implies ‖Chvh − C 1A<µ x‖ = ‖C(Jhv

h −
1A<µ)x‖ → 0. Since JhGhv

h = Jh 1Gh<µGhJ
∗
hπhA

−1Ax = 1Ah<µAx due to (66),
since ‖(1A<µ−1Ah<µ)Ax‖0 → 0 due to (67), the convergence Jhv

h → 1A<µ x in
H1 hence in H0 implies ‖Jh(Gh − λ)vh − (A− λ) 1A<µ x‖0 → 0. Therefore, taking
the limit h→ 0 in (81) and (82) for vh implies (79) and (80) for 1A<µ x. �

4.3.4. Convergence of the filtered control systems. We consider the semidiscrete
control system dual to (73) with Bh = (A1/2Jh)∗A−1/2B = GhJ

∗
hπhA

−1B (which
is both the dual of Ch : V h1 → Y and the adjoint of Ch : V h0 → Y ),

ψ̇h(t)− iGhψh(t) = Bhu
h, ψh(0) = ψh0 ∈ Hh, uh ∈ L2

loc(R;Y ).(83)

N.b. the norm of Bh in L(Y ;V h−1) is the norm of C in L(H1, Y ). According to
theorems 2.3 and 2.4, the admissibility and exact observability resolvent conditions
(81) and (82) for constant l, L, m and M are equivalent to the admissibility and
exact observability of (73) restricted to the filtered space 1Gh<f(h) V

h for some
T > 0 uniformly in h. As in definitions 2.1 and 2.2, the dual notions for (83) are
the following. There is an admissibility cost KT such that:

‖
∫ T

0

eitGhBhu
h(t)dt‖2 6 KT

∫ T

0

‖uh(t)‖2dt, uh ∈ L2(R;Y ).(84)

There is a controllability cost κT > 0 such that: ∀ψ0 ∈ Hh, ∃uh ∈ L2(R;Y ),

uh(t) = 0, t /∈ [0, T ], 1Gh<f(h) ψ
h(T ) = 0 and

∫ T

0

‖uh(t)‖2dt 6 κT ‖ψh0 ‖20.(85)

The following theorem discusses the convergence of the inputs uh for the dis-
crete system (83) to the input u for the continuous system (28) depending on the
convergence of the initial data Jhψ

h
0 to ξ0. It needs the notion of minimal control in-

vestigated by Jacques-Louis Lions, a.k.a. HUM control after the Hilbert Uniqueness
Method he introduced (cf. [Lio88]), and the characterization of this minimal control
u in (28) as the only control being also an observation y in (27). For completeness,
we prove this result and the same result for the discrete system (83).

Proposition 4.13. If (27) is admissible and exactly observable in time T at cost
κT then among all the inputs u such that the solution of (28) satisfies ξ(T ) = 0,
there is one of minimal norm in L2(0, T ;Y ) and this is the only one for which there
exists x0 ∈ H0 such that u(t) = CeitAx0, t ∈ [0, T ]. Moreover it satisfies

‖x0‖0 6 κT ‖ξ0‖0 and − 〈x0, ξ0〉0 =

∫ T

0

‖u(t)‖2dt 6 κT ‖ξ0‖20.(86)

If (73) restricted to the filtered space 1Gh<f(h) V
h is exactly observable in time T ,

among all the inputs uh such that the solution of (83) satisfies 1Gh<f(h) ψ
h(T ) = 0,
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there is one of minimal norm in L2(0, T ;Y ) and this is the only one for which there
exists vh0 ∈ Hh such that uh(t) = Che

itGhvh0 , t ∈ [0, T ].

Proof. The Hilbert space H0 with the hermitian scalar product 〈·, ·〉0 is also a real
Hilbert space with the scalar product Re〈·, ·〉0. Consider the strictly convex C1

functional J defined on the real Hilbert space H0 by density and admissibility as

J(x) =
1

2

∫ T

0

‖CeitAx‖2dt+ Re〈x, ξ0〉0, x ∈ D(A).(87)

Exact observability implies J(x) > 1
2κT
‖x‖2+Re〈x, ξ0〉0, hence J is coercive. There-

fore J has a unique minimizer x∗ ∈ H0, i.e. J(x∗) = infx∈H0 J(x), and the gradient
∇J computed with respect to the real scalar product Re〈·, ·〉0 vanishes at x∗, hence

0 = eiTA∇J(x∗) =

∫ T

0

ei(T−t)ABCeitAx∗dt+ eiTAξ0.

This equation also says that the solution of (28) with the input u∗(t) = CeitAx∗
reaches the final state ξ(T ) = 0. In terms of this u∗, 〈∇J(x∗), x∗〉0 = 0 writes∫ T

0

‖u∗(t)‖2dt =

∫ T

0

‖CeitAx∗‖2dt = −〈x∗, ξ0〉0.(88)

The second equality and observability yield 1
κT
‖x∗‖20 6 −〈x∗, ξ0〉0 6 ‖x∗‖0‖ξ0‖0.

Hence ‖x∗‖0 6 κT ‖ξ0‖0. Plugging this in (88) yields (86) for x∗ and u∗.
Integrating by parts in time the scalar product in H0 of (27) and (28) yields:

〈eiTAx0, ξ(T )〉0 = 〈x0, ξ0〉0 +

∫ T

0

〈CeitAx0, u(t)〉dt,(89)

for all x0, ξ0 in H0 and u in L2(R;Y ). Thus u controls ξ0 in time T if and only if

0 = 〈x, ξ0〉0 +

∫ T

0

〈CeitAx, u(t)〉dt, x ∈ H0.(90)

The minimality of u∗ results from this consequence of (88) and (90) with x = x∗:

‖u∗‖2L2(0,T ;Y ) =

∫ T

0

‖u∗(t)‖2dt =

∫ T

0

〈u∗(t), u(t)〉dt 6 ‖u∗‖L2(0,T ;Y )‖u‖L2(0,T ;Y ).

Writing (90) twice with x = x0 − x∗, once with u(t) = CeitAx0 and once with
u∗(t) = CeitAx∗, then taking the difference of the two equations yields

0 =

∫ T

0

〈CeitAx, u(t)− u∗(t)〉dt =

∫ T

0

‖CeitAx‖2dt.

Exact observability deduces ‖x‖2 = 0, therefore x0 = x∗ hence u = u∗.
The second implication is proved similarly considering the functional Jh defined

on the real Hilbert space 1Gh<f(h) V
h with scalar product Re〈·, ·〉0 by

Jh(v) =
1

2

∫ T

0

‖CheitGhv‖2dt+ Re〈v, ψ0〉0, v ∈ 1Gh<f(h) V
h.

The projection 1Gh<f(h) commutes with eiTGh and, for this scalar product,

∇Jh(v) = 1Gh<f(h)

∫ T

0

e−itGhBhChe
itGhvdt+ 1Gh<f(h) ψ0.

The solution of (83) with uh satisfies 1Gh<f(h) ψ
h(T ) = 0 if and only if, as (90),

0 = 〈vh0 , ψh0 〉0 +

∫ T

0

〈CheitGhvh0 , uh(t)〉dt, vh0 ∈ 1Gh<f(h) V
h.(91)
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N.b. admissibility holds since 1Gh<f(h) V
h is finite dimensional (this proposition

does not mention uniformity in h). �

Theorem 4.14. Assume (74). Consider a family of initial data (ψh0 )h>0 in V h and
a family of inputs (uh)h>0 in L2(0, T ;Y ) such that uh controls ψh0 in time T in the
filtered space 1Gh<f(h) V

h, i.e. the solution of (83) satisfies 1Gh<f(h) ψ
h(T ) = 0.

If Jhψ
h
0 ⇁ ξ0 weakly in H−1 and uh ⇁ u weakly in L2(0, T ;Y ) then u controls

ξ0 in time T , i.e. the solution of (96) satisfies ξ(T ) = 0.
Assume the discrete system (73) restricted to the filtered space 1Gh<f(h) V

h with

the V h0 norm and the system (27) are admissible and exactly observable in time T
uniformly in h (equivalently (84) and (85) hold, and (28) is admissible and exactly
controllable in time T ). If Jhψ

h
0 → ξ0 in H0 then the minimal control uh of ψh0

converges in L2(0, T ;Y ) to the minimal control u of ξ0 given in proposition 4.13.
E.g. this applies to ψh0 = J∗hξ0 for all ξ0 in H0, cf. lemma 4.8.

Proof. As in the proof of proposition 4.13, integrating by parts in time the duality
pairing between H1 and H−1 of (95) and (96), u controls ξ0 if and only if

0 = 〈x0, ξ0〉1,−1 +

∫ T

0

〈CeitAx0, u(t)〉dt, x0 ∈ H1,(92)

and uh controls ψh0 in time T in the filtered space 1Gh<f(h) V
h if and only if (91).

As in the proof of theorem 4.12, consider x0 ∈ D(A), µ > λ > 0, hµ > 0 such
that f(hµ) > µ, and vh0 = 1Gh<µ J

∗
hπhx0 ∈ 1Gh<f(h) V

h for all h ∈ (0, hµ). Recall

from the proof of theorem 4.12, Jhv
h
0 → 1A<µ x0 in H1 as h→ 0. Proposition 4.10

deduces Che
itGhvh0 → CeitAx0 in L2(0, T ;Y ). Therefore the two assumptions of the

first implication allows taking the limit h→ 0 in (91) and yield (92) for x0 replaced
by 1A<µ x0. Taking the limit µ→∞ and recalling from the proof of theorem 4.12

1A<µ x0 → x0 in H2, hence in H1, yield (92) for x0 in H2, hence in H1 by density.
This completes the proof of the first implication.

Let uh(t) = Che
itGhvh0 be the minimal control of ψh0 and u∗(t) = CeitAx∗ be

the minimal control of ξ0 provided by the Hilbert Uniqueness Method in proposi-
tion 4.13. Similarly to (86) we have

‖vh0 ‖0 6 κT ‖ψh0 ‖0 and − 〈vh0 , ψh0 〉0 =

∫ T

0

‖uh(t)‖2dt 6 κT ‖ψh0 ‖20,(93)

where κT is the uniform controllability cost in (85). Since ψh0 converges in H0,
we deduce that Jhvh0 and uh are bounded respectively in H0 and L2(0, T ;Y ). We
deduce that, after extracting a sequence if needed, (uh) has a weak limit u in
L2(0, T ;Y ) and, after extracting again a sequence if needed, (Jhvh0 ) has a weak
limit x0 in H0. Since Jhψ

h
0 → ξ0 in H0 hence in H−1, the first implication now

ensures that u controls ξ0 in time T . Since Jhvh0 → x0 in H0 hence in H−1,
proposition 4.10 ensures uh(t) = Che

itGhvh0 ⇁ CeitAx0 in L2(0, T ;Y ). Therefore
u(t) = CeitAx0 in L2(0, T ;Y ). Hence proposition 4.13 ensures that x0 = x∗ and
u = u∗. Thus u∗ is the only accumulation point of (uh) weakly in L2(0, T ;Y ),
hence uh ⇁ u∗ in L2(0, T ;Y ). Since Jhvh0 ⇁ x0 = x∗ in H0 and Jhψh0 → ξ0 in H0,
the left hand side of the equality in (93) converges to the right hand side of (88).
Hence the norm of uh converges to the norm of u∗. Since we already proved the
weak convergence of uh to u∗ in L2(0, T ;Y ), this proves the strong convergence,
which completes the proof of the second implication. �

Remark 4.15. The investigation in §4 was triggered by the approach introduced
by Sylvain Ervedoza in [Erv08] under the assumptions C ∈ L(Hγ , Y ), γ ∈ [0, 1)
and A−1 is compact. After the version of [Erv09, Erv11] in [Erv08] was submitted,
the author privately communicated to Ervedoza an improvement of the filtering
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scale now included in [Erv09, Erv11]. E.g. with the current notations Ervedoza
proved his main theorem with [Erv08, (6.1.11)] σ = min {2(1− γ), 2/5} using a
version of the resolvent condition which he called interpolation inequalities; the
author improved it to [Erv11, (1.11)] σ = min {2(1− γ), 2/3} using proposition 2.9
instead. Similarly, the author improved [Erv08, (7.1.12)] into [Erv09, (1.12)], cf.
[Erv09, remark 3.1].

Theorem 4.11 improves [Erv11, theorem 1.3] in four ways: the approximation
assumption (61) is weaker in practice (cf. remark 4.1), the assumption on the ob-
servation operator C ∈ L(H1, Y ) is weaker, A−1 is not assumed to be compact, the
filtering power σ = min {2(1− γ), 2/3} is improved into σ = 1.

The converse Trotter-Kato type theorem 4.12 is not considered in [Erv11].
The second part of theorem 4.14 improves [Erv11, theorem 6.2] by eliminating,

thanks to lemma 4.9, the dubiously used assumption [Erv11, (6.11)] which limited
to C ∈ L(H0;Y ) the validity of [Erv11, theorem 6.2] and the validity of the con-
vergence of the observation. Proposition 4.10 also improves this convergence of the
observation in particular by providing explicit convergence rates. Theorem 4.7 is
proved here, with no claim of originality, since we could not find the proof of the
similar [Erv11, lemma 6.4] in the reference given for it.

4.4. “Boundary” semidiscrete systems. To address the general case of §3
which suits boundary observability of PDEs, i.e. C ∈ L(H2, Y ), we need to modify
the definition (74) of the approximate observation operator. Thus we consider the
semidiscrete observation system (73) with (74) replaced by:

Ch = CA−1JhGh, C ∈ L(H2, Y ).(94)

N.b. ‖Chv‖ 6 ‖C‖L(H2,Y )‖Ghv‖0 but the V h2 norm ‖v‖2 was not defined as ‖Ghv‖0.

4.4.1. Convergence of the observation systems. Similarly to proposition 4.10:

Proposition 4.16. Assume (94). Consider a family (vh)h>0 in V h and x ∈ D(A).
If JhGhv

h → Ax in H0 then Che
itGhvh → CeitAx in Y uniformly on finite

intervals of t. More precisely, (61) implies the convergence rate: ∀h > 0, ∀t ∈ R,

‖(CheitGhJ∗hπh − CeitA)x‖ 6 ‖C‖L(H2,Y )c
2
0h

2(t‖x‖6 + 2‖x‖4), x ∈ H6.

If JhGhv
h ⇁ Ax in H0 then Che

itGhvh ⇁ CeitAx in L2(0, T ;Y ) for all T > 0.
If Jhv

h ⇁ x in H0, x ∈ H1 and (95) is admissible then Che
itGhvh ⇁ CeitAx in

L2(0, T ;Y ) for all T > 0.

Proof. The first implication results from the convergence in H0 in theorem 4.7,
since Che

itGh = CA−1eitAhJhGh and CA−1 ∈ L(H0, Y ). Since (66) is equivalent
to A = JhGhJ

∗
hπh on D(A), we have Che

itGhJ∗hπh−CeitA = CA−1(eitAh − eitA)A.
Therefore (69) implies the convergence rate in proposition 4.16.

The second implication in proposition 4.16. is proved as in proposition 4.10.
To prove the third implication, we rewrite the assumption Jhv

h ⇁ x in H0, as
JhGh(G−1

h vh) ⇁ A−1(Ax) in H0. The second implication yields Che
itGhG−1

h vh ⇁
CA−1eitAx in L2(0, T ;Y ). Since x ∈ H1 and (95) is admissible, this completes the
proof as in lemma 4.9. �

4.4.2. Continuous and filtered discrete observability. For boundary observation and
in relation to the second order system (47), it is natural to consider the unitary
group on H1 instead of H0, i.e. we consider (49) and (50) for s = 2:

ẋ(t)− iAx(t) = 0, x(0) = x0 ∈ H1, y(t) = Cx(t),(95)

ξ̇(t)− iA′ξ(t) = Bu(t), ξ(0) = ξ0 ∈ H−1, u ∈ L2
loc(R;Y ).(96)
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We consider improved resolvent conditions for (95): ∃Ls, ls, Ms, ms > 0,

‖Cx‖2 6 Ls
λs
‖(A− λ)x‖21 + ls‖x‖21, x ∈ H3, λ > 0,(97)

‖x‖21 6
Ms

λs
‖(A− λ)x‖21 +ms‖Cx‖2, x ∈ H3, λ > 0.(98)

Recall from (65) that the V h1 norm on V h is ‖v‖1 = ‖Jhv‖1 = ‖G1/2
h v‖, v ∈ V h. We

also consider the improved resolvent conditions (77) and (78) for the semidiscrete
system (73) but with this V h1 norm instead of the V h0 norm: ∃L′s, l′s, M ′s, m′s > 0,

‖Chv‖2 6
L′s
λs
‖(Gh − λ)v‖21 + l′s‖v‖21, v ∈ 1Gh<η/hσ V

h, η/hσ > λ > 0,(99)

‖v‖21 6
M ′s
λs
‖(Gh − λ)v‖21 +m′s‖Chv‖2, v ∈ 1Gh<η/hσ V

h, η/hσ > λ > 0.

(100)

Similarly to theorem 4.12, :

Theorem 4.17. Assume (94). The semidiscrete admissibility (resp. observability)
resolvent condition (81) implies (79) (resp. (82) implies (80)) when replacing the
H0 norms by H1 norms and D(A) by H3 in all these resolvent conditions.

Proof. Few modifications of the proof of theorem 4.12 are necessary.
Consider x ∈ H3 and µ > λ > λ0. It is enough to prove (79) and (80) for

x replaced by 1A<µ x since ‖x − 1A<µ x‖3 = ‖A1A>µ x‖1 → 0 as µ → ∞. Let
hµ > 0 such that f(hµ) > µ, and let vh = 1Gh<µ J

∗
hπhx ∈ 1Gh<f(h) V

h for all

h ∈ (0, hµ). Recall from the proof of theorem 4.12 that ‖Jhvh → 1A<µ x‖1 → 0
as h → 0 and JhGhv

h = 1Ah<µAx. Moreover ‖(1A<µ−1Ah<µ)Ax‖1 → 0 due to
(67). Hence ‖Jh(Gh−λ)vh−(A−λ) 1A<µ x‖1 → 0. Since Chv

h = CA−1JhGhv
h =

CA−1 1Ah<µAx and CA−1 ∈ L(H0, Y ) due to (94), this also implies ‖Chvh −
C 1A<µ x‖ = ‖CA−1(1Ah<µ−1A<µ)Ax‖ → 0. Therefore, replacing the H0 norms
by H1 norms and D(A) by H3 and taking the limit h → 0 in (81) and (82) for vh

implies (79) and (80) for 1A<µ x. �

Similarly to theorem 4.11 for the direct implications and due to theorem 4.12 for
the converse implications:

Theorem 4.18. Assume that the observation operators satisfy (94).
The continuous system (95) is admissible (resp. moreover exactly observable) if

and only if, for all η > 0 (resp. for η > 0 small enough), there exists T > 0 such
that the semidiscrete system (73) restricted to the filtered space 1Gh<η/h2/3 V h with

the V h1 norm is admissible (resp. moreover exactly observable) in time T uniformly
in h ∈ (0, 1).

If the second order system (47) is admissible and exactly observable then, for
η > 0 small enough, for all T > 0, the semidiscrete system (73) restricted to the
filtered space 1Gh<η/h V

h with the V h1 norm is admissible and exactly observable in
time T uniformly in h ∈ (0, 1).

The continuous system (27) is admissible (resp. moreover exactly observable) if
and only if, for all η > 0 (resp. for η > 0 small enough), there exists T > 0 such
that the semidiscrete system (73) restricted to the filtered space 1Gh<η/h V

h with

the V h0 norm is admissible (resp. moreover exactly observable) in time T uniformly
in h ∈ (0, 1).

More precisely, for s ∈ [0, 4) and σ = 1/(1 − s/4) (resp. s ∈ [0, 3) and σ =
2/(3−s)), for all η > 0, (75) implies (77) (resp. (97) implies (99)); for η > 0 small
enough (76) implies (78) (resp. (97) implies (99)).
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Proof. According to proposition 2.9, λ > 0 in (97), (98), (99), (100) can be equiv-
alently replaced by λ > inf A since inf Gh > inf A > 0. For s = 0, the range of
λ can be equivalently replaced by λ ∈ R. Thus, the first and third (resp. second)
implication of the theorem results from the last part of the theorem with s = 0
(resp. s = 1) according to theorems 2.3 and 2.4 (resp. theorem 3.8).

To prove the last part of the theorem let v ∈ V h and consider xh = A−1JhGhv
as in the proof of theorem 4.11. Due to (94), we now have Chv = Cxh.

Recall from the proof of theorem 4.11 that lemma 4.4 implies:

‖xh − Jhv‖0 6 c20h2‖Axh‖0, ‖(A− λ)xh − Jh(Gh − λ)v‖0 6 c20h2λ‖Axh‖0.

For v ∈ 1Gh<η/hσ V
h, ‖Axh‖0 = ‖Ghv‖0 6 (η/hσ)‖v‖0. Plugging these bounds

in (75) and (76) for xh yield (77) and (78) with errors bounded by the square of
cηh

2−σ(2−s/2)‖v‖0 for h < 1, where the power of h is zero for σ = 1/(1− s/4), and
cη = max

{
(c0η)2, c0η

}
→ 0 as η → 0.

Similarly, the approximation assumption (61) yields:

‖xh − Jhv‖1 6 c0h‖Axh‖0, ‖(A− λ)xh − Jh(Gh − λ)v‖1 6 c0hλ‖Axh‖0.

For v ∈ 1Gh<η/hσ V
h, ‖Axh‖0 = ‖Ghv‖0 6 (η/hσ)1/2‖v‖1. Plugging these bounds

in (97) and (98) for xh yield (99) and (100) with errors bounded by the square of
cηh

1−σ(3−s)/2‖v‖0 for h < 1, and the power of h is now zero for σ = 2/(3− s). �

4.4.3. Convergence of the filtered control systems. We consider the semidiscrete
control system (83) dual to (73) with Bh = GhJ

∗
hA
−1B (which is both the dual of

Ch : V h2 → Y and the adjoint of Ch : V h0 → Y ), n.b. ‖G−1
h Bhy‖0 6 ‖C‖L(H2,Y )‖y‖.

Theorem 4.19. Assume (94). Consider a family of initial data (ψh0 )h>0 in V h and
a family of inputs (uh)h>0 in L2(0, T ;Y ) such that uh controls ψh0 in time T in the
filtered space 1Gh<f(h) V

h, i.e. the solution of (83) satisfies 1Gh<f(h) ψ
h(T ) = 0.

If Jhψ
h
0 ⇁ ξ0 weakly in H−1 and uh ⇁ u weakly in L2(0, T ;Y ) then u controls

ξ0 in time T , i.e. the solution of (96) satisfies ξ(T ) = 0.
Assume the discrete system (73) restricted to the filtered space 1Gh<f(h) V

h with

the V h1 norm and the system (95) are admissible and exactly observable in time T
uniformly in h. If Jhψ

h
0 → ξ0 in H−1 then the minimal control uh of ψh0 converges in

L2(0, T ;Y ) to the minimal control u of ξ0. E.g. this applies to ψh0 = GhJ
∗
hπhA

−1ξ0
for all ξ0 in H−1, cf. lemma 4.8.

Proof. Few modifications of the proof of theorem 4.14 are necessary.
In the proof of the first implication, proposition 4.16 replaces proposition 4.10.

In order to apply this proposition 4.16 to vh0 as in the proof of theorem 4.14, recall
from the proof of theorem 4.12 that JhGhv

h
0 → A1A<µ x0 in H0 as h→ 0.

The proof of the second implication uses the Hilbert Uniqueness Method as in
proposition 4.13 but the H0 scalar product in the functional (87) is replaced by the
the duality pairing between H1 and H−1. Thus (86) and and (93) are replaced by

‖x0‖1 6 κT ‖ξ0‖−1 and − 〈x0, ξ0〉1,−1 =

∫ T

0

‖u(t)‖2dt 6 κT ‖ξ0‖2−1,(101)

‖vh0 ‖1 6 κT ‖ψh0 ‖−1 and − 〈vh0 , ψh0 〉1,−1 =

∫ T

0

‖uh(t)‖2dt 6 κT ‖ψh0 ‖2−1.(102)

Since ψh0 converges in H−1, we deduce that Jhvh0 and uh are bounded respectively
in H1 and L2(0, T ;Y ). We deduce that, after extracting a sequence if needed, (uh)
has a weak limit u in L2(0, T ;Y ) and, after extracting again a sequence if needed,
(Jhvh0 ) has a weak limit x0 in H1. Since Jhψ

h
0 → ξ0 in H−1 strongly hence weakly,

the first implication now ensures that u controls ξ0 in time T . Since Jhvh0 ⇁ x0
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in H1 hence in H0, proposition 4.16 ensures uh(t) = Che
itGhvh0 ⇁ CeitAx0 in

L2(0, T ;Y ). Therefore u(t) = CeitAx0 in L2(0, T ;Y ). As in proposition 4.13, we
deduce x0 = x∗ and u = u∗. Thus u∗ is the only accumulation point of (uh) weakly
in L2(0, T ;Y ), hence uh ⇁ u∗ in L2(0, T ;Y ). Since (Jhvh0 ) ⇁ x0 = x∗ in H1 and
(Jhψh0 ) → ξ0 in H−1, the left hand side of the equality in (102) converges to the
left hand side of the equality in (101). Hence the norm of uh converges to the
norm of u = u∗. Since we already proved the weak convergence of uh to u∗ in
L2(0, T ;Y ), this proves the strong convergence, which completes the proof of the
second implication. �

4.5. Second order semidiscrete systems.

4.5.1. Framework for the Galerkin approximation of second order systems. Sec-
tion 3.2 explains how the second order observation systems both in the “boundary”
case (47) and the “interior” case (55) fit in the general framework of §2.1. Since
they are dual to each other, from now on the state space and the operator gener-
ating the observation system are denoted by X and A in the “boundary” case, by
X ′ and A′ in the “interior” case (X is the “energy space” for the wave equation).
Using the new notation

Zs = Hs+1 ×Hs, ‖(z0, z1)‖2s = ‖Az0‖2 + ‖z1‖2 = ‖A(s+1)/2z0‖20 + ‖As/2z1‖20,
these state spaces and operators are defined by

X = Z0 = X ′1 = D(A′), D(A) = X1 = Z1, X−1 = Z−1 = X ′, Z−2 = X ′−1,

with duality pairing 〈(z0, z1), (ζ0, ζ1)〉 = 〈A1/2z0, A
−1/2ζ1〉0 − 〈z1, ζ0〉0,

A(z0, z1) = i(−z1, Az0), A′(z0, z1) = i(−z1, A
′z0).

Thus A′ is an extension of A to Z−1 with domain Z0.
The spectra and spectral projections of A and A are linked by the isomorphism

W in the proof of theorem (3.8):

σ(A) = σ(
√
A) ∪ σ(−

√
A), 1A2<λ(z0, z1) = (1A<λ z0,1A<λ z1).(103)

In both cases the observation operator C is bounded on the domain of the gener-
ator of the observation system, it is defined by C(z0, z1) = Cz0 and the dual control
operator B is defined by By = (0, By). Thus C ∈ L(Z1, Y ) and B ∈ L(Y, Z−2) in
the “boundary” case, C ∈ L(Z0, Y ) and B ∈ L(Y,Z−1) in the “interior” case.

The approximation spaces are Wh = Wh ×Wh with injections Jh : Wh → Z0

defined by Jh(w0, w1) = (Jhw0, Jhw1). Let Wh
s denote Wh with the norm ‖w‖s =

‖Jhw‖s, w ∈ Wh, induced by Jh from Zs. The dual J ∗h : Z0 → Wh
0 is defined

by J ∗h (z0, z1) = (J∗hπhz0, J
∗
hz1). The Z0-orthogonal projection from Z0 onto Zh is

JhJ ∗h defined by JhJ ∗h (z0, z1) = (πhz0, JhJ
∗
hz1), and J ∗hJh is the identity operator

on Wh.
The Ritz-Galerkin variational method considers the finite-dimensional positive

self-adjoint operator on Gh on Wh
0 defined by Gh(w0, w1) = i(−w1, Ghw0), approx-

imates A by the non-negative selfadjoint operator Ah = JhGhJ ∗h on Z0 defined
by Ah(z0, z1) = (−J∗hJhz1, Ahπhz0), approximates C by the observation operator
Ch defined by Ch(w0, w1) = Chw0, and approximates B by the control operator Bh
defined by Bhy = (0, Bhy). In the “interior” case the definition of Ch is (74) thus
Ch = CJh, in the “boundary” case the definition of Ch is (94) thus Ch = CA−1JhGh.

The dual observation and control systems generated by Gh are:

ẅh(t) +Ghw
h(t) = 0, wh(0) = w0 ∈ V h, ẇh(0) = w1 ∈ V h, y(t) = Chw

h(t),(104)

Ψ̈h(t) +GhΨh(t) = Bhu
h(t),Ψ(0) = Ψ0 ∈ V h, Ψ̇(0) = Ψ1 ∈ V h, u ∈ L2

loc(R;Y ).

(105)
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We still denote by πh the projection defined on H1×H1 by πh(z0, z1) = (πhz0, πhz1).
The approximation assumption (61) and its consequence (62) write:

‖z − πhz‖0 6 c0h‖z‖1, z ∈ Z1, h > 0.(106)

As in lemma 4.6, in terms of πh, Gh is defined by

πhA−1 = JhG−1
h J

∗
h ,(107)

hence ‖(A−1 − JhG−1
h J ∗h )z‖0 6 c0h‖z‖0, x ∈ H0. Therefore Ah converges to A in

Z0 strongly in the resolvent sense. In particular, if λ ∈ R is not an eigenvalue of A,
then the finite dimensional spectral projections 1Ah<λ = Jh 1Gh<λ J ∗h satisfy:

‖(1A<λ−1Ah<λ)z‖0 → 0, z ∈ Z0.(108)

The proof of theorem 4.7, (106) and (107) yield:

Theorem 4.20. If zh → z in Z0 then eitAhzh → eitAz in Z0 uniformly on finite
intervals of t, i.e. the solutions z and w of (47) and (104) satisfy:

sup
t∈[0,T ]

(
‖wh(t)− z(t)‖1 + ‖ẇh(t)− ż(t)‖0

)
→ 0, (z(0), ż(0)) ∈ H1 ×H0, T ∈ R.

More precisely, (61) implies the convergence rate:

‖(eitAh − eitA)z‖0 6 c0h(t‖z‖2 + 2‖z‖1), z ∈W2, h > 0, t ∈ R.(109)

If (z(0), ż(0)) ∈ H3×H2, wh(0) = πhz(0) and ẇh(0) = πhż(0) then the solutions
z and w of (47) and (104) satisfy:

‖wh(t)− πhz(t)‖1 + ‖ẇh(t)− πhż(t)‖0 6 c0ht (‖z(0)‖3 + ‖ż(0)‖2) , h > 0, t ∈ R.

4.5.2. Convergence of the observation systems. The proof of proposition 4.16 yields:

Proposition 4.21. Assume (94). Consider a family (wh)h>0 in Wh and z ∈ D(A).
If JhGhwh → Az in Z0 then CheitGhwh → CeitAz in Y uniformly on finite

intervals of t. More precisely, (61) implies the convergence rate:

‖(CheitGhJ ∗h πh − CeitA)z‖ 6 ‖C‖L(H2,Y )c0h(t‖z‖3 + 2‖z‖2), z ∈ Z3, h > 0, t ∈ R.

If JhGhwh ⇁ Az in Z0 then CheitGhwh ⇁ CeitAz in L2(0, T ;Y ) for all T > 0.
If Jhvh ⇁ z in Z0 and (47) is admissible then CheitGhwh ⇁ CeitAz in L2(0, T ;Y )

for all T > 0.

In the “interior” case, the proof of proposition 4.10 yields:

Proposition 4.22. Assume (74). Consider a family (wh)h>0 in Wh and z ∈ D(A).
If Jhwh → z in Z0 then CheitGhwh → CeitAz in Y uniformly on finite intervals

of t. More precisely, (61) implies the convergence rate:

‖(CheitGhJh − CeitA)z‖ 6 ‖C‖L(H1,Y )c0h(t‖z‖2 + 2‖z‖1), z ∈ Z2, h > 0, t ∈ R.

If Jhwh ⇁ z in Z0 then CheitGhwh ⇁ CeitAz in L2(0, T ;Y ) for all T > 0.
If Jhwh ⇁ z in Z−1 and (55) is admissible then CheitGhwh ⇁ CeitAz in

L2(0, T ;Y ) for all T > 0.

4.5.3. Continuous and filterered discrete observability. As in § 4.3.2, § 4.3.3, we
consider the semidiscrete system (104) restricted to the filtered space 1G2

h<f(h)W
h,

where f : (0, h0)→ (0,+∞) decreases and f(h)→ +∞ as h→ 0, and in particular
we consider the filtering scale f(h) = η/hσ, where η and σ are positive parameters.

As in (103), the link between the first and second order filtered spaces is:

1G2
h<f(h)W

h = 1Gh<f(h) V
h × 1Gh<f(h) V

h.

Due to theorem 3.8 and the last part of the theorem 4.18 with s = 1 for the
direct implications, and due to theorem 4.17 for the converse implications:
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Theorem 4.23. Assume that the observation operators satisfy (94).
The second order system (47) is admissible (resp. moreover exactly observable) if

and only if, for all η > 0 (resp. for η > 0 small enough), there exists T > 0 such that
the semidiscrete system (104) restricted to the filtered space 1G2

h<η/h
2/3 Wh, with

the Wh
0 norm is admissible (resp. moreover exactly observable) in time T uniformly

in h ∈ (0, 1).

In the “interior” case, theorem 3.14 and the proof of theorem 4.11 yield:

Theorem 4.24. Assume that the observation operators satisfy (74).
The second order system (55) is admissible (resp. moreover exactly observable)

if and only if, for all η > 0 (resp. for η > 0 small enough), there exists T > 0
such that the semidiscrete system (104) restricted to the filtered space 1G2

h<η/h
Wh,

with the Wh
−1 norm is admissible (resp. moreover exactly observable) in time T

uniformly in h ∈ (0, 1).
Assume C ∈ L(H0;Y ). The second order system (55) is admissible (resp. more-

over exactly observable) if and only if, for all η > 0 (resp. for η > 0 small enough),
there exists T > 0 such that the semidiscrete system (73) restricted to the filtered
space 1G2

h<η/h
4/3 Wh, with the Wh

−1 norm is admissible (resp. moreover exactly ob-

servable) in time T uniformly in h ∈ (0, 1).

4.5.4. Convergence of the filtered control systems. The proofs of theorems 4.19
and 4.14 respectively in the “boundary” case (94) and “interior” case (74) yield:

Theorem 4.25. Assume (94) (resp. assume (74)). Consider a family of initial
data (Ψh

0 ,Ψ
h
1 )h>0 in Wh and a family of inputs (uh)h>0 in L2(0, T ;Y ) such that

uh controls (Ψh
0 ,Ψ

h
1 ) in time T in the filtered space 1G2

h<f(h)W
h, i.e. the solution

of (105) satisfies 1G2
h<f(h) Ψh(T ) = 1G2

h<f(h) Ψ̇h(T ) = 0.

If (JhΨh
0 , JhΨh

1 ) ⇁ (ζ0, ζ1) weakly in Z−1 and uh ⇁ u weakly in L2(0, T ;Y ) then

u controls (ζ0, ζ1) in time T , i.e. the solution of (48) satisfies ζ(T ) = ζ̇(T ) = 0.
Assume the discrete system (104) restricted to the filtered space 1G2

h<f(h)W
h with

the Wh
0 norm (resp. the Wh

−1 norm) and the system (47) (resp. the system (56))

are admissible and exactly observable in time T uniformly in h. If (JhΨh
0 , JhΨh

1 )→
(ζ0, ζ1) in Z−1 (resp. in Z0) then the minimal control uh of (Ψh

0 ,Ψ
h
1 ) converges

in L2(0, T ;Y ) to the minimal control u of (ζ0, ζ1) in (48) (resp. in (56)). E.g.
this applies to all (ζ0, ζ1) ∈ Z−1, (Ψh

0 ,Ψ
h
1 ) = (J∗ζ0, GhJ

∗
hπhA

−1ζ1), (resp. to all
(ζ0, ζ1) ∈ Z0, (Ψh

0 ,Ψ
h
1 ) = (J∗πhζ0, J

∗ζ1)), cf. lemma 4.8.

Remark 4.26. The direct implications in theorem 4.24 improve [Erv09, theo-
rem 1.1] in four ways: the approximation assumption (61) is weaker in practice (cf.
remark 4.1), the assumption on the observation operator C ∈ L(Hγ , Y ), γ ∈ [0, 1),
is weakened into C ∈ L(H1, Y ), A−1 is not assumed to be compact, the filtering
power σ = min {2(1− γ), 1} in [Erv09, (1.12)] (which is already the author’s im-
provement of Ervedoza’s [Erv08, (7.1.12)], cf. [Erv09, remark 3.1]) is improved into
σ = 1 for C ∈ L(H1, Y ) and σ = 4/3 for C ∈ L(H0, Y ). The converse implications
in theorem 4.24 are not considered in [Erv11].

The second part of theorem 4.25 in the “interior” case improves [Erv09, theo-
rem 6.1] by elimitating the dubiously used assumption [Erv09, (6.11)] which limited
to C ∈ L(H0;Y ) the validity of [Erv09, theorem 6.1]. The explicit convergence rates
of the observations in proposition 4.22, and the “boundary” case in theorems 4.25
and 4.23 were not considered in [Erv11].
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des ondes., C. R. Acad. Sci., Paris, Ser. I, Math. 25 (1997), no. 7, 749–752.

[BLR92] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation,
control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30

(1992), no. 5, 1024–1065.

[BZ04] N. Burq and M. Zworski, Geometric control in the presence of a black box, J. Amer.
Math. Soc. 17 (2004), no. 2, 443–471.

[BZ05] , Bouncing ball modes and quantum chaos, SIAM Rev. 47 (2005), no. 1, 43–49.

[CFNS91] G. Chen, S. A. Fulling, F. J. Narcowich, and S. Sun, Exponential decay of energy of
evolution equations with locally distributed damping, SIAM J. Appl. Math. 51 (1991),

no. 1, 266–301.
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