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Eric Goncalvès∗, Jean Decaix∗
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Abstract

This numerical work investigates the mesh influence in the near-wall area

when a partial cavity develops and interacts with the turbulent boundary

layer. Different meshes varying by the first cell size are compared, and un-

steady simulations are performed with a two-phase one-fluid RANS solver.

Numerical results are given for two Venturi geometries (quasi stable and

unstable behaviour) and comparisons are made with experimental data.

Keywords: cavitation, homogeneous model, RANS simulations, wall

functions, turbulence model

1. Introduction

Cavitation is a significant engineering phenomenon that occurs in fluid

machinery, fuel injectors, marine propellers, nozzles, underwater bodies, etc.

In most cases, cavitation is an undesirable phenomenon, significantly degrad-

ing performance, resulting in reduced flow rates, lower pressure increases in

pumps, load asymmetry, vibrations, noise and erosion.
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A considerable efforts has been realized to understand the fundamental physics

of cavitation phenomena concerning the development of partial sheet cavities.

Sheet cavitation that appear on solid bodies are characterized by a closure re-

gion which always fluctuates, with the presence of a re-entrant jet. This jet is

mainly composed of liquid which flows upstream along the solid surface. Par-

tial cavitation can be classified as either closed or open attached cavitation,

depending on the flow in the cavity closure region. A closed partial cavity

has a relatively stable cavity length and a cavity closure that is relatively

free of bubbles. An open cavity is typically frothy in appearance, and has

a periodically varying length that is associated with the shedding of vapour

clouds [1]. Both types of cavities have been studied, experimentally and

numerically, to describe and investigate the transition between stable and

unstable behaviour, the development of the re-entrant jet, the interaction

with the turbulent boundary layer, and the mechanism of cloud cavitation

generation [2, 3, 4].

Cavitating flows are challenging to model and simulate, since they are turbu-

lent, highly dynamic and highly unstable two-phase flows. Several numerical

models have been developed to investigate such cavitating flows, especially

with one-fluid RANS solvers. The homogeneous mixture model treats the

cavitating flows as a mixture of two fluids behaving as one. These models

are based on the assumption of local kinematic equilibrium between phases

(the local velocity is the same for both phases), local thermal and mechanic

equilibrium between the two components (local temperature and pressure
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equality between phases). Moreover, vaporization or condensation processes

are assumed to be instantaneous. This model cannot reproduce strong ther-

modynamic or kinetic non equilibrium effects but, because of its simplicity,

it is often used for numerical simulations [5, 6, 7, 8, 9, 10, 11, 12].

In most applications, wall functions are used as wall boundary conditions to

reduce the simulation cost. It is usually assumed that standard single-phase

wall functions (a two-layer model based on a linear and logarithmic velocity

profile) are available in a mixture liquid/vapour flow. The validity of this

assumption was not attested. Experimental works investigated the modifi-

cations of turbulent properties and the evolution of the logarithmic law in

the wake of a partial stable cavity developing on a NACA0015 hydrofoil [13].

They showed that the presence of the cavity influences the boundary layer

structure even far from the closure of the cavity. For computations integrated

down to the wall with fine meshes, it is usually assumed that the damping

functions of turbulence models established in the case of single-phase flows

are available in a two-phase cavitating flow. The wall model influence re-

garding the re-entrant jet development and modifications introduced in the

boundary layer is very complex to study. This fact is linked with the experi-

mental difficulties that arise when velocity measurements must be performed

in bubbly mixtures near the wall.

The present work is devoted to a numerical study of two partial cavities ap-

pearing on Venturi geometries. A particular emphasis is placed on the study

of the wall treatment and the mesh refinement near the wall. An in-house

finite-volume code solving the Reynolds-Averaged Navier-Stokes (RANS)
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compressible equations was developed with a homogeneous approach [14, 15,

16]. The cavitation phenomenon is modelled by a barotropic liquid-vapour

mixture equation of state (EOS). Different meshes are built and tested in

which the y+ values in the first adjacent cells vary. Various unsteady simula-

tions are performed with and without a two-layer wall law. Moreover, a new

wall treatment is proposed and compared with standard wall functions. This

wall model is based on the local integration of the thin boundary layer equa-

tions (TBLE). With this wall treatment the pressure gradient is accounted,

and no assumptions are done on the velocity profile, especially the validity

in both unsteady and mixture liquid/vapour flows. Our goals in this study

are:

• To compare fine-mesh and wall-functions simulations regarding the

sheet cavity dynamics, and to evaluate the influence of the wall treat-

ment with and without wall functions.

• To investigate the behaviour of the standard two-layer wall functions

through a mesh refinement study.

• To compare two different wall functions: TBLE and two-layer models.

This would help in evaluating the standard law of the wall in unsteady

cavitating flows.

In this paper, we will first review the theoretical formulation, including phys-

ical models, wall functions and elements of the numerical methods. This is

followed by sets of results on Venturi geometries and discussions.
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2. Numerical tool

The numerical simulations are carried out using an in-house CFD code solv-

ing the one-fluid compressible RANS system.

The homogeneous mixture model assumes that the two phases are strongly

coupled and moving at the same velocity. The phases are assumed to share

the same temperature T and the same pressure P . The evolution of the two-

phase flow can be described by the conservation equations that employ the

representative flow properties as unknowns just as in a single-phase problem.

The mixture density ρ is defined by:

ρ = αρV + (1 − α)ρL (1)

where ρL and ρV are respectively the liquid and vapour densities. The void

ratio α characterizes the volume of vapour in each cell: α = 1 means that

the cell is completely filled by vapour and inversely, a complete liquid cell is

represented by α = 0. Liquid and vapour phases are characterized by their

thermodynamic properties. On each cell, the unknowns are calculated by

averaging them over the volume occupied.

2.1. Reynolds-Averaged Navier-Stokes equations

For turbulent computations, the Reynolds-averaged compressible equations

are used, coupled with two-equation turbulence models. For low Mach num-

ber applications, an inviscid preconditioning method is necessary [17, 18],

based on the modification of the derivative term by a pre-multiplication with

a suitable preconditioning matrix Pc. These equations can be expressed as:

P−1
c

∂w

∂t
+ div (Fc − Fv) = S (2)
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where w denotes the conservative variables, Fc and Fv the convective and vis-

cous flux densities and S the source terms, which concern only the transport

equations. k is the turbulent kinetic energy and Ψ is a turbulent variable.

The exact expression of the eddy-viscosity µt and the source terms depends

on the turbulence model as well as constants σk and σΨ.

The total stress tensor τ is evaluated using the Stokes hypothesis, Newton’s

law and the Boussinesq assumption. The total heat flux vector Q is obtained

from the Fourier law involving a turbulent thermal conductivity λt with the

constant Prandtl number hypothesis.

τ = τ v + τ t = (µ + µt)

[

( grad V + ( grad V )t) −
2

3
( div V )I

]

+
2

3
ρkI

Q = Qv + Qt = − (λ + λt) grad T with λt =
µtCp

Prt

(3)

In pure liquid, the viscosity µ is determined by an exponential law and, in

pure vapour, the viscosity follows the Sutherland law. The mixture viscos-

ity is defined as the arithmetic mean of the liquid and vapour viscosities

(fluctuations of viscosity are neglected) [19]:

µL(T ) = µ0L
exp (B/T ) (4)
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µV (T ) = µ0V

√

T

293

1 + TS/293

1 + TS/T
(5)

µ(T, α) = αµV (T ) + (1 − α)µL(T ) (6)

where µ0L
, µ0V

, B and TS are constants.

The mixture thermal conductivity λ is also defined as the arithmetic mean

of the liquid and vapour values:

λ(α) = α
µV CpV

PrV

+ (1 − α)
µLCpL

PrL

(7)

The turbulent Prandtl number Prt is set to 1.

2.2. The cavitation model

To close the system, an equation of state (EOS) is necessary to link the

pressure to the thermodynamic variables. Pure phases follow the stiffened

gas EOS. The barotropic law proposed by Delannoy [20] is considered for the

mixture.

This law is characterized by its maximum slope 1/c2
baro. The quantity cbaro

is an adjustable parameter of the model, which can be interpreted as the

minimum speed of sound in the mixture.

When the pressure is between Pvap + ∆P and Pvap − ∆P , the following

relationship applies:

P (α) = Pvap +

(

ρsat
L − ρsat

V

2

)

c2
baro Arcsin (1 − 2α) (8)

where ∆P represents the pressure range of the law and, for a void ratio

value of 0.5, the pressure is equal to the saturation pressure Pvap. This law

introduces a small non-equilibrium effect on the pressure. The cavitation
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phenomenon is assumed to be isothermal, therefore there is no coupling with

the temperature.

The hyperbolicity and convexity of the EOS have been demonstrated in [14].

The influence of cbaro has been studied in previous works. In the present

paper, the value of cbaro is set to 0.47 m/s, corresponding to a pressure range

of ∆P = 175 Pa.

2.3. The turbulence modelling

In the present study, various transport-equation turbulence models were

used: the one-equation model proposed by Spalart and Allmaras (SA) [21,

22], the Smith k − ℓ turbulence model (KL) [23, 24], the Menter SST model

(KWSST) [25, 26] and the Jones-Launder k − ε model (KE) [27].

Turbulence models always lead to the generation of stable cavities, because

very strong turbulent eddy-viscosity µt inside the cavity prevents the forma-

tion of the re-entrant jet which plays a major role in driving the instability of

partial sheet cavity. The link to compressibility effects on turbulence is not

clear. DNS of the supersonic boundary layer demonstrated a reduction in

k production as a consequence of compressibility [28, 29, 30]. In cavitating

flows, the supersonic regime is reached in the mixture area because of the

drastic diminution of the speed of sound. The detailed mechanisms of the

interaction between turbulent flows and cavitation have not yet been clearly

revealed, especially for phenomena occurring at small scales.

To limit the turbulent viscosity, one can use an eddy-viscosity limiter in the

mixture area. In the present study, we used the Reboud correction [31] spe-
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cially developped for the two-phase flow. This limiter introduces a function

f(ρ) in the computation of the turbulent viscosity for the k − ε model:

µt = f(ρ)Cµ
k2

ε
with f(ρ) = ρV + (1 − α)n(ρL − ρV ) (9)

where n is a parameter set to 10.

This correction is extended to other turbulence models with the same func-

tion f(ρ).

2.4. Wall functions

2.4.1. Two-layer wall functions

At the wall, a two-layer approach is used:

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ =
u

Uτ

; y+ =
yUτ

νw

; Uτ =

√

τw

ρw

(10)

where κ = 0.41 is the von Karman constant and the subscript w indicates

wall values. We assume that wall functions are similar in a two-phase flow

and in a single-phase flow. For unsteady flows, the existence of a wall law is

assumed to be valid at each instant.

With regard to the turbulent transport-equation models, the production

of k is computed according to the formulation proposed by Viegas and

Rubesin [32]. The value of ℓ in the first cell is computed with the linear

relation l = κy.

For the one-equation Spalart-Allmaras model, the transported quantity is
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calculated using the model’s closure relations, the velocity profile and a

mixing-length formulation for the eddy-viscosity. More details concerning

the wall law approach are given in [33].

2.4.2. Thin boundary layer equations

The logarithmic law implies an implicit integration of the averaged boundary-

layer equations from the first grid point to the wall, under the assumption

of constant stress, with a mixing-length model to parameterize turbulent

transport [34]. Since two decades, the validity of the logarithmic law in

turbulent boundary layer with or without pressure gradient is challenged

[35, 36]. Mainly, the parameters of the logarithmic law seem to be dependent

on the geometry flow and the Reynolds number. Moreover, the low bound

of the logarithmic law is not universal. In the presence of strong adverse

pressure gradients leading to separation, the assumption of the existence of

a logarithmic law does not hold. This prompted the development of models

for large-eddy simulations (LES) based on the integration of a simplified

averaged set of partial equations derived from the NavierStokes equations.

This set of equations, known as the thin-boundary-layer equations (TBLE),

is:
∂ui

∂t
+

∂uiuj

∂xj

+
1

ρ

dP

dxi

=
∂

∂y

[

(µ + µt)
∂ui

∂y

]

(11)

In this equation, ui is the mean velocity in direction xi and y indicates the

direction normal to the wall. A fine one-dimensional grid is embedded be-

tween the first grid point and the wall, and the turbulent boundary-layer

equations are solved in the embedded mesh. The outer-layer LES provides

the boundary condition for the inner layer, whereas the inner-layer calcula-

tion provides the wall stress required by the LES. Various features of this
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model were explored [37, 38, 39]. Starting from Eq. (11), Wang and Moin

[39] compared two simpler models to a full TBLE model: first, totally ne-

glecting the left-hand side and second including only the streamwise pressure

gradient. They showed that the inclusion of the pressure gradient allows for

a significant improvement of the model predictions.

In the present work, we reduce the left-hand side of the equation, written

for the mixture, by neglecting the convection term. The simplified mean

streamwise momentum equation can be integrated analytically in the wall

normal direction:

(µ + µt)
∂u

∂y
− y

∂P

∂x
= τw (12)

To solve this equation, a virtual fine mesh is embedded between the wall

and the first mesh point. The first cell-center is subdivided with N nodes,

regularly located with a step ∆y. All derivatives are computed with a second-

order finite difference scheme. The viscosity µ and the density ρ are assumed

to be constant in the embedded grid. The discretized equation written on

the point i + 1/2 is:

(µeffi
+µeffi+1

)

(

ui+1 − ui

∆y

)

=
µeff1

+ µeff2

∆y
u2+2yi

dP

dx
with µeff = µ+µt

(13)

The turbulent viscosity µt is given as a function of k and l through the

relation of the Smith model:

µt = µχfµ ; χ =
ρ
√

2kl

µB
1/3
1

; B1 = 18
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fµ =

(

25.54f1 + 22χ2 + χ4

25.54 + 22χ2 + χ4

)1/4

; f1 = exp

(

−50

(

l

κy

)2
)

(14)

An analytical expression of k can be expressed with the assumptions of

boundary-layer flow, convection neglected and a linear evolution for the

length scale near the wall l = κy [24]:

4ρ2k2 = ay
√

p −
A

p
+

B

1 − p
y +

C

4 − p
y2 +

4ρ2
Nk2

N

4 − p
(

y

yN

)2

p =
4σk

κ2B1

; A = −B
4/3
1 pτ 2

w ; B = −2B
4/3
1 pτw

dP

dx

C = −B
4/3
1 p

(

dP

dx

)2

+

(

ρq2(yN)

yN

)2

(15)

The integration is performed using a Newton algorithm for the variable τw.

For the first iteration, the value τw
(0) is evaluated with the two-layer wall

functions. In our calculations, the number of nodes N necessary to solve

TBLE were fixed at 30, which seems to be sufficient for high Reynolds num-

ber simulations. The influence of this number was not studied.

For the turbulent quantities, the formulation for the length scale l is similar

to the two-layer wall functions treatment. The production of the turbulent

kinetic energy Pk is evaluated following the Viegas and Rubesin formulation:

Pk =
1

yN

∫ yN

0

τ t
xy

∂u

∂y
dy (16)

where τ t
xy is the turbulent stress tensor component, which can be expressed

with the wall shear stress and the pressure gradient:

Pk =
1

yN

∫ yN

0

µt

(µ + µt)2

(

τw + y
dP

dx

)2

dy (17)

This integral is computed with the trapezoidal rule.
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2.5. Numerical methods

The numerical simulations are carried out using an implicit CFD code solv-

ing the RANS/turbulent systems for multi-domain structured meshes. This

solver is based on a cell-centered finite-volume discretization.

2.5.1. Spatial discretization

For the mean flow, the convective flux density vector on a cell face is com-

puted with the Jameson scheme [40]. The artificial viscosity includes a

second-order dissipation term D2 and a fourth-order dissipation term D4,

which involve two tunable parameters k(2) and k(4). To take into consider-

ation the mesh deformation, a weighted scheme is implemented. Indeed, as

shown in Figure 4, the second adjacent cell to a wall can be largely finer

than the first one. This important change of cell size induces a loss of spa-

tial accuracy, which can be corrected. The centered numerical fluxes and

the gradient computations are corrected by using a weighted discretization

operator µ̃wi+1/2 instead of the classical operator µwi+1/2 = 0.5(wi+1 + wi).

Let A and B two points and M an interior point of the segment AB, the

weighted discrete operator is defined by:

µ̃B
AwM =

MB

AB
wB +

AM

AB
wA (18)

The viscous terms are discretized by a second-order space-centered scheme.

For the turbulence transport equations, the upwind Roe scheme [41] is used

to obtain a more robust method. The second-order accuracy is obtained by

introducing a flux-limited dissipation [42].
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2.5.2. Temporal discretization

Time integration is achieved using a low-cost implicit method [43]. The im-

plicit method consists in solving, at each time step, a system of equations

arising from the linearization of a fully implicit scheme. The main advan-

tage of this method is that the storage of the Jacobian matrix is completely

eliminated, which leads to a low-storage algorithm. More details are given

in [14].

For the turbulence transport equations, the diffusive flux Jacobian matrix is

replaced by its spectral radius. The source term needs special treatment [44].

Only the negative part of the source term Jacobian matrix is considered and

replaced by its spectral radius. The system obtained is solved with a line-

alternated Jacobi relaxation algorithm.

2.5.3. Inlet and outlet boundary conditions

The numerical treatment of boundary conditions is based on the use of the

preconditioned characteristic relationships [14]. We assume that inlet and

outlet areas are in a pure liquid region; no cavitation appears in these bound-

aries.

3. Computational results for a quasi-stable partial cavity

3.1. Experimental conditions [45]

The Venturi was tested in the cavitation tunnel of the CREMHyG (Centre

d’Essais de Machines Hydrauliques de Grenoble). It is characterized by a

divergence angle of 4◦, illustrated in Fig. 1. The edge forming the throat of

the Venturi is used to fix the separation point of the cavitation cavity. This
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geometry is equipped with five probing holes to allow various measurements

such as the local void ratio, instantaneous local speed and wall pressure

(Fig. 1).

The selected operating point is characterized by the following physical pa-

rameters [45]:

Uinlet = 10.8 m/s, the inlet velocity

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 0.55, the cavitation parameter in the inlet section

Tref ≃ 293K, the reference temperature

Lref=252 mm, the reference length, which corresponds to the chord of a

blade of a turbomachinery.

ReLref
=

UinletLref

ν
= 2.7 106, the Reynolds number

With these parameters, a cavity length L ranging from 70 mm to 85 mm is

obtained. The experimental views for this geometry show a relatively sta-

ble cavity behaviour (see Fig. 2). It is characterized by an almost constant

length, although the closure region always fluctuates, with the presence of

a re-entrant jet and little vapour cloud shedding. For this geometry, no

periodic cycles with large shedding were observed.

3.2. Meshes

The initial grid is a H-type topology. It contains 251 nodes in the flow

direction and 62 nodes in the orthogonal direction. A special contraction

of the mesh is applied in the main flow direction just after the throat to

better simulate the two-phase flow area (Fig. 3). The y+ values of the mesh,

at the center of the first cell, vary between 12 and 27 for a non cavitating

computation.
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From this grid, four meshes are built by adding or eliminating cells near the

wall. A view of all meshes near the throat is illustrated in Figure 4. The y+

values are presented in Figure 5 obtained from a non cavitating computation

with the Spalart-Allmaras turbulence model. With the finest mesh, 251×81,

the y+ values are close to 1, and all computations are performed without

wall functions. For all other coarse meshes, wall functions are used as wall

boundary conditions.

3.3. Numerical parameters

For the non cavitating regime, computations are started from a uniform flow-

field using a local time step. The numerical parameters used are:

- the CFL number, 10

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation, k(2) = 0 and k(4) = 0.032

- the farfield value of turbulent kinetic energy, k∞ = 0.0045 m2/s2

- the farfield value of length, l∞ = 1.4 10−6 m

- the farfield value of specific dissipation ω∞ = 45000 s−1

For the unsteady cavitating regime, computations are performed with the

dual time stepping method and are started from the non cavitating numerical

solution. The numerical parameters are:

- the dimensionless time step, ∆t∗ =
∆tUinlet

Lref

= 9.75 10−3

- sub-iterations of the dual time stepping method, 100

- the CFL number, 0.5

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation, k(2) = 1 and k(4) = 0.045.
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3.4. Comparison with and without wall functions

Two meshes are used for these comparisons: the finest mesh 251 × 81 com-

puted without wall functions, and the coarse mesh 251 × 62 computed with

the two-layer wall functions. All results obtained with this coarse mesh

have been presented in [16]. Various turbulence models are considered: the

Spalart-Allmaras, Smith and Jones-Launder models associated with the Re-

boud correction and the Menter SST model.

All global unsteady results are summarized in Table (1). The goal is to obtain

a quasi-stable sheet cavity whose time-averaged length Lcav varies between

70 and 85 mm and with a re-entrant jet. The time of simulation is 2 seconds.

For all calculations, the cavitation parameter in the inlet section σinlet is

over-estimated in comparison with the experimental value. Moreover, for all

turbulence models, the σinlet value decreases when using the coarse mesh.

3.4.1. Velocity and void ratio profiles

The local analysis involves void ratio and velocity profile comparisons inside

the cavity. The experimental void ratio and velocity profiles are obtained for

five stations by a double optical probe (Fig. 1). The velocity is evaluated

as the most probable value and the void ratio is obtained from the signal

of the double optical probe using a post-processing algorithm. The relative

uncertainty on the void ratio measurement was estimated at roughly 15%

[45]. All numerical values are obtained by a time-averaged treatment.

Figure 6, 7 and 8 show the longitudinal velocity profiles for the experiments

and the computations performed with the Spalart-Allmaras model, the Smith
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k − l model and the Jones-Launder k − ε model, respectively. The overall

agreement seems good between the experimental data and the simulations.

For stations 1 and 2, no re-entrant jet phenomena occurs in the experiment.

Yet, for all results obtained with the fine mesh, at station 2, a re-entrant jet

is simulated, especially with the Smith model. Wall function computations

do not predict such a phenomenon. Further downstream, for stations 3, 4

and 5, experimental observation indicates a recirculating behaviour with a

re-entrant jet extending roughly through half the sheet thickness. According

to experiments, this flow configuration is smoothly time fluctuating. This

recirculating behaviour with a re-entrant jet is well simulated by all com-

putations. At station 3, the thickness of the recirculating area is very well

estimated by the Smith model. At station 5, with the Jones-Launder model,

the thickness of the recirculating area is largely over-predicted by the fine-

mesh computation in comparison with the wall functions computation.

Figure 9, 10 and 11 illustrate experimental and numerical results concerning

the void ratio profiles, for the same turbulence models. For all computations,

the cavity thickness is very well estimated. Discrepancies between the fine

mesh and wall functions solutions are weak.

For these three turbulence models, we observe a more extended re-entrant jet

computed with the fine mesh. Cavities simulated with wall functions compu-

tations are in better agreement with the experimental data. It could be due

to the damping functions of turbulence models, calibrated for single-phase

flows.

Results obtained with the Menter SST model present a different behaviour.
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Figure 12 shows the longitudinal velocity profiles for the experiments and

the computations performed with the Menter SST model. At station 1,

both computations provide a similar result. At station 2, the re-entrant jet

captured with the wall function computation is too extended. At stations

3 and 4, we observe that the fine-mesh computation is unable to simulate a

re-entrant jet. At station 5, a small re-entrant jet is predicted by the fine-

mesh computation. This behaviour with the fine-mesh computation is also

observed on the void ratio profiles, illustrated in Figure 13. At stations 3 and

4, the void ratio values are close to unity near the wall. At station 5, the void

ratio values are largely over-estimated in comparison with both experimental

and wall function results.

From these calculations performed with the Menter model, it seems that

only the wall-function computation provides a partial cavity in acceptable

agreement with the experiments. This model does not involve any damping

functions. The model calibration should be explored to explain this singular

behaviour.

3.5. Mesh influence with the two-layer wall functions

Four meshes are used for these comparisons varying by the mesh refinement

near the wall in the y direction. All global unsteady results are summarized

in Table (2). Except with the k − ε model, we observe the decrease of

the cavitation parameter in the inlet section σinlet when the mesh becomes

coarser.
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3.5.1. Velocity profiles

Comparisons are focused on the velocity profiles (from station 2 to 5) and

the development of the re-entrant jet.

Figure 14 shows the velocity profiles for the experiments and the computa-

tions performed with the Spalart-Allmaras model. Large discrepancies be-

tween meshes appear. With the coarsest mesh, 251 × 59, the re-entrant jet

is not predicted at stations 3 and 4. Only a small re-entrant jet is simulated

at station 5. This mesh is not adapted to capture such partial cavity when

the Spalart-Allmaras model is used. With the finest mesh, 251 × 77, at sta-

tion 3, only a small recirculating area is simulated. The development of the

re-entrant jet is not extended enough. For the other intermediate meshes,

results are similar at stations 4 and 5, but at station 3, the recirculating

area obtained with the mesh 251 × 62 is in better agreement in comparison

with the experimental data. The sensitivity to the near-wall mesh refinement

seems important with this turbulence model. Maybe it is due to the effect

of the pressure gradient, not explicitly accounted in the wall functions.

Figure 15 plots the velocity profiles for the experiments and the computa-

tions performed with the Smith model. At stations 3 to 5, results provided

by all meshes are similar and in very close agreement with the experimental

values. Discrepancies appear only at station 2. The mesh 251 × 77 is near

to predict a recirculating flow. The best result is obtained with the mesh

251 × 62.

It seems that cavities simulated with the Smith model are relatively not de-

pendant on the mesh.
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Figure 16 shows the velocity profiles for the experiments and the compu-

tations performed with the Jones-Launder model. With the coarsest mesh

251× 59, the re-entrant jet is not predicted at stations 3, 4 and 5. As previ-

ously observed with the Spalart-Allmaras model, this mesh is not adapted to

capture such a partial cavity. With the other meshes, results are relatively

similar at station 3, 4 and 5. At station 2, as previously observed with the

Smith model, the mesh 251 × 77 is near to provide a recirculating flow.

Figure 17 illustrates the velocity profiles for the experiments and the compu-

tations performed with the Menter SST model. At station 2, the re-entrant

jet simulated by the mesh 251 × 62 is too extended. At station 3, the in-

tensity of the recirculating bubble varies with the mesh. With the coarsest

mesh 251 × 59, the re-entrant jet is not predicted. It is under-predicted by

the mesh 251×61 and well computed by the mesh 251×62. At stations 4 and

5, results are quite similar. The Menter SST model seems rather sensitive to

the near-wall mesh refinement with regard to the re-entrant jet development.

3.6. Comparison of wall treatments

The proposed TBLE wall model was validated on flat-plate turbulent boundary-

layer flows [46].

For the cavitating simulations, only the coarse mesh 251× 62 is used due to

the good results obtained. Computations are performed with the two-layer

wall functions and the TBLE model, associated with the Smith k − l turbu-

lence model.
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All global unsteady results are summarized in Table (3). The cavitation

parameter in the inlet section σinlet and the time-averaged cavity length ob-

tained with both meshes are similar.

Figures 18 and 19 plot the velocity and void ratio profiles for the experiments

and the computations from station 2 to 5, respectively. For all stations,

results obtained with both wall treatments are similar and in very good

agreement with the experimental data. For this quasi stable partial cavity,

when the Smith model is used, the two-layer single-phase wall functions seem

to be a good approximation.

4. Computational results for a periodic self-oscillating cavity

4.1. Experimental conditions [47]

This Venturi is characterized by a divergence angle of 8◦, illustrated in Fig. 20.

The geometrical data are:

Inlet section: Si = 50 × 44 mm2 (where the reference pressure is measured);

Throat section: Sthroat = 33.5 × 44 mm2;

Length of the test section (chord): Lref = 224 mm.

This geometry is equipped with three probing holes to take various mea-

surements such as the local void ratio and instantaneous local velocity. The

selected operating point is characterized by the following physical parame-

ters [47]:

Uinlet = 7.04 m/s: the inlet velocity

Pinlet = 55000 Pa: the pressure in the inlet section
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σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 2.15 ± 0.06: the cavitation parameter in the inlet

section

Tref ≃ 293K: the reference temperature

ReLref
=

UinletLref

ν
= 1.57 106: the Reynolds number

With these parameters, an unsteady cavity with quasi-periodic fluctuations

of the attached sheet and vapour cloud shedding has been obtained. Fig. 21

shows an instantaneous photograph of the cavity with a large structure shed-

ding. The maximum length L of the attached cavity is about 45 mm. The

vapour shedding frequency is close to 45 Hz estimated from Fourier transfor-

mations of unsteady pressure signals.

4.2. Meshes

The initial grid is a H-type topology. It contains 174 nodes in the flow

direction and 62 in the orthogonal direction. A special contraction of the

mesh is applied in the main flow direction just after the throat to better

simulate the two-phase flow area (Fig. 22). The y+ values of the mesh, at the

center of the first cell, vary between 2 and 6 for a non cavitating computation.

A similar grid was used successfully for such cavity simulations in [47].

From this grid, five meshes are built by adding or eliminating cells near the

wall. A view of all meshes near the throat is illustrated in Fig. 23. The y+

values are presented in Fig. 24 obtained from a non cavitating computation

with the Spalart-Allmaras turbulence model. Simulations performed with

the finest mesh 174 × 77 do not use wall functions.
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4.3. Numerical parameters

This case is stiffer that the previous partial cavity. All unsteady computa-

tions were performed with the same value of the dimensionless time step:

∆t∗ =
∆tUinlet

Lref

= 6.4 10−4, and the same number of sub-iterations for the

dual time method: 100.

4.4. Mesh influence

4.4.1. CPU cost

The CPU cost is presented in Table 4 for all meshes using the Spalart-

Allmaras turbulence model. Computations were performed on a Xeon Altix

XE240 server with 4 processors. The ratio between CPU time for a given

case and the fine mesh computation is also given. With the coarsest mesh,

the gain is around 25%.

4.4.2. Global analyses

Only the Spalart-Allmaras turbulence model is used. The CPU cost of a

complete study with all turbulence models is too high. All calculations were

performed by considering different sigma inlet values, summarized in Ta-

ble (5). The goal was to obtain a periodic sheet cavity with a frequency

close to 45 Hz. The simulation time is around 2 s. For all cases, a direct

Fourier transformation (DFT) of the vapour volume signal was performed to

evaluate the frequency.

Firstly, with the finest mesh 174 × 77 computed without wall functions, it

was not possible to capture a periodic self-oscillating cavity with a frequency

close to 45 Hz. For values of the inlet cavitation parameter near 2.15, the
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obtained frequency is around 30 Hz. For higher values of σinlet, no frequency

appears (see Figure 25).

For all other meshes computed with wall functions, we can see two types of

behaviour according to the mesh refinement. For the ”finer” meshes 174×62

and 174×60, the frequency is around 35 Hz when the cavitation parameter is

close to the experimental value. When this value is increased, the frequency

increases and exceeds 40 Hz. We can suppose that, for higher values of

σinlet, the computed frequency could reach 45 Hz. Besides, with the coarsest

meshes, both the frequency and the σinlet value are close to the experimental

data. Figure 25 (down) presents the DFT of the vapour volume obtained

with the mesh 174 × 57.

4.4.3. Velocity and void ratio profiles

The experimental data are obtained by a double optical probe [47]. Iden-

tically to the previous case, the velocity is evaluated as the most probable

value and the void ratio is obtained with a post-processing algorithm. For

the velocity profiles, experimental data are given for the first two stations.

All numerical values were obtained by a time-averaged treatment.

Figure 26 shows the evolution of the longitudinal velocity for the experiments

and computations corresponding to the cases 1, 4, 6, 7, 8 and 9 (see Table

5) where the frequency is the closest to the experimental value. All cases

provided similar results. The re-entrant jet phenomenon is well captured

with all meshes.

Figure 27 illustrates experimental and numerical results concerning the void

ratio profiles. Experimental values are weak, even at station 1 near the
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throat. With the three coarser meshes 174×59, 174×57 and 174×56 (left),

the void radio at station 1 is largely over-predicted, up to a factor of 4. At

station 2, on the contrary, the void ratio is under-predicted.

With the three finer meshes (right), the void ratio is less important at station

1, due to the higher value of σinlet. At station 2, the void ratio is close to

zero, cavities being too small.

At station 3, all computations simulate a pure liquid profile (not presented).

All meshes provide a small attached cavity, and downstream a fluctuating

recirculation with two-phase structures shedding. These shedding are not

extended and are rapidly eliminated. In comparison with the experimental

visualizations, the attached cavity and the clouds shedding are largely under-

estimated.

4.4.4. Wall pressure distribution

The time-averaged dimensionless wall pressure distribution is plotted in Fig. 28

versus the distance x − xinlet. Results obtained with all meshes are similar,

in very close agreement to the experimental data. The mesh influence is very

weak with regard to the wall pressure evolution.

4.5. Comparison of wall treatments

For this study, only the coarsest mesh 174 × 56 is used. Computations are

performed with the two-layer wall functions and the TBLE model associated

with the k − l turbulence model.

The CPU cost ratio is around 1.12 in comparison with the standard wall law

simulation.
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All global unsteady results are summarized in Table (6). With both wall

models, a periodic cycle around 45 Hz is computed, and the cavitation pa-

rameter in the inlet section σinlet is close to the experimental value.

Figure 29 illustrates the velocity profiles for the experiment and the compu-

tations, at station 1 and 2. Results are similar.

The void ratio profiles are plotted in Fig. 30 for the experiment and the com-

putations. At station 1, profiles provided by both wall models are identical.

At station 2, the profile is over-predicted by the TBLE model and a little

under-predicted by the standard wall functions. At station 3, all computa-

tions provided a pure liquid profile (not presented). The TBLE model does

not allow us to obtain a more extended cloud shedding.

The time-averaged dimensionless wall pressure distribution is shown in Fig. 31

versus the distance x − xinlet. As previously, results are quite similar.

For this unstable partial cavity, when the Smith model is used, the two-layer

single-phase wall model seems to be a good approximation, as previously

concluded for the quasi stable case.

5. Summary and conclusions

The simulation of partial cavities appearing along solid boundaries is inves-

tigated with a special focus on the turbulent wall treatment and a mesh

refinement near walls. A two-phase one-fluid compressible CFD solver was

applied to simulate unsteady quasi stable and unstable cavity sheets. Vari-

ous transport-equation turbulence models were tested and two wall functions

were compared. The numerical results demonstrated the influence of the

near-wall boundary layer modelling to capture unsteady behaviours of cavity
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sheets. Global and local analyses of flows were proposed based on void ratio

and velocity profiles.

Firstly, a comparison of computations performed with and without wall func-

tions was proposed. For the quasi-stable cavity, except the Menter model,

the re-entrant jet simulated with the fine mesh was more extended in compar-

ison with the wall function computations and the experimental data. With

the Menter SST model, a singular result was exhibited with the fine mesh:

the computation did not predict a significant re-entrant jet. For the periodic

unstable cavity, only wall function computations were allowed to obtain a

periodic cycle close to the experimental frequency. Fine mesh computations

performed with the Spalart-Allmaras model were unable to predict the shed-

ding frequency.

Secondly, results obtained with various coarse meshes for which the wall zone

differs were presented. For the quasi-stable cavity, the sensitivity to the mesh

refinement varies according to the considered turbulence model, with regard

to the re-entrant jet development. The mesh influence was weak with the

Smith model while it was pronounced with the Spalart-Allmaras model and

the Menter model. For the unstable cavity, with regard to the frequency and

σinlet values, best results were obtained with the coarsest meshes. Yet, the

local velocity profiles obtained with all meshes were similar. It is difficult to

explain the better results obtained with coarse meshes, especially for the un-

stable cavity. Probably, the wall treatment allows to reduce some problems

of the turbulence models due to the weakness of the wall damping functions.

Finally, a new wall treatment based on the local integration of the simplified
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boundary layer equations (TBLE model) was proposed and compared with

the two-layer law of the wall. This wall model allows to account for the ad-

verse pressure gradient in recirculating areas and to avoid assumptions about

the existence of a universal mean-velocity profile. Even for single-phase flows,

this aspect is controverted and the validity of the classical log-law is discussed.

In two-phase cavitating flows, the validity of the log-law was never checked.

The TBLE approach can be used for a posteriori validation in which the

TBLE solution is considered as a reference solution.

For both quasi stable and unstable cavities, using the Smith turbulence

model, first results demonstrated the good behaviour of the two-layer wall

model. Indeed, results obtained are similar to those provided by the TBLE

model. It is not necessary to include explicitly the pressure gradient in the

mean-velocity profile to obtain correct results, even in a separated region.

Other computations by varying the embedded grid will be necessary to attest

these results. Additional works are in progress to develop the TBLE model

for other turbulence models, to investigate three-dimensional simulations,

and to pursue comparative analyses between numerical and experimental

studies.
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Table 1: Comparison with and without wall functions, 4◦ Venturi.

σinlet (exp 0.55) SA KL KE KWSST

fine 251 × 81 0.62 0.605 0.60 0.665

coarse 251 × 62 0.595 0.59 0.58 0.62

Lcav (mm) (exp 70-85) SA KL KE KWSST

fine 251 × 81 85 84 84 82

coarse 251 × 62 80 76 83 79
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Table 2: Mesh influence with wall functions, 4◦ Venturi.

σinlet (exp 0.55) SA KL KE KWSST

251 × 77 0.59 0.59 0.64 0.64

251 × 62 0.595 0.59 0.58 0.62

251 × 61 0.58 0.58 0.62 0.61

251 × 59 0.56 0.565 0.59 0.57

Lcav (mm) (exp 70-85) SA KL KE KWSST

251 × 77 85 75 82 75

251 × 62 80 76 82 79

251 × 61 81 75 79 82

251 × 59 80 79 85 81
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Table 3: Standard wall functions versus TBLE model, 4◦ Venturi.

wall model σinlet Lcav (mm)

standard wall law 0.59 76

TBLE 0.587 76
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Table 4: CPU cost, Spalart-Allmaras model, 8◦ Venturi.

mesh cost for 100 iterations (s) ratio

174 × 77 525.6 1

174 × 62 429.6 0.817

174 × 60 419.4 0.80

174 × 59 408 0.776

174 × 57 393 0.747

174 × 56 387 0.736
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Table 5: Mesh influence, 8◦ Venturi.

case mesh σinlet (exp 2.15) frequency (Hz) (exp 45)

1 174 × 77 2.13 30

2 2.18 no frequency

3 174 × 62 2.13 35

4 2.17 40

5 174 × 60 2.13 35

6 2.19 43.5

7 174 × 59 2.14 44

8 174 × 57 2.145 46

9 174 × 56 2.14 46
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Table 6: Standard wall functions versus TBLE model, 8◦ Venturi.

wall model σinlet frequency (Hz)

standard wall law 2.14 46

TBLE 2.10 43
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Figure 1: Schematic view of the 4◦ Venturi profile.
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Figure 2: Photograph of the cavity, 4◦ Venturi.
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Figure 3: View of the mesh near the throat, 4◦ Venturi.
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Figure 6: Time-averaged velocity profiles from station 1 to 5, Spalart-Allmaras model, 4◦

Venturi.
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Figure 7: Time-averaged velocity profiles from station 1 to 5, Smith k−l model, 4◦ Venturi.
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Figure 8: Time-averaged velocity profiles from station 1 to 5, Jones-Launder k − ε model,

4◦ Venturi.
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Figure 9: Time-averaged void ratio profiles from station 1 to 5, Spalart-Allmaras model,

4◦ Venturi.
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Figure 10: Time-averaged void ratio profiles from station 1 to 5, Smith k − l model, 4◦

Venturi.
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Figure 11: Time-averaged void ratio profiles from station 1 to 5, Jones-Launder k − ε

model, 4◦ Venturi.
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Figure 12: Time-averaged velocity profiles from station 1 to 5, Menter SST model, 4◦

Venturi.
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Figure 13: Time-averaged void ratio profiles from station 1 to 5, Menter SST model, 4◦

Venturi.

54



u (m/s)

y(
m

)

0 5 10
0

0.001

0.002

0.003

0.004 EXPE
251x77
251x62
251x61
251x59

Station 2

u (m/s)

y(
m

)

0 5 10
0

0.001

0.002

0.003

0.004

0.005

0.006 EXPE
251x77
251x62
251x61
251x59

Station 3

u (m/s)

y(
m

)

0 5 10
0

0.002

0.004

0.006

0.008 EXPE
251x77
251x62
251x61
251x59

Station 4

u (m/s)

y(
m

)

0 5 10
0

0.002

0.004

0.006

0.008

0.01 EXPE
251x77
251x62
251x61
251x59

Station 5

Figure 14: Time-averaged velocity profiles from station 2 to 5, Spalart-Allmaras model,

4◦ Venturi.
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Figure 15: Time-averaged velocity profiles from station 2 to 5, Smith k − l model, 4◦

Venturi.
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Figure 16: Time-averaged velocity profiles from station 2 to 5, Jones-Launder k−ε model,

4◦ Venturi.
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Figure 17: Time-averaged velocity profiles from station 2 to 5, Menter k − ω SST model,

4◦ Venturi.
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Figure 18: Time-averaged velocity profiles from station 2 to 5, Smith k − l model, TBLE

versus standard wall law, 4◦ Venturi.
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Figure 19: Time-averaged void ratio profiles from station 2 to 5, Smith k− l model, TBLE

versus standard wall law, 4◦ Venturi.
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Figure 20: Schematic view of the 8◦ Venturi profile.
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Figure 21: Photograph of the cavity, 8◦ Venturi.
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Figure 22: Enlargement of the mesh 174 × 62 near the throat, 8◦ Venturi.
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Figure 23: Enlargement of all meshes near the throat, 8◦ Venturi.
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Figure 24: Evolution of the y+ values at the bottom wall, 8◦ Venturi.
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Figure 25: Vapour volume Fourier transformation, frequency (Hz), fine mesh 174x77 (top),

coarse mesh 174x57 (down), 8◦ Venturi.
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Figure 26: Time-averaged velocity profiles at station 1 and 2, coarsest meshes (left) versus

finest meshes (right), 8◦ Venturi.
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Figure 27: Time-averaged void ratio profiles at station 1 and 2, coarsest meshes (left)

versus finest meshes (right), 8◦ Venturi.
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Figure 28: Time-averaged wall pressure evolution, coarsest meshes (left) versus finest

meshes (right), 8◦ Venturi.
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Figure 29: Time-averaged velocity profiles at station 1 and 2, TBLE versus standard wall

law, 8◦ Venturi.
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Figure 30: Time-averaged void ratio profiles at station 1 and 2, TBLE versus standard

wall law, 8◦ Venturi.
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Figure 31: Time-averaged wall pressure evolution, TBLE versus standard wall law, 8◦

Venturi.

72


