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Weakly-coupled systems in quantum control

Nabile Boussäıd, Marco Caponigro, and Thomas Chambrion

Abstract

Weakly-coupled systems are a class of infinite dimensional conservative bilinear control systems

with discrete spectrum. A property of these systems is that they can be precisely approached by finite

dimensional Galerkin approximations. This feature is of particular interest for the approximation of

quantum system dynamics and the control of the bilinear Schrödinger equation.

This paper provides rigorous definitions and analysis of thedynamics of weakly-coupled systems

and gives sufficient conditions for an infinite dimensional quantum control system to be weakly-coupled.

As an illustration we provide examples chosen among common physical systems.

Index Terms

Quantum system, Schrödinger equation, bilinear control,approximate controllability, Galerkin ap-

proximation.

I. INTRODUCTION

A. Physical context

The state of a quantum system evolving on a finite dimensionalRiemannian manifoldΩ, with

associated measureµ, is described by itswave function, that is, an element of the unit sphere

of L2(Ω,C). A system with wave functionψ is in a subsetω of Ω with probability
∫

ω
|ψ|2dµ.
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When a system is submitted to excitations byp external fields (e.g. lasers) the Schrödinger

equation reads

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t) +

p∑

l=1

ul(t)Wl(x)ψ(x, t), (1)

where∆ is the Laplace-Beltrami operator onΩ, V : Ω → R is a real function, usually called

potential, carrying the physical properties of the uncontrolled system,Wl : Ω → R, 1 ≤ l ≤ p,

is a real function modeling a laserl, andul,1 ≤ l ≤ p, usually called control, is a real function

of the time representing the intensity of the laserl.

A natural question, with many practical implications, is whether one can find a control

(u1, . . . , up) for which the associated dynamics generated by (1) has the desired behaviour (for

instance, steering some given initial data to some given target). In the casep = 1, considerable

efforts have been made to study the controllability. We refer to [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10] and references therein for a description of theoretical results concerning the existence

of controls steering a given source to a given target or a neighborhood of it.

B. Finite dimensional approximations

The main difficulty in the study of (1) is the fact that the natural state space, namelyL2(Ω,C),

has infinite dimension. To avoid difficulties when dealing with infinite dimensional systems, for

example when studying practical computations or simulations, one can project system (1) on finite

dimensional subspaces ofL2(Ω,C). A vast literature is now available on control of bilinear finite

dimensional quantum system, we refer for instance to [11], [12]. A crucial issue is to guarantee

that the finite dimensional approximations have dynamics close to the one of the original infinite

dimensional system.

As a matter of fact, a special class of bilinear systems of thetype of (1) which are said

weakly-coupled (see definition in Section II) exhibits verynice properties of approximations (see

Proposition 4 below). The notion of weakly-coupled system has been used in [13] implicitly, in

the casep = 1 andW bounded.

The aim of this work is to provide an analysis of weakly-coupled systems, to present a

sufficient condition for controllability for these systems, and to show that two important types

of bilinear quantum systems frequently encountered in the literature are weakly-coupled.
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C. Content of the paper

In Section II we define weakly-coupled systems, we state someproperties of their finite

dimensional approximations, and we prove a controllability result. We then study two important

examples of weakly-coupled systems, the first (Section III)covering, among others, the case

whereΩ is compact and the second (Section IV) the case where the system (1) is tri-diagonal.

II. WEAKLY-COUPLED SYSTEMS

A. Abstract framework

We reformulate (1) in a more abstract framework. This will allow us to treat examples slightly

more general than (1), for instance, the example in Section III-A. In a separable Hilbert space

H endowed with norm‖ · ‖ and Hilbert product〈·, ·〉, we consider the evolution problem

dψ

dt
= (A+

p∑

l=1

ulBl)ψ (2)

where(A,B1, . . . , Bp) satisfies Assumption 1.

Assumption 1. (A,B1, . . . , Bp) is a (p+ 1)-uple of linear operators such that

1) for everyu in R
p, A +

∑
l ulBl is essentially skew-adjoint onD(A) and i(A +

∑
l ulBl)

is bounded from below;

2) A is skew-adjoint and has purely discrete spectrum(−iλk)k∈N, the sequence(λk)k∈N is

positive non-decreasing and accumulates at+∞.

In the rest of our study, we denote by(φk)k∈N an Hilbert basis ofH such thatAφk = −iλkφk

for everyk in N. We denote byD(A+
∑
l ulBl) the domain whereA+

∑
l ulBl is skew-adjoint.

Assumption 1.1 ensures that, for every constantsu1, . . . , up in R, A +
∑
l ulBl generates a

group of unitary propagators. Hence, for every initial condition ψ0 in H, for every piecewise

constant controlu : t ∈ R → ∑N
n=0 u

nχ[tn,tn+1)(t) ∈ R
p with 0 = t0 ≤ t1 ≤ . . . ≤ tN+1 we can

define the solution of (2) byt 7→ Υu
tψ0, where

Υu
t = e(t−tj−1)(A+

∑
uj−1
l

Bl) ◦ e(tj−1−tj−2)(A+
∑

uj−2
l

Bl) ◦ · · · ◦ et0(A+
∑

u0lBl),

for t ∈ [tj−1, tj), j = 1, . . . , N .
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Remark1. From Assumption 1.1 we deduce that for everyu ∈ R
p, A +

∑
l ulBl is bounded

from D(A) to H as well as
∑
l ulBl. As a consequence, the resolvent ofA+

∑
l ulBl is compact.

Sincei(A +
∑
l ulBl) is bounded from below, the spectrum accumulates at+∞.

B. Energy growth

From Assumption 1.2, the operatoriA is self-adjoint with positive eigenvalues. For everyψ

in D(A), iAψ =
∑
j∈N λj〈φj, ψ〉φj. For everys ≥ 0, we define the linear operator|A|s := (iA)s

by |A|sψ =
∑
j∈N λ

s
j〈φj, ψ〉φj, for everyψ in D(|A|s) = {ψ ∈ H :

∑
j∈N λ

2s
j |〈φj, ψ〉|2 < +∞}.

We define thes-norm by ‖ψ‖s = ‖|A|sψ‖ for every ψ in D(|A|s). The 1/2-norm plays an

important role in physics; for everyψ in D(|A|1/2), the quantity|〈Aψ, ψ〉| = ‖ψ‖21/2 is the

expected value of the energy.

The notion of weakly-coupled systems is closely related to the growth of the expected value

of the energy.

Definition 1. Let k be a positive number and let(A,B1, . . . , Bp) satisfy Assumption 1.1. Then

(A,B1, . . . , Bp) is k-weakly-coupledif for every u ∈ R
p, D(|A +

∑
l ulBl|k/2) = D(|A|k/2)

and there exists a constantC such that, for every1 ≤ l ≤ p, for every ψ in D(|A|k),
|ℜ〈|A|kψ,Blψ〉| ≤ C|〈|A|kψ, ψ〉|.

The coupling constantck(A,B1, . . . , Bp) of system(A,B1, . . . , Bp) of orderk is the quantity

sup
ψ∈D(|A|k)\{0}

sup
1≤l≤p

|ℜ〈|A|kψ,Blψ〉|
|〈|A|kψ, ψ〉| .

We have the following technical interpolation result whoseproof is given in the appendix.

Lemma 1. LetA andA′ be invertible skew-adjoint operators with compact resolvent. Letk be a

positive real. Assume thatD(|A|k) = D(|A′|k). Then for any reals ∈ (0, k),D(|A|s) = D(|A′|s).

A first property of the propagator of a weakly-coupled systemis given by the following

proposition.

Proposition 2. Letk be a positive number and let(A,B1, . . . , Bp) satisfy Assumption 1 and bek-

weakly-coupled. Then, for everyψ0 ∈ D(|A|k/2), K > 0, T ≥ 0, and piecewise constant function

u = (u1, . . . , up) for which
∑p
l=1 ‖ul‖L1 < K, one has‖Υu

T (ψ0)‖k/2 < eck(A,B1,...,Bp)K‖ψ0‖k/2.
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Proof: We present here a simple proof in the special case whereD(|A|k+1) = D(|A +
∑
l≤p ulBl|k+1) for everyu in R

p. This equality holds for the most common physical examples.

A general proof of Proposition 2, involving rather advancedregularization techniques to relax

this extra assumption is presented in the Appendix.

First note that, for everyt ≥ 0 and for every(u1, . . . , up) in R
p, the setD(|A|k+1) =

D(|A+
∑
l ulBl|k+1) is invariant for the unitary mapψ 7→ et(A+

∑
l
ulBl)ψ. Moreover, for everyψ

in D(|A+∑l ulBl|k+1), the mapt 7→ |A+∑l ulBl|ket(A+
∑

l
ulBl)ψ = et(A+

∑
l
ulBl)|A+∑l ulBl|kψ

is C1 from [0,+∞) to H, with derivativet 7→ (A +
∑
l ulBl)e

t(A+
∑

l
ulBl)|A +

∑
l ulBl|kψ =

|A +
∑
l ulBl|k(A +

∑
l ulBl)e

t(A+
∑

l
ulBl)ψ. In other words, the mapt 7→ et(A+

∑
l
ulBl)ψ is C1

from [0,+∞) to D(|A+
∑
l ulBl|k) = D(|A|k).

Fix u : [0,+∞) → R
p piecewise constant,ψ0 in D(|A|k+1) and consider the real map

f : t 7→ 〈|A|kΥu
t ψ0,Υ

u
t ψ0〉. Sinceψ0 belongs toD(|A+

∑p
l=1 ul(t)Bl|k+1), thenf is absolutely

continuous and for the argument above is piecewiseC1. For almost everyt,

d

dt
f(t) =

d

dt
〈|A|kΥu

t ψ0,Υ
u
tψ0〉

= 〈|A|kΥu
t ψ0, (A+

p∑

l=1

ul(t)Bl)Υ
u
t ψ0〉+ 〈|A|k(A +

p∑

l=1

ul(t)Bl)Υ
u
t ψ0,Υ

u
tψ0〉

= 2ℜ〈|A|kΥu
t ψ0, (A+

p∑

l=1

ul(t)Bl)Υ
u
tψ0〉

= 2
p∑

l=1

ul(t)ℜ〈|A|kΥu
tψ0, BlΥ

u
t ψ0〉.

Since(A,B1, . . . , Bp) is k-weakly-coupled, then

|f ′(t)| ≤ 2
p∑

l=1

|ul(t)||〈|A|kΥu
t ψ0, BlΥ

u
t ψ0〉| ≤ 2ck(A,B1, . . . , Bp)

p∑

l=1

|ul(t)|f(t).

From Gronwall’s lemma, we get〈|A|kψ(t), ψ(t)〉 ≤ e2ck(A,B1,...,Bp)
∑p

l=1

∫ t

0
|ul|(τ)dτ‖ψ0‖2k/2 for

everyψ0 in D(|A|k+1).

Let (ψn0 )n∈N be a sequence inD(|A|k+1) converging toψ0 in D(|A| k2 ) for thek/2-norm. For

every ψ̃ in D(|A| k2 ) and for everyt ≥ 0,

|〈|A| k2 ψ̃,Υu
t (ψ

n
0 )〉| ≤ |〈ψ̃, |A| k2Υu

t (ψ
n
0 )〉| ≤ ‖ψ̃‖‖Υu

t (ψ
n
0 )‖ k

2
,

which is bounded uniformly with respect ton from the first part of the proof. Sinceψ 7→ Υu
t (ψ)

is unitary, (Υu
t (ψ

n
0 ))n∈N converges toΥu

t (ψ0) (for the norm ofH) and |〈|A| k2 ψ̃,Υu
t (ψ0)〉| ≤
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e2ck(A,B1,...,Bp)K‖ψ̃‖ k
2
‖ψ0‖ k

2
. Hence,Υu

t (ψ0) belongs toD(|A| k2 )∗ = D(|A| k2 ) and‖Υu
t (ψ0)‖ k

2
≤

eck(A,B1,...,Bp)K‖ψ0‖ k
2
, which concludes the proof in the case in whichD(|A|k+1) = D(|A +

∑
l≤p ulBl|k+1).

C. Good Galerkin approximation

In this section we show that a weakly-coupled system admits afinite dimensional approxima-

tion whose trajectories are close, at every time, to the solutions of the original infinite dimensional

system. For everyN in N, we define the orthogonal projection

πN : ψ ∈ H 7→
∑

j≤N

〈φj, ψ〉φj ∈ H.

Lemma 3. Let k be a positive number,(A,B1, . . . , Bp) satisfy Assumption 1, and bek-weakly-

coupled. Assume that there existd > 0, 0 ≤ r < k such that‖Blψ‖ ≤ d‖ψ‖r/2 for everyψ in

D(|A|r/2) and l in {1, . . . , p}. Then, for everyK ≥ 0, n ∈ N, N ∈ N, (ψj)1≤j≤n in D(|A|k/2)n,

and for every piecewise constant functionu = (u1, . . . , up),
p∑

m=1

‖um‖L1 ≤ K =⇒ ‖Bl(Id− πN )Υ
u
t (ψj)‖ < dλ

(r−k)/2
N+1 eck(A,B1,...,Bp)K‖ψj‖k/2, (3)

for everyt ≥ 0, l = 1, . . . , p and j = 1, . . . , n.

Proof: Fix j ∈ {1, . . . , n}. For everyN > 1, one has

‖(Id− πN )Υ
u
t (ψj)‖2r/2 =

∞∑

n=N+1

λrn|〈φn,Υu
t (ψj)〉|2 ≤ λr−kN+1 ‖Υu

t (ψj)‖2k/2 . (4)

By Proposition 2,‖Υu
t (ψj)‖2k/2 ≤ e2ck(A,B1,...,Bp)K‖ψj‖2k/2 for every t > 0 and u of L1-norm

smaller thanK. Equation (3) follows as, for everyl = 1, . . . , p, ‖Blψ‖ ≤ d‖|A| r2ψ‖.

Remark2. Sincer < k, then‖Bl(Id− πN )Υ
u
t (ψj)‖r/2 tends to0, uniformly with respect tou,

asN tends to infinity.

Definition 2. Let N ∈ N. The Galerkin approximationof (2) of orderN is the system inH

ẋ = (A(N) +
p∑

l=1

ulB
(N)
l )x (ΣN )

whereA(N) = πNAπN andB(N)
l = πNBlπN are thecompressionsof A andBl (respectively).

We denote byXu
(N)(t, s) the propagator of (ΣN ) for a p-uple of piecewise constant functions

u = (u1, . . . , up).

September 8, 2011 DRAFT
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Remark3. The operatorsA(N) and B(N)
l are defined on theinfinite dimensional spaceH.

However, they have finite rank and the dynamics of(ΣN ) leaves invariant theN-dimensional

spaceLN = span1≤l≤N{φl}. Thus,(ΣN) can be seen as a finite dimensional bilinear dynamical

system inLN .

Proposition 4 (Good Galerkin Approximation). Let k and s be non-negative numbers with

0 ≤ s < k. Let (A,B1, . . . , Bp) satisfy Assumption 1 and bek-weakly-coupled. Assume that

there existd > 0, 0 ≤ r < k such that‖Blψ‖ ≤ d‖ψ‖r/2 for everyψ in D(|A|r/2) and l in

{1, . . . , p}. Then for everyε > 0, K ≥ 0, n ∈ N, and (ψj)1≤j≤n in D(|A|k/2)n there exists

N ∈ N such that for every piecewise constant functionu = (u1, . . . , up)

p∑

l=1

‖ul‖L1 < K =⇒ ‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖s/2 < ε,

for everyt ≥ 0 and j = 1, . . . , n.

Proof: Consider the cases = 0. Fix j in {1, . . . , n} and consider the mapt 7→ πNΥ
u
t (ψj)

that is absolutely continuous and satisfies, for almost every t ≥ 0,

d

dt
πNΥ

u
t (ψj) = (A(N) +

p∑

l=1

ulB
(N)
l )πNΥ

u
t (ψj) +

p∑

l=1

ul(t)πNBl(Id− πN )Υ
u
t (ψj).

Hence, by variation of constants, for everyt ≥ 0,

πNΥ
u
t (ψj) = Xu

(N)(t, 0)πNψj +
p∑

l=1

∫ t

0
Xu

(N)(t, s)πNBl(Id− πN)Υ
u
s (ψj)ul(τ)dτ. (5)

By Lemma 3, the norm oft 7→ Bl(Id− πN)Υ
u
t (ψj) is less thandλ(r−k)/2N+1 eck(A,B1,...,Bp)K‖ψj‖k/2.

SinceXu
(N)(t, s) is unitary,

‖πNΥu
t (ψj)−Xu

(N)(t, 0)πNψj‖ < Kdλ
(r−k)/2
N+1 eck(A,B1,...,Bp)K‖ψj‖k/2. (6)

Then

‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖ ≤ ‖(Id− πN )Υ
u
t (ψj)‖+ ‖πNΥu

t (ψj)−Xu
(N)(t, 0)πNψj‖

≤ λ
−k/2
N+1 e

ck(A,B1,...,Bp)K‖ψj‖k/2 +Kdλ
(r−k)/2
N+1 eck(A,B1,...,Bp)K‖ψj‖k/2.

(7)

This completes the proof fors = 0 sinceλN tends to infinity asN goes to infinity.

Note that, if X is a set and(un)n∈N is a sequence of functions fromX to H that tends

uniformly to 0 (the null function) for thes-norm and is uniformly bounded for thek-norm for
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8

s < k, then (un)n∈N tends uniformly to0 in the s+k
2

-norm. This is a consequence of Cauchy-

Schwarz inequality, indeed

‖un‖2s+k
2

= |〈|A| s+k
2 un, |A|

s+k
2 un〉| = |〈|A|sun, |A|kun〉| ≤ ‖un‖s‖un‖k.

We conclude the proof in the general cases > 0 applying this interpolation result, combined

with a bootstrap argument, on the sequence(uN)N∈N with uN : (t, u) 7→ (Xu
(N)(t, 0)πN−Υu

t )ψj ,

defined onX = [0,+∞)× {u ∈ L1 : ‖u‖L1 ≤ K}.

Remark 4. In the cases = 0, there is an explicit estimate for the order of the Galerkin

approximation which existence is stated in Proposition 4. For instance, by (6),‖πNΥu
t (ψj) −

Xu
(N)(t, 0)πNψj‖ < ε if N is such that

λN+1 >

(
Kdeck(A,B1,...,Bp)K‖ψj‖k/2

ε

) 2
k−r

, (8)

for j = 1, . . . , n.

D. Approximate controllability ins-norm

The a priori bounds on thek-norm for the solution of a system are a deep obstruction to

exact controllability, but provide powerful tools for the study of the approximate controllability.

Definition 3. Let (A,B) satisfy Assumption 1. A subsetS of N2 couplestwo levelsj, k in N,

if there exists a finite sequence
(
(s11, s

1
2), . . . , (s

q
1, s

q
2)
)

in S such that

(i) s11 = j andsq2 = k;

(ii) sj2 = sj+1
1 for every1 ≤ j ≤ q − 1;

(iii) 〈φsj1, Bφsj2〉 6= 0 for 1 ≤ j ≤ q.

The subsetS is called aconnectedness chainfor (A,B) if S couples every pair of levels inN.

A connectedness chain is said to benon-resonantif for every (s1, s2) in S, |λs1−λs2 | 6= |λt1−λt2 |
for every (t1, t2) in N

2 \ {(s1, s2), (s2, s1)} such that〈φt2 , Bφt1〉 6= 0.

Definition 4. Let (A,B) satisfy Assumption 1 ands > 0. The system(A,B) is approximately

simultaneously controllable for thes-norm if for everyΥ̂ ∈ U(H) (unitary operators acting on

H) leavingD(|A|s) invariant,ψ1, . . . , ψn ∈ D(|A|s), andε > 0, there exists a piecewise constant

function uε : [0, Tε] → R such that

‖Υ̂ψj −Υuε
Tεψj‖s < ε.
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for everyj = 1, . . . , n.

Proposition 5. Letk be a positive number. Let(A,B) satisfy Assumption 1, bek-weakly-coupled,

and admit a non-resonant chain of connectedness. Assume that there existd > 0, 0 ≤ r < k such

that ‖Bψ‖ ≤ d‖|A| r2ψ‖, for everyψ in D(|A| r2 ). Then(A,B) is approximately simultaneously

controllable for the norm‖ · ‖s/2 for everys < k.

Proof: Fix ε > 0, ψ1, . . . , ψn ∈ D(|A|s/2), and Υ̂ ∈ U(H) such thatΥ̂(ψ1), . . . , Υ̂(ψn) ∈
D(|A|s/2). Fix n1 sufficiently large such that‖Υ̂(ψj) − πn1Υ̂(ψj)‖s/2 < ε/3 for every j =

1, . . . , n.

There existl1, . . . , ln such thatt 7→ (eitλl1 , . . . , eitλln ) is ε-dense in the torusTn (see [10,

Proposition 6.1]). Callm = max{n1, l1, . . . , ln}.

By [10, Remark 5.9] there existsK1 such that for everyη > 0 there exist a controluη1 satisfying

‖uη1‖L1 ≤ K1 andθ1, θ2, . . . , θn, such that‖Υuη1
T1(ψj)− eiθjφlj‖ < η, for everyj = 1, . . . , n.

Similarly, since the hypotheses of [10, Remark 5.9] apply tothe system(−A,−B) (see [10,

Section 6.1]), we have the existence ofK2 such that for everyη > 0 there existsuη2 satisfying

‖uη2‖L1 ≤ K2 and θ̄1, . . . , θ̄n ∈ R such that the solution of the system

dψ

dt
(t) = −(A+ u(t)B)ψ(t)

at time T2 with initial condition Υ̂(ψj) and corresponding to the controluη2 is η-close in the

norm ofH to eiθ̄jφlj for everyj = 1, . . . , n.

Let τ such that‖eiτλlj eiθj − eiθ̄j‖ < η for every j = 1, . . . , n. Let T = T1 + τ + T2 and let

u : [0, T ] → R be the piecewise constant control defined by

uη(t) =





uη1(t) t ∈ [0, T1),

0 t ∈ [T1, T1 + τ),

uη2(T2 − (t− T1 − τ)) t ∈ [T1 + τ, T ],

The controluη above steers a solution oḟψ = (A+ uB)ψ with initial conditionψj 3η-close in

the norm‖ · ‖ to Υ̂(ψj) in a timeT .

Let K = K1 +K2. By Lemma 3, we have that there existsN = N(ε,K, s) > n such that

‖u‖L1 ≤ K =⇒ ‖(Id− πN)Υ
u
t (ψj)‖s/2 <

ε

3
,

for everyj = 1, . . . , n and t ≥ 0.
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Note that, onspan{φ1, . . . , φN}, we have‖·‖s/2 ≤ λ
s/2
N ‖·‖. Therefore for everyj = 1, . . . , n,

‖Υ̂(ψj)−Υuη

T (ψj)‖s/2 ≤ ‖(Id− πN)(Υ̂(ψj)−Υuη

T (ψj))‖s/2 + ‖πN(Υ̂(ψj)−Υuη

T (ψj))‖s/2

≤ ‖(Id− πN)Υ̂(ψj)‖s/2 + ‖(Id− πN )Υ
uη

T (ψj))‖s/2 + λ
s/2
N ‖Υ̂(ψj)−Υuη

T (ψj)‖

≤ 2ε

3
+ 3λ

s/2
N η < ε,

for η sufficiently small.

III. T HE BOUNDED CASE

Proposition 6. Let k be a positive integer. Assume that for everyu ∈ R
p, D(|A| k2 ) = D(|A +

∑
l ulBl|

k
2 ) and that for everyl = 1, . . . , p the restriction ofBl to D(|A| k2 ) is bounded for the

k
2
-norm. Then(A,B1, . . . , Bp) is k-weakly-coupled.

Proof: For everyl = 1, . . . , p, let ‖Blψ‖k/2 ≤ Cl,k‖ψ‖k/2 for everyψ in D(|A|k). Then

|〈Akψ,Blψ〉| = |〈|A| k2ψ, |A| k2Blψ〉| ≤ ‖|A| k2ψ‖‖|A| k2Blψ‖ ≤ Cl,k‖|A|
k
2ψ‖2 = Cl,k|〈Akψ, ψ〉|

for everyψ in D(|A|k).

A. Example: single trapped ion

This example is a model of a single ion with two possible states (excited stateand ground

state) submitted to a superposition of external fields. It has beenextensively studied (see for

example [14], [15], and [16]).

The state of the system is(ψe, ψg) in H = L2(R,C)× L2(R,C). The dynamics is given by





i∂ψe

∂t
= ω(−∆+ x2)ψe + Ωψe +

(
u1(t) cos(

√
2ηx) + u2(t) sin(

√
2ηx)

)
ψg

i∂ψg

∂t
= ω(−∆+ x2)ψg + Ωψg +

(
u1(t) cos(

√
2ηx) + u2(t) sin(

√
2ηx)

)
ψe

whereω,Ω, η are positive constants related to the physical properties of the system. The two

real valued controlsu1 andu2 are usually a sum of periodic functions with positive frequencies

Ω, Ω + ω andΩ− ω. With our notations, the dynamics reads

dψ

dt
= Aψ + u1(t)B1ψ + u2(t)B2(ψ) (9)

whereA is the diagonal operatorA : (ψe, ψg) 7→ −i(ω(−∆+x2)ψe+Ωψe, ω(−∆+x2)ψg+Ωψg),

B1 : (ψe, ψg) 7→ −i(cos(
√
2ηx)ψg, cos(

√
2ηx)ψe), andB2 : (ψe, ψg) 7→ −i(sin(

√
2ηx)ψg, sin(

√
2ηx)ψe).
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By [17, Theorem XIII.69 and Theorem XIII.70], the operatorA is skew-adjoint with discrete

spectrum and admits a family of eigenfunctions which forms an orthonormal basis ofH. SinceB1

andB2 are bounded then, for every real constantsu1 andu2,A+u1B1+u2B2 is skew-adjoint with

the same domain ofA (see [18, Theorem X.12]). The spectrum ofA is the sequence(−iλn)n∈N =

−i(ω(n+1/2)+Ω)n∈N. For everyn in N, the eigenvalue−iλn has multiplicity 2 and is associated

with the 2-dimensional subspace ofL2(R,C)× L2(R,C) spanned by{(fn, 0), (0, fn)} where

fn is the nth Hermite function. Assumption 1 is then verified. Since, for every k in N, all

derivatives up to orderk of x 7→ cos(
√
2ηx) andx 7→ sin(

√
2ηx) are bounded for theL∞-norm

by Ck = 2
k
2 ηk on R thenB1 andB2 are bounded by2kCk on D(|A| k2 ) for everyk. Moreover

for every (u1, u2) ∈ R
2, D(Ak) = D((A+ u1B1 + u2B2)

k). Indeed by induction onk

D((A+ u1B1 + u2B2)
k+1) = {ψ ∈ D((A+ u1B1 + u2B2)

k) :

(A+ u1B1 + u2B2)ψ ∈ D((A+ u1B1 + u2B2)
k)}

= {ψ ∈ D(Ak) : (A+ u1B1 + u2B2)ψ ∈ D(Ak)} = D(Ak+1),

since(u1B1+u2B2)ψ ∈ D(Ak) whenψ ∈ D(Ak). Lemma 1 providesD(|A|s) = D(|A+u1B1+

u2B2|s) for any s > 0. Hence, by Proposition 6 the system(A,B1, B2) is k-weakly-coupled for

everyk, with coupling constant smaller than2kCk.

B. The case of a compact manifold

We focus here on the case where the spaceΩ is a compact Riemannian manifold without

boundary. By Rellich-Kondrakov and Weyl theorems, ifV is essentially bounded the operator

A = −i(∆ + V ) : H2(Ω) → L2(Ω,C) has purely discrete spectrum(−iλn)n∈N with λn non-

decreasing to infinity (see for instance [19, Theorem 7.2.6]). Note thatλ1 is not necessarily

positive but this is the case consideringA+ i(λ1 − 1) instead ofA. This shift gives a physically

irrelevant phase term,eit(λ1−1), on the dynamics associated withA.

Lemma 7. Let k be a positive integer,Ω be a compact Riemannian manifold,V : Ω → R be

C2k(Ω). Then the domain of the operator(∆ + V )k is H2k(Ω).

Proof: SinceΩ is compact it is sufficient to prove the proposition on a bounded domain

of Rn. The operator−iA = ∆+ V is an elliptic operator of order2. By [20, Theorem 8.10] if

Af ∈ Hk(Ω) thenf ∈ Hk+2(Ω) and by induction we have thatD(|A|k) = H2k(Ω).
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Proposition 8. Let k be a positive integer,Ω be a compact Riemannian manifold,V,W : Ω → R

be twoC2k(Ω,R) functions onΩ. DefineA = −i(∆ + V ) : D(A) → L2(Ω,C) andB = iW :

L2(Ω,C) → L2(Ω,C). Then(A,B) is k-weakly-coupled.

Proof: Note that for everyf ∈ C2k there exists a constantCk = 22k+1 sup0≤j≤2k ‖W (j)‖L∞(Ω,R)

such that‖Wf‖H2k ≤ Ck‖f‖H2k . From Lemma 7, the norm‖ · ‖H2k and thek-norm are

equivalent. Therefore, by Proposition 6, the system isk-weakly-coupled.

Remark5. As consequence of Lemma 7 and Proposition 8 we have that, in the case of a compact

manifold, if the potentials are inCm(Ω) then Proposition 4 applies withk = m/2−1 andr = 0.

C. Example: orientation of a rotating molecule in the plane

We consider a rigid bipolar molecule rotating in a plane. Itsonly degree of freedom is the

rotation around its centre of mass. The molecule is submitted to an electric field of constant

direction with variable intensityu. The orientation of the molecule is an angle inΩ = SO(2) ≃
R/2πZ. The dynamics is governed by the Schrödinger equation

i
∂ψ(θ, t)

∂t
=

(
− ∂2

∂θ2
+ u(t) cos θ

)
ψ(θ, t), θ ∈ Ω.

Note that the parity (if any) of the wave function is preserved by the above equation. We

consider then the Hilbert spaceH = {ψ ∈ L2(Ω,C) : ψ odd }, endowed with the Hilbert

product〈f, g〉 = ∫
Ω f̄ g. The eigenvalue of the skew-adjoint operatorA = i ∂

2

∂θ2
associated with

the eigenfunctionφk : θ 7→ sin(kθ)/
√
π is −iλk = −ik2, k ∈ N. The domain of|A|k is the

Hilbert spaceHk
e = {ψ ∈ H2k(Ω,C) : ψ odd }. The skew-symmetric operatorB = −i cos θ

is bounded onD(|A|k/2) for everyk. By Proposition 6, for everyk in N, (A,B) is k-weakly-

coupled. Proposition 4 applies for everyk with r = 0 andd = 1. In Section IV-C we also give

an estimate on the coupling constantck(A,B) for this system.

From the point of view of the controllability problem, notice that the operatorB couples only

adjacent eigenstates, that is〈φl, Bφj〉 = 0 if and only if |l − j| > 1. Sinceλl+1 − λl = 2l + 1

then {(j, l) ∈ N
2 : |l − j| = 1} is a non-resonant connectedness chain for(A,B). Therefore,

by Proposition 5 the system provides an example of approximately simultaneously controllable

system in normHk(Ω) for everyk. Note that, since the eigenstates belong toHk(Ω) for every

k then the reachable set from any eigenstate is contained inHk(Ω) for everyk.
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D. Example: orientation of a rotating molecule in the space

We present the physical example of a rotating rigid bipolar molecule. Unlike last example

the motion of the molecule is not confined to a plane. The modelthen can be represented by

the Schödinger equation on the sphere. In this case,Ω = S
2 is the unit sphere, the family

(Y m
ℓ )ℓ≥0,|m|≤ℓ of the spherical harmonics is an Hilbert basis ofH = L2(Ω,C), and the control is

represented by three piecewise constant functionsu1, u2, u3. The controlled Schrödinger equation

is

i
∂ψ(ν, θ, t)

∂t
= (−∆+ u1(t) cos θ sin ν + u2(t) sin θ sin ν + u3(t) cos ν)ψ(ν, θ, t), (ν, θ) ∈ S

2.

Therefore, sinceΩ is compact, Proposition 4 applies for every integerk with d = 1 andr = 0.

IV. TRI-DIAGONAL SYSTEMS

We deal with the case wherep = 1 andB couples only adjacent levels ofA.

A. Tri-diagonal systems

Definition 5. A system(A,B) satisfying Assumption 1 istri-diagonal if for every j, k in N,

|j − k| > 1 implies 〈φj, Bφk〉 = 0.

In the following, we denotebj,k = 〈φj, Bφk〉.

Proposition 9. Assume that(A,B) is tri-diagonal, that the sequence
(
λn+1

λn

)

n∈N
is bounded,

and that the sequences
(
bn,n−1

λn

)

n∈N
,
(
bn,n

λn

)

n∈N
tend to zero. Then, for everyk in N and u in

R, D((A + uB)k) = D(Ak). Moreover,D(Ak) is invariant for et(A+uB) for any u in R and t

in R.

Proof: The equality ofD((A+uB)k) andD(Ak) will follow from the Kato-Rellich theorem

([21, Theorem 1.4.2]). It suffices to check that for everyk in N, u in R, ε > 0, and everyψ in

D(Ak), there existsε < 1 and bε such that

‖((A+ uB)k −Ak)ψ‖ ≤ ε‖Akψ‖+ bε‖ψ‖. (10)
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Let us prove thatB is bounded fromD(Ar+1) to D(Ar) for every integerr ≥ 0. For everyv

in D(Ar),

‖Bv‖2r =
∞∑

n=1

λ2rn |〈Bv, φn〉|2

=
∞∑

n=1

λ2rn |〈v, Bφn〉|2

≤
∞∑

n=1

λ2rn (b
2
n,n−1|〈φn−1, v〉|2 + b2n,n|〈φn, v〉|2 + b2n,n+1|〈φn+1, v〉|2)

=
∞∑

n=1

λ2r+2
n−1

(
λn
λn−1

)2r b2n,n−1

λ2n−1

|〈φn−1, v〉|2 + λ2r+2
n

b2n,n
λ2n

|〈φn, v〉|2+

+ λ2r+2
n+1

(
λn
λn+1

)2r b2n,n+1

λ2n+1

|〈φn+1, v〉|2.

Now for everyε > 0, letn0 such thatsupn≥n0

b2n,n−1

λ2n−1
< ε

3C2r , supn≥n0

b2n,n

λ2n
< ε/3, andsupn≥n0

b2n,n+1

λ2n+1
<

ε
3
. Note that the sequence(λn)n∈N is non-decreasing. Then there existsCε such that

‖Bv‖2r ≤
n0∑

n=1

λ2rn |〈v, Bφn〉|2 + ε
∑

n≥n0−1

λ2r+2
n |〈φn, v〉|2 ≤ Cε‖v‖2 + ε‖v‖2r+1. (11)

We prove (10) by induction onk. For k = 1 this is a consequence of (11) withr = 0. The

inductive step follows from the fact that

(A + uB)k+1 − Ak+1 = u((A+ uB)kB − AkB) + uAkB + ((A+ uB)k − Ak)A

for everyu in R and from inequality (11).

Proposition 10. Let (A,B) be a tri-diagonal system and letk be a positive integer. Assume that

the sequence
(
λn+1

λn

)

n∈N
is bounded, that the sequences

(
bn,n−1

λn

)

n∈N
,
(
bn,n

λn

)

n∈N
tend to zero, and

that the sequence

(
|bn,n+1|

(
λkn+1

λkn
− 1

))

n∈N

is bounded. Then(A,B) is k-weakly-coupled.

Proof: For everyψ in D(A), write ψ =
∑∞
j=1 xjφj wherexj = 〈φj, ψ〉. Sinceℜ(bj,j) = 0

September 8, 2011 DRAFT



15

then

ℜ
(
〈|A|kψ,Bψ〉

)
= ℜ




∞∑

j=1

λkj x̄jbj+1,jxj+1 + λkj+1x̄j+1bj,j+1xj





= ℜ



∞∑

j=1

λkj (x̄jbj+1,jxj+1 − xj b̄j+1,jx̄j+1) + (λkj+1 − λkj )x̄j+1bj,j+1xj





= ℜ



∞∑

j=1

(λkj+1 − λkj x̄j+1bj,j+1xj




≤
∞∑

j=1

(λkj+1 − λkj )|bj,j+1|
|xj |2 + |xj+1|2

2
.

By hypothesis, there existsC such that|bj,j+1|(λkj+1−λkj ) ≤ Cλkj for everyj. Hence,|ℜ〈|A|kψ,Bψ〉| ≤
C
∑∞
j=1 λ

k
j |xj |2 ≤ C〈|A|kψ, ψ〉. The equality of the domains follows by Proposition 9.

B. Estimates for tri-diagonal systems

Lemma 11. Let (A,B) be a tri-diagonal system andl be an integer. Assume that the sequence
(
λn+1

λn

)

n∈N
is bounded, that the sequences

(
bn,n−1

λn

)

n∈N
,
(
bn,n

λn

)

n∈N
tend to zero, and that there

exists a positive integerk and0 ≤ r < k/2 such that the sequences

(
|bn,n+1|

(
λkn+1

λkn
− 1

))

n∈N

,
(
bn,n

|λn|r

)

n∈N
and

(
bn,n−1

|λn|r

)

n∈N
are bounded. Then for everyt ≥ 0, for every piecewise constant

control u,

|〈φl+1,Υ
u
t φ1〉| ≤

3l

l!

2l+1∏

j=l+1

L(j)
(∫ t

0
|u(τ)|dτ

)l
,

where forj ∈ N, L(j) = supn,m≤j |bn,m|.

Proof: Let K > 0. We prove the result foru piecewise constant ofL1-norm smaller than

K. For everyε > 0 by Proposition 4 there existsN = N(K, ε) > l such that‖Υu
t (φ1) −

Xu
(N)(t, 0)φ1‖ < ε for every t ≥ 0.

Consider the solutionψ : t 7→ Xu
(N)(t, 0)φ1 of (ΣN ) with initial condition φ1. Thenψ(t) =

etA
(N)
φ1 +

∫ t
0 e

(t−s)A(N)
u(s)B(N)ψ(s)ds. Iterating l − 1 times we get

ψ(t) = etA
(N)
(
φ1+

+
l−1∑

j=1

∫

0≤sj≤···≤s1≤t
e(t−s1)A

(N)

B(N) · · · e(sj−1−sj)A
(N)

B(N)esjA
(N)

φ1

j∏

m=1

u(sm)ds1 . . . dsj+

+
∫

0≤sl≤···≤s1≤t
e(t−s1)A

(N)

B(N)e(s1−s2)A
(N)

B(N) · · · e(sl−1−sl)A
(N)

B(N)ψ(sl)
l∏

m=1

u(sm)ds1 . . . dsl

)
.
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For the tri-diagonal structure of the system we have

〈φl+1, e
(t−s1)A(N)

B(N) · · · e(sj−1−sj)A(N)

B(N)esjA
(N)

φ1〉 = 0

for every0 ≤ sj ≤ · · · ≤ s1 ≤ t and j ≤ l − 1. Then

〈φl+1, ψ(t)〉 = etA
(N)
∫

0≤sl≤···≤s1≤t
〈φl+1, e

(t−s1)A(N)

B(N)e(s1−s2)A
(N)

B(N) · · ·e(sl−1−sl)A
(N)

B(N)ψ(sl)〉
l∏

m=1

u(sm)ds1 . . . dsl

Now,

sup
s1,...,sl∈[0,t]

‖B(N)e(sl−sl−1)A
(N)

B(N) · · · e(s2−s1)A(N)

B(N)e(s1−t)A
(N)

φl+1‖ ≤ 3l
2l+1∏

j=l+1

L(j). (12)

Then

|〈φl+1, ψ(t)〉| ≤ 3l
2l+1∏

j=l+1

L(j)
∫

0≤s1≤···≤sl≤t

l∏

m=1

|u(sm)|ds1 . . . dsl = 3l

(∫ t
0 |u(s)|ds

)l

l!

2l+1∏

j=l+1

L(j),

as a consequence

|〈φl+1,Υ
u
t (φ1)〉| ≤ 3l

K l

l!

2l+1∏

j=l+1

L(j) + ε,

and the result follows asε tends to zero.

From a physical point of view, Lemma 11 provides an estimation of the probability of energy

transitions (in the spirit, for instance, of [18, Section X.12, Example 1]).

Remark6. In the case in which the diagonal ofB is zero then equation (12) reads

sup
s1,...,sl∈[0,t]

‖B(N)e(sl−sl−1)A
(N)

B(N) · · · e(s2−s1)A(N)

B(N)e(s1−t)A
(N)

φl+1‖ ≤ 2l
2l+1∏

j=l+1

L(j).

This gives the better estimate in this case|〈φl+1,Υ
u
t φ1〉| ≤ 2l

∏2l+1
j=l+1L(j)

(∫ t
0 |u(τ)|dτ

)l
/l!.

C. Example: orientation of a rotating molecule in the plane II

The system of Section III-C provides also an example of tri-diagonal system. Recall that

for this system, for everyj, k in N, λk = k2, 〈φj, Bφk〉 6= 0 if and only if |j − k| = 1 and

〈φj, Bφj+1〉 = −i/2. We deduce a bound for the coupling constants from Proposition 10. For

everyk in N,

ck(A,B) ≤ sup
n∈N

|〈φn, Bφn+1〉|
(
λkn+1

λkn
− 1

)
= sup

n∈N

1

2

((
1 +

1

n

)2k

− 1

)
=

22k − 1

2
.
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In particularc1(A,B) ≤ 3/2 and, by (8), we obtain that‖πNΥu
t (φ1)−Xu

(N)(t, 0)πNφ1‖ < ε if

λN+1 = (N + 1)2 >
(

‖u‖L1e
3/2‖u‖

L1

ε

)2

.

The tri-diagonal structure allows to obtain better estimates onN . From Remark 6, we get

|〈φN+1,Υ
u
t (φ1)〉| ≤

(2K)N

N !

2N+1∏

j=N+1

L(j) =
KN

N !
.

Therefore, by (5), for everyε > 0, if N is such that‖u‖N+1
L1 < 2εN ! then ‖πNΥu

t (φ1) −
Xu

(N)(t, 0)φ1‖ < ε.

The second estimates is significantly better than the first one. For instance, if one has‖u‖L1 = 3

and one desiresε < 10−4, the conditionε(N+1) > ‖u‖L1e3/2‖u‖L1 is false for everyN < 2.7 106

while the second condition,‖u‖N+1
L1 < 2εN !, is true forN = 14.

D. Example: quantum harmonic oscillator

The quantum harmonic oscillator is among the most importantexamples of quantum system

(see, for instance, [22, ComplementGV ]). Its controlled version has been extensively studied

(see, for instance, [23], [24]). In this exampleH = L2(R,C) and equation (2) becomes

i
∂ψ

∂t
(x, t) =

1

2
(−∆+ x2)ψ(x, t) + u(t)xψ(x, t). (13)

An Hilbert basis ofH made of eigenvectors ofA is given by the sequence of the Hermite

functions(φn)n∈N, associated with the sequence(−iλn)n∈N of eigenvalues whereλn = n−1/2

for everyn in N. In the basis(φn)n∈N, B admits a tri-diagonal structure:

〈φj, Bφk〉 =





−i
√
k − 1 if j = k − 1

−i
√
k if j = k + 1

0 otherwise

Proposition 9 and Proposition 10 apply so that, for everyk in N, the system(A,B) is k-weakly-

coupled and

ck(A,B) ≤ sup
n

√
n

(
(n+ 1/2)k

(n− 1/2)k
− 1

)

≤ sup
n

√
n

(
1 +

1

n− 1
2

− 1

)
k−1∑

j=0

(
1 +

1

n− 1
2

)j

≤ 3k+1 − 1

2
sup
n

√
n

n− 1
2

≤ 3k+1 − 1.
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The quantum harmonic oscillator is not controllable (in anyreasonable sense), however,

the Galerkin approximations of (13) of every order are controllable (see [23]). This is not a

contradiction, indeed Proposition 4 states that there exists a size of the Galerkin approximation

for which the trajectories of the infinite dimensional system can be approximately tracked by

the Galerkin approximation, provided that there exists a uniform bound on theL1-norm of the

control. As a matter of fact, there is no such bound for system(13).

To obtain an estimate of the orderN of the Galerkin approximation whose dynamics remains

ε close to the one of the infinite dimensional system when usingcontrol withL1-normK, one

could use Proposition 4 withk = 2, r = 1, d = 1, and‖φ1‖1 = 1/2. The resulting bound, as

given by (8),

N >
K2e16K

4ε2
− 1

2
(14)

is however very weak. Like in the example of Section IV-C, thetri-diagonal structure ofB

allows better estimates. Using Remark 6, we find that‖X(N)
u (t, 0)φ1 − πNΥ

u
t φ1‖ ≤ ε provided

‖u‖L1 ≤ K and √
N + 1

(N − 1)!
22N+ 1

2KN+1 < ε.

For instance, ifK = 3 andε = 10−4, this is true forN = 420, while (14) is false forN < 1029.

V. CONCLUSION

In our study we focused on the notion of weak coupling. We haveestablished some inter-

esting consequences in control theory and numerical simulation which applies to common and

interesting physical models.

However, our assumptions are not optimal and in forthcomingworks we expect generalization

to rough control such as Dirac impulses. We hope that we will include systems with continuous

spectrum in the scope of such technology.

APPENDIX

PROOF OFLEMMA 1

Proof of Lemma 1: Without loss of generality we can assume that the operators|A|
and |A′| are positive and invertible. Let(φn)n∈N and (φ′

n)n∈N be unitary basis ofH made
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of eigenvectors ofA andA′ respectively. Thenλnφn = |A|φn for n ∈ N andD(|A|s) = {ψ ∈
H :

∑
j∈N λ

2s
j |〈φj, ψ〉|2 < +∞}. Similarly, we can defineλ′n andD(|A′|s).

SinceD(|A|k) ⊂ D(|A′|k) and by the closed graph theorem, we deduce the existence of

Ck > 0 such that for everyψ ∈ D(|A|k)
∑

n

λ′
2k
n |〈ψ, φ′

n〉|2 ≤ Ck
∑

n

|λn|2k|〈ψ, φn〉|2

so that
∑

n

λ′
2k
n

∣∣∣∣∣∣

∑

j

〈ψ, φj〉〈φj, φ′
n〉
∣∣∣∣∣∣

2

≤ Ck
∑

n

|λn|2k|〈ψ, φn〉|2.

For all ψ ∈ D(|A|k) let ψ̃ in H such thatψ = |A|−kψ̃ =
∑
λ−kj 〈ψ̃, φj〉φj. Then, for allψ̃ ∈ H,

we have
∑

n

λ′
2k
n

∑

l

λ−kl 〈ψ̃, φl〉〈φl, φ′
n〉
∑

j

λ−kj 〈ψ̃, φj〉〈φj, φ′
n〉 ≤ Ck‖ψ̃‖2. (15)

and the equality holds fork = 0 andC0 = 1. Considerψ̃ ∈ H and

f
ψ̃
: z = s+ iy 7→

∑

n

λ′
2s+i2y
n 〈|A|−s+iyψ̃, φ′

n〉〈φ′
n, |A|−s−iyψ̃〉

where, for everyz in C, |A|zψ̃ =
∑
j λ

z
j〈ψ̃, φj〉φj. Then, by (15) fors = 0 ands = k we have

∣∣∣f
ψ̃
(s+ iy)

∣∣∣ ≤ Cs‖|A|−s+iyψ̃‖s‖|A|−s−iyψ̃‖s ≤ Cs‖ψ̃‖2.

If ψ̃ is finite linear combination of the vectors{φj}j∈N then the functionf
ψ̃

analytic on the strip

{z ∈ C : 0 < ℜz < k} and continuous on its closure as uniform limits of a partial sum onn.

Since it is bounded on the boundary, by Hadamard three-linestheorem [18, Appendix IX.4], it

is bounded on the strip, and, moreover,log(supℜz=s |fψ̃(z)|), is a convex function ofs ∈ [0, k].

So that fors ∈ (0, k), we obtain

∑

n

λ′
2s
n |〈ψ, φ′

n〉|2s ≤ C
s
k
k

∑

n

|λn|2s|〈ψ, φn〉|2,

and by densityD(|A|s) ⊂ D(|A′|s). The hypothesis and the proof being symmetric inA andA′

we have actually the equality.
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APPENDIX

PROOF OFPROPOSITION2

In this Appendix, we use regularization techniques to provide a proof of Proposition 2.

Proof of Proposition 2: Note that for everyu ∈ R
p, D(|A +

∑
l ulBl|k/2) = D(|A|k/2),

the function|A|k/2et(A+
∑

ulBl)ψ0 is in C(R, H) and for everyε > 0 the function|A|k/2(ε(A+
∑
l ulBl) + 1)−1et(A+

∑
ulBl)ψ0 is in C1(R, H) wheneverψ0 ∈ D(|A|k/2).

If t 7→ ψ(t) is the solution of (2) with initial conditionψ0 in D(|A|k/2), the real mapping

f : t 7→ 〈|A|kψ(t), ψ(t)〉 is absolutely continuous fromR to R. We make a regularization

to obtain extra regularity, we introducef jε : t 7→ 〈|A|k(ε(A +
∑
l u

j−1
l Bl) + 1)−1ψ(t), (ε(A +

∑
l u

j−1
l Bl) + 1)−1ψ(t)〉. From the functional calculus [25, Theorem VIII.5] the sequencef jε is

pointwise convergent tof asε tends to0.

The functionf jε is absolutely continuous fromR to R and it is differentiable on the interval

(tj−1, tj), for everyt ∈ (tj−1, tj),

d

dt
f jε (t) =

d

dt
〈|A|k(ε(A+

∑

l

uj−1
l Bl) + 1)−1ψ(t), (ε(A+

∑

l

uj−1
l Bl) + 1)−1ψ(t)〉

= 〈|A|k((A+
∑

l

uj−1
l Bl)ε+ 1)−1ψ(t), (A+

p∑

l=1

ul(t)Bl)(ε(A+
∑

l

uj−1
l Bl) + 1)−1ψ(t)〉

+ 〈|A|k(ε(A+
∑

l

uj−1
l Bl) + 1)−1(A+

p∑

l=1

ul(t)Bl)ψ(t), (ε(A+
∑

l

uj−1
l Bl) + 1)−1ψ(t)〉

= 2ℜ〈|A|k(ε(A+
∑

l

uj−1
l Bl) + 1)−1ψ(t), (A+

p∑

l=1

ul(t)Bl)(ε(A+
∑

l

uj−1
l Bl) + 1)−1ψ(t)〉

= 2
p∑

l=1

ul(t)ℜ〈|A|k(ε(A+
∑

l

uj−1
l Bl) + 1)−1ψ(t), Blψ(t)(ε(A+

∑

l

uj−1
l Bl) + 1)−1〉,

and since(A,B1, . . . , Bp) is k-weakly-coupled,

| d
dt
f jε (t)| ≤ 2ck(A,B1, . . . , Bp)×

×
p∑

l=1

|ul(t)||〈|A|k(ε(A+
∑

l

uj−1
l Bl) + 1)−1ψ(t), (ε(A+

∑

l

uj−1
l Bl) + 1)−1ψ(t)〉|

≤ 2ck(A,B1, . . . , Bp)
p∑

l=1

|ul(t)|f jε (t).

Gronwall’s lemma implies thatf jε (t) = 〈|A|k(ε(A+
∑
l u

j−1
l Bl)+1)−1ψ(t), (ε(A+

∑
l u

j−1
l Bl)+

1)−1ψ(t)〉 ≤ e
2ck(A,B1,...,Bp)

∑p

l=1

∫ t

tj−1
|ul|(τ)dτ

f jε (tj−1). Passing to the limitε to 0, this givesf(t) =
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〈|A|kψ(t), ψ(t)〉 ≤ e
2ck(A,B1,...,Bp)

∑p

l=1

∫ t

tj−1
|ul|(τ)dτ

f(tj−1). An immediate iteration concludes the

proof.
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