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Weakly-coupled systems in quantum control

Nabile Boussal, Marco Caponigro, and Thomas Chambrion

Abstract

Weakly-coupled systems are a class of infinite dimensionakervative bilinear control systems
with discrete spectrum. A property of these systems is tiayg tan be precisely approached by finite
dimensional Galerkin approximations. This feature is oftipalar interest for the approximation of
quantum system dynamics and the control of the bilinear &tihger equation.

This paper provides rigorous definitions and analysis ofdjx@amics of weakly-coupled systems
and gives sufficient conditions for an infinite dimensionahgtum control system to be weakly-coupled.

As an illustration we provide examples chosen among comnigsipal systems.

Index Terms

Quantum system, Schrddinger equation, bilinear consqroximate controllability, Galerkin ap-

proximation.

|. INTRODUCTION
A. Physical context

The state of a quantum system evolving on a finite dimensiRehannian manifold?, with
associated measuye is described by itsvave functionthat is, an element of the unit sphere
of L?(2, C). A system with wave function’ is in a subsets of  with probability [|¢|*du.
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When a system is submitted to excitations jpogxternal fields €.9.lasers) the Schrodinger
eqguation reads
Oy

10 = AU V(1) + S w W)z, ), W

where A is the Laplace-Beltrami operator dp, V' : 2 — R is a real function, usually called
potential, carrying the physical properties of the unaoligd systemiV; : Q - R, 1 <[ < p,
is a real function modeling a lasérandu;,1 <[ < p, usually called control, is a real function
of the time representing the intensity of the laser

A natural question, with many practical implications, is etler one can find a control
(u1,...,u,) for which the associated dynamics generated by (1) has thieedebehaviour (for
instance, steering some given initial data to some givegetarin the case = 1, considerable
efforts have been made to study the controllability. Werredd1], [2], [3], [4], [5], [6], [7], [8].
[9], [10] and references therein for a description of théoat results concerning the existence

of controls steering a given source to a given target or ahteidhood of it.

B. Finite dimensional approximations

The main difficulty in the study of (1) is the fact that the nafistate space, namely? (2, C),
has infinite dimension. To avoid difficulties when dealinghwinfinite dimensional systems, for
example when studying practical computations or simutetione can project system (1) on finite
dimensional subspaces bf((2, C). A vast literature is now available on control of bilinearitén
dimensional quantum system, we refer for instance to [1IH].[A crucial issue is to guarantee
that the finite dimensional approximations have dynamiosecto the one of the original infinite
dimensional system.

As a matter of fact, a special class of bilinear systems oftyipe of (1) which are said
weakly-coupled (see definition in Section II) exhibits varge properties of approximations (see
Proposition 4 below). The notion of weakly-coupled systeas heen used in [13] implicitly, in
the casep = 1 and W bounded.

The aim of this work is to provide an analysis of weakly-cagplsystems, to present a
sufficient condition for controllability for these systep@d to show that two important types

of bilinear quantum systems frequently encountered in iteeature are weakly-coupled.
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C. Content of the paper

In Section Il we define weakly-coupled systems, we state sproperties of their finite
dimensional approximations, and we prove a controllgbrisult. We then study two important
examples of weakly-coupled systems, the first (Sectionddyering, among others, the case

where(2 is compact and the second (Section 1V) the case where thensyd) is tri-diagonal.

II. WEAKLY-COUPLED SYSTEMS
A. Abstract framework

We reformulate (1) in a more abstract framework. This wilbal us to treat examples slightly
more general than (1), for instance, the example in Sectie.lIn a separable Hilbert space

H endowed with nornj| - || and Hilbert product-, -), we consider the evolution problem

i P
o = (A By 2)
=1
where(A, By, ..., B,) satisfies Assumption 1.

Assumption 1. (A, By,...,B,) is a(p + 1)-uple of linear operators such that
1) for everyu in R?, A+ >, w; B, is essentially skew-adjoint oW (A) andi(A + >, w B;)
is bounded from below;
2) A is skew-adjoint and has purely discrete spectriun\;)ien, the sequencél,)ren IS

positive non-decreasing and accumulates-ab.

In the rest of our study, we denote by, )ren an Hilbert basis of/ such thatd¢, = —i\gox
for everyk in N. We denote byD(A+ 3", w;B;) the domain wherel + Y, w; B, is skew-adjoint.

Assumption 1.1 ensures that, for every constants..,u, in R, A+ >, w4, B, generates a
group of unitary propagators. Hence, for every initial atind ), in H, for every piecewise
constant controk : t € R — S0 uxpp, 1., (t) € RP with 0 =1, < #; < ... <ty4 We can

define the solution of (2) by +— YU, where

T = pt=ti—1)(A+32 ul "By eltim1—tj—2)(A+3] wWlPB) .o plo(A+> U?BL)7

fort e [tj_l,tj>,j:1,...,N.
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Remarkl. From Assumption 1.1 we deduce that for every R?, A + >, w;5B; is bounded
from D(A) to H as well asy"; u; B;. As a consequence, the resolventof Y-, v, B, is compact.

Sincei(A + Y, w B;) is bounded from below, the spectrum accumulates &i.

B. Energy growth

From Assumption 1.2, the operatot is self-adjoint with positive eigenvalues. For every
in D(A), 1Ay = Y en Aj(@5, 1) ¢;. For everys > 0, we define the linear operatpd|® := (i4)°
by | A[*%) = Sjen Ai{dy, 15, for everyy in D(JA]*) = {v € H = ¥jen N%|(65, 9) [ < +o0}.
We define thes-norm by ||4||s = |||A]*¢| for every ) in D(]A|*). The 1/2-norm plays an
important role in physics; for every in D(|A['/?), the quantity|(Ay,¢)| = [[¢]]}), is the
expected value of the energy.

The notion of weakly-coupled systems is closely relatecheodrowth of the expected value

of the energy.

Definition 1. Let k& be a positive number and Ié#, By, ..., B,) satisfy Assumption 1.1. Then
(A, By,...,B,) is k-weakly-coupledf for every u € R?, D(|A + >, w,Bi|*/?) = D(|A|*/?)
and there exists a constant such that, for everyl < [ < p, for every ¥ in D(]AJ%),
R(Al*, Brp)| < CI(JA[*, ).

The coupling constanty, (A, By, ..., B,) of system(A, By, ..., B,) of orderk is the quantity

sup sup IR(| A", Bz¢>|.
ven(apngor1<i<p  |([A[F, )]

We have the following technical interpolation result wh@seof is given in the appendix.

Lemma 1. Let A and A’ be invertible skew-adjoint operators with compact resotveetk be a
positive real. Assume tha@ (| A|*) = D(]A'|¥). Then for any reak € (0, k), D(|A|*) = D(JA]®).

A first property of the propagator of a weakly-coupled systisngiven by the following

proposition.

Proposition 2. Letk be a positive number and |é#, B, .. ., B,) satisfy Assumption 1 and e
weakly-coupled. Then, for every € D(|A|*/?), K > 0, T > 0, and piecewise constant function
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Proof: We present here a simple proof in the special case whgtel|**!) = D(|A +

Y i<p wBi|F) for everyw in RP. This equality holds for the most common physical examples.
A general proof of Proposition 2, involving rather advancedularization techniques to relax
this extra assumption is presented in the Appendix.

First note that, for every > 0 and for every(ui,...,u,) in R?, the setD(|A|*"1) =
D(|A+ X, w B[+ is invariant for the unitary map — ¢!+ %50y, Moreover, for every)
in D(|A+Y; wBi|F), the mapt — |A+Y, w By |[FefAt 22 wBy, — HAT22wB)| A4 5™, By k)
is C! from [0, +0c) to H, with derivativet — (A + Y, wB))e" At 2ZiuB0| A 4+ 5 w4 By|Fep =
A+ S wBi|F(A + X wB)e 22w By, In other words, the map — ¢!+ uBy is O
from [0, +00) to D(|A + >, wBi|*) = D(|A]").

Fix u : [0,+00) — RP piecewise constant, in D(]A|**!) and consider the real map
[t (JART o, Tiabg). Since, belongs toD(|A + S0, w(t) Bi|*+1), then f is absolutely

continuous and for the argument above is piecewiseFor almost every,
d d
Ef(t) = _<|A|’“qu/;07 T{40)

L R A+Zw )Tivo) + (|A[* A+Zw )T 0, Titho)

=1 =1

= 2R(| A" Y %4, ( A+Zul )Y 1)

=1
= 2Zw R AT 0, BT o).
Since (A, By, ..., B,) is k-weakly-coupled, then

(t)] < 22 [ ()I[(JAI* Y o, BiT{%0)| < 2e4(4, Bh---,Bp)Z (8] £ (2)

From Gronwall's lemma, we get|A[Fu(t), (1)) < e2rABreB) XL, fylul) ol for
every iy in D(|A|*1).

Let (4¢).en be a sequence iD(|A|*1) converging toyy in D(|A|2) for the k/2-norm. For
every¢ in D(|A|?) and for everyt > 0,

AL G, CHW < 160, AT < IDIICE W) .

which is bounded uniformly with respect tofrom the first part of the proof. Since — Y} (v)
is unitary, (T(¢f))nen converges toX'y(z,) (for the norm of H) and (| A|240, T¥(1hg))| <
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(o]

2ok (AP BR[| . Hence, X7(do) belongs toD(|A[$)* = D(JAI%) and [ X7(o)lls <

ok (A B BP>K||¢0||§, which concludes the proof in the case in whi€|A[**!) = D(]A

Zlgp UlB[ |k+1)'

m

C. Good Galerkin approximation

In this section we show that a weakly-coupled system adnfitsite dimensional approxima-
tion whose trajectories are close, at every time, to thetisoisi of the original infinite dimensional

system. For everyV in N, we define the orthogonal projection

T € Hi > (65,100, € H.
J<N
Lemma 3. Let k be a positive numbe(A, By, ..., B,) satisfy Assumption 1, and deweakly-
coupled. Assume that there exist> 0, 0 < r < k such that|| B;y| < d||+|],/, for everyy in
D(JA|"/?) andlin {1,...,p}. Then, for everyk > 0,n € N, N € N, (¢;)1<j<n in D(|A[¥/?),
and for every piecewise constant functios= (u, ..., u,),

Z |l < K = | BiId = 7)Yy (y)]| < dARTY2es BBk g n o (3)

m=1

foreveryt >0,l=1,...,.pandj=1,...,n

Proof: Fix j € {1,...,n}. For everyN > 1, one has

1(1d — 7o) T2 )12, = Z A (s T3 () P < AN ICE ()15 2 (4)

n=N+1

Py < BB g2 for everyt > 0 andu of L'-norm

smaller thank. Equation (3) follows as, for every=1,...,p, | [ |

Remark2. Sincer < k, then||B,(Id — mn) T (¢;)|, , tends to0, uniformly with respect ta,

as N tends to infinity.
Definition 2. Let V € N. The Galerkin approximatiorof (2) of order N is the system inH{
N 4 zp:ulBl(N))x =n)
=1
where A = 7y Ary and Bl(N) = mnyBymy are thecompression®f A and B; (respectively).

We denote byX )y, (t,s) the propagator ofXy) for a p-uple of piecewise constant functions

U= (u,...,up).
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Remark3. The operatorsA®™) and B are defined on thenfinite dimensional spaceq.
However, they have finite rank and the dynamics(8f;) leaves invariant théV-dimensional
spacely = span, < y1¢i}. Thus,(Xy) can be seen as a finite dimensional bilinear dynamical

system inLy.

Proposition 4 (Good Galerkin Approximation)Let £ and s be non-negative numbers with
0 <s < k. Let(A, By,...,B,) satisfy Assumption 1 and beweakly-coupled. Assume that
there existd > 0, 0 < r < k such that||B;y|| < d||¢||,» for everyy in D(JA["/?) and [ in
{1,...,p}. Then for everyz > 0, K > 0, n € N, and (¢;)1<j<, in D(JA]*/?)" there exists
N € N such that for every piecewise constant functios: (ui, ..., u,)

p
Dl < K== T3 () — Xy (8, 0)matdyllofe <,
=1

foreveryt >0andj=1,...,n.

Proof: Consider the case = 0. Fix j in {1,...,n} and consider the map— 75T} ()

that is absolutely continuous and satisfies, for almostyever 0,

%WNT?(%‘) = (A™ + 3 wBM Y (Wy) + 3 w(t)rnBiId — mn) T ().
= =1

Hence, by variation of constants, for every 0,

AN () = X (6 0)mves + 3 [X (o) m Bulld = ) X0 )u(r)dr. (O
=1

Then

1773 (40) = Xy (& O)menapyl| < 1A = 7rn ) ()] 4 [lrn T () — Xy (£, O) v |

(7)
This completes the proof for = 0 since Ay tends to infinity asV goes to infinity.
Note that, if X' is a set andu,).en IS @ sequence of functions fro' to H that tends

uniformly to 0 (the null function) for thes-norm and is uniformly bounded for thenorm for
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s < k, then (u,),en tends uniformly to0 in the #-norm. This is a consequence of Cauchy-

Schwarz inequality, indeed

s+k

T Uy, |A

s+

k:
T un)| = [{|Al"un, | Al un) | < Jlunlsllunl5-

Hun

e =104

We conclude the proof in the general case- 0 applying this interpolation result, combined
with a bootstrap argument, on the sequefice) ven With uy : (¢, u) — (X (¢, 0)mn — 1Y)y,
defined onX = [0, +00) x {u € L' : |ju|p < K}. ]

Remark4. In the cases = 0, there is an explicit estimate for the order of the Galerkin
approximation which existence is stated in Proposition e. iRstance, by (6)||7y Y} (¢;) —
Xy (t, 0)mney|| < e if N is such that

2
K dek(A:B1, Bp)K || e
( e ||wg||k/2> | @)

ANy >

forj=1,...,n.

D. Approximate controllability ins-norm

The a priori bounds on the:-norm for the solution of a system are a deep obstruction to

exact controllability, but provide powerful tools for theudy of the approximate controllability.

Definition 3. Let (A, B) satisfy Assumption 1. A subsét of N? couplestwo levelsj, k in N,
if there exists a finite sequent(e(s}, s3), ..., (s, sg)) in S such that

(i) si=jands}=F;

(i) s),=s"" foreveryl <j<q-—1;

(iii) {6, Boy)#0for 1 <j<q.

The subsef is called aconnectedness chafar (A, B) if S couples every pair of levels iN.
A connectedness chain is said torln-resonanif for every (sq, s2) in S, [As; —As,| # | A, — i |
for every (¢, 1) in N2\ {(s1, s2), (s2, 1)} such that{¢,,, Boy,) # 0.

Definition 4. Let (A, B) satisfy Assumption 1 and > 0. The system( A, B) is approximately
simultaneously controllable for thenorm if for every Y e U(H) (unitary operators acting on
H) leaving D(|A|®) invariant,, ..., 1, € D(]A]®), ande > 0, there exists a piecewise constant

functionw. : [0,7.] — R such that
IT; — Yayls < e
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foreveryj =1,...,n.

Proposition 5. Let k£ be a positive number. Létd, B) satisfy Assumption 1, Beweakly-coupled,
and admit a non-resonant chain of connectedness. Assurnthéra existd > 0, 0 < r < k such
that | By| < d|||A|z¢||, for everyy in D(|A|z). Then(A, B) is approximately simultaneously
controllable for the norm| - ||/, for everys < k.

Proof: Fix ¢ > 0, ¢1,...,¢, € D(|[A]*/?), andT € U(H) such thatY(¢,),..., T(¢,) €
D(JAJ]*/?). Fix n, sufficiently large such thaY(v;) — m,, T(1;)|ls2 < /3 for every j =
1,...,n.

There existly, ..., [, such thatt s (¢, ... ¢*a) is e-dense in the torud™ (see [10,
Proposition 6.1]). Calln = max{n4,l,...,[,}.

By [10, Remark 5.9] there exisfs; such that for every > 0 there exist a contral] satisfying
|lulllpr < K7 andéy,6,,...,6,, such that||T§¥(¢j) — %, || <n, foreveryj=1,...,n.

Similarly, since the hypotheses of [10, Remark 5.9] applyh® system(— A, —B) (see [10,
Section 6.1]), we have the existence 6§ such that for every) > 0 there existau] satisfying
|uj||zr < Ko anddy, ..., 0, € R such that the solution of the system

dy
— () =—(A+u®)B)()

at time 7, with initial condition T(wj) and corresponding to the contra} is n-close in the
norm of H to eiéﬂ'gblj foreveryj =1,...,n.
Let 7 such that||e ™ e% — || < n for everyj = 1,...,n. LetT = T} + 7 + T} and let
u:[0,7] — R be the piecewise constant control defined by
ui(t) te0,11),
u'(t) =4 0 teh, Ty +71),
uy(Ty— (t =Ty —71)) te[Ty+ 1T,
The controlu” above steers a solution of = (A + «B)y with initial conditionv; 3n-close in
the norm|| - || to T(¢;) in a timeT".
Let K = K; + K,. By Lemma 3, we have that there exists= N (¢, K, s) > n such that
£

lullzr < K = [|(d = ) TE(5) o2 < 3

for everyj =1,...,n andt > 0.
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Note that, orspan{¢;,...,¢n}, we have|| - |[[;2 < A%ZH -||. Therefore for every = 1,...,n,

1T () = T W5)llsyz < N0 = mw) (T () = T (W) logo + I (T () = T @5)) o2

< [1(1d = 7o) T(5) log2 + (0 = mn) TF () [lorz + AN 1T () = TH ()]

2 s
< ?E +3)\]\4277 <e,

for n sufficiently small. [ |

IIl. THE BOUNDED CASE

Proposition 6. Let k be a positive integer. Assume that for everg R?, D(|A|2) = D(|A +
Y, wB|?) and that for everyi = 1, ..., p the restriction ofB, to D(|A|?) is bounded for the

Y-norm. Then(4, B, ..., B,) is k-weakly-coupled.

Proof: For everyl = 1,...,p, let [|Bi|ly;2 < Ciill¢|x/2 for every in D(JA|*). Then
(AF, B)| = [(|A120, | Al Bip)| < IIAPBGIIIAL Bl < CuelllAlF9l? = Cuel(Are,v)]
for everyy in D(JAF). |

A. Example: single trapped ion

This example is a model of a single ion with two possible stggscited stateand ground
statg submitted to a superposition of external fields. It has bexensively studied (see for
example [14], [15], and [16]).

The state of the system {8, ¢,) in H = L*(R,C) x L*(R, C). The dynamics is given by

1% = w(—A+2?)p. + N + (ul(t) cos(vV2nx) + us(t) sin(x/ﬁnm)) Yy,

1% = w(=A+ 22y + Yy + (ur(t) cos(v2nz) + ua(t) sin(v2nz) ) e

wherew, (), are positive constants related to the physical propertiehe system. The two

real valued controls; andu, are usually a sum of periodic functions with positive fregcies

Q, Q +w and Q) — w. With our notations, the dynamics reads

W = Av+ (B + wa(1) Bo(o) )

whereA is the diagonal operatot : (¢, ¢,) — —i(w(—A+2?)e+Qbe, w(—A422)1h,+Q),),
By (e, ) = —i(cos(v/2na) by, cos(v2na)ih,), ANABy : (v, 16y) = —i(sin(v/2nw)eby, sin(v2na)is,).
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By [17, Theorem XIII.69 and Theorem XIIl.70], the operatéris skew-adjoint with discrete
spectrum and admits a family of eigenfunctions which forms@honormal basis aoff. SinceB;
and B, are bounded then, for every real constantandus, A+u; B;+usBs is skew-adjoint with
the same domain of (see [18, Theorem X.12]). The spectrumAfs the sequence-i\, ),en =
—i(w(n+1/2)4+Q),.en. For everyn in N, the eigenvalue-i),, has multiplicity 2 and is associated
with the 2-dimensional subspace b(R, C) x L?(R, C) spanned by{(f.,0), (0, f.)} where
f,, is the n'* Hermite function. Assumption 1 is then verified. Since, foery £ in N, all
derivatives up to ordek of =+ cos(v/2nz) andx — sin(y/2nz) are bounded for thé>-norm
by Ci = 221" on R then B, and B, are bounded bg*C}, on D(|A|%) for every k. Moreover
for every (uy, us) € R?, D(A*) = D((A + u1 By + u2B5)¥). Indeed by induction ot

D((A+ w1 By +usBy)"™™) = {1 € D((A + uy By + uyBo)*)
(A+ w1 By +u2Ba)Y) € D((A+ ui By + usBs)")}
= {tp € D(A") : (A4 u By +upBy)yp € D(A¥)} = D(A*),
since(uy By +uyBs) € D(A*) wheny € D(A*). Lemma 1 provideD(|Al*) = D(|A+ui By +

us Bs|®) for any s > 0. Hence, by Proposition 6 the systém, B;, B,) is k-weakly-coupled for

every k, with coupling constant smaller thaC,.

B. The case of a compact manifold

We focus here on the case where the sp@cis a compact Riemannian manifold without
boundary. By Rellich-Kondrakov and Weyl theoremsYifis essentially bounded the operator
A= —i(A+V): H*Q) — L*Q,C) has purely discrete spectrufa-il\,),en With A, non-
decreasing to infinity (see for instance [19, Theorem 7)28pte that)\; is not necessarily
positive but this is the case consideridg+i(A; — 1) instead ofA. This shift gives a physically

irrelevant phase terns**—1  on the dynamics associated with

Lemma 7. Let £ be a positive integeK) be a compact Riemannian manifold,: 2 — R be
C?:((Q). Then the domain of the operatoA + V)* is H?#(Q).

Proof: Since() is compact it is sufficient to prove the proposition on a badtdomain
of R". The operator-iA = A + V is an elliptic operator of orde?. By [20, Theorem 8.10] if
Af € H*(Q) then f € H*2(Q) and by induction we have thd®(|A*) = H*(Q). |
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Proposition 8. Let k& be a positive integef2 be a compact Riemannian manifold,IW : 2 — R
be twoC?*(Q, R) functions onQ). DefineA = —i(A + V) : D(A) — L*(,C) and B = iV :
L*(Q,C) — L?(Q,C). Then(A4, B) is k-weakly-coupled.

Proof: Note that for everyf € C** there exists a consta@y, = 2% sup; ;<o [WY || 1(o.r)
such that||W f|| gz < Ckl||f|lg2x. From Lemma 7, the norn - |52« and thek-norm are

equivalent. Therefore, by Proposition 6, the syster-igeakly-coupled. [ |

Remarkb. As consequence of Lemma 7 and Proposition 8 we have thate ioatbe of a compact

manifold, if the potentials are i6"(2) then Proposition 4 applies with= m/2—1 andr = 0.

C. Example: orientation of a rotating molecule in the plane

We consider a rigid bipolar molecule rotating in a plane.didy degree of freedom is the
rotation around its centre of mass. The molecule is subdhitbean electric field of constant
direction with variable intensity.. The orientation of the molecule is an anglelin= SO(2) ~

R/27Z. The dynamics is governed by the Schrodinger equation

awéi’t) = <_0_2 + u(t) COSQ) ¥(6,t), 6¢€qQ.

i

002

Note that the parity (if any) of the wave function is preserniey the above equation. We
consider then the Hilbert spadd = {v € L*(Q,C) : ¢ odd }, endowed with the Hilbert
product(f, g) = [, fg. The eigenvalue of the skew-adjoint operatbr= iaa—; associated with
the eigenfunctionp;, : 6 — sin(kf)/\/7 is —i\, = —ik?, k € N. The domain of|AJ* is the
Hilbert spaceH* = {y € H*(Q,C) : ¢ odd }. The skew-symmetric operatd® = —icos @
is bounded onD(| A|*/?) for every k. By Proposition 6, for every: in N, (4, B) is k-weakly-
coupled. Proposition 4 applies for everywith r = 0 andd = 1. In Section IV-C we also give
an estimate on the coupling constaptA, B) for this system.

From the point of view of the controllability problem, natithat the operatoB couples only
adjacent eigenstates, that(is;, B¢,) = 0 if and only if |l — j| > 1. Since\;; — A\ = 21+ 1
then{(j,1) € N? : |l — j| = 1} is a non-resonant connectedness chain(forB). Therefore,
by Proposition 5 the system provides an example of apprdrimnaimultaneously controllable
system in normH*((2) for every k. Note that, since the eigenstates belond#t(2) for every

k then the reachable set from any eigenstate is containéff{2) for every k.
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D. Example: orientation of a rotating molecule in the space

We present the physical example of a rotating rigid bipoladaoule. Unlike last example
the motion of the molecule is not confined to a plane. The mtush can be represented by
the Schoadinger equation on the sphere. In this c@se; S? is the unit sphere, the family
(Y{™)e>0,1mj<¢ Of the spherical harmonics is an Hilbert basistbf= L?((2, C), and the control is
represented by three piecewise constant functigns,, u3. The controlled Schrodinger equation
is
iﬁw(u,e,t)

ot
Therefore, sincé) is compact, Proposition 4 applies for every integewith d = 1 andr = 0.

= (—A + uy(t) cos O sin v + ugy(t) sin @ sin v + us(t) cos V) (v, 0,t), (v,0) € S%

IV. TRI-DIAGONAL SYSTEMS

We deal with the case whepe= 1 and B couples only adjacent levels of.

A. Tri-diagonal systems
Definition 5. A system(A, B) satisfying Assumption 1 i¢ri-diagonal if for every j, k in N,
|7 — k| > 1 implies (¢;, B¢y) = 0.

In the following, we denoté, ;. = (¢;, Boy).

Proposition 9. Assume that A, B) is tri-diagonal, that the sequenc@*;%) is bounded,

neN
and that the sequence(é’—) N (b”) N tend to zero. Then, for every in N and « in

n,n—1
An An

R, D((A + uB)*) = D(A*). Moreover, D(A*) is invariant for e!“*“5) for any« in R and ¢
in R.

Proof: The equality ofD((A+uB)*) and D(A¥) will follow from the Kato-Rellich theorem
([21, Theorem 1.4.2]). It suffices to check that for evérin N, « in R, € > 0, and everyy) in

D(AF), there existg < 1 andb. such that

I((A + uB)* — A%)y|| < e]| A"[| + be[[0]. (10)
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Let us prove that3 is bounded fromD(A™!) to D(A") for every integer > 0. For everywv
in D(A"),

1Bul7 = ZAQT Bu, ¢y)|*

~ (v, Bow)|”

| A

n=1
Z)\
Z nn 1| ¢n 1,V >‘2+bi,n|<¢n7v>|2+bi,n+1‘<¢n+17v>|2)
2N X

)\ ZTbin s nn
A2 ( ) (60, R

n 1

A\ B2,
ﬁﬁ( ) )

)‘n-i-l )‘n—i-l

2
n,n+1

b2 b
Now for everye > 0, letn, such thatup,,-,,, T:Tl < 355 SUD, s, ;; < ¢/3,andsup,,-.,, G <

<. Note that the sequende,,).c~ is non-decreasing. Then there existssuch that

1Bv7 < ZAQ’” (0, Bon)l* +e 3o ANbn0) P < Celol® +efoli,. (A1)

n>ng—1

We prove (10) by induction o®. For k£ = 1 this is a consequence of (11) with= 0. The

inductive step follows from the fact that
(A+uB)Ft — A — 4 ((A+uB)*B — A*B) + uA*B + ((A +uB)" — AMA
for everyu in R and from inequality (11). [ |

Proposition 10. Let (A, B) be a tri-diagonal system and létbe a positive integer. Assume that

the sequencéz:t is bounded, that the sequendgs = (e tend to zero, and
An /) neN neN’\ A /neN
k

that the sequenc€|bn7n+1| <)\;;:1 - 1)) is bounded. TheriA, B) is k-weakly-coupled.
neN

Proof: For everyy in D(A), write ¢ = 3222, x;¢; wherez; = (¢;,1). SinceR(b;;) = 0
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then

R (A, BY)) = R X NTibjen i + )\§+1fj+1bj,j+1f€j)

J=1

o0
_ k(= 7 - k kN —
= R DA (@b 241 — b1 T54) + (A — )\j)xj+1bj,j+1ﬂ7j>

J=1

= R Z(Afﬂ—/\?%ﬂ%ﬁl%)
j=1

- 2517 + |24 ]
< (N = A)by | — 5 ’
j=1

By hypothesis, there exisé such thatb; ; 1|(\5 ;=A%) < CA¥ for every;j. Hence [R(|A|*), By)| <
C352) Mi|a|2 < C(JAJ¥4, ). The equality of the domains follows by Proposition 9. m

B. Estimates for tri-diagonal systems

Lemma 11. Let (A, B) be a tri-diagonal system andbe an integer. Assume that the sequence
Angl i -1 bn.n
( )neN is bounded, that the sequencé%v)neN, ( o )neN tend to zero, and that there

An

. o A\E
exists a positive integer and0 < r < k/2 such that the sequenc<$bn,n+1| ( ;Zl — 1)) ,
n neN

(b”—”) N and (b”’”*l) oy e bounded. Then for everty> 0, for every piecewise constant

[An]" [An]"
3l 2H—1
o Trol < 5 11 26) ([ ntolar)

] l+1

control u,

where forj € N, L(j) = sup,, ,,<; |bnml-

Proof: Let K > 0. We prove the result for piecewise constant af!-norm smaller than
K. For everye > 0 by Proposition 4 there exist§ = N(K,e) > [ such that||T}(¢1) —
Xy (t,0)¢n|| < e for everyt > 0.
Consider the solution) : ¢ — Xy, (¢,0)¢: of (Xy) with initial condition ¢;. Theny(t) =
A gy 4 J =AM () B™Wyp(s)ds. Iteratingl — 1 times we get

o(t) = A (¢1+

-1 J
4 Z/ plt=s1)AMN) p(N) | .e(sJ'ﬂ—Sj)A(N)B(N)esjA<N)¢1 H U(Sm)dsy . .. ds;+
j=170s;<<s1<t m=1
l
+ pt=s)AN) p(N) ((s1-52) AN p(N) || (s1-1—s1)AN) si) T w(sm)dsi .. dsl).
0<s;< <1 <t m=1
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For the tri-diagonal structure of the system we have
(g1, e JAT p(V) ---e(sjfl_sj)AW)B(N)eSjA(N)¢1> =0

for every0 <s; <..-<s; <tandj <l—1. Then

(drar, (1)) = AT / (brar, etsDAD B (s1=5)A™ pOV) | (11 =) AN BI) 53y
0<s; < <s1<t
l
H u(Sm)dsy ... ds;
m=1
Now,
21+1
sup ||[BN el A BN plama) A BN =0 g 1< 38 TT L(G). (12)
81,-++,51€[0,1] j=l+1
Then
21+1 ' ! f§|u( Y|ds) 241
G v <3 T Lo [ Hl\u<sm>|dsl...dsl=31Q [T 2
j=l+1 SIS SAS = j=l+1
as a consequence
1 20+1
‘<¢l+17 <¢1)>| < 3l I H L
j=I+1
and the result follows as tends to zero. [ ]

From a physical point of view, Lemma 11 provides an estinmatibthe probability of energy

transitions (in the spirit, for instance, of [18, SectionlX, Example 1]).

Remark6. In the case in which the diagonal &f is zero then equation (12) reads

241
sup  ||[BMelimsi-) AN gIN) L plsa=s) A g (104N ) E < ol T L(j
$1,---,51€[0,¢] 7=l+1

This gives the better estimate in this cae.., Ti¢1)| < 2' TI75L L)) (fot \u(r)|dr)l /1.

C. Example: orientation of a rotating molecule in the plahe |

The system of Section 1lI-C provides also an example of lmgdnal system. Recall that
for this system, for every, k in N, A\, = k2, (¢;, B¢y) # 0 if and only if |j — k| = 1 and
(¢j, Bopj+1) = —i/2. We deduce a bound for the coupling constants from PropositD. For
everyk in N,

b 1 1\ 22 — 1
es(A, B) < sup |(6, Bénp)| [ 221 — 1) = sup (1+—> 1) = .
neN AF n 2

neN 2
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In particularc; (4, B) < 3/2 and, by (8), we obtain thatry T} (¢1) — Xy, (, 0)aner|| < e if
3/20lull g1\ 2
AMH#N+D>(M£;—0.

)

The tri-diagonal structure allows to obtain better estesatn N. From Remark 6, we get

" (QK)N 2N+1 . KN
[(On1, TE(1))] < N!TEHMﬁ:RF

Therefore, by (5), for every > 0, if N is such that||ul|},™ < 2eN! then ||7xT¥(¢1) —
X (8, 0)¢1]| <e.

The second estimates is significantly better than the first Bor instance, if one hdls:||,: = 3
and one desires < 107*, the conditions(N+1) > ||ul|1e3/24l1 is false for everyV < 2.7 10°
N < 2eN, is true for N = 14.

D. Example: quantum harmonic oscillator
The quantum harmonic oscillator is among the most imporaatnples of quantum system
(see, for instance, [22, Complemefit/]). Its controlled version has been extensively studied

(see, for instance, [23], [24]). In this example= L?(R, C) and equation (2) becomes

1) = L=+ 220, 1)+ (bl 1) (19

An Hilbert basis of H made of eigenvectors aofi is given by the sequence of the Hermite
functions(¢,, ).en, associated with the sequengei), ),cn Of eigenvalues wherg,, = n—1/2
for everyn in N. In the basig¢,).c~n, B admits a tri-diagonal structure:
—ivk—1 if j=k—1
(9, Bor) = -ivk ifi=k+1
0 otherwise

Proposition 9 and Proposition 10 apply so that, for eveiy N, the systen{ A, B) is k-weakly-

coupled and

_ 1 i
< Sup\/ﬁ<1+ 1—1)2(14— 1)
" n—3 =0 T2
3k+1_1 \/ﬁ
< e
§3k+1_1.
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The guantum harmonic oscillator is not controllable (in aeasonable sense), however,
the Galerkin approximations of (13) of every order are adfgble (see [23]). This is not a
contradiction, indeed Proposition 4 states that theretexisize of the Galerkin approximation
for which the trajectories of the infinite dimensional systean be approximately tracked by
the Galerkin approximation, provided that there exists éioum bound on thel!-norm of the
control. As a matter of fact, there is no such bound for systes).

To obtain an estimate of the ordar of the Galerkin approximation whose dynamics remains
e close to the one of the infinite dimensional system when usorgrol with L!-norm K, one
could use Proposition 4 with = 2, r = 1, d = 1, and||¢||; = 1/2. The resulting bound, as
given by (8), -

K4652 a % (14)
is however very weak. Like in the example of Section IV-C, thediagonal structure ofB

N >

allows better estimates. Using Remark 6, we find {h&f™)(¢,0)¢; — ny Y| < e provided

|l < K and
/(]]VV:L11>'22N+%KN+1 <

For instance, ifkK = 3 andes = 1074, this is true forN = 420, while (14) is false forNV < 10%.

V. CONCLUSION

In our study we focused on the notion of weak coupling. We hestablished some inter-
esting consequences in control theory and numerical stroalavhich applies to common and
interesting physical models.

However, our assumptions are not optimal and in forthcomnngks we expect generalization
to rough control such as Dirac impulses. We hope that we ndlude systems with continuous

spectrum in the scope of such technology.

APPENDIX

PROOF OFLEMMA 1

Proof of Lemma 1: Without loss of generality we can assume that the opergtéfs

and |A’| are positive and invertible. Leto,).exn and (¢)).en be unitary basis off made
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of eigenvectors ofdA and A’ respectively. Them\,¢,, = |A|¢,, for n € N and D(|A}]*) = {¢y €
H Y en A (@5, 1) ]? < +oo}. Similarly, we can define\, and D(|A'}%).

Since D(|A|*) ¢ D(JA’|*) and by the closed graph theorem, we deduce the existence of
C}, > 0 such that for every) € D(|A|")

SN G P < kY Il 1@, o)

so that )

SN < Ce D Ml 1(, 60)]”

n

S0, 65)(65, )

For all ¢ € D(JA|*) let ¢ in H such thaty = |A| %) = 3> A7 (), ¢;)¢;. Then, for ally € H,
we have

ZX%ZAI (6, 601, 0, ZA (0, 0503, 1) < Culld. (15)
and the equality holds fot = 0 and C;, = 1. Consider) € H and
friz=s+iym Y NTTHATD, 6 ) (g, A7)
where, for every: in C, [A|*) = Y, X(1h, ¢;)¢;. Then, by (15) fors = 0 and s = k we have
‘f@(s + iy)’ < ClllAH99 I A4 < Cll Pl

If ¢ is finite linear combination of the vectof®); } ,en then the functiory‘"&; analytic on the strip
{z € C : 0 < Rz < k} and continuous on its closure as uniform limits of a partiahson n.
Since it is bounded on the boundary, by Hadamard three-timessrem [18, Appendix I1X.4], it
is bounded on the strip, and, moreovieg(supg,,_, |f$(z)|), is a convex function ot € [0, k].

So that fors € (0, k), we obtain

SONE N, ¢ < CF ST P8, 60) 2,

and by densityD(|A|*) € D(]A’|*). The hypothesis and the proof being symmetriclimnd A’

we have actually the equality. [ |
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APPENDIX

PROOF OFPROPOSITIONZ2

In this Appendix, we use regularization techniques to mewa proof of Proposition 2.
Proof of Proposition 2: Note that for everyu € R?, D(|A + ¥, w B,|*?) = D(JA|*/?),

the function| A|F/2et(A+2-wByy is in C(R, H) and for everye > 0 the function|A|*/2(c(A +
Y wB) + 1) et At mBlyy is in CL(R, H) whenever), € D(|A[*/?2).

If ¢ — (t) is the solution of (2) with initial conditiony, in D(|A|*/?), the real mapping
f it (JA]Fp(t),4(t)) is absolutely continuous fronR to R. We make a regularization
to obtain extra regularity, we introductl : t — (JA|*(c(A + X, u) 'B) + 1) "(t), (e(A +
S ul T By) + 1)~ (t)). From the functional calculus [25, Theorem VIIL.5] the seqoef/ is
pointwise convergent t¢g ase tends to0.

The functionf? is absolutely continuous froR to R and it is differentiable on the interval
(tj—1,t;), for everyt € (t;_1,t;),

Ef?(t) = E<|A|’“(€(A + ZlZU?_le) +1)7M(t), (e(A+ ZU{_le) +1)7'(8))
= (|A¥( A—l—Zul 'B)e 4+ 1)1 (t) A+Zul A+Zul 'B)) 4+ 1)7l(t))
+ (JA*(e(A + Zl:u{_le) +1) 7N (A+ ZXZUz(t)Bz)w(t), (e(A+ XZ:U?_le) +1)7 (1)
= 2R(| A (e A+Zul 'B) 4+ 1)"1(t) A+Zuz A+Zul 'B)+ 1) ()

= 2Zw R(|AI*(e A+Zul (), Bp(t)(e(A+ > ul T B) +1)7Y),
l
and since(A, By, ..., B,) is k-weakly-coupled,

d ..
Efa](t” S QCk(Av Blv"'va)X

x Z () A (e(A+ 3] Br) + 1)~ (), (e(A+ DDl By) +1)79(t))]

l l
p
< 2e(A, B, ..., Bp) Y fu(t)| fL(2).
=1
Gronwall’s lemma implies thayfj(t) = (JAM(e(A+u] 7 B) +1)"Mh(t), ((A+ S ul " B) +

1) Lp(t)) < ¢ H BB 2 ks, 1‘u”(T)deg'(tj_1). Passing to the limit to 0, this givesf(t) =
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t
ezck(AvBlv--'vBP) le ﬁj,llul‘(T)dT

(AM(), v(t) <

proof. [ |

f(tj—1). An immediate iteration concludes the
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