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A LARGE POPULATION PARENTAL CARE GAME: POLYMORPHISMS
AND FEEDBACK BETWEEN PATTERNS OF CARE AND THE

OPERATIONAL SEX RATIO

DAVID M. RAMSEY

Abstract. This article presents a game theoretic model of parental care which models the

feedback between patterns of care and the operational sex ratio. It is assumed here that males

can be in one of two states: searching for a mate or breeding (including caring for their offspring).

Females can be in one of three states: receptive (searching), non-receptive or breeding. However,

these sets of states can be adapted to the physiology of a particular species. The length of time

an individual remains in the breeding state depends on the level of care an individual gives.

When in the searching state, individuals find partners at a rate dependent on the proportion of

members of the opposite sex searching. These rates are defined to satisfy the Fisher condition

that the total number of offspring of males equals the total number of offspring of females.

The operational sex ratio is not defined exogenously, but can be derived from the adult sex

ratio and the pattern of parental care. Pure strategy profiles and so called single sex stable

polymorphisms, in which behaviour is varied within one sex, are derived analytically. The

difference between mixed evolutionarily stable strategies and stable polymorphisms within this

framework is highlighted. The effect of various physiological and demographic parameters on

patterns of care are considered.

Key words and phrases. evolutionarily stable strategy, cycle time, Fisher condition, polymorphism, mixed

strategy.
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1. Introduction

Research on the evolution of patterns of parental care have indicated the complex nature of

this process. Trivers (1972) gave an in depth exposition of the then current state of research into

patterns of parental care. By definition females invest more in gametes. He argues that females

have more to lose than males if the offspring die and should thus invest more in caring for their

offspring. Males can potentially reproduce at a much higher rate than females. However, due to

the physiological constraints of breeding, the ratio of the number of males searching for a mate

to the number of such females (the operational sex ratio, OSR) will tend to be much greater

than one, i.e. males may face strong competition from other males when looking for a mate. It

is argued that due to these factors, males should attempt to maximise the number of females

they breed with by being attractive to females and/or outcompeting other males, rather than

investing in parental care.

Emlen and Oring (1977) carried out an excellent review on the evolution of mating systems.

They define the concept of the OSR and its relation with sexual selection. They note the

feedback between patterns of parental care and the mating system (e.g. clear mutual mate

choice is normally associated with biparental care). In addition, they note that parental care

in the form of egg incubation among birds will affect the OSR (the more males care, the less

male-biased the OSR is). Kokko and Jennions (2008) argue that if males desert then it is difficult

for them to find a partner (since the OSR is male biased). It follows that if the level of male

desertion increases, paternal care may well become a relatively more successful strategy, i.e.

parental care is subject to frequency dependent selection.
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Dawkins and Carlisle (1976) argue that Trivers’ argument is a type of ”Concorde fallacy”,

i.e. if one has invested heavily in a project, then one should continue even if losses are expected.

The decision of a female on whether to care for her present brood should, in evolutionary terms,

be based on a comparison of her future gains from care with the gains she could achieve by

following another strategy. Maynard Smith (1977) defends Trivers’ approach to some degree

by stating that in calculating the expected number of future offspring one needs to take into

account the investment that has to be made. In this paper Maynard Smith describes three

models of parental care. The first two are matrix games in which deserting males find another

partner with probability p. He recognized that this probability depends on the behaviour of the

population as a whole, i.e. treating p as fixed is a weak point of the model. The third model is

more realistic, since it takes into account the Fisher condition that the total number of offspring

of males equals the total number of offspring of females (see Houston and McNamara, [2002],

[2005], Kokko and Jennions [2003]). This third model is a so called ”time in/time out” model

in which individuals spend part of the time breeding and caring for their young and part of

their time searching for a partner (between breeding attempts). The cycle time of an individual

is the mean time he/she spends between breeding attempts. If the adult sex ratio is r, then

the mean cycle time of males must be r times the mean cycle time of females. It is assumed

that individuals maximise the rate of producing offspring that survive to adulthood. Grafen

and Sibly (1978) develop this approach. However, these models assume that there is a pure

equilibrium and so do not enable investigating the possibility of stable polymorphisms or mixed

strategies. One other problem lies in the assumption that members of the least common sex in

the mating pool immediately find a mate. As Székely et al. (2000) argue, the problems of mate

choice and parental care are strongly interlinked and such time in/time out models cannot be
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adapted in a simple way to take such feedback into account. Using Maynard Smith’s approach

the OSR is undefined, since members of one of the sexes do not spend any time in the mating

pool.

Clutton-Brock and Parker (1992) consider a similar time in/time out model to derive the OSR

given the adult sex ratio, patterns of parental investment (including both gamete production and

parental care). They include a parameter describing the level of interaction between the sexes

in a population, which in turn defines the mean time individuals spend looking for a partner.

However, they assume that the amount of parental care given is fixed, since their goal is to

derive the OSR and in this way predict which of the sexes will compete most strongly for mates

(assumed to be the most common sex in the pool of searchers). As such, this model does not

gives us any insight into why a particular pattern of parental care evolves. As well as giving an

excellent review of the development of research on patterns of mate choice and parental care,

Kokko and Jennions (2008) extend this model by allowing the level of parental care given to

evolve. Offspring survival is increasing in the level of care from a parent given the level of care

from the other parent. At the time of fertilisation, parents simultaneously choose the amount of

time for which they will care from a continuous range. The minimum time females can choose

is assumed to be larger than the minimum time a male can choose to reflect the fact that males

can replenish their gametes more quickly than females. Sexual selection is incorporated into the

model by assuming that only a fraction of the members of a particular sex mate. Due to the

complexity of the model, they assume that the level of sexual selection is fixed, although they

admit that in reality it would evolve along with the parental care strategies.

The model of Yamamura and Tsuji (1993) is in many ways the most similar to the one

presented here. Just as in Maynard Smith (1977) and Grafen and Sibly (1978) they assume that
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members of the less common sex in the mating pool immediately find a mate. It is assumed that

parents can only make one of two possible decisions: care or desert. Their model was adapted to

the life cycle of the St. Peter’s Fish, Sarotherodon galilaeus by Balshine-Earn and Earn (1997).

As in Yamamura and Tsuji, in the model presented here individuals can make only one of

two possible decisions. This is done partly for simplicity, but mainly for clarity in classifying the

types of Evolutionarily Stable Strategy (ESS) found and to illustrate the differences between a

stable polymorphism and a mixed ESS within the framework of a large population game. The

model can be relatively easily adapted to allow individuals to choose the level of parental care

they give from some range. As in Kokko and Jennions (2008), members of the less common sex

in the mating pool find mates at a faster rate than members of the more common sex in such a

way that ensures each female mating corresponds to a male mating. Hence, the ASR is fixed,

but the present OSR is derived as a resultant of the ASR and the observed pattern of parental

care, rather than being given as an exogenous parameter. In this way, the OSR and the pattern

of parental-care co-evolve as argued in Jennions and Kokko (2010). The rate at which mates are

found depends on an exogenously defined underlying interaction rate, λ1. This parameter can

be thought of as a measure of the density and mobility of the population. As Kokko and Rankin

(2006) argue, density effects may be very important in the evolution of behaviour. By defining

λ1 and the rate of transition of females from the non-receptive state to the receptive state to

be arbitrarily large, we essentially obtain the model of Yamamura and Tsuji (1993). The model

can be adapted to take into account the particular nature of physiological processes involved in

reproduction (the assumption used here that females can be receptive or non-receptive is used

to model œstrus cycles in mammals). It should be noted that these processes are assumed to

be given (i.e. the model cannot explain why these processes evolved in the first place).
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Székely et al. (2000) argue that there is strong feedback between patterns of mate choice

and patterns of parental care. Owens and Thompson (1994), Kokko and Johnstone (2002)

and Härdling and Kokko (2005) use a similar approach to the one used here to investigate the

relationships between sexual selection, patterns of mate choice and the sex ratios. Jennions and

Kokko (2010) give a clear exposition of the nature of feedback between various factors in the

reproductive cycle and the interaction between mate choice and parental care.

One major advantage of the approach used here (in comparison to the one used by Yamamura

and Tsuji) is that the model can be directly extended to incorporate the evolution of mate choice,

which is a goal of future research. The expected length of time an individual spends in the mating

pool and type of mate obtained would depend on his/her choosiness and his/her attractiveness as

a mate. The model can also be adapted to take into account differing mortality rates according

to the sex and state of an individual (see Ramsey [2009b], also Kokko and Jenninons [2008]).

Also, the analytic results obtained regarding polymorphisms and mixed ESSes are an advance on

the numerical results obtained by Yamamura and Tsuji and give some insight into intraspecies

variation in patterns of parental care.

All the models described above assume that breeding is non-seasonal and the population size

is large. In such a case, at equilibrium the OSR will be constant over time. In the case of

seasonal breeders, the strategies used by individuals will change over the breeding season and

this is associated with temporal fluctuations in the OSR (see Webb et al. [1999] and McNamara

et al. [2000]).

As argued above, the evolution of mating systems depends on many interacting factors. Verbal

explanations of such evolution cannot realistically take these interactions into account. The

continued development of mathematical models that take such interactions into account will
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prove useful in explaining observed behaviour and predicting the long term reaction of mating

systems to changes in the environment.

Section 2 presents the model and the derivation of so called pure equilibrium profiles in which

all the members of a particular sex always use the same action. Four pure equilibrium profiles

are possible: no parental care, maternal care, paternal care and biparental care. Since there may

be intraspecies variation in the level of parental care and/or female care (see e.g. Booth and

Dabbs [1993]), Section 3 considers stable polymorphisms and mixed equilibrium profiles. At a

stable polymorphism, each individual always uses the same action, but variations in behaviour

are observed within a particular sex. At a mixed equilibrium, the variation in behaviour results

from individuals choosing the action to be used in each breeding attempt at random. Section

4 considers an example and derives the set of pure equilibrium profiles according to the gains

from parental care. Section 5 investigates the relationship between some of the physiological

and demographic parameters and the set of pure equilibrium profiles. This is used to investigate

how the patterns of parental care we expect to see depend on these parameters. Section 6 gives

examples of stable polymorphisms and considers the relation between stable polymorphisms

and mixed equilibria. These results are used to investigate the conditions under which we might

expect variable care patterns within one sex of a particular species and whether one of the

sexes is more likely to exhibit such patterns. Section 7 includes a discussion of the results and

directions for future research.

2. The Model

A basic formulation of this model can be found in Ramsey (2009a). Consider a large popula-

tion in which there is no variation in the quality of mates and individuals only decide whether
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to care for their young or desert. The model can be adapted to allow individuals to choose the

level of care they give from a continuous interval. However, allowing only two discrete actions

will enable us to highlight how the range of possible ESSes in large population games with two

types of player can fundamentally differ from the ESSes in asymmetric 2-player versions of such

a game.

It is assumed that there is no breeding season. Males may be in one of two states: searching

or breeding. Females may be in one of three states: receptive, non-receptive or breeding. These

assumptions reflect the reproductive cycle of most mammals, where females have œstrus cycles

(see Bronson [1989]). However, this model can be adapted to other reproductive cycles. For

example, female rabbits come into œstrus after having sex. In this case, the model may be

simplified so that females are in one of two states: searching or breeding. The general approach to

such a problem would be the same. Within the class of time in/time out models, the adaptability

of this model to the physiological processes observed in a species seems to be novel.

For simplicity, it is assumed that when individuals are in the breeding state that they do

not attempt to (or cannot) breed with other partners. The ratio of the number of males to the

number of females (the ASR) is denoted r. Denote the proportions of males in the two male

states, searching and breeding, as p1 and p2, respectively. The proportions of females in the three

female states, receptive, non-receptive and breeding, are denoted as q1, q2 and q3, respectively.

Males in the searching state find a mate at a rate proportional to the number of receptive

females, namely at rate λ1q1. That is to say that in a small interval of time of length δ units, a

proportion λ1q1δ of searching males will find a mate. Similarly, receptive females find a mate at

a rate proportional to the number of searching males, i.e. at rate λ1p1r. It should be noted that
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these assumptions satisfy the condition that a male entering the breeding state corresponds to

a female going into the breeding state. Also, it is assumed that the population is freely mixing.

Receptive females become unreceptive at rate μ1, i.e. the mean length of their receptive

period is 1
μ1

. Unreceptive females become receptive at rate μ2. Hence, given a female does not

mate, she will be receptive for a proportion μ2

μ1+μ2
of the time. It is assumed that the parameters

μ1 and μ2 are fixed according to the physiological processes in a species.

The rate at which breeding males rejoin the pool of searching males and females return to

the pool of receptive females depends on whether they care for their young or not. If they do

not care for their young, males return to the pool of searching males at rate λD
2 , that is to say

that on average the mating process and time to replenish sperm supplies together occupy on

average 1
λD
2

units of time. Similarly, if females do not care for their young they return to the

pool of receptive females at rate μD
3 . It is assumed that λD

2 is larger than μD
3 , i.e. male deserters

can return to searching for a new mate faster than female deserters. When they care for their

offspring, males and females return to the pool of individuals searching for a mate at rates λC
2

and μC
3 , respectively. It is assumed that λC

2 ≈ μC
3 . The transition between states is illustrated

in Fig. 1. A summary of the notation used is given in Tables 1-3.
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Males Females

Searching Receptive Non-Receptive
�μ1

�
μ2

� �

Male Female

Breeding

� �

λ•
2 λ1q1 λ1p1r μ•

3

Fig. 1: Transition rates between states
• represents C or D according to whether a given sex cares for their offspring or not

Table 1. Glossary of the notation used (ratios)

r adult sex ratio km relative no. of offspring with male care

kf relative no. of offspring with female care kb relative no. of offspring with biparental care

The number of young surviving to maturity per brood is measured in relation to the number

surviving when no parental care is given. Suppose the relative number of young surviving to

maturity when a) just the female cares, b) just the male cares and c) both parents care are kf ,

km and kb, respectively. It is assumed that 1 < kf < kb and 1 < km < kb, i.e. the greater the

number of caring parents, the greater the average number of surviving offspring per brood. See

Gubernick and Teferi (2000) and Wright (2006) for examples of parental care increasing offspring

survival. It is assumed that the goal of each individual is to maximise the rate of producing

offspring that survive until maturity. For simplicity this is referred to as the reproduction rate.
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Table 2. Glossary of the notation used (proportions)

p1 prop. of all males searching p1,C of caring males searching

p1,D of deserting males searching p2 of all males breeding

p2,C of caring males breeding p2,D of deserting males breeding

q1 of all females who are receptive q1,C of caring females who are receptive

q1,D of deserting females who are receptive q2 of all females who are non-receptive

q2,C of caring females who are non-receptive q2,D of deserting females who are non-receptive

q3 of all females breeding q3,C of caring females breeding

q3,D of deserting females breeding sm of males who care

sf of females who care

Table 3. Glossary of the notation used (rates)

μ1 rate at which females become non-receptive μ2 females become receptive

λD
2 deserting males return to searching λC

2 caring males return to searching

μD
3 deserting females return to searching μC

3 caring females return to searching

λ1 interaction rate

For other game theoretic models of large population games with state transitions see Broom

and Ruxton (1998) and Eriksson et al. (2004).

2.1. Derivation of Pure Evolutionarily Stable Strategies. In order to investigate the

pure ESSes of such a system, it is necessary to first derive the ”steady-state” proportions of

individuals in each state given the strategy profile used in the population. The strategy profile
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is defined by a description of both the strategies used by the males and the strategies used by

the females. In this section, it is assumed that all individuals of a particular sex use the same

strategy. It should be stressed that the term ”steady-state” will only be used to describe the

values q1, q2, q3, p1 and p2 would tend to, given that the strategy profile used by the population

does not change over time. One important aspect to note is the feedback between selection and

the frequencies of individuals in each state. Selection will change the proportions of males and

females who care for their offspring, which in turn will change these steady-state proportions.

At the steady-state proportions the number of individuals moving from state A to state B per

unit time must equal the number of individuals moving from state B to state A. Considering the

transition of females from receptive to non-receptive, the relative number of females becoming

non-receptive per unit time is the proportion of females who are receptive times the rate of

transition from being receptive to being non-receptive, i.e. q1μ1. This rate will be called the

population rate of transition from receptive to non-receptive. In general, a population transition

rate from state A to state B is obtained by multiplying the proportion of individuals in state

A by the rate at which an individual in state A moves to state B. Thus the population rate of

females becoming receptive per unit time is q2μ2. Hence, at the steady-state proportions

(1) q1μ1 = q2μ2.

Considering firstly the transition rates of receptive females to/from mating females and then

the rate of transition of searching males to/from mating males, since p2 = 1− p1

λ1p1q1r = μ•
3q3(2)

λ1p1q1 = λ•
2(1− p1),(3)
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where each • corresponds to D or C according the strategy adopted by the appropriate sex. In

addition,

(4) q1 + q2 + q3 = 1.

Rearranging Equations (1)-(4), it follows that aq2
1 + bq1 + c = 0, where

a = μ•
3λ1[μ1 + μ2]

b = λ•
2μ2λ1r + λ2μ

•
3(μ1 + μ2)− λ1μ2μ

•
3

c = −μ2μ
•
3λ

•
2.

The unique solution to this equation between 0 and 1 is

q1 =
−b +

√
b2 − 4ac

2a
.

The remaining equilibrium proportions may be calculated from the following relations

q2 =
μ1q1

μ2
; q3 = 1− q1 − q2; p1 =

μ•
3q3

λ1q1

Since these steady-state proportions depend on the strategy profiles adopted, the strategy

profile will be denoted using superscripts indicating firstly the strategy used by males and

secondly the strategy used by females. For example, pCD
1 denotes the equilibrium proportion of

males searching when males care for their offspring, but females do not.

First, consider the conditions for no parental care to be an ESS. To find the equilibrium

frequencies when neither sex cares for offspring, set μ•
3 = μD

3 and λ•
2 = λD

2 in Equations (2)-(3).

From the Fisher condition, the average reproduction rate of females must be r times the

average reproduction rate of males. There are two ways of calculating the reproduction rate
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of males. Firstly, it can be calculated as the relative number of offspring surviving from a

breeding attempt divided by the mean cycle time, which is the mean time required to move

from the searching state to the breeding state and back again. Assume neither parent cares for

the offspring. Define this mean cycle time to be TDD. It follows that

TDD =
1

λ1qDD
1

+
1

λD
2

=
λD

2 + λ1q
DD
1

λD
2 λ1qDD

1

.

Since the relative number of offspring surviving per breeding attempt is 1, the mean reproduction

rate of males is given by RDD, where

(5) RDD =
1

TDD
=

λD
2 λ1q

DD
1

λD
2 + λ1qDD

1

The second way of calculating the reproduction rate of males is by noting that it must be

the population rate of males entering the breeding state multiplied by the relative number of

surviving offspring per breeding attempt. Hence, the mean reproduction rate of males is given

by

(6) RDD = λ1q
DD
1 pDD

1 .

Note that from Equation (3),

pDD
1 =

λD
2

λD
2 + λ1qDD

1

.

Hence, Equations (5) and (6) are equivalent.

In order for no parental care to be an ESS, this rate must be greater that the reproduction

rate of a male mutant who cares for his offspring. Since this is a large population game, such a

mutant does not affect the steady-state frequencies or the reproduction rate of the population

as a whole. The reproduction rates of mutants are calculated by considering their average cycle
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time. The expected cycle time of a male mutant who cares for his offspring when the rest of the

population desert, denoted TDD
m , is

TDD
m =

1
λ1qDD

1

+
1

λC
2

=
λC

2 + λ1q
DD
1

λC
2 λ1qDD

1

.

Since the relative number of surviving offspring of such a male per brood is km, it follows that

a male mutant cannot invade if

(7) λ1p
DD
1 qDD

1 >
kmλC

2 λ1q
DD
1

λC
2 + λ1qDD

1

.

The mean cycle time of a female is the mean time required to go from the responsive state

to the breeding state and back. Denote the mean cycle time of a mutant female who cares for

her offspring when no-one else cares and the rate at which the state of any responsive female

changes by TDD
f and μDD

R , respectively. It follows that μDD
R = λ1p

DD
1 r+μ1. The mean length of

time to the first change of state is 1
μDD

R

. The probability that she finds a mate before becoming

non-receptive is λ1pDD
1 r

μDD
R

. Given she first finds a mate, then the mean time for such a mutant

female to return to the receptive state is 1
μC

3
. Given she first becomes non-receptive, she must

then return to the receptive state (after an expected period of 1
μ2

units) and then the additional

length of time expected to complete the cycle is TDD
f , as she has simply returned to her starting

point. Hence, conditioning on the type of the first change of state,

TDD
f =

1
μDD

R

+
λ1p

DD
1 r

μDD
R μC

3

+
μ1

μDD
R

[
1
μ2

+ TDD
f

]
.

This equation leads to

TDD
f =

μ2μ
C
3 + μ2λ1p

DD
1 r + μ1μ

C
3

μC
3 μ2λ1pDD

1 r
.
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It follows that a female mutant cannot invade the population if

(8) λ1q
DD
1 pDD

1 r >
kfμC

3 μ2λ1p
DD
1 r

μ2μC
3 + μ2λ1pDD

1 r + μ1μC
3

.

It should be noted that the OSR at such an equilibrium, denoted SDD, is given by

SDD =
rpDD

1

qDD
1

.

The OSR at other equilibria can be calculated in an analogous way.

The derivation of the stability conditions for the remaining three possible pure equilibria are

analogous. Therefore, just the equilibrium conditions are presented. In each case the left hand

side of the inequality is the reproduction rate of males (which according to the Fisher condition

must be the reproduction rate of the females divided by the ASR), the first entry on the right

hand side is the reproduction rate of a mutant male and the second entry is the reproduction

rate of a mutant female divided by the ASR.

To find the equilibrium frequencies when only males care for offspring, set μ•
3 = μD

3 and

λ•
2 = λC

2 in Equations (1)-(4). Only male parental care is an ESS if

(9) kmλ1q
CD
1 pCD

1 > max
{

λ1q
CD
1 λD

2

λD
2 + λ1qCD

1

,
kbμ

C
3 μ2λ1p

CD
1

μ2μC
3 + μ2λ1pCD

1 r + μ1μC
3

}
.

To find the equilibrium frequencies when only females care for offspring, set μ•
3 = μC

3 and

λ•
2 = λD

2 in Equations (1)-(4). Only female parental care is an ESS if

(10) kfλ1q
DC
1 pDC

1 > max
{

kbλ1λ
C
2 qDC

1

λC
2 + λ1qDC

1

,
μD

3 μ2λ1p
DC
1

μ2μD
3 + μ2λ1pDC

1 r + μ1μD
3

}
.
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To find the equilibrium frequencies when both parents care for offspring, set μ•
3 = μC

3 and

λ•
2 = λC

2 in Equations (1)-(4). Parental care by both sexes is an ESS if

(11) kbλ1q
CC
1 pCC

1 > max
{

kfλ1λ
D
2 qCC

1

λD
2 + λ1qCC

1

,
kmμD

3 μ2λ1p
CC
1

μ2μD
3 + μ2λ1pCC

1 r + μ1μD
3

}
.

3. Stable Polymorphisms and Mixed Evolutionarily Stable Strategies

Such equilibria may well be of interest with regard to variation in patterns of maternal or

paternal care within a single species. Hammock and Young (2005) report that the length of

the avpr1a microsatellite is associated with the patterns of paternal care in prairie voles, but

not with patterns of maternal care. According to Booth and Dabbs (1993), human males with

higher levels of testosterone are less likely to marry and when married are more likely to divorce.

The results obtained in this section may be helpful in explaining which sex is more likely to show

such variable patterns and under what circumstances such variation might be observed, even

when there is no observable difference between individuals of a particular sex.

One important question in evolutionary game theory relates to whether a mixed ESS (at which

each individual uses the appropriate randomized strategy) corresponds to a stable polymorphism

(at which each individual uses a pure strategy) such that the proportion of individuals using a

given action at the polymorphism equals the probability of that action being used at the mixed

ESS. See Maynard Smith (1982) for a overview of this question. For the model considered, if

there is a stable polymorphism, the probability of using a particular action at the mixed ESS

will differ from the proportion of individuals using that action at the stable polymorphism.

This occurs for the following reason: Suppose all males use the same mixed strategy ”care with

probability p, otherwise desert”. The probability that a searcher will care is clearly p. Now

suppose a proportion p of males care. Since carers spend a greater proportion of time in the
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breeding state, the probability that a male in the searching state is a carer will be less than p.

Hence, the expected number of surviving offspring of a female from mating differs in the two

considered scenarios. For further illustration of this issue, see Ramsey (2009a).

The following types of polymorphisms and mixed ESSes are among the possible equilibria:

1) A complete polymorphism: In both sexes, a certain proportion of individuals always

care, while the remainder always desert. An individual’s reproduction rate is independent

of the strategy used.

2) A male polymorphism: At such an equilibrium all females use the same pure strat-

egy. A mutant female using the other pure strategy will obtain a lower reward. Some

males always care and the remainder always desert. A male’s reproduction rate is inde-

pendent of the strategy used.

3) A female polymorphism: As above, but females, rather than males, show variation

in observed behaviour.

4) A completely mixed ESS: At such an equilibrium all individuals follow the mixed

strategy appropriate to their sex.

5) A male mixed ESS: At such an equilibrium all females use the same pure strategy.

All males use the same mixed strategy.

6) A female mixed ESS: As above, but females, rather than males, use a mixed strat-

egy.

The following criterion for the stability of a polymorphism is also required: Suppose at a

polymorphism a proportion s of the members of one sex cares, 0 < s < 1. If this proportion

rises above s (falls below s), then selection must favour deserting (favour caring, respectively).
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This condition ensures that if the frequencies of carers is slightly different from the equilibrium

frequency s, then selection acts in such a way that this proportion tends towards s. An analogous

condition, where s is interpreted as the probability of caring, is required for the stability of a

mixed ESS.

It is possible that a population could be at equilibrium in a multitude of ways. For example,

all males could follow the same randomized strategy, while some females always care while the

other females always desert. It is also possible that in both sexes some individuals follow pure

strategies while others follow mixed strategies. The focus in this paper will be on single sex

polymorphisms. One type of single sex mixed ESS will be derived for comparative purposes. To

keep the paper of reasonable length, other types of equilibria are not considered here.

3.1. Stable Male Polymorphisms with Female Carers. The equilibrium proportions at

such a polymorphism will be denoted using the superscript PC. Suppose there exists a stable

polymorphism in which females always care and a proportion sPC
m of males care. Define pPC

1,C

and pPC
1,D to be the proportion of male carers and deserters who are searching, respectively. At

equilibrium, the population rate at which male carers move from the searching state must equal

the rate at which they move in the opposite direction. Hence,

(12) λC
2 (1− pPC

1,C) = λ1q
PC
1 pPC

1,C .

Similarly, considering the male deserters,

(13) λD
2 (1− pPC

1,D) = λ1q
PC
1 pPC

1,D.
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As before,

μ1q
PC
1 = μ2q

PC
2(14)

qPC
1 + qPC

2 + qPC
3 = 1.(15)

The rate at which male carers find mates is λ1p
PC
1,CqPC

1 and the relative number of surviving

offspring from such matings is kb. Hence, the reproduction rate of male carers is kbλ1p
PC
1,CqPC

1 .

Similarly, the reproduction rate of male deserters is kfλ1p
PC
1,DqPC

1 . At such an equilibrium the

reproduction rates of male deserters and male carers must be equal. Hence,

(16) kbp
PC
1,C = kfpPC

1,D.

Solving Equations (12)-(16),

qPC
1 =

λD
2 λC

2 (kb − kf )
λ1(λD

2 kf − λC
2 kb)

qPC
2 =

μ1λ
D
2 λC

2 (kb − kf )
μ2λ1(λD

2 kf − λC
2 kb)

qPC
3 = 1− λD

2 λC
2 (kb − kf )(μ1 + μ2)

μ2λ1(λD
2 kf − λC

2 kb)

pPC
1,C =

λD
2 kf − λC

2 kb

kb(λD
2 − λC

2 )

pPC
1,D =

λD
2 kf − λC

2 kb

kf (λD
2 − λC

2 )
.

The total proportion of males searching is pPC
1 , where

pPC
1 = sPC

m pPC
1,C + (1− sPC

m )pPC
1,N .
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Considering the population rate of transition of females between the breeding and receptive

states,

λ1q
PC
1 r[sPC

m pPC
1,C + (1− sPC

m )pPC
1,D] = μC

3 qPC
3 .

Together with Equation (16), this leads to

sPC
m =

kb

kb − kf

[
1− μC

3 qPC
3

λ1qPC
1 pPC

1,Dr

]
.

For such a stable polymorphism to exist, the following conditions must be satisfied: 0 < qPC
i < 1,

i = 1, 2, 3, 0 < pPC
1,• < 1, • ∈ {N,C} and 0 < sPC

m < 1. These conditions lead to

kb

kf
<

λD
2 [λ1μ2 + λC

2 (μ1 + μ2)]
λC

2 [λ1μ2 + λD
2 (μ1 + μ2)]

(17)

kf

kb
<

μC
3 qPC

3

λ1qPC
1 pPC

1,Cr
< 1(18)

In addition, a female carer must have a higher reproduction rate than a mutant female de-

serter. The mean reproduction rate of a female carer is r times the mean reproduction rate of

a male, i.e. kbλ1p1,CqPC
1 r. Arguing as in the case of a pure ESS, the mean cycle length of a

mutant female deserter is

TPC
f =

μ2μ
D
3 + μ2λ1p

PC
1 r + μ1μ

D
3

μD
3 μ2λ1pPC

1 r
.

The probability that a female mates a male carer is given by
sPC
m pPC

1,C

pPC
1

. It follows that the following

is a necessary condition for such a stable polymorphism:

(19) kbλ1p
PC
1,CqPC

1 >
μD

3 μ2λ1[kmsPC
m pPC

1,C + (1− sPC
m )pPC

1,D]

μ2μD
3 + μ2λ1pPC

1 r + μ1μD
3

.

As stated earlier, selection must act in such a way that the proportion of males caring tends

towards sPC
m . Consider a population in which all females care and a proportion sm of males care.

As sm increases, intuitively the proportion of males searching for a mate decreases. It follows
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that females take longer to find a mate and hence the proportion of females searching for a mate

is increasing in sm. The ratio of the reproductive rate of a male carer to the reproductive rate

of a male deserter is given by

kbλ
C
2 (λD

2 + λ1q1)
kfλD

2 (λC
2 + λ1q1)

.

Since kb, km, λD
2 and λC

2 are fixed, this ratio is determined by the ratio between λD
2 + λ1q1 and

λC
2 + λ1q1. Since λD

2 > λC
2 , this ratio is decreasing in q1. Hence, as the proportion of male

carers increases, selection increasingly favours male deserters. It follows that there can be at

most one such stable polymorphism and the conditions given by Inequalities (17), (18) and (19)

are sufficient.

The derivations of the form of the remaining types of single sex stable polymorphism are

analogous. They are given in the appendix for completeness. It should be noted that, apart from

the specific case kf = km =
√

kb, the set of equations defining a stable complete polymorphism

are difficult to solve analytically and only numeric solutions have been found. Due to lack of

space, complete polymorphisms are omitted.

3.2. A Male Mixed ESS with Female Carers. Now suppose that a male mixed ESS exists

in which all females care and all the male play the same mixed strategy: care with probability

sMC
m and desert with probability 1−sMC

m . Analogously, the steady-state proportions are denoted

using the superscript MC. The expected length of time a male spends in the breeding state is

1
λM
2

, where

1
λM

2

=
sMC
m

λC
2

+
1− sMC

m

λD
2

.
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It follows that the rate at which males go from the breeding state to the searching state is

λM
2 =

λC
2 λD

2

sMC
m λD

2 + (1− sMC
m )λC

2

.

Hence, the equations for the steady-state proportions are

qMC
1 μ1 = qMC

2 μ2(20)

λ1p
MC
1 rqMC

1 = μC
3 qMC

3(21)

qMC
1 + qMC

2 + qMC
3 = 1(22)

λ1q
MC
1 pMC

1 =
λC

2 λD
2 (1− pMC

1 )
sMC
m λD

2 + (1− sMC
m )λC

2

.(23)

At such an ESS, the reproduction rate of a male is independent of his strategy. In particular,

the reproduction rate of a male mutant who always cares must be equal to the reproduction

rate of a male mutant who always deserts. The expected cycle length of a mutant male carer

and a mutant male deserter are given by TMC
C and TMC

D , where

TMC
C =

1
λ1qMC

1

+
1

λC
2

=
λC

2 + λ1q
MC
1

λ1qMC
1 λC

2

TMC
D =

1
λ1qMC

1

+
1

λD
2

=
λD

2 + λ1q
MC
1

λ1qMC
1 λD

2

.

Equating the reproduction rates of such mutants,

kb

TMC
C

=
kf

TMC
D

⇒ kbλ
C
2

λC
2 + λ1qMC

1

=
kfλD

2

λD
2 + λ1qMC

1

.

It follows that

qMC
1 =

λC
2 λD

2 (kb − kf )
λ1(λD

2 kf − kbλ
C
2 )

.
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Hence, qMC
1 = qPC

1 . From Equations (20) and (22), it can be seen that the proportion of females

in each of the three states at this mixed equilibrium must be the same as at the stable male

polymorphism where females care. From Equation (21), it follows that the proportion of males

in the searching state at the mixed equilibrium must equal the proportion of all males searching

at the corresponding male polymorphism. It follows that

pMC
1 =

μC
3 (λD

2 kf − λC
2 kb)

λD
2 λC

2 r(kb − kf )
− μC

3 (μ1 + μ2)
μ2λ1r

.

From Equation (23),

sMC
m =

λC
2 λD

2 (1− pMC
1 )

λ1qMC
1 pMC

1 (λD
2 − λC

2 )
− λC

2

λD
2 − λC

2

.

At such an equilibrium, the reproduction rate of female carers must be greater than the re-

production rate of a mutant female deserter. The expected number of surviving offspring of a

caring female per breeding attempt is sMC
m kb + (1 − sMC

m )kf . Hence, considering the expected

cycle length of a mutant female deserter,

[sMC
m kb + (1− sMC

m )kf ]λ1p
MC
1 qMC

1 >
μD

3 μ2λ1[kmsMC
m + (1− sMC

m )]pMC
1

μ2μD
3 + μ2λ1pMC

1 r + μ1μD
3

.

4. Numerical Results - Pure Evolutionarily Stable Strategy Profiles

Suppose μ1 = μ2 = 1, μD
3 = 0.2, λD

2 = 5, λC
2 = μC

3 = 0.05, λ1 = 20, r = 1. These

parameters reflect the natural constraint that a deserting male can return to the pool of searchers

more quickly than a deserting female. For example, males of the cichlid fish species Aequidens

portalegrensis can spawn daily, whereas females can only spawn once every five days (see Polder

[1970]). The relative difference between these rates is generally much more pronounced in

mammal species (see Bronson [1989]). The adult sex ratio is 1.
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First consider how the set of pure ESS profiles depend on the gains from uniparental and

biparental care, i.e. on kf , km and kb. The procedure is to first find the steady-state proportions

for a given strategy profile and then check the equilibrium conditions [see Conditions (7)-(11)].

These calculations give

1.: No parental care is an ESS profile when km < 4.8793, kf < 3.9388.

2.: Just female parental care is an ESS profile when kf > 3.9406, kb
kf

< 1.9850.

3.: Just male parental care is an ESS profile when km > 60.4523, kb
km

< 1.7450.

4.: Biparental care is an ESS profile kb
km

> 3.3202, kb
kf

> 12.8912.

Assume now that males are equally good at caring as females, i.e. km = kf . Figure 2

illustrates the set of pure ESS profiles (an approximate log scale is used). The benefits of

uniparental care increase from left to right. Along the diagonal there are no benefits from

biparental care compared to uniparental care. The gains from biparental care increase in the

vertical direction.
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Fig. 2: Set of Pure ESSs in the parental care game

The results obtained are qualitatively similar to those obtained by Balshine-Earn and Earn

(1997). Just male care is an ESS profile only when the gains from uniparental care are very

large and the gains from biparental care relatively small. However, in such cases just female

care is also an ESS profile and the results suggest that just female care will have a much larger

basin of attraction and so is likely to evolve.

5. Effect of the Parameters on the Set of Pure ESSes

The analysis below is not intended to be exhaustive, but to give an indication of the effect

of parameters on stable patterns of parental care. In general, just one or two parameters are



Parental Care as a Game 27

changed at a time, while the remaining parameters take the same values as in the original

problem. The results presented here concentrate on factors that are not considered in either

Kokko and Jennions (2008) or Yamamura and Tsuji (1993) (e.g. the proportion of time for which

females are receptive) or conclusions that seem to deviate from the conclusions they make.

The results indicate that biparental care will only ever be observed if the number of surviving

offspring is around twice the number from uniparental care or greater. These results are similar

to those obtained by Yamamura and Tsuji, as well as McNamara et al. (2000).

5.1. Effect of the Proportion of Time for which Females are Receptive. To observe

the effect of the proportion of time for which females are fertile, the values of μ1 and μ2 are

changed in such a way that the mean time between a female’s fertile periods (given she does not

mate) remains constant (i.e. 1/μ1 + 1/μ2 is fixed), but the proportion of time for which female

is fertile varies. As μ1 decreases, the proportion of time for which a female is fertile increases.

The first line gives the minimum value of kf for just female care to be an ESS profile. The

second line gives the minimum value of km for which just male care is an ESS. The third line

gives the minimum value of kb
km

for which biparental care is an ESS profile (this is the gain from

biparental care compared to female care required for males to care in addition to females). In

virtually all of the scenarios considered, this ratio determined the situations in which biparental

care is evolutionarily stable.

It can be seen from the first row (at least for the values of the other parameters considered)

that the proportion of time a female spends fertile has very little effect on her decision to care or

desert. The smaller the proportion of time females are fertile, the more likely males are to give

care as a second carer. This does not appear to agree with classical theory based on parental
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μ1 = 3, μ2 = 0.6 μ1 = 4/3, μ2 = 0.8 μ1 = μ2 = 1 μ1 = 0.8, μ2 = 4/3 μ1 = 0.6, μ2 = 3

kf required for DC 3.8283 3.9213 3.9406 3.9523 3.9641

km required for CD 34.1426 53.48319 60.4523 65.6048 71.7411

kb
kf

required for CC 8.0611 11.4155 12.8912 14.1514 15.9338

Table 4. Effect of proportion of time for which females are fertile on pure ESS

profiles. Proportion of time spent fertile increases from left to right.

investment. It seems logical that as females spend a smaller proportion of time fertile, they

invest more in producing eggs. Hence, the relative parental investment of males at the time of

fertilisation falls and so males should be less likely to care. However, this argument ignores the

fact that such increased female parental investment makes the OSR more male biased. Thus it

will be harder for males to find mates and so paternal care becomes a relatively better option.

Hence, these results seem consistent with the results of Queller (1997) and Kokko and Jennions

(2008), who take into account such feedback between patterns of parental care and the OSR.

It should be noted that changing the length of time between a female’s fertile periods while

leaving the proportion of time she remains fertile constant leaves the set of ESS profiles un-

changed.

5.2. Effect of the Level of Anisogomy. To observe the effect of the level of anisogomy, the

value of λD
2 (the rate at which deserting males can return to the pool of searchers) was changed.

As λD
2 increases the level of anisogomy increases.

Decreasing the level of anisogomy increases the likelihood of male care to some degree. How-

ever, male care is only expected when females also care. These conclusions are similar to the

ones made by Yamamura and Tsuji (1993), but seem to differ from the conclusions of Kokko
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λD
2 = 20 λD

2 = 10 λD
2 = 5 λD

2 = 2.5 λD
2 = 1.25

kf required for DC 3.9410 3.9409 3.9406 3.9400 3.9388

km required for CD 109.9924 86.3930 60.4523 37.7702 21.5779

kb
kf

required for CC 14.1675 13.7149 12.8912 11.5088 9.4765

Table 5. Effect of length of time out for males on ESS profiles. Length of time

out increases from left to right.

and Jennions (2008), who conclude that given parental care is just as valuable as maternal care

and the ASR is one that males should give a similar level of care to females. One possible

explanation for this difference is the type of decision that is made. Yamamura and Tsuji and

the model presented here assume that the choice is either to care or not to care, while Kokko

and Jennions allow individuals to choose the time for which they care from some range. The

lowest level of anisogamy considered here (male deserters return to the pool of searchers about

6 times as quickly as female deserters) is of a similar level to that observed in cichlid fishes (see

Polder [1970]). It is not entirely clear what levels of anisogomy were considered by Kokko and

Jennions.

5.3. Effect of the Interaction Rate. The parameter λ1 can be interpreted as a measure of

the interaction rate between members of the opposite sex.

It should be noted that the model assumes that the population is large and free moving,

hence it seems natural to assume that the interaction rate should not be small in comparison

to the rate at which female deserters return to the pool of searchers. Given this assumption,

the interaction rate has very little effect on female behaviour. Males are more likely to care (as
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λ1 = 80 λ1 = 40 λ1 = 20 λ1 = 10 λ1 = 5

kf required for DC 3.9849 3.9700 3.9406 3.8835 3.7757

km required for CD 85.8639 75.2705 60.4523 43.5343 28.1682

kb
kf

required for CC 22.5284 17.1591 12.8912 9.5994 7.1196

Table 6. Effect of interaction rate on ESS profiles.

a second parent) at low interaction rates. This seems intuitive, since the lower the interaction

rate the harder it is to find a partner.

5.4. Effect of the Adult Sex Ratio. For large values of r (r > 1.32), the gain from biparental

care compared to just paternal care, kb
km

, determines whether biparental care is stable. Thus,

the following table also gives the critical value of this ratio.

r = 2 r = 1.5 r = 1.32 r = 1 r = 2
3 r = 0.5

kf required for DC 3.9750 3.9603 3.9549 3.9406 3.9113 3.8824

km required for CD 50.7415 56.1156 57.7802 60.4523 62.9026 64.0186

kb
kf

required for CC 1.9706 2.8867 3.8309 12.8912 41.2752 50.7415

kb
km

required for CC 3.9415 3.8867 3.8309 3.3202 1.9717 1.5906

Table 7. Effect of adult sex ratio on ESS profiles.

The gains from care required for maternal care to be stable are almost independent of the

adult sex ratio. The results indicate that just paternal care is very unlikely to evolve even when

the sex ratio is very biased towards males. For low values of r, the pattern of parental care will

be for females to care if the gains from care are large enough and males will care in addition if the

gains from biparental care are large enough. The situation for large values of r seems somewhat
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more complex. If uniparental care evolves, then it seems that females will care. However, there

are situations in which males may be more ”willing” to be a second parent than females are to

care given that males care. In such a situation there will be ”conflict” over parental roles and

within the framework of the model presented here, we might expect varied patterns of parental

care. These results seem to be in line with those of Yamamura and Tsuji (1993), but discordant

with the results of Kokko and Jennions (2008), who predict a greater level of balance between

the level of care given by males and females. It is likely that this difference results from the types

of decision allowed (here either care or desert, but in Kokko and Jennions the time a parent

cares for is chosen from some interval).

6. Numerical Results - Stable Single Sex Polymorphisms

The existence of stable polymorphisms according to the values of kb and kf was investigated

for the set of problems given by the parameters for the original problem (μ1 = μ2 = 1, μD
3 = 0.2,

λD
2 = 5, λC

2 = μC
3 = 0.05, λ1 = 20, r = 1). It was assumed that km = kf . The calculations

involved are relatively straightforward, but time consuming and so the details are left out.

6.1. A Female Polymorphism when Males Desert. The two conditions for a putative

stable polymorphism to be valid are given by Inequalities (24) and (25) (see Appendix A),

which lead to 3.9388 < kf < 3.9406. It such be noted that this corresponds exactly to the range

of kf for which neither no parental care nor just maternal care are ever stable.

Secondly, a male deserter must have a higher reproduction rate than a male carer. This

corresponds to Inequality (26), which gives

kb < k2
f +

(kf − 1)2[40198− 10598kf + 100k2
f ]

8150kf − 100k2
f − 30550

.
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If kf is just above 3.9388, then essentially kb can take any value. As kf tends to the upper

boundary (approx. 3.9406), the maximum value of kb possible for such a polymorphism tends

to 1.9850kf .

Comparing these results with the results on pure equilibria (see Figure 2), it can be seen that

the range of values of kb and kf for which such a stable polymorphism can exist is given by a

narrow strip in the horizontal direction (i.e. a narrow range of kf ). The left hand boundary of

this region is the vertical boundary of the region in which no parental care is an ESS. The right

hand side of the boundary is made up of the left hand boundary of the region in which female

care is an ESS and a curve starting from the top left hand corner of this region. As gains from

biparental care increase (moving upwards on Figure 2), this strip becomes narrower.

When the gains from biparental care are small, there is no pure equilibrium. Hence, it seems

that such a polymorphism could evolve. However, the narrow range of parameters suitable for

such a polymorphism to be stable suggests that we would not observe such patterns of parental

care.

6.2. A Female Polymorphism when Males Care. The two conditions for a putative stable

polymorphism to be valid are given by Inequalities (27) and (28) (see Appendix B), which lead

to 1.7450 < kb
km

< 3.3202. It such be noted that this corresponds exactly to the range of values

of this ratio for which not all females should care given that males care, but just paternal care

cannot be an ESS.

Secondly, a male carer must have a higher reproduction rate than a male deserter. This

corresponds to Inequality (29), which gives for 1.7450 < c = kb
km

< 1.7544

km >
1175c2 − 9925c + 20000

49c3 + 5003c2 − 28978c + 35176
.
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For 1.7544 < c < 3.3202, the direction of this inequality is reversed. It can be shown that for

1.7544 < c < 3.3202 the righthand side of the inequality above is negative. Hence, there can be

no such stable polymorphism for this range of values of c.

Now consider the range 1.7450 < c < 1.7544. As c tends to the lower boundary of this interval,

the minimum value of kf for which the above inequality is satisfied is 60.4523. As c tends to the

upper boundary of this interval, the minimum value of kf required tends to infinity. It follows

that the region in which there is a stable female polymorphism with male care is a very thin

strip above the region in which just paternal care is an ESS (see Figure 2). Since just maternal

care is an ESS in this region, it seems unlikely that a stable female polymorphism with males

caring would evolve.

6.3. A Male Polymorphism when Females Desert. The two conditions for a putative

stable polymorphism to be valid are given by Inequalities (30) and (31) (see Appendix C),

which lead to 4.8793 < km(= kf ) < 60.4523. It should be noted that this corresponds exactly

to the range of km for which paternal care cannot be an ESS, but not all males should desert

given that females desert.

Secondly, a female deserter must have a higher reproduction rate than a female carer. This

corresponds to Inequality (32), which gives

kb < k2
m +

(km − 1)2[40150− 10550km + 100k2
m]

10694km − 100k2
m − 49798

.

As km tends to the upper limit the region given above (approx. 60.4523), the maximum value of

kb for which such a stable polymorphism exists tends to 1.7450km. Hence, the right hand border

of the region in which such a polymorphism may occur coincides with the left hand border of

the region in which just male care is an ESS.
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As km tends to the lower limit of this region (approx. 4.8793), the righthand side of the

inequality above tends to −∞. Hence, the minimum value of km required for such a stable

polymorphism to occur must be greater than 4.8793. Since kb ≥ km, in order to find the

minimum required value of km, it is necessary to solve

km = k2
m +

(km − 1)2[40150− 10550km + 100k2
m]

10694km − 100k2
m − 49798

.

This leads to km ≈ 21.6493. It can be shown that for km > 21.6493 that the righthand side

of the equation above is greater than km. It follows that the region in which there is a stable

male polymorphism with deserting females is bounded above by a curve from the point on the

diagonal line corresponding to km = kf = 21.6493 to the top left hand corner of the region in

which just paternal care is an ESS. Since just maternal care is also an ESS in this region, it

seems likely that a male polymorphism in which females desert would never evolve.

6.4. A Male Polymorphism when Females Care. The two conditions for a putative stable

polymorphism to be valid are given by Inequalities (17) and (18), which lead to 1.9850 < c =

kb
kf

< 12.8912. This is precisely the range of values for which neither maternal care nor biparental

care can be an ESS.

Condition (19) states that a female carer must have a higher reproduction rate than a female

deserter. This leads to

kf >
20000− 301c− 97c2

25c3 + 5075c2 − 30322c + 44824
.

This is illustrated in Figure 3. Fixing kf , the set of values of kb for which a male polymorphism

with female care is stable can be derived from the graph. This is done by finding the values of
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Figure 3. Illustration of the region in which a stable male polymorphism with

female care exists. For a given value of kf such a stable polymorphism exists

when the horizontal line y = kf lies above the curve.

c = kb
kf

for which the horizontal line y = kf lies above the curve on the interval 1.9850 < c <

12.8912.

For example, for kf = 20, the line lies above the curve for 1.9850 < kb
kf

< 2.5468 and

3.2927 < kb
kf

< 12.8912. It follows that for kf = 20 there is a stable male polymorphism if

39.700 < kb < 50.936 or 65.854 < kb < 257.824.

The height of the curve when kb
kf

is 1.9850 is approximately 3.9406. From the form of the

graph when kf < 3.9406 there is only a stable polymorphism for large enough values of kb
kf

. The

following table gives the minimum value of kb
kf

for a stable male polymorphism of this type to

exist when kf is between 1 and 3.9406. This is given by the one value of c where the line y = kf
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intersects the curve. The maximum value in each case is 12.8912. Some numerical results are

given in the following table.

kf
kb
kf

required kf
kb
kf

required

1.0 4.6716 2.0 4.1762

1.2 4.5266 2.2 4.1191

1.4 4.4126 2.4 4.0690

1.6 4.3197 3.0 3.9490

1.8 4.2422 3.9406 3.8180

Table 8. Region of Stability of Male Polymorphism for Small Values of kf

For intermediate values of kf , from kf = 3.9406 to the maximum height attained by the curve

kf = 103.0036, there are two ranges of kb
kf

for which there is a stable male polymorphism. The

first region is from 1.9850 to the value of c where the curve first intersects y = kf . The second

region is from the value of c at the second intersection of the curve with y = kf up to 12.8912.

For values of kb
kf

between these intersection points there is no stable male polymorphism. Some

numerical results are given in the following table.

For values of kf greater than 103.0036, a stable male polymorphism exists for all values of kb
kf

between 1.9850 and 12.8912.

It can be seen that the set of values of kf and kb for which such a stable polymorphism covers

a wide range of the values for which there is no pure equilibrium, as well as some of the region in

which no parental care is an ESS profile. Hence, within the framework of the model presented,

in many scenarios a system could evolve in which females cared, but males showed variation in

their behaviour.
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kf Region 1 for kb
kf

Region 2 for kb
kf

5 (1.9850,1.9924) (3.8113,12.8912)

10 (1.9850,2.3572) (3.4734,12.8912)

20 (1.9850,2.5468) (3.2927,12.8912)

30 (1.9850,2.6357) (3.2069,12.8912)

50 (1.9850,2.7339) (3.1110,12.8912)

75 (1.9850,2.8112) (3.0350,12.8912)

100 (1.9850,2.8916) (2.9551,12.8912)

Table 9. Regions of Stability of Male Polymorphisms for Intermediate Values of kf

The set of values of kf and kb for which no stable profile has been described in this paper

is made up of intermediate values of kf (approximately between 5 and 100 for the problem

considered) and intermediate values of kb
kf

(approximately between 2 and 4). Initial calculations

indicate that there are stable complete polymorphisms in this region (they also exist in other

regions). The analytical results show that there can be only one stable single sex polymorphism

of a given type, but numerical results indicate that there may be multiple stable complete

polymorphisms for given values of kf and kb.

In order to gain more insight into the patterns of parental care that evolve in various sce-

narios, consider the stable proportion of male carers for three values of kf , allowing kb
kf

to vary

between 1.9850 and 12.8912. The values of kf considered are 2, 20 and 120. These three values

correspond to the set of values of kf for which: a) there is a stable male polymorphism only for

relatively large values of kb
kf

, b) there are two intervals of values of kb
kf

for which there is a stable
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male polymorphism, c) for all values of kb
kf

between 1.9850 and 12.8912 there is a stable male

polymorphism.

Figure 4 illustrates how the proportion of carers at a stable polymorphism and the probability

of caring at a mixed equilibrium change according to kb/kf . The forms of these graphs are very

similar for all values of kf . The proportion of carers at a stable polymorphism is greater than

the probability of caring at a mixed equilibrium. However, numerical calculations indicate that

the probability of an individual in the pool of searchers caring is independent of the equilibrium.

Figures 5-7 illustrate the reproduction rates of female carers and of a mutant female deserter.

In order for the polymorphism to be stable, female carers must reproduce at a faster rate than

the mutant.

Figure 5 shows that for kf = 2, there is only a stable polymorphism for relatively large values

of kb/kf (between 4.1762 and 12.8912). Figure 4 indicates that at any such equilibrium the

proportion of male carers will always be high. That is to say for kf = 2 and kb < 8.3524 there

will only be one ESS (no parental care). For values of kb between 8.3524 and 25.7824, there is

also a stable polymorphism where all females and a large proportion of males care.

Figure 6 shows that for kf = 20 there is no stable polymorphism for intermediate values of

kb/kf . In fact, there is a stable polymorphism when 1.9850 < kb/kf < 2.5468 and 3.2927 <

kb/kf < 12.8912. As kb/kf increases from 1.9850, the proportion of male carers at such a

polymorphism increases very rapidly. This means that there are less males in the pool of

searchers (i.e. males face less competition when looking for a mate), which favours deserters.

This factor seems to initially outweigh the gains from parental care and so the polymorphism

becomes unstable. For larger values of kb/kf the proportion of male carers at such a, now

putative, polymorphism rises more slowly and so in turn the gains from parental care begin to
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Figure 4. Proportion of male carers at the stable polymorphism and probability

of caring at the mixed ESS for kf = 200.

outweigh the advantages gained by deserters due to reduced competition for females. Hence, for

larger values of kb/kf the polymorphism again becomes stable.

Figure 7 shows that for kf = 200 the polymorphism is stable for 1.9850 < kb/kf < 12.8912.

There is a range of values of kb/kf for which a mutant female deserter reproduces at virtually

the same rate as a female carer (this is true for all large values of kf when kb/kf ≈ 3 in the

problem considered). This may indicate a large degree of conflict over which parent(s) should

care in such situations.
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Figure 5. Reproduction rates of female carers and a mutant female deserter at

a putative stable polymorphism with kf = 2. The polymorphism is stable if the

reproduction rate of carers is greater than the reproduction rate of a deserter

(i.e. for large values of kb/kf ).

7. Conclusion

This article has presented a model of a parental care game which is an adaptation of the

model of Yamamura and Tsuji (1993). Unlike their model, individuals of the rarer sex in the

mating pool do not find a mate immediately on becoming receptive. This approach allows us

to model the interaction between the patterns of parental care and the OSR. In this way ,the

model presented shows similarities to the model presented by Kokko and Jennions (2008).
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Figure 6. Reproduction rates of female carers and a mutant female deserter at

a putative stable polymorphism with kf = 20. The polymorphism is stable if the

reproduction rate of carers is greater than the reproduction rate of a deserter.

(i.e. not for intermediate values of kb/kf ).

The model can be thought of as representing a primeval situation in which the only difference

between the sexes is the gametes they produce. By definition, females produce larger gametes

and hence their minimum time out is greater than the minimum time out of males. Given such

a scenario, it is generally expected that if uniparental care occurs, then females care. Males care

if the gains from biparental care are sufficient. The major exception to this seems to occur when

the ASR is male biased. In this case, if uniparental care is evolutionarily stable, then again

females care. However, the outcome is somewhat unclear when there are moderate gains from
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Figure 7. Reproduction rates of female carers and a mutant female deserter at

a putative stable polymorphism with kf = 200. The polymorphism is stable for

all values of kb/kf in the range considered.

biparental care. In this case, males should care given females care, but females should not care

given that males care (this is never the case for an even or female biased ASR). One possible

area for future research is to investigate what patterns of parental care would evolve in such

situations.

While Kokko and Jennions assume that both parents choose the time for which they care from

some range, the model here assumes that the decision is dichotomous: i.e. a parent either cares

or deserts. In the case of St. Peter’s fish (see Balshine-Earn and Earn [1997]), if a parent decides

to brood after fertilization, then he/she broods until the eggs hatch otherwise the offspring will
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not survive. Hence, in this scenario it seems reasonable to restrict the set of available actions in

this way. In other cases, it may well be realistic to allow parents to case the level of care they give

from a range of values. Comparing the results obtained here and in Yamamura and Tsuji (1993)

with the results obtained by Kokko and Jennions (2008), it seems that situations in which the

decision is dichotomous make it more likely that female only care evolves, even when the ASR

is heavily male-biased (Kokko and Jennions predict a more even distribution of parental care

between males and females if the only difference between the sexes is the anisogomy of gametes).

The model presented here can be easily adapted to allow parents to choose the level of care they

give from a range. It would be interesting to see whether the predominance of female care found

here is an artifact of the assumptions made regarding the set of actions available to the parents.

Also, the models compared here all assume that the decisions made regarding parental care are

made simultaneously, whereas in reality one parent may be able to desert before the other has

an opportunity to desert, who can react to such a desertion (this is discussed more fully below in

comparing the parental care patterns of mammals, birds and fish). Dawkins (1976) argues that

if uniparental care is evolutionarily stable, the sex which can desert earlier will be the one which

deserts. It would be relatively easy to adapt the model to take this asymmetry into account and

in this way explain what effect this asynchronicity of decisions effects the evolution of patterns

of parental care.

In practice, individuals may well balance the level of parental care they give with other types

of behaviour on a day-to-day basis and may well be able to react to the level of care provided by

their partner (see e.g. McNamara et al., 1999 and Houston et al., 2005). However, adapting the

model presented here to such adaptive behaviour is likely to lead to an overly complex model.
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Analytical results have been obtained describing so called single sex polymorphisms, at which

variation in behaviour is observed within a particular sex. The results suggest that variable

patterns of parental care within a species are more likely to be observed among males than

among females. Such equilibria may evolve for intermediate gains from biparental care. In such

cases, males exhibiting a relatively rare behaviour will be selected for. Those models considered

here in which parents choose the time they care for from a range (Maynard Smith [1977], Grafen

and Sibly [1978] and Kokko and Jennions [2008]) assume that the ESS profile is pure. However,

it may be that for a given level of care by e.g. the female, for low levels of care from the male

the marginal gains from an increase in the level of care he gives may be increasing. Hence, it

seems possible that for such models stable polymorphisms exist in which some males ”desert”

(i.e. give the least possible amount of care) and some males ”care” (i.e. give some higher level

of care).

One particular advantage of this model compared to the model of Yamamura and Tsuji (1993)

is that it could be extended to include variation between individuals and take mate choice into

account. Although it would seem that such a model would be too complex to obtain analytic

results, numerical results could be obtained using simulations. As Székely et al. (2000) note

there is strong feedback between mate choice and patterns of parental care. Seki et al. (2007)

use a genetic model to simulate the coevolution of patterns of polyandry and parental care. It

has been noted that many species in which only females care there is sexual dimorphism. In

such species males often invest in ”weaponry” or ”ornaments”, in order to mate with as many

females as possible while avoiding the costs of parental care (see Weckerly [1998], Duckworth

et al. [2003], Bro-Jorgenson [2007] Mitchell et al. [2007]). However, the relation between

attractiveness and parental care is not entirely clear. Moller and Jennions (2001) observe that
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males who give parental care can be interpreted as attractive. Balshine-Earn (1995) also argues

there may well be a correlation between the attractiveness of a partner and the level of care

they can give. Females prefer larger males as mates, who are more able to give parental care

than small males (as the same level of parental care from a large male would cost him less that

it would cost a smaller male). Sargent and Gross (1993) argue that in teleost fish the costs

to females of caring are greater than the costs to males of caring, since females invest more in

reproduction and thus have lower reserves than males.

The model presented here assumes that the only difference between individuals is sex, whereas

obviously individuals vary according to other traits. In this case, individuals should not only

care about the number of offspring surviving to adulthood, but also the quality of such offspring.

Field and Brace (2004) note some of the benefits extended parental care gives to offspring apart

from increased survival. One goal of future research should be to develop models to investigate

under what conditions dimorphism may evolve from a non-dimorphic species in which there

is some initial variation between the members of the population. Future research should also

include a dynamic analysis of how the population evolves in various scenarios, rather than the

static equilibrium analysis carried out here. This would be particularly useful in cases where

there are multiple equilibria and/or complete stable polymorphisms.

One question that is not addressed here is the difference between patterns of care in various

classes of species. As Clutton-Brock (2007) observes, once sex differences have evolved, selection

can become sex specific and the various reproductive processes in different classes may lead to

e.g. dimorphism or a variety of patterns of parental care. For example, female care is present in

virtually all mammal species, with males caring in less than 10% of species (see Alcock [2009],

Clutton-Brock [1991]). In bird species, female care is much more common than male care and



46 D. M. Ramsey

biparental care is more common than in mammals (see Cockburn [2006]). These differences are

somewhat predictable considering the results given above and the physiological constraints of

reproduction in these classes. The gains from biparental care with respect to uniparental care

in birds are likely to be relatively large. This is due to the fact that one parent can incubate

the eggs while their partner forages. In mammalian species, females have evolved to specialise

in caring for offspring (e.g. supplying milk) and the benefits of biparental care seem less clear.

Hence, it is expected that the tendency for just female care to be evolutionarily stable is stronger

in mammals than in the ”primeval” species considered by the model. The patterns of parental

care in fishes are much more varied. Male only care is observed in many fish species (see Goodwin

et al. [1998] Reynolds et al. [2002]). Various reasons have been put forward for this difference.

Hale and St. Mary (2007) note that males who are already caring for offspring are preferred

by females. The model presented here is inappropriate in this case, as it is assumed that males

either care for young or attempt to gain extra matings. Also, it seems reasonable to assume that

the length of male time outs in relation to the length of female time outs is longer in fish than

in mammals or birds (see Levitan and Petersen, [1995]). Another possible reason is that due to

external fertilisation, in fish species females are able to desert before males have the opportunity

of deserting, while in mammal and bird species it is the opposite way round.

One major drawback of the model is that it does not take into account the certainty of

parentage. Queller (1997) argues that one reason for males providing less parental care is that

they are less certain of their paternity. In socially monogamous mammal and bird species, the

fact that males attempt to gain extra-pair copulations means that males will be on average less

related to the offspring than their partners are. Dawson (1996) describes a so called trade off

between paternal care and attempting to gain extra matings. Magrath and Komdeur (2003)
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argue that male care does not always compromise the search for additional partners. Moller and

Birkhead (1993) observe that there is a correlation between the level of male care and certainty

of parentage. Moller and Thornhill (1998) argue that males adjust their level of care according to

their expected future rewards, i.e. if they expect that their latest brood is more highly related

to them than average they will care more. Westneat and Sherman (1993) come to a similar

conclusion and furthermore argue that given the expected relationship of two males to their

partner’s present brood is equal to their average relationship, then those two males should give

the same level of paternal care, even if one male is on average more related to the offspring of

his partner than the other. Houston and McNamara (2002) argue that the model of Westneat

and Sherman is inconsistent and that the level of male care must depend on the average level

of relationship of a male to his partner’s brood. They look at how levels of care should vary

from season to season, within a population, in different populations of the same species and

across species. Kokko and Morrell (2005) note that by caring for their offspring, males also

tend to guard themselves against lower levels of paternity. They show that the relationship

between guarding and paternity levels is complex. The traditional argument is that low levels of

paternity lead to males trying to mate with more females and caring less, which leads to lower

levels of paternity etc. However, this circle can be broken by mate guarding. It is clear that the

problem of the uncertainty of parentage is a great challenge to modellers.

Another problem with the model presented here is that it does not consider the mortality of

individuals. Ramsey (2009b) derives pure ESSes for a similar problem in which the mortality

rate may depend on the state and/or strategy of an individual. In this case one should consider

three sex ratios. The incoming sex ratio, ISR, is the ratio of the rate at which males join the adult

population to the rate at which females join the adult population. This parameter is defined
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exogenously. The OSR and ASR depend on the strategy profile used and can be calculated

using the fact that in a steady state the rates at which males and females mature must equal

the rates at which adult males and females die.

Roff (2002) notes that present investment lowers expected future reproductive success. Such a

relationship would be difficult to capture using a model of the form considered here. One way of

doing this would be to allow individuals to age at different rates according to the strategy they

use. Clutton-Brock et al. (1985) and Clutton-Brock and Isvaran (2007) note that in dimorphic

mammalian species there is a very female biased ASR, due to the fact that males take longer

to mature and male-male competition leads to a higher rate of mortality among adult males

than among adult females. Liker and Székely (2005) and Donald (2007) observe that in most

bird species there tends to a more balanced ASR than in mammalian species. Also, in avian

species where just female care is observed the ASR tends to be female biased. Kokko and

Monaghan (2001) note that the relationship between mortality and patterns of parental care

may be complex. For example, suppose in a species where only female care is observed, the

mortality rate of males increases due to increased male-male competition (this may be due to

density dependent effects). The increased cost of male-male competition would lead to a more

female biased ASR, i.e. greater gains for the males who outcompete others. It is not clear

whether these gains outweigh the increased costs of male-male competition.
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[58] Székely T., Webb J. N. and Cuthill I. C. (2000) Mating patterns, sexual selection and parental care: an

integrative approach. In: Vertebrate mating systems ed. M. Apollonio, M. Festa-Bianchet M. and D. Mainardi

D. pp. 194-223. World Science Publishing, Singapore.



Parental Care as a Game 53

[59] Trivers R. L. (1972) Parental investment and sexual selection. In: Sexual Selection and the Descent of Man

1871-1971. ed. B. Campbell. pp. 139-179. Aldine Press, Chicago.
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Appendix A. Female Polymorphism when Males Desert

Let qDP
i,• denote the proportion of females using strategy • in state i, • ∈ {C,D}, j ∈ {1, 2, 3}

and sDP
f be the proportion of female carers at such a stable polymorphism. From the equilibrium

conditions for the proportions of individuals in each state,

qDP
1,• μ1 = qDP

2,• μ2

λ1q
DP
1,• pDP

1 r = μ•
3q

DP
3,•

qDP
1,• + qDP

2,• + qDP
3,• = 1

λ1p
DP
1 [sDP

f qDP
1,C + (1− sDP

f )qDP
1,D ] = λD

2 (1− pDP
1 ),

where • ∈ {C,D}. Since female deserters must have the same reproduction rate as female carers,

qDP
1,D = qDP

1,C kf .
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Solving this system of eight equations,

qDP
1,D =

μ2(μD
3 − kfμC

3 )
(μD

3 − μC
3 )(μ1 + μ2)

qDP
1,C =

μ2(μD
3 − kfμC

3 )
kf (μD

3 − μC
3 )(μ1 + μ2)

qDP
2,D =

μ1(μD
3 − kfμC

3 )
(μD

3 − μC
3 )(μ1 + μ2)

qDP
2,C =

μ1(μD
3 − kfμC

3 )
kf (μD

3 − μC
3 )(μ1 + μ2)

qDP
3,D =

(kf − 1)μC
3

μD
3 − μC

3

qDP
3,C =

(kf − 1)μD
3

kf (μD
3 − μC

3 )

pDP
1 =

μD
3 μC

3 (μ1 + μ2)(kf − 1)
μ2λ1r(μD

3 − μC
3 kf )

sDP
f =

kf

kf − 1

[
1− λD

2 (1− pDP
1 )

λ1pDP
1 qDP

1,D

]
.

For this solution to be valid, the following must hold:

kf <
μD

3 [μ2λ1r + (μ1 + μ2)μC
3 ]

μC
3 [μ2λ1r + (μ1 + μ2)μD

3 ]
(24)

1
kf

<
λD

2 (1− pDP
1 )

λ1pDP
1 qDP

1

< 1.(25)

In addition, a male carer must have a lower reproduction rate than a male deserter. This gives

(26) λ1p
DP
1 qDP

1,D >
λC

2 λ1[sDP
f qDP

1,C kb + (1− sDP
f )qDP

1,Dkm]

λC
2 + λ1[sfqDP

1,C + (1− sDP
f )qDP

1,D ]
.

Appendix B. Female Polymorphism when Males Care

Let qCP
i,• denote the proportion of females using strategy • in state i, • ∈ {C,D}, j ∈ {1, 2, 3}

and sCP
f be the proportion of female carers at such a stable polymorphism. From the equilibrium
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conditions for the proportions of individuals in each state,

qCP
1,• μ1 = qCP

2,• μ2

λ1q
CP
1,• pCP

1 r = μ•
3q

CP
3,•

qCP
1,• + qCP

2,• + qCP
3,• = 1

λ1p
CP
1 [sCP

f qCP
1,C + (1− sCP

f )qCP
1,D] = λC

2 (1− pCP
1 ),

where • ∈ {C,D}. Since female deserters must have the same reproduction rate as female carers,

qCP
1,Dkm = qCP

1,Ckb.

Solving this system of eight equations,

qCP
1,D =

μ2(kmμD
3 − kbμ

C
3 )

km(μD
3 − μC

3 )(μ1 + μ2)

qCP
1,C =

μ2(kmμD
3 − kbμ

C
3 )

kb(μD
3 − μC

3 )(μ1 + μ2)

qCP
2,D =

μ1(kmμD
3 − kbμ

C
3 )

km(μD
3 − μC

3 )(μ1 + μ2)
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μ1(kmμD
3 − kfμC

3 )
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qCP
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(kb − km)μC
3

km(μD
3 − μC

3 )

qCP
3,C =

(kb − km)μD
3

kb(μD
3 − μC

3 )

pCP
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μD
3 μC

3 (μ1 + μ2)(kb − km)
μ2λ1r(kmμD

3 − kbμ
C
3 )

sCP
f =

kb

kb − km

[
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2 (1− pCP
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λ1pCP
1 qCP
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.
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For this solution to be valid, the following must hold:

kb

km
<

μD
3 [μ2λ1r + (μ1 + μ2)μC

3 ]
μC

3 [μ2λ1r + (μ1 + μ2)μD
3 ]

(27)

km

kb
<

λC
2 (1− pCP

1 )
λ1pCP

1 qCP
1,D

< 1.(28)

In addition, a male deserter must have a lower reproduction rate than a male carer. This gives

(29) λ1p
CP
1 qCP

1,Dkm >
λD

2 λ1[sCP
f qCP

1,Ckf + (1− sCP
f )qCP

1,D]

λD
2 + λ1[sfqCP

1,C + (1− sCP
f )qCP

1,D]
.

Appendix C. Male Polymorphism when Females Desert

Let pPD
1,• denote the proportion of males using strategy • in the searching state, • ∈ {C,D},

and sPD
m be the proportion of male carers at such a stable polymorphism. From the equilibrium

conditions for the proportions of individuals in each state,

λ1p
PD
1,DqPD

1 = λD
2 (1− pPD

1,D)

λ1p
PD
1,C qPD

1 = λC
2 (1− pPD

1,C )

qPD
1 μ1 = qPD

2 μ2

qPD
1 + qPD

2 + qPD
3 = 1

λ1q
PD
1 [sPD

m pPD
1,C + (1− sPD

m )pPD
1,D]r = μD

3 qPD
3 .

Since male deserters and male carers must have the same reproduction rate, pPD
1,D = kmpPD

1,C .
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Solving this system of six equations,

qPD
1 =

λC
2 λD

2 (km − 1)
λ1[λD
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2 km]
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μ1λ
C
2 λD
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3 qPD
3
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]
.

For this solution to be valid, the following must hold:

km <
λD

2 [λC
2 (μ1 + μ2) + λ1μ2]

λC
2 [λD

2 (μ1 + μ2) + λ1μ2]
(30)

1
km

<
μD

3 qPD
3

λ1qPD
1 pPD

1,Dr
.(31)

In addition the reproduction rate of a female carer must be lower than the reproduction rate of

a female deserter. It follows that

(32) λ1q
PD
1 pPD

1,Dr >
μ2μ

C
3 λ1r[sPD

m pPD
1,C kb + (1− sPD

m )pPD
1,Dkf ]

μ2μC
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m pPD
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.
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