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Cooperation in Two-Person Evolutionary Games

with Complex Personality Profiles

Tadeusz P�latkowski∗
Department of Mathematics, Informatics and Mechanics,

University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

We propose a theory of evolution of social systems which generalizes the standard proportional
fitness rule of the evolutionary game theory. The formalism is applied to describe the dynamics of
two-person one-shot population games. In particular it predicts the non-zero level of cooperation in
the long run for the Prisoner’s Dilemma games, the increase of the fraction of cooperators for general
classes of the Snow - Drift game, and stable nonzero cooperation level for coordination games.

PACS numbers:

Keywords: Population Dynamics, Prisoner’s Dilemma, Mixed Equilibria

I. INTRODUCTION

Game theory has been proved to be an effective tools of modeling different types of interactions in various scientific
disciplines, e.g. in biology, social sciences and economics, cf. e.g. Vega-Redondo (2003), Nowak (2006), Szabo and
Fath (2007), McElreath and Boyd (2007), Gintis (2009) and references therein. The usual assumptions of the perfect
rationality lead to results which contradict many real and laboratory experimental situations. The standard game
theory as a language of modeling the social interactions adopts too strong assumptions concerning individual behaviors,
its motivations and regulatory mechanisms.
We propose a theory of evolution of social systems which generalizes the standard proportional fitness rule of the
evolutionary game theory. The biological fitness of a behavior, strategy, measured by the payoff from interactions, is
replaced by more general function, the attractiveness of the behavior. The attractiveness of the strategy is assumed
to depend not only on its payoff, but also on its actual popularity (fraction) in the population. The parameters of the
attractiveness function describe different psychological characters of the agents.
We formulate the evolution equation for the two-persons symmetric games with two strategies and find the equilibria
and determine their stabilities for the considered mean field type population models. For such games we prove the
existence of a polymorphic stable equilibrium. We determine sufficient conditions for which the equilibrium is unique.
We also discuss the generic games with three mixed equilibria, two of them stable. Their existence is important in
particular for the temporal evolution - the mixed equilibrium time asymptotic state depends for such games not only
on the personality profiles of the actors and the payoff matrix of the game, but also on the initial composition (i.e.
the fractions of the agents who play each available strategy) of the population. For the games with unique mixed
equilibrium we study the dependence of the equilibrium composition of the strategies on the personality profiles of
the actors.
The PD game is one of the most popular and important games in social sciences, studied as a paradigm for the
evolution of cooperation. In the models of continuous systems of actors playing at each instant of time the one-stage
PD, e.g. in the mean field type equations of the replicator dynamics, the only asymptotic equilibrium state is defection.
There are various ’solutions’ of the dilemma, aimed at maintaining cooperation in the systems of agents in the long
run. One can add spatial structure in the model, consider repeated interactions, learning through the introduction
of the aspiration levels etc. Our model provides another solution of the dilemma, allowing - for general psychological
profiles - for the persistence of cooperation in the long run. The theory is applied to fairly general two-person games,
including the Snow-Drift game and the coordination games.

II. MODEL

We consider the evolutionary scenario: infinite homogeneous population of individuals. The players interact through
a random pairwise matching, playing at each instant of time a 2- person symmetric game with two behavioral types
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(strategies) C and D, with the payoff matrix

C D
C R S
D T P

abbreviated in the following by [R, S, T, P ], where R, S, T, P are arbitrary positive numbers.

In general C and D denote any two strategies. The most important applications will cover the social dilemmas, in
particular the Prisoner’s Dilemma game (PD), and for the Snow Drift game (SD), for which C stands for cooperation,
D for defection, R for reward, S for sucker, T for temptation, and P for punishment. Another applications refer to the
coordination games, for which we keep the same notation, cf. next section.
We denote: pi = pi(t), i = 1, 2: the fraction of the strategy i (popularity, propensity of i) in the population at time t,
ν1 = Rp1 + Sp2, ν2 = Tp1 + Pp2: the mean payoffs of the strategy respectively C and D in the population,
ui(t): the attractiveness of the strategy i at time t.
The attractiveness of the strategy i in the population reflects the fact that more attractive strategies ought to have
an evolutionary advantage in the considered social systems. The attractiveness of the strategy i will be assumed to
be an increasing and concave function of its mean payoff νi and the popularity pi in the population. The concavity
reflects the fact that when the attractiveness reaches a higher level, the changes are slower. It is also expected that the
attractiveness of the strategy becomes zero if its mean payoff or its popularity in the population is zero. In our model
we choose for the attractiveness of the strategy i the Cobb-Douglas utility function, cf. Cobb and Douglas (1928),
Platkowski and Poleszczuk (2009):

ui(t) = p1−α
i ν1−β

i , i = 1, 2, (1)

with (α, β) ∈ [0, 1]× [0, 1].
The formula (1) states that the attractiveness of a strategy depends not only on the payoff of the strategy, but also
on its actual popularity in the population.
The parameters α, β determine the responsiveness of the function ui to changes of the actual values of the current
popularity and of the mean payoff of the action i. They define diverse personality profiles of the individuals.
Exploiting Weber’s intuitions, cf. Weber (1968), we defined the ideal types of the personality profiles for the limiting
values of the parameters α, β, and characterized their basic properties, cf. Platkowski and Poleszczuk (2009):
HE (Homo Economicus): α = 1, β = 0. It means that HE assesses attractiveness of the action exclusively through
its effectiveness (ui = νi). HE is interested exclusively in the future prospects, In the Weber’s typology this sort of
actor’s motivation is called Zweckrationalitat (future-oriented instrumental rationality).
HS (Homo Sociologicus): α = 0, β = 1. The HS assesses attractiveness of the action only through its popularity, the
past effect for him/her (ui = pi). HS is insensitive to the payoffs of the game.
HT (Homo Transcendentalis): α = β = 1. It is an ideal type, for which every action has the same attractiveness
(ui = 1). It describes a personality not interested in the effectiveness of a behavior or in its propensity, but rather by
some other values. Thus, HT is the ideal type insensitive to the payoffs and the popularities of the strategies. This
type of actor’s orientation is called Wertrationalitat in Weberian terms.
HA (Homo Afectualis): α = β = 0. The attractiveness function takes the form ui = νipi The corresponding evolution
equations reduce to the standard replicator equations, as will be shown below.
All the other values of the parameters α, β describe intermediate, mixed personality profiles. We show below that
the relevant combination of these parameters, defined through the sensitivity parameter s = 1−β

α plays a crucial
role in determining the temporal evolution of the considered populations. At the end of this section we discuss the
sensitivities of the ideal personality profiles defined above.
The notion of attractiveness generalizes the notion of fitness in the classical evolutionary game theory, in which a
linear relation between payoff and fitness is usually assumed, mainly for its mathematical advantages. In general
the relation (1) gives nonlinear dependence of the attractiveness on the payoffs. We note that e.g. the exponential
dependence of the fitness on payoffs has been considered in Traulsen et al. (2008); Aviles (1999). The reader is also
referred to Henrich and Boyd (2001) for another approach in which the ideas of imitating the successful, and copying
the majority (the conformist transmission), are put together to stabilize the cooperation in populations of individuals.

Many social and biological interactions are based on imitation processes, where individuals are more likely to adopt
more successful and more popular strategies. We assume that the change of the distribution of the strategies in the
system occurs through the process of imitation of the more attractive strategies.
Let K be the number of available strategies (in this paper K = 2). Let Ni(t) denotes the number of individuals
playing the action i, N = N1 + N2 + ...NK - the fixed size of the system, pi = Ni/N - the propensity of the behavior
i for i = 1, 2, ..., K.



Assuming that the i-strategists review their strategy according to the Poisson process with the arrival rate ri we
model the corresponding stochastic processes as a deterministic flow. The balance conservation equations read, cf.
Weibull (1995), Section 4.4:

ṗi(t) =
∑
j �=i

[pjrjp
i
j − pirip

j
i ], i = 1, ...K, (2)

where pi
j is the probability that the agent playing the j strategy will switch to the i strategy.

We assume that pi
j is proportional to the attractiveness ui of the strategy i:

pi
j = cui, (3)

c being the same for all strategies: the strategies with higher attractivenesses have larger probability to be imitated.
Assuming that the arrival rates rj are state and strategy independent constants, we obtain, after a straightforward
calculation and time rescaling

ṗi(t) = u(
ui

u
− pi), u :=

K∑
j=1

uj, i = 1, 2, ..., K. (4)

The evolution equations (4) state that the change of pi is governed by its relation to the reference function - the
normalized attractiveness ũi := ui

u , and that the fraction pi of the strategy i increases if ũi is bigger than the actual
fraction of the strategy i in the population, and decreases if it is smaller.
We study the time evolution and the fixed points (equilibria) of the dynamical system (4) for K = 2 strategies. With
the normalization condition p1 + p2 = 1 eq. (4) reduces to the evolution equation

ṗ1 = (1− p1)1−αp1−α
1 [ν1−β

1 (1− p1)α − ν1−β
2 pα

1 ], (5)

with ν1 = (R− S)p1 + S, ν2 = (T − P )p1 + P.
We note that for each personality profile (α, β) ∈ [0, 1]× [0, 1] there exist two pure equilibria of (4): p1 = 0 and p1 = 1
[for α = 1 we put ui(pi = 0) = 0, i = 1, 2]. All the other equilibria of eq. (4) will be called Mixed Equilibria, and
denoted ME. Thus, each ME corresponds to a fixed point of eq. (5).
We find a simple transformation

z =
p1

1− p1

, p1 ∈ (0, 1). (6)

which allows to study important mathematical properties of ME in our model. In Appendix A (cf. Proposition 1) we
show that the stationary solutions of (5) in the interval (0, 1), as well as their stability properties are the same as
those of the equation

ż = W (z) ≡
[

Rz + S

Tz + P

]s

− z, z ∈ (0,∞), (7)

where we introduced the sensitivity to reinforcements parameter s:

s =
1− β

α
, α �= 0. (8)

Formula (8) implies that the existence and the asymptotic properties of the solutions of eq. (4) depend on the
combination of the parameters α, β, which characterize the personality profile of the players, rather than separately
on each of them. The sensitivity parameter s plays an important role in the matching law in the operant response
theory of the mathematical psychology, cf. Hernstein (1997), Seth (2002), Platkowski and Poleszczuk (2009), and
references cited therein. To see the connection we derive from (4) the equilibrium condition (for K = 2):

u1

p1

=
u2

p2

, (9)

which, after substituting (1) and (8) is equivalent to the matching law of the mathematical psychology:

p2

p1

=

(
ν2

ν1

)s

. (10)



The parameter s is a measure of the degree to which, in equilibrium, the response ratio changes when the reinforcement
ratio is modified.
In particular, the weberian ideal type Homo Transcendentalis: α = β = 1, for which s = 0, describes the personalities
insensitive to reinforcements. The ideal type Homo Economicus: α = 1, β = 0 corresponds to the sensitivity s = 1.
Note that in the Cobb-Douglas utility function (1) the case α + β = 1 is referred to as the constant return to scale
in the mathematical economics. This case corresponds also to the third ideal type, Homo Sociologicus: α = 0, β = 1,
for which every state vector (p1, p2) is an equilibrium, as can be seen from (5). Finally the ”opposite” to Homo
Transcendentalis ideal type, Homo Afectualis, α = β = 0, corresponds to infinite sensitivity. In this case the evolution
equations (4) are identical to the replicator equations in the evolutionary game theory. To see it note that for α = 0
eqs. (4) can be rewritten in the form

ṗi = pi

∑
j=1,...K

pj [ν1−β
i − ν1−β

j ], i = 1, ...K. (11)

In particular for β = 0 we obtain the usual replicator equations for the two-person symmetric games with K strategies.
For K = 2 strategies we obtain from eqs. (11) the modified replicator dynamics

ṗ1 = p1(1− p1)[ν1−β
1 − ν1−β

2 ]. (12)

In the next section we discuss the existence, uniqueness and stability properties of the equilibrium states of our
model. Results are proved for general payoff matrices of the two-person symmetric games, including the most popular
two-person social dilemmas: the Prisoner’s Dilemma and the Snow -Drift games as well as the general Coordination
games.

III. EQUILIBRIA

A. General results

Let p∗ ∈ (0, 1) denotes a Mixed Equilibrium (ME), i.e. a fixed point of eq. (5). Thus, p∗ is the fraction of the
individuals who play the first (C) strategy in equilibrium. When discussing the social dilemmas, with C denoting the
first, cooperation strategy, the value p∗ will be called the (asymptotic) cooperation level in the population.

The inverse transformation z∗ := p∗

1−p∗
, cf. (6) allows to identify ME with the zeros z∗ of the function W (z) in (7):

W (z∗) = 0.

We study ME and their stability under the dynamics (5), or equivalently (7). In particular, for social dilemmas
described by the relevant two - person games with cooperation and defection as two available strategies (e.g. for the
PD or the SD game) the stable ME describe the states for which the partial cooperation is an asymptotic outcome of
the considered social systems.
We prove the following theorem on the existence, uniqueness and stability of ME for the considered two-person
symmetric games:

Theorem 1

For the payoff matrix [R, S, T, P] with positive entries:

I. For each 0 ≤ s < ∞ there exists at least one ME – the fixed point of the evolution equation (5).

II. Denote B := (1− s)P
T + (1 + s) S

R , Δ := B2− 4 SP
RT . If 1. Δ ≤ 0, or 2. B ≥ 0, or 3. ST ≥ RP , then ME is unique.

III. For each 0 ≤ s < ∞ there exist at most three ME.

IV. There exist three ME iff Δ > 0, B < 0, and U(z1)U(z2) < 0, where z1,2 := [−B ∓ √Δ]/2, and U(z) :=

lnz + s lnTz+P
Rz+S , z > 0.

V. If ME is unique then it is globally stable in (0, 1) under the dynamics (5). If there are three ME, then the smallest
and the largest ME are stable, the middle one is unstable.

Proof:
I. Taking logarithm of eq. W (z) = 0, cf. (7), we obtain 1-1 correspondence between the zeros of the function U(z)
defined in Theorem 1, and the ME – the solutions of (7). The proof follows by noting that for positive entries of the
payoff matrix [R, S, T, P ] we have limz→0U(z) = −∞, limz→+∞U(z) = +∞.
P. II-IV are proved by studying the extrema of U(z) (details are given in Appendix A).



P. V follows from the observation that in eq. (5) for all α ∈ (0, 1], β ∈ [0, 1] we have ṗ1 > 0 for p1 > 0 small enough,
and ṗ1 < 0 for 1 − p1 small enough (whereas the expression in the square brackets in (5) is positive for p1 small
enough, and negative for 1− p1 small enough). �

The statement I implies that the dependence of the utility function (attractiveness) of a strategy on the propensity
of the strategy results in the existence of at least one ME for all symmetric two-person games with positive payoffs,
including all types of the social dilemmas for such games. In particular this ”solves the dilemma” of the Prisoner’s
Dilemma game in the considered populations.
An application of the sufficient conditions II is given in Example 3, Appendix B. In particular, p. II.2 implies that
for s ≤ 1 the ME is unique. P. V states its global stability. Note that for s ≤ 1 the cooperation level does not depend
on the initial distribution of the strategies in the population. On the other hand, if the sufficient conditions of p.IV
are satisfied, then there are two (locally) stable fixed points of eq. (5), and the cooperation level does depend on the
initial state of the population.
P. II.3 provides the sufficient condition for the uniqueness of ME for all s ≥ 0. It states that the the ME is unique if
the product of payoffs from playing different strategies is bigger than that from playing the same strategies, e.g. for
the class of the anti-coordination games considered below.
P. V implies that if the ME is unique, then the pure equilibria, which correspond to the fixed points p1 = 0 and p1 = 1
of eq. (4) are unstable, the polymorphic asymptotic state of the population is the only stable one. This implies for
example that in such cases the monomorphic equilibria (all defectors or all cooperators) are unstable for the social
dilemmas games.
Examples and applications of Theorem 1 to the two-person social dilemmas will be discussed in the next subsections.
For completeness, in Appendix B we provide analogous existence theorems for the payoff matrices which admit zero
entries.

B. Equilibria for PD Games

The PD game is a two-person symmetric game with the payoff matrix the entries of which are denoted

[R, S, T, P ], T > R > P > S, (13)

where R(Reward), and S(Sucker) are the payoffs for C=Cooperation when the opponent plays respectively C, and D,
whereas T (Temptation), and P (Punishment) are the payoffs for D=Defection when the opponent plays respectively
C, and D.
First we discuss the dependence of the cooperation level p∗ on the payoffs and on the sensitivity parameter s for such
PD games, for which Theorem 1 guarantees the uniqueness of ME. As expected, p∗ increases for increasing R and
decreasing T, P , cf. Fig. 1 for different PD payoff matrices. Moreover, p∗ → 0 when s → +∞, in agreement with the
previously discussed fact that our dynamics approaches the modified replicator dynamics (12) in this limit.
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FIG. 1: Cooperation level vs. sensitivity for various PD games. The components of the vectors in the legend correspond to the
entries of the payoff matrix [R, S, T, P ].



In general the uniqueness of the ME does not hold for all types of the PD games (13). We found some particular types
of PD (i.e. rather ’narrow’ intervals of the entries of the general PD matrix), for which there exist three ME. To this end
we performed calculations for all integer entries of the payoff matrix (13) from the set {1, ....40}, checking the sufficient
conditions for the existence of three ME formulated in Theorem 1, p. V for various sensitivities s. For example for the
sensitivity s = 2 there are only five such integer valued matrices: [R, S, T, P ] = [33, 1, 36, 10], [32, 1, 33, 10], [37, 1, 38, 11],
[38, 1, 40, 11], [37, 1, 39, 11]. In Fig. 2 we show the cooperation levels as functions of the sensitivity s for the PD game
[R, 1, 30, 5] for different values of the reward R. For clarity we plotted discretized values, the full plots are continuous.
Note the existence of three ME for a ”narrow” interval of sensitivities around s = 3 for R = 27, 29; one can easily
checked that the sufficient conditions for their existence, formulated in p. IV, Theorem 1, are satisfied.
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FIG. 2: Cooperation levels vs. sensitivity for increasing reward R for the PD game [R, 1, 30, 5]. For R=6 and R=25 the ME
is unique. For R=27 and R=29 there are three ME in the narrow interval of s around s = 3. For example for R=29 and the
sensitivity s = 3.2 two stable ME correspond to the cooperation levels p∗

≈ 0.25 and p∗

≈ 0.02, whereas the unstable ME
corresponds to p∗

≈ 0.08.

C. Equilibria for Anti-coordination Games

We define the general Anti-coordination game with the payoff matrix

[R, S, T, P ], T > R > 0, S > P ≥ 0. (14)

The game has one mixed and two pure Nash equilibria, the mixed one stable under the replicator dynamics. We prove

Lemma 1

For all sensitivities s ∈ [0, +∞) there exists an unique ME for the Anti-coordination game (14) - a global attractor of
the dynamics (5).

Proof: Using the notation of Theorem 1 we calculate

B = s(ST −RP )/RT + P/T + S/R.

For the payoff matrix (14) B > 0, therefore the uniqueness and the global attraction property of the ME follows
respectively from p. II.2 and V of Theorem 1. �

Note that this result holds for P ≥ 0, i.e. in particular for the – important for applications in social sciences – the
Snow–Drift (SD) game, cf. Sugden (1986), Hauert and Doebeli (2004).
Let us consider the SD game with the payoff matrix in the (b)enefit - (c)ost formulation:

[b− c/2, b− c, b, 0], b > c > 0. (15)

This game represents the social dilemma in which the strategy C - cooperation implies a benefit b to the cooperator
and to the opponent (independently of the opponent’s strategy), and in addition incurs the cost c if the opponent
plays the strategy D (i.e. defects), or c/2 if (s)he cooperates. If both players defect, they receive 0.



In the mixed Nash equilibrium of the replicator dynamics the fraction of C - players is equal pN = 2(b− c)/(2b− c).
In Fig. 3 we plot the cooperation level p∗ in function of the cost c for the normalized (b = 1) SD game with the
payoff matrix [1 − c/2, 1 − c, 1, 0], for various sensitivities. For comparison we also add the plot of the mixed Nash
equilibrium value (which corresponds formally to s = ∞) for the same game. All the plots intersect at the point
(c, p∗) = (2/3, 1/2), since for c = 2/3 the ME value z∗ = 1 (corresponding to p∗ = 1/2) is the zero of W (z) in (7) for
all s ≥ 0. For c < 2/3 p∗ increases with s, for c > 2/3 p∗ decreases with s, and is bigger than the Nash equilibrium
value. For s→∞ p∗ tends to the Nash equilibrium pN = 2(1− c)/(2− c), cf. Lemma 3 in Appendix B.
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FIG. 3: Cooperation level vs. cost c for the SD game with the normalized (b = 1) matrix [1 − c/2, 1 − c, 1, 0] for various
sensitivities s. The ’Nash’ curve corresponds to infinite sensitivity.

In Fig. 4 we plot the dependence of p∗ on the type of the game, for the sensitivities in the interval [0, 10], and different
payoffs S. The payoff matrix is [3, S, 5, 1]. For 1 > S ≥ 0 it describes the PD games, for S = 1 the ’Weak’ PD game,
and for the payoff S > 1 the Anti-coordination games (14). For all three types of the games, for each sensitivity s > 0
the increase of the payoff S implies the increase of p∗. Note that for S > 0 the ME is unique. For S = 0 there exists
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FIG. 4: Cooperation level vs. sensitivity for the payoff matrix [3, S, 5, 1] for different values of the sucker payoff S.

a second, unstable ME in an interval of s around s = 1.4, and there are no ME for larger sensitivities s, cf. Theorem
2, Appendix B.



D. Equilibria for Coordination Games

We consider the Coordination games defined by the payoff matrix:

[R, S, T, P ], R > T, P > S. (16)

The Nash equlibrium pN = (P −S)/(R−T + P −S) is unstable under the replicator dynamics. For example the Stag
Hunt game (with T ≥ P , and the first, C strategy corresponding to ”Hunt Stag”, the second, D – to ”Hunt Hare”)
belongs to this class. In our dynamics, unlike the Anti-coordination games (14), the Coordination games can have two
stable ME, as will be documented below. First we prove another uniqueness result.
As already stated, p. II.2 of Theorem 1 implies that for all 2-person games the condition s ≤ 1 is sufficient for the
uniqueness of the ME. For the Coordination games (16) we have a stronger uniqueness result:

Lemma 2

For the Coordination game (16) with ε := ST
RP < 1 the ME is unique for s ≤ 1+ε

1−ε .

Proof: The above inequality for s is equivalent to B > 0, i.e. to the sufficient condition II.1 of Theorem I for the
uniqueness. �

Below we study the Coordination games with the payoff matrix

[R, S, S, R], R �= S, R > S > 0, (17)

By inspection of (7), written for (17), we note that for all 0 ≤ s < ∞ there exists the ME z∗ = 1, i.e. p∗ = 1/2. The
uniqueness depends on the payoff ratio f := R/S and on the sensitivity s. In Appendix B, Example 4 we formulate
sufficient conditions for the existence of three ME for s = 2.

Example 1

Fig. 5 shows the bifurcation of the stable equilibrium into three equilibria for two Coordination games. For the payoff
matrix [2, 1, 1, 2] the equilibrium p∗ = 0.5 is globally stable and unique for s ≤ 3 (in notation of Lemma 2 ε = 0.5).
The branching point s = 3 corresponds to z∗ = 1, which is the third order zero of the function W (z) in (7). For
s > 3 the emerging two branches correspond to stable ME: for s = 3 + δ, δ > 0 we calculate, from Theorem 1:
Δ = 6δ + 0(δ2) > 0, B = −2− δ < 0, and U(z1)U(z2) < 0, which guarantees the existence of three ME.
The second game, with the payoff matrix [2.01, 1, 1, 2], indicates the sensitivity of the branching point to small
perturbations of the payoff R = 2. For s < 3.1 the ME is unique. For s ≈ 3.1 two new equilibria emerge, the middle
one unstable, the lower stable, cf. the lower diagram of Fig. 5. For s → ∞ two stable ME tend, as expected, to the
replicator dynamics values p∗ = 0, p∗ = 1, the third ME tends to the unstable Nash equilibrium, as expected for the
replicator dynamics for this coordination game.

Example 2

For the Stag Hunt game with the payoff matrix [R, S, T, P ] = [3, 1, 2, 2] (and for all the games with R + S = T + P ),
the value p∗ = 0.5, corresponding to z∗ = 1, is the cooperation level for all sensitivities s ≥ 0, since in this case
W (z∗ = 1) = 0 ∀s ≥ 0. For s ≈ 3.8 there emerge two additional ME, cf. Fig. 6. For slightly larger s the bigger ME
tends to p = 0.5, and merges with p = 0.5 for s = 4. For s > 4 the ME p∗ = 0.5 is unstable, the other two branches
are stable. As in the previous example, for s → ∞ two stable ME tend to p∗ = 0, p∗ = 1, the third ME corresponds
to the unstable Nash equilibrium with p∗ = 0.5.

IV. DISCUSSION

We presented a model of population with complex personality profiles, and its applications to symmetric two-persons
games, in particular those representing most important social dilemmas. The results are proved for well mixed infinite
populations with random pairwise matching. The mechanism of the strategy updating based on imitation of more
successful and more popular strategies solved the dilemma of the PD game.
We found stable equilibria of the considered dynamics, not present in the classical evolutionary game theory approach
based on the replicator dynamics. In particular there exists a stable mixed equilibrium for the general PD game with
arbitrary positive payoffs. Moreover, our theory reveals a ’subtle’ structure of the asymptotic stationary solutions of the
PD game under considered dynamics. In particular there are classes of the PD games with three stationary solutions,
two of them locally stable for some intervals of the sensitivity parameter. The sensitivity parameter has a direct
interpretation in the matching law of the operand-response theory. Similar structure can occur in the Coordination
games, whereas for the Anti-coordination games (in particular for the SD game) the mixed equilibrium is unique and
globally stable.
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FIG. 5: Bifurcation of the unique ME into three ME for two Coordination Games with the payoff matrices [2, 1, 1, 2], and
[2.01, 1, 1, 2]

The idea of combining together the bias towards imitating the strategies of the most payoff-successful agents and the
strategies of the majority is not new, cf. e.g. Henrich and Boyd (2001) where it led to stabilization of the cooperation in
populations. Multiple polymorphisms for the games with two strategies played in infinite populations have been found
e.g. in the models of social dilemmas with synergy and discounting, cf. Hauert et al. (2006), in the aspiration–based
models, cf. e.g. Palomino, Vega-Redondo (1999), Platkowski, Bujnowski (2009), in the Stag-Hunt N-person games, cf.
Pacheco et al. (2009), in the N-person Snowdrift games, cf. Souza et al. (2009). In the presented imitation model, in
which the ”sociological” aspect of the attractiveness of the strategies is taken into account through its dependence on
the actual propensities of the strategies, the multiple polymorphisms can exist already in the two-person games.
Further research will be focused on generalization for systems with more than two behavioral types, non-symmetric
games, other attractiveness functions, and more general psychological types. Preliminary investigations indicate in-
teresting dynamics in such more complicated situations. It will also be interesting to allow the actors to change their
personalities during the interactions.
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V. APPENDIX A

Proposition 1

p∗ ∈ (0, 1) is the stationary solution of (5) iff z∗ = p∗/(1 − p∗) is the stationary solution of of (7); p∗ is stable
(unstable) iff z∗ is stable (unstable).

Proof

The proof follows from the fact that omitting the positive multiplicative terms on the rhs of eq. (5) we do not change
its equilibria and their stability.
After substituting z = p1/(p1 − 1) eq. (5) takes the form

ż = P (z)[(R(z)s))α − zα], (18)



where R(z) = (Rz + S)/(Tz + P ), and P (z) > 0 ∀z ∈ (0,∞) is a well defined function. Eq. (18) has the same ME
and their stability properties, as eq. (7). �

Proof of Theorem 1, p. II-IV:

II. We calculate U ′(z) = W1(z)P̃ (z), where P̃ (z) > 0 ∀z > 0, and

W1(z) = z2 + Bz +
SP

RT
. (19)

Thus, extrema of U are zeros of the polynomial W1. II.1 follows from the fact that:
for all z > 0 and Δ < 0 W1(z) > 0 ;
for Δ = 0 ∃!z∗ : W1(z∗) = 0, i.e. U ′(z∗) = 0: z∗ = −B/2, thus can not be an extremal point.
II.2 follows from the following observations:
for B = 0 W1 > 0 ∀z ≥ 0, therefore U ′(z) > 0 ∀z ≥ 0, U is strictly monotonic;
for B > 0: if Δ ≥ 0 then z1 < 0 and z2 < 0, where W1(zi) = 0, i = 1, 2, therefore U(z) has no extrema for z > 0.
if Δ < 0 then W1(z) > 0 ∀z ≥ 0.

II.3 follows by noting that ∀s ≥ 0 B > 0, and applying II.2.

III follows from the observation that the graph of U(z) has at most three common points with the z-axis.

IV: <=: For Δ > 0 both roots 0 < z1 < z2 of W1 are positive. The condition U(z1)U(z2) < 0 together with the limit
values of U(z) imply U(z1) > 0 and U(z2) < 0. In consequence the graph of U(z) crosses the positive part of the z -
axis three times.

=>: The existence of three ME, i.e. that U crosses the z – axis three times, implies that U(z) must have two extrema,
say at z̄1 > 0 and z̄2 > 0, i.e. W1(z̄1) = W1(z̄2) = 0. Thus, Δ > 0, and the relation z̄1 + z̄2 = −B > 0 implies B < 0.
The condition that U(z) crosses the z-axis three times implies U(z̄1) > 0 and U(z̄2) < 0.

Remarks

The uniqueness condition II.3 can be given the following interpretation. Each 2-person symmetric game can be
considered as the sum of two basic games: the pure Coordination game (CG) with the payoff matrix [R, 0, 0, P ], and
pure Anti - coordination game (AG) with the payoff matrix [0, S, T, 0]. Then II.3 states that the ME is unique if the
product of the positive payoffs in AG is bigger than that in CG.
We note that (5) is invariant in [0, 1], that for α = β = 1 z∗ = 1 is the unique, globally stable ME. Two ME are
also possible for particular cases in which the graph of U is tangent to the z axis. Such situations are ”unstable” with
respect to arbitrarily small perturbations of the relevant parameters of the model, and are not considered here.

VI. APPENDIX B

For convenience of the reader we formulate the existence theorem for the matrices with nonnegative entries. The
proofs are similar to the proofs of the existence theorems considered above and will be omitted here.
For S = 0 and R, T, P > 0, e.g. for the PD matrix corresponding to the Axelrod’s tournament, Axelrod (1984), the
existence of ME is not guaranteed, cf. Platkowski and Poleszczuk (2009).

Theorem 2

For the payoff matrix [R, 0, T, P ], R > 0, T > 0, P > 0:
For s < 1 there exists an unique ME, i.e. positive solution of eq. (7).
For s > 1 the existence and uniqueness of ME depend on the function

G(s) =
1

P
(
s− 1

T
)s−1(

R

s
)s :

If G(s) > 1 then there exist two ME. If G(s) = 1 then there exists an unique ME z = (s − 1)P/T . If G(s) < 1 then
there are no ME.
For s = 1 and the payoff matrix [R, S, T, P ], T > 0:
(i) for S > 0 there exists exactly one, unique ME
(ii) for S = 0: if R > P then the ME is unique; if R ≤ P then there are no ME.

Lemma 3: ME for the Snow-Drift Game

Consider the SD game [1− c/2, 1− c, 1, 0], 0 < c < 1 and s = 1. For c > 2/3 we have p∗ > pN , for c < 2/3 p∗ < pN ,
and for c = 2/3 p∗ = pN .



Proof. The Nash equilibrium is pN = 2(1 − c)/(2 − c). For s = 1 W (z) = z2 − (1 − c/2)z − (1 − c). Denote z(c) -
the positive solution of eq. W (z) = 0, p∗ = z(c)/(z(c) + 1). The condition p∗ > pN is equivalent to c2 − 10c + 8 < 0,
satisfied for 1 > c > 2/3. �

For s �= 1 we checked numerically, for c > 2/3, the validity of the inequality p∗ ≡ z∗/(z∗+ 1) > 2(1− c)/(2− c) = pN ,
z∗ = z∗(c) being the solution of W (z) = z1+1/s − (1− c/2)z − (1− c) = 0, cf. Fig. 3.

Example 3

For the Coordination game [4, 1, 2, 3] z∗ = 1 is ME for all s ≥ 0. The condition II.2 of Theorem 1 is equivalent to

s ≤ 7/5. The sufficient conditions II.1,2 give a stronger estimate: s1 ≤ s ≤ s2, where si = 7∓
√

6

5
, i = 1, 2. Thus, for

s ∈ [0, s2], where s2 ≈ 2.4 z∗ = 1 is the unique ME.
For s > s2 two new ME z1 < z2 emerge, as can be verified by checking the sufficient conditions IV of Theorem 1. For
s = 2.5 z2 = 1 is neutrally stable, z1 is globally attractive (except z2). For s > 2.5 z2 bifurcates into two ME: the
unstable z2 = 1, and the stable z3 > 1. For s →∞ we recover two stable Nash equilibria p∗ = 0 and p∗ = 1, and the
unstable one p∗ = 0.5.

Example 4

For the Coordination games (17) with s = 2 and f = R
S ≤ 1 +

√
2 the ME p∗ = 0.5 is unique. For f > 1 +

√
2 there

are three ME: p∗ = 0.5, p∗1 < 0.5, p∗2 > 0.5. For f →∞ p∗1 → 0, p∗2 → 1.

Proof: For s = 2 the equilibrium condition W (z) = 0, cf.(7), takes the form

(z − 1)[z2 + (1 + 2f − f2)z + 1] = 0. (20)

The result follows from the analysis of zeros of the binomial z2 + (1 + 2f − f2)z + 1. �




