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Abstract 

On the basis of experimental observations, this paper develops two well-defined 

mathematical models for the level of activity of Pharaoh’s ants within their nesting area, with 

the aim of providing a more general understanding of animal activity. Under specific 

conditions, we observe that the activity of ants within their nesting area appears to show no 

dependence on their density. Making the assumption that all ants move independently of one 

another, this behaviour can be mathematically modelled as a random process based on the 

binomial distribution. Developing the model on this basis allows an exponential distribution 

to be exposed that underlies the time-intervals between ants leaving the nesting area. Such a 

distribution is present, irrespective of whether the ant population in the nesting area remains 

constant or steadily depletes, and suggests that ant-ant interactions do not play any significant 

role in determining ant activity under these experimental conditions.   

The mathematical framework presented plays the role of a null model that will have a 

wide range of applications for detecting other determinants of activity-level (not addressed in 

this study) including environmental and social factors such as food availability, temperature, 

humidity, presence of pheromone trails, along with intraspecific and interspecific interactions 

outside the nest, and more generally. The null model should have applications to a range of 

organisms.  

Lastly, we discuss our data in relation to a recent study of ants leaving their nest 

(Richardson et al. 2010) in which the null model was rejected in favour of record dynamics, 

where ant-ant interactions were conjectured to play a role. 

 

 

Keywords: animal activity, movement, social insects, Pharaoh’s ants, stochastic process, 

record dynamics. 



3 
 

1  Introduction 

Organisms frequently monitor the density of conspecifics in their immediate vicinity and 

modify their behaviour appropriately.  For example, some bacteria secrete diffusible signals, 

for which they also express specific receptors, in order to signal and monitor their density.  

This mechanism was first discovered in the bacterium Vibrio fischeri; this species uses this 

technique to ensure that free-living bacteria, which are at low density in the sea, do not 

indulge in metabolically expensive luminescence, except when living symbiotically, at high 

density, in the light organs of some marine fish and squid. This mechanism was first called 

‘quorum sensing’ by Fuqua et al. (1994). It has subsequently emerged that bacteria 

ubiquitously use both intra and inter-species communication to regulate a range of 

behaviours, notably co-ordinated control of pathogenicity towards their unfortunate host 

(Miller and Bassler, 2001). 

 

Social insects also exhibit a number of clear examples of behavioural responses to the density 

of conspecifics. The Argentine ant, Linepithema humile, tends to make convoluted 

exploratory pathways at high ant density, but these become straighter as ant density decreases 

(Gordon, 1995). This is in broad accordance with the predictions of models of behaviour, 

based on optimal searching (Adler and Gordon. 1992). The ant Leptothorax albipennis, after 

damage to its nest, sends out ants to find new nesting sites.  When the number of ants at a 

potential new nest site first reaches a threshold value (or density), this triggers a local 

consensus decision to switch from recruitment by tandem running, to the speedier mechanism 

of carrying ants (and brood) from the old nest to the newly chosen site (Pratt et. al., 2002). 

Scout bees from a swarm of Apis mellifera investigate potential new nest sites and, on 

returning to the swarm, communicate the quality of the new nest site by the vigour and 

duration of their waggle dances. The better sites therefore recruit more bees. Once a quorum 
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of about 15 bees is established at a potential new site, those bees returning to the swarm 

perform a piping behaviour to prime the entire swarm for flight to the new site (Seeley et al., 

2006; Visscher and Seeley, 2007).  

 

Given these well documented cases, not least in ants, where the behaviour of organisms 

depends on their density, we have investigated whether there is any evidence that the density 

of Pharaoh’s ants, Monomarium pharaonis, within a nest, has any significant influence on 

their level of activity.   

 

Our investigations, based on two different types of experiment, test whether there is an 

analogue of quorum sensing in Pharaoh’s ants. In one experiment, we measured the times at 

which ants left their nesting area, when taking a specific foraging route, and were allowed to 

return to their nesting area. As a consequence, the mean ant density within the nesting area 

remained constant throughout the experiment. This rate of leaving was compared directly to a 

situation in which the ants were strictly prevented from returning to their nesting area after 

taking the foraging route, in which case the mean density of ants progressively decreased 

over time. As we shall argue, the measured rate at which ants leave their nesting area is a 

measure of their level of activity. Given this, our measurements probe the degree to which the 

level of activity of the ants is affected by their density.  

 

To explore these issues in detail, we also formulated mathematical models. Rather than using 

models with deterministic rules for the behaviour of each ant, we constructed and tested two 

null statistical models, in which individual ants move randomly and independently of one 

another. These models yield results that show remarkable similarity to our direct behavioural 

observations. We conclude that under the experimental conditions we established, Pharaoh’s 
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ants move with a level of activity that is, to very high accuracy, independent of the number of 

other ants encountered in the nesting area. That is, they make decisions to move as 

independent agents without any hint of behavioural change associated with the density of 

ants. 

 

The simple experimental methodology and null-model mathematical framework we present 

here provide a solid foundation for further investigations that can precisely determine the 

influence of controllable environmental and social perturbations on the activity of ants and 

other organisms. Examples of such perturbations include changes of food supply, 

temperature, humidity, along with intraspecific and interspecific interactions outside the nest. 

We finally note and discuss a recent study of ants leaving their nest (Richardson et al., 2010) 

in which data appear best fitted by more complex mathematics – a model of ants exiting that 

involves record-dynamics, implying some kind of ant-ant interactions.  

 

2 Ant activity: an experimental approach 

We used the Pharaoh’s ant, Monomorium pharaonis, in our experiments. Pharaoh’s ants are a 

well-studied, highly invasive, unicolonial species (Sudd, 1960; Fourcassie et al., 1994) in 

which a number of seminal aspects of self-organising foraging behaviour has been elucidated 

(e.g. Jackson et al., 2004). The ants were kept at a constant temperature of 25°C and constant 

level of humidity of 40%, and deprived of sugar for a period of two days prior to an 

experiment. During an experiment, the ants were able to leave their nesting area (i.e., the 

brood chamber and its immediate vicinity), via a bridge. Application of a coating of fluon 

(fluon PTFE, Blades biological) to the far end of the bridge, which was vertical, caused all 

ants walking on the coated region of the bridge to fall from the bridge.  
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In one experiment, the far end of the bridge was located within the nesting area, so that all 

ants falling off the bridge re-entered the nesting area (see Figure 1). We call this ‘leaving 

with replacement’.  We observed that after falling, the ants carried out a range of different 

behaviours, and there was no evidence of the ants learning to repeatedly use the bridge.     

 

 Figure 1  

 

In the second experiment, the far end of the bridge was located above a container that was 

physically inaccessible from the nesting area. Ants falling into this container were unable to 

return to the nesting area during the course of an experiment (see Figure 1). We refer to this 

as ‘leaving without replacement’. 

 

The times at which ants fell were recorded for experiments ‘with replacement’ and ‘without 

replacement’; both types of experiments were repeated for 4 different colonies of Pharaoh’s 

ants. Below we illustrate our findings with results and figures from (i) a single experiment 

‘with replacement’ and (ii) a single experiment ‘without replacement.’ In Appendix A we 

present summary statistics for the experiments carried out on the different colonies. The 

quantitative results differ between colonies, due to differences in uncontrollable aspects, such 

as the precise colony size. However, for a given experimental setup, the general conclusions, 

that we report, hold for all experiments of that type that were carried out. 

 

All of the statistical analysis presented in this work was performed using the software 

package MATLAB (The Mathworks). 
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3 Results 

3.1 Ants leaving with replacement 

When the number of ants that have left the nesting area ‘with replacement’ is plotted against 

time, it is found to closely correspond to a linear change (Figure 2).  

Figure 2 

The distribution of time-intervals between adjacent ants leaving the nesting area (Figure 3) 

has the appearance of an exponential distribution.  

Figure 3 

We cannot directly use a Kolmogorov-Smirnov test (Hogg and Tanis, 2006) to determine 

whether this distribution is genuinely exponential since the distribution contains a parameter 

(the inverse of the mean time-interval) which would need to be estimated from the data 

(Lilliefors, 1969; Broom et al., 2007). Instead, we used an Anderson-Darling test (Anderson 

and Darling, 1952; see also Kvam and Vidakovic, 2007) to determine whether the 

distribution of time-intervals follows an exponential distribution. The test revealed that there 

was no significant difference (p = 0.113) between the observations (N = 585) and an 

exponential distribution, and led to a value of a mean time-interval between ants leaving the 

nesting area of������ seconds (see Table 1). 

Table 1 

A plot of the time-intervals produced during the entire course of an experiment (Figure 4) 

strongly suggests that the distribution of time-intervals is independent of the time elapsed 

since the start of the experiment; linear regression of time-interval against time elapsed from 

the start of the experiment confirmed the absence of significant trend (N = 585, p = 0.56).  

Figure 4 

The simplest interpretation of these data is that the ants move independently within the 

nesting area, without any aggregation (Parrish and Edelstein-Keshet, 1999, Ame et al., 2004, 
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Jeanson et al., 2005, Lauzon-Guay et al., 2008) or recruitment behaviour (Wilson, 1962), and 

some ants randomly encounter the bridge and use it to leave the nesting area. The mean rate 

with which ants fall from the bridge has, we assume, contributions from both the geometry of 

the problem (the larger the diameter of the wire, constituting the bridge, the larger the 

probability of encountering it) and the level of activity of the ants (the more active or fast-

moving the ants, the greater the chance they have of encountering the bridge). Under a fixed 

experimental geometry, the mean rate with which ants leave the nesting area is used in the 

present work as a measure of ‘ant activity’.  

 

The results obtained for ants leaving their nesting area ‘with replacement’ indicate that their 

activity remained essentially constant during the entire duration of the experiment. 

Furthermore, a linear increase over time of the mean number of ants leaving the nesting area 

and an exponential distribution of time-intervals between adjacent ants indicates that the ants 

leave the nesting area as a Poisson process (see e.g., Haigh, 2002). 

 

3.2 Ants leaving without replacement 

When ants left their nesting area ‘without replacement,’ the number falling from the bridge 

per unit time decreased as the number of ants in the nesting area decreased. This is apparent 

in Figure 5, in which the cumulative number of ants that had left the nesting area is plotted 

against the time elapsed since the start of the experiment. 

Figure 5 

A decrease in the rate of ants leaving the nesting area over time is expected if their level of 

activity remains independent of the density of ants in the nesting area, since as time proceeds 

there are fewer ants within the nesting area, and hence fewer likely to encounter the bridge. 

The question is whether the observed decrease in the rate of leaving is fully explained by 
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simply a reduction in the number of ants, or whether the level of the ants’ activity is 

modulated beyond this - due to the decreasing density of the ants. We address this question 

later on, when we mathematically formulate a null model of the problem.       

 

In experiments where ants leave their nesting area without replacement, we have verified that 

the distribution of time-intervals between consecutive ants leaving (Figure 6) deviates 

significantly from an exponential distribution. Results of an Anderson-Darling test for one 

particular experiment, given in Table 1, illustrate this (N = 496, p < 0.001). 

Figure 6 

However, we hypothesised that the distribution is fundamentally exponential in character, but 

the parameter characterising the distribution (the inverse of the mean time-interval) is a 

function of the time elapsed since the start of the experiment, and hence changes during the 

course of an experiment. The lengthening time distribution, as a function of elapsed time, is 

clearly shown in Figure 7.   

Figure 7 

To investigate this hypothesis, we employed a statistical approach that tests only the 

underlying shape of the distribution, and is insensitive to time-dependence of the parameter in 

the distribution (Broom et. al., 2007). This test uses the ratio of adjacent time-intervals, and 

this transformation of the data yields a new probability distribution which is independent of 

the parameter of the original distribution. We found no evidence to reject an underlying 

exponential shape of the distribution (Table 1, N = 496, p = 0.35).  As a consequence, the 

overall distribution of time-intervals can be well-characterised as an exponential distribution, 

but with a parameter whose value depends on the time elapsed since the start of the 

experiment, and which changes during the course of an experiment. 
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4 Conclusions from the experimental approach 

In the first experiment, where replacement is allowed, the ants appear to display behaviour 

that is consistent with them moving independently of one another with a behaviour 

characterised by (i) a mean rate of leaving that does not change during the course of an 

experiment and (ii) with an exponential distribution of time-intervals between adjacent ants 

leaving the nesting area. While (ii) implies (i), we note that any stationary distribution of 

time-intervals would, by definition, lead to a constant value of the mean time-interval. The 

exponential distribution obtained shows that, under these experimental conditions, the way 

the ants leave the nesting area is a memoryless stochastic process (i.e., a random process 

where past events have no impact on the present; see e.g., Hogg and Tanis, 2006).  

 

In the second experiment where ants leave their nesting area without being replaced, the ants’ 

rate of leaving decreased with time, as the number of ants in the nesting area also decreased. 

While this might be consistent with some level of communication or collective behaviour, 

e.g., ants being less active as they ‘sense’ that the ant density within the nesting area 

decreases, the exponential nature of the distribution of time-intervals that arises (albeit with a 

time-dependent parameter) suggests that a random, memoryless stochastic process also 

underlies the observations in this second experiment. 

 

In the next section, we construct formal models for the problem, and derive expressions for 

(i) the rate of ant departure from the nesting area and (ii) the distribution of time-intervals, 

and proceed to fit these model predictions to the data and compare the level of agreement. 
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5 Stochastic process underlying ant activity 

We present idealised models of the above experiments which allow a complete mathematical 

description of the outcomes (details are given in Appendix B). In the models, individual ants 

are assumed to move independently of one another within the nesting area (as they appear to 

do so outside a nest; see Nouvellet et. al., 2009).  

 

In the experiments, ants left the nesting area if they encountered the bridge, climbed it and 

then fell off. To express all of this in a succinct way, we shall describe the ants as ‘leaving’ 

the nesting area via an ‘exit.’ We shall explore two models associated with two different 

exiting scenarios: 

 

(i) Ants randomly leave the nesting area by the exit, but are then immediately returned to the 

nesting area. This is ‘leaving with replacement’.  

 

(ii) Ants randomly leave the nesting area by the exit, but are prevented from returning. This is 

‘leaving without replacement’. 

 

We shall establish a statistical description of the two different scenarios to predict how the 

number of ants leaving their nesting area changes with time, under the null assumption that 

ant activity does not change, irrespective of  whether the ants are replaced or prevented from 

returning to the nesting area.  

 

To describe the problem, it helps to think of time as occurring in a discrete set of steps; the 

discrete step-size could have a genuine reality, such as the smallest time-interval that can be 

resolved in an experiment. We initially formulate the problem in this way (Appendix B) but 
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do not pursue the implications of discrete time-steps in this work (although this may have 

applications elsewhere). Thus all results presented below hold when the time-step size is 

vanishingly small (i.e., when time is continuous).  

 

Two parameters characterise the problem:  

 

n = the number of ants initially present in the nesting area   (1) 

 

r = the probability of any individual ant leaving the nesting area per unit time (2) 

 

(r is assumed the same for every ant). 

 

The probability of an individual ant leaving per unit time, r, encapsulates both the geometry 

of the problem, and also the level of ant activity. In principle, r need not be a constant, but 

could depend on quantities such as the corpulence of the ants (Robinson et al., 2009) or their 

density.  For the mathematical analysis we present, we shall assume r is a constant, 

corresponding to a constant level of activity, and shall investigate the degree to which the 

data is compatible with this assumption. 

 

The number of ants leaving during a time-step is the outcome of random sampling, where 

every ant in the nesting area has an equal probability, r, of finding and using the exit.  

 

When leaving occurs with replacement, the number of ants that have exited by a time t from 

the start of the experiment, ��	
, is found to be a random variable with a Poisson distribution 
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with parameter nrt (see Appendix B for details). Thus with ���
 	
 the probability that k ants 

have exited by time t since the start of the experiment, we have 

 

               ���
 	�����������������
 � ���	
�� !"#$�%      (3) 

 

where k = 0, 1, 2, ..., and k can be arbitrarily large.       

 

When replacement is prevented, the number of ants that are present in the nesting area 

decreases with time. Thus if, by time t, a total of ��	
 ants have exited then � & ��	
 ants 

remain in the nesting area and the random sampling, which determines which ants leave the 

nesting area, leads to � & ��	
 having a binomial distribution with parameters � and � "# 

(see Appendix B for details).  The form of the probability parameter � "#, that occurs in the 

Binomial distribution, yields the intuitively plausible result that the probability of an ant 

remaining in the nesting area decreases exponentially with time.  

 

Given the distribution of the number of ants remaining in the nesting area, it directly follows 

that the number of ants that have left by time t, namely ��	
, which is the observable 

quantity in these experiments, has a binomial distribution with parameters � and ' & � "#. 

 

The probability that k ants have left without replacement by a time t since the start of the 

experiment is shown in Appendix B to be given by  

 

  ���
 	�����()�������������
 � *��+ �' & �
 "#
�� �! �
"# .           (4) 
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Here *��+ is a binomial coefficient, and k = 0, 1, 2, ..., n, hence k has a largest value equal to 

the total number of ants in the colony.  

 

The models presented here rely heavily on the assumption of independence of movement of 

different ants within the nesting area (hence the validity of binomial sampling and the 

constancy of r). In particular, it is assumed that the departure of one ant does not statistically 

influence other ants to leave.  Thus the models presented are equivalent to a particular null 

hypothesis, namely independence of movement within the nesting area and random exiting. If 

there are significant differences between the predictions of the models and the observations 

then it will be an indication of non-independence of the movements of the real ants. 

 

Having characterised the process of ants leaving their nesting area, it is possible to derive 

how the expected number of ants that have left the nesting area depends on the time, t, that 

has passed since the start of the experiment. When replacement is allowed, it is a standard 

property of the Poisson distribution of Eq. (3) that the expected number of ants that have left 

is 

 

    ,-��	
�����������������. � ��	     (5) 

 

(see e.g., Haigh 2002). 

 

In a similar way, it follows from Eq. (4) that when replacement is not allowed, the expected 

number of ants that have left is given by 

 

    ,-��	
�����()�������������. � ��' & � "#
.  (6) 
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When �	 is small (�	 / ') Eqs. (5) and (6) yield similar results but when �	 becomes large 

compared with unity the two results become quite different. In particular, the result of Eq. (5) 

can reach any size, whereas that of Eq. (6) can only reach a maximum of n because there are 

only a total of n ants in the nesting area. 

 

Finally given the processes of departure from the nesting area - described above - the 

distribution of time-intervals between two individual ants leaving, written 0�12
, can also be 

inferred (see Appendix B).  

 

With replacement, the distribution of time-intervals follows an exponential distribution:  

 

    0�12�����������������
 � ��� !"13.   (7) 

 

Without replacement, the distribution of time-intervals follows an exponential distribution, 

with a time-dependent parameter: 

 

    0�12
 	�����()�������������
 � 4�	
� 5�#
63  (8) 

 

where 

                                                                       4�	
 � ��� "#�               (9) 

 

Thus without replacement, the observed time-intervals are drawn from an exponential 

distribution that depends on the actual time of observation. For example, the probability of 

observing a time-interval larger than 1 second, at the start of an experiment, will be different 
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to the probability of observing a time-interval larger than 1 second at 60 minutes into the 

experiment. However, this dependence of the distribution on the time of observation can, by a 

simple time-dependent rescaling of observed time-intervals, be removed. The procedure is to 

divide a time-interval that is observed at time t, written 72�	
, by its expected value (written 

,-78��
. and equal to '$4�	
) at this particular time. We thus define the rescaled time-

interval, 9 � 72�	
 ,-78��
.:  and this can be verified to have an exponential distribution, 

similar to that of Eq. (8), but with a parameter that is not of the form of 4�	
 of Eq. (9), but 

rather with a parameter that has the time-independent value of unity. 

 

6 Contrasting data with the predictions of the models 

Given the data and the null-models proposed above, we now re-analyse the data to estimate 

the parameter-values of the models and compare the level of agreement between models and 

data. 

 

6.1 With replacement 

When ants fell with replacement, the model for this case predicts that they leave the nesting 

area at a constant mean rate that follows from Eq. (5): ,-��	
. � ��	� Linear regression 

yielded the thin straight line in Figure 2 with �� � ;�'� (N = 585, p<0.001, 9<�= 0.997). In 

this situation it is not possible to obtain separate estimates of n and r; only the product of the 

two can be estimated, representing the number of individuals falling per second (and thus 

depending on both the size of the colony and the level of activity of the ants). The observed 

time-intervals between individual ants leaving thus appear to be drawn from a distribution 

that is indistinguishable from an exponential distribution (solid line in Figure 3, Table 1). The 

mean time-interval between individual ants leaving appears uncorrelated with time (Figure 4, 

straight line). We observe a very close agreement in the estimation of �� using either (i) the 
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number of ants that have left as a function of time: �� � ;�'� (via linear regression) or (ii) 

from the distribution of time-intervals: �� � ;�'�. 

 

6.2 Without replacement 

When ants left without replacement, the expected number of ants that had left and the 

observed number (as a function of elapsed time), showed a high level of agreement (Figure 

5), and allowed us to estimate that there were initially n = 515 (95% CI [511, 518]) ants 

present in the nesting area, and the probability of any ant leaving, per second, was found to be 

� � =�� > '; ?��@��(�A B (95% CI [5.1 >�10-4, 5.3�> 10-4]).  Additionally, the underlying 

distribution of time-intervals was predicted to be an exponential distribution with a time-

dependent parameter. From the data, the exponential nature of the underlying distribution was 

demonstrated (Table 1). The time-dependence in the parameter of the distribution is 

illustrated by the curved line in Figure 7. 

 

Finally, given a distribution with an underlying form that is exponential, but with a time-

dependent parameter, the scaling of each observed time-interval by its expected value leads to 

a new random variable, 9, that has a distribution that is predicted to be exponential, with a 

parameter of unity. Figure 8 shows the distribution of time-intervals, when scaled by their 

expected values.  

Figure 8 

The scaled time-interval values, i.e., 9 cannot be distinguished from exponentially distributed 

values (solid line Figure 8, Table 1) using a Kolmogorov-Smirnov test. We note that ants 

continue to behave in this statistically predictable fashion, despite their density decreasing to 

approximately 10% of its starting value during the course of an experiment. 
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7 Event based analysis 

So far the analysis presented has been in terms of the relation between ants leaving a nesting 

area and the time elapsed since the start of an experiment. In Appendix B we show that direct 

predictions of the models, resulting from focussing on ‘events’, i.e., the dropping of 

individual ants without regard to the time they occurred, are the following:   

 

(i) In the case of ‘leaving with replacement,’ where 12C is the random time-interval to the 

next ant dropping after the j’th event (the j’th ant dropping), the quantity DC � �E�F&��12CG 

is predicted to be a random number that is drawn from a uniform distribution on the interval 0 

to 1.  This property follows from the 12C being predicted to be exponentially distributed. 

(ii) In the case of leaving without replacement, the quantity HC � �E�F&�� & I
�12CG 

associated with the j’th event is also a random number that is drawn from a uniform 

distribution on the interval 0 to 1. 

 

The set of ‘event’-based quantities DC and HC from experiments with and without replacement 

is shown in Figure 9.  

Figure 9 

The quality of the uniform distributions obtained provides further evidence of a Poisson 

process-like stochasticity underlying ants leaving their nesting area. Statistically, a 

Kolmogorov-Smirnov test (test statistic K) indicates that there is no significant deviation of 

the distribution of the DC and HC from a uniform distribution (for the U’s: J� K �;�;L�giving 

M K ;��N; for the V’s: J K ;�;� giving M K ;�O=). 

 

 



19 
 

8 Comparing our model with a log Poisson process 

Our findings are quite different from a recent study by Richardson at al. (2010) on the ant 

Temnothorax albipennis. By RFID tagging ants in each colony, these authors were able to 

examine the timing of ants leaving the nest when not allowed to return (so directly 

comparable to our non-replacement experiment) and the case in which ants were allowed to 

return but only those ants leaving the nests for the first time were recorded. They claim their 

data were better modelled by record dynamics (a Poisson process in logarithmic time, 

suggesting strong interactions between the components of the system – i.e., the ants) rather 

than a null model of exponential decay (Poisson statistics in linear time, where components 

of the system act independently). 

 

A detailed comparison of the log Poisson process and our model is presented in Appendix C. 

In this section we merely discuss the main findings of this Appendix and propose an 

objective way by which future studies could distinguish between the two processes. 

 

The defining property of a log Poisson process is that the difference of the logarithm of the 

time of adjacent events is exponentially distributed. This leads us, under a reasonable 

approximation, to conclude that in a log Poisson process, the time intervals are exponentially 

distributed and the mean time interval, between adjacent events, increases linearly with time 

(see Appendix C). This can be contrasted with our study in which time intervals are also time 

dependent and exponentially distributed, but the mean time intervals increase exponentially 

with time. Thus while there is similar qualitative behaviour of the mean time interval of both 

models, there is a genuinely quantitative difference. 

 

For future research on similar system, we propose the following steps: 
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1. Observe the fit in a plot of the number of individuals that leave, against time, with the 

expectations from each model. To obtain the expectation from our model, one would 

need to use a non-linear fit of the data to Equation 6 of our model (thus obtaining 

estimates of � and �). For a log Poisson process (see Appendix C), one would need to 

fit the data to ,-2�. � �' & P
 � K �E���P�
 (i.e., estimate the value of P when � is 

the number of individuals that had left). 

2.  

a.  Observe and test nature of the distribution of the time intervals divided by 

their expected value, 9 � 72�	
 ,-78��
.: � 72�	
���� "#, using a 

Kolmogorov-Smirnov test. Under our model, the distribution is expected to be 

exponential with a parameter that has the time-independent value of unity. 

b. Observe and test nature of the distribution of the time intervals in log time, 

����2�QB
 & ����2�
, using an Anderson-Darling test. Under a log Poisson 

process, this distribution is expected to be exponential. 

If after performing these tests, neither process better fits the data, Occam’s razor would 

dictate that our model should be adopted because it is more parsimonious. Indeed using an 

analogy to a physical system, Richardson et al. (2010) argue that a log Poisson process 

reflects underlying interactions between individuals while our model does not make such an 

assumption. Furthermore, we add that our model is derived from a concrete mathematical 

description of the process (leading to biologically interpretable parameters) rather than an 

analogy to a physical phenomenon. 
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9 Discussion  

In this work, we have made observations of animal activity, and modelled this phenomenon 

from basic principles. Specifically, we have focussed on the rate at which individual 

Pharaoh’s ants (Monomorium pharaonis) leave their nesting area. We have found a high level 

of agreement between observations and two null models presented here, which assume both 

independence of ant movement and random departure of ants from the nesting area. Our 

observations, within the context of the models, have allowed us to produce an estimate of the 

size of a colony and consistent estimates of the value of the parameter linked with the 

activity-level of the study organisms.  

 

The models presented here treats the dynamics of ants leaving their nesting area as being the 

outcome of a set of independent ‘decisions’, where the ‘choice’ of one ant to leave does not 

affect other ants’ decisions.  While we do not deny the presence of interactions between 

individual ants within the nesting area, the high level of agreement between observations and 

theory (such as an exponential distribution of time-intervals) indicates that such interactions 

do not have any significant impact on the level of ant activity – at least under the 

experimental conditions investigated here. 

  

In our first experiments, in which ants were allowed to return to the nesting area, the constant 

density of ants cannot trigger any density/quorum sensing mechanisms, and hence cannot 

activate any behavioural changes. However in the second set of experiments, where 

individuals were not allowed to re-enter the nesting area, the density of ants declined 

substantially; by the end of the experiment the density had a value of about 10% of the value 

at the start of an experiment. It would, a priori, have been reasonable to expect some 

behavioural effect because ants have been shown to be sensitive to the density of conspecifics 
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in their vicinity (Wilson, 1984), and a change in their density, alone, could have acted as a 

form of feedback impinging on their level of activity and hence on their stochastic leaving-

behaviour. This would manifest itself in the probability of any single ant leaving per unit 

time, r, depending on the number of ants in the nesting area. In the data analyses presented, 

we assumed a constant value of r and obtained an extremely high level of agreement between 

models and data. Furthermore, under ‘leaving without replacement’, Figure 9 illustrates the 

values taken by the random variable V that was introduced in an event based analysis, and 

was predicted to have a uniform distribution under the assumption of constant r. The 

distribution of V does not significantly change with the number of events; a Kolmogorov-

Smirnov test indicates that the distribution of the 50 first elements of V is not significantly 

different from that of the last 50 elements (M K ;�=;). This implies that for the experiment 

without replacement, no density dependence was observed, suggesting that these Pharaoh’s 

ants were leaving their nesting area as independent agents, seemingly oblivious to the 

dramatic decrease in ant density that was occurring within the nesting area during the course 

of an experiment.  

 

An independent paper (Richardson et al., 2010), suggested a log Poisson process might 

underlie the dynamics of ants leaving their nest. Using an analogy to a physical system, they 

concluded that this was evidence for interactions between individuals. Based on our 

comparison of the two models (see Appendix C), we remain largely unconvinced by their 

conclusions. However, possible differences between the two studies might be due to intrinsic 

interspecies differences or ecology but could also be related to the feeding status of the 

animals. In our experiments, hungry ants may well default to behaving autonomously with a 

high tendency to forage. But when fed ad libitum (Richardson et al. 2010), interactions 

between returning fed ants and nest mates, signalling levels of food availability outside the 
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nest, will be important in determining the rate of subsequent exploration (Hölldobler and 

Wilson 1990). Similarly honeybees (Seeley, 1995) and bumblebees (Dornhaus and Chittka, 

2004) increase their exit rate from the hive/nest in response to returning bees signalling 

bountiful nectar availability in the environment. 

 

We conclude that the level of activity observed, under the experimental conditions of the 

present work, in which ants were deprived of sugar for the 48 hours prior to the observations, 

can be well explained by individual ants acting independently of each other, i.e., with a fixed 

probability of leaving the nesting area/unit time. Interestingly, for experiments without 

replacement, this leads to the distribution of time-intervals between individual ants leaving 

the nesting area being exponential, but with a mean value that changes with time, as the 

number of ants remaining in the nesting area varies with time. If, for example, we had used 

the distribution of time-intervals over the entire course of an experiment, then we would not 

have discovered the underlying exponential distribution. This character of the distribution 

could thus be termed cryptic, since it is not readily apparent from the overall results of an 

experiment. Using our model for this, this cryptic exponential distribution can be exposed, 

via a time-dependent rescaling of time-intervals. The fundamental nature of the stochasticity 

in this situation was therefore revealed.  

 

Despite the somewhat counterintuitive predictions of our models for real organisms, their 

predictive power underlines their utility. Our experimental set-up and models may offer 

interesting opportunities for further exploration into other determinants of activity level, 

which could likely include both environmental and social factors, e.g., food availability, 

temperature, humidity, presence of pheromone trails, intraspecific and interspecific 

interactions outside the nest. 



24 
 

Acknowledgements 

We thank T. O. Richardson for sending us a copy of his paper prior to publication and James 

Marshall, for constructive comments that have significantly improved this manuscript. We 

also thank an anonymous reviewer for helpful comments and Ellie Leadbeater and Jeremy 

Field for helpful discussions.  

 

Appendix A  

This Appendix contains two tables which summarise the results for the different runs of 

experiments carried out. The general conclusions we draw in the main text (for experimental 

run 1) hold for all experiments. 

 

In Table 2 we present the results of experiment where replacement is permitted. In this 

situation we can, for each run, determine the product of the parameters n and r, but not each 

parameter separately. We verify the exponential nature of the distribution of time-intervals 

using the Anderson Darling test (test statistic AD). We also note that a visual estimate of the 

total number of ants in a nesting area is denoted Ne and is accurate within ±50 ants. 

Table 2 

In Table 3 we summarise the result of the second set of experiment where replacement was 

not allowed. In this situation, estimates of both n and r are given. The distribution of time-

intervals appears not to follow an exponential distribution (Anderson-Darling test, test 

statistic: AD), but cannot be distinguished from a distribution that would be exponential in 

shape with a shifting parameter (using a Kolmogorov-Smirnov test, test statistic: KS, on 

transformed time-intervals according to Broom et al.  2007). 

Table 3 
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Appendix B  

In this Appendix we determine the statistical properties of the number of ants that have left 

the nesting area, as predicted by the models of the main text. We use a discrete-time 

description to derive results, where time t can take only the discrete values 	 � I > R  where 

I � ;
'
�
S and R is the value of a discrete-time-step. While the results presented for a finite 

time-step may have some utility in their own right, we do not employ the finite step results 

here. Thus, at the end of the calculations, we take the time-step to zero, so time becomes 

continuous. We note that the models presented have close connections with `pure death’ 

models of population biology (Renshaw, 1993).  

 

The probability of any particular ant to leave/unit time is r hence the probability of any ant to 

leave in a time-step is taken as �R (and only consider �R T '). The number of ants leaving 

during any time-step is the outcome of random sampling, where every ant in the nesting area 

has an equal probability of being chosen to leave. Hence the number of ants leaving is drawn 

from an appropriate binomial distribution. 

 

Replacement model 

When replacement is allowed, the number of ants present in the nesting area is constant and 

equal to the initial number, �. The number of ants that have left by time t, namely N(t), is 

determined by the stochastic difference equation 

 

                    ��	 U R
 � ��	
 U V��
 �R
                       (10)  

with  

                                                        ��;
 � ;���                                          (11) 
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In Eq. (10) the quantity V��
 �R
 represents a random variable that is independently drawn, 

each time-step, from a binomial distribution with parameters n and ��R .  Since a sum of 

independent and identically distributed binomial random variables is also a binomial random 

variable, the number of ants that have left after time t also has a binomial distribution. 

Consequently, we can write ��	
 � V��
 �R
W��(�% �X((Y���Y��(��A�Z���A�. Allowing R to 

tend to zero (so time becomes continuous) results in ��	
 having a Poisson distribution   

 

    ��	
�[��\]^^\����	
                 (12) 

 

This has a mean,�,-��	
., and a variance, _��F��	
G, of ���	.  

 

To derive the distribution of time-intervals, we note that given a dropping event occurs at 

time , the next event will occur at time �I U �
R with a probability that results from � & '� 

“failures” followed by a “success.” A failure occurs with probability �' & �R
! and a success 

occurs with probability �' & �' & �R
!. Hence the distribution of time-intervals between 

successive events follows a geometric distribution: 

 

   `��a R
 � -' & �' & �R
!.�' & �R
!�� B
�             (13) 

 

As  tends toward zero, we can neglect the probability of more than one ant leaving at any 

step and an event can be interpreted as a single ant leaving. For a time-interval of 72 the 

number of time-steps is � � 72 R: . The probability density of time-intervals arises from the 

small R limit of `�72$R�a R
 R:  and from Eq. (13) we obtain the exponential distribution 

 

     0�72
 � ��� !"13.              (14) 
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The last result we shall determine for the replacement model concerns the distribution of 

exponentially distributed random numbers.  If U is a random variable with a uniform 

distribution on [0,1] then b � & ���D
 4:  has an exponential distribution with mean ' 4: � 

Conversely, if b has an exponential distribution with mean ' 4: , then � 5c is uniformly 

distributed on [0,1]. It follows from Eq. (14) that if 72C is a random variable with an 

exponential distribution with mean ' ���
:  then DC � � !"�63d  is uniformly distributed on 

[0,1]. 

 

Without replacement model 

When replacement is not allowed, and ��	
 ants have left from the nesting area, the number 

of ants present in the nesting area is�� & ��	
. This is the number from which a random 

sample is selected to leave in the next time-step. It follows that the analogue of Eq. (10) is 

 

    ��	 U R
 � ��	
 U V�� & ��	

 �R
�                                 (15) 

 

The solution is subject to Eq. (11). To determine the distribution of ��	
 it is convenient to 

define�e�	
 � � & ��	
, and Eq. (15) becomes equivalent to 

 

              e�	 U R
 � V�e�	

 ' & �R
              (16)  

with  

     e�;
 � ��                      (17) 

 

We write the probability distribution of e�	
 as `#�f
 and Eq. (16) leads to 
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  `#Qg�f
 � h iB "g�f
 �
`#��
!
�jk               (18) 

 

where il�m
 n
 � *nm+ ^
o�' & ^
p o and �*nm+ denotes a binomial coefficient. It may be 

verified that h il�m
 n
ilq�n
 P
!
pjk � illq�m
 P
 and this property, combined with Eqs. (17) 

and (18) leads to `#�f
 � i�B "g
r$s�f
 �
 and hence to e�	
 having a binomial distribution 

with parameters � and �' & �R
# g: . As a consequence���	
, has a binomial distribution with 

parameters � and ' & �' & �R
# g: . As we allow R to tend to zero (and time becomes 

continuous) we obtain a binomial distribution for ��	
 with parameters � and ' & � "#: 

 

    ��	
�[�X��(������
 ' & � "#
.                          (19) 

 

This is characterised by a mean value of  

 

    ,-��	
. � ���' & � "#
                                                       (20)   

 

 and a variance of �_��F��	
G � ��� "#�' & � "#
.  

 

To determine the distribution of time-intervals between individual ants leaving at time t, we 

note that when j ants have left, the mean time to the next ant leaving follows from Eq. (14) 

with n replaced by n – j and is given by ' -�� & I
�.: . At time t we approximate the mean 

time-interval between ants leaving by ' -�� & ,-��	
.
�.: . Combining this result with Eq. 

(20) leads to a mean time-interval between ants leaving that depends on time t according to  

 

     ,-12�	
. K �"# ���
: .                      (21) 



29 
 

 

Similar considerations to the “with replacement” case, where we first assume j ants have left, 

and then replace j by �,-��	
., leads to an exponential distribution of time-intervals that 

depends on the time t and is given by  

 

     0�12
 	
 � ��� "#� !"tuvr13.             (22) 

 

Furthermore, in the limit of small R, we have that after j events (j ants having dropped), the 

time to the next event is an exponential random variable with mean '$-�� & I
�.. Writing 

this random time as 72C we have, following the arguments in the “with replacement” case, 

that the random variable HC � � �! C
"�63d is uniformly distributed on [0,1]. 

 

Appendix C  

In this Appendix, we compare the random process, which is used in this work to describe the 

departure of ants from a nest, with the random process adopted by Richardson et al (2010) for 

their experiments. We note that all experiments and analysis of the present work, with the 

exception of this Appendix, were completed prior to learning of the work by Richardson et al. 

(2010). 

 

To proceed, let 2� denote the time the k’th ant left the nest. Richardson et al (2010) assumed 

that differences of the natural logarithms of the times ants left a nest, namely ����2�QB
 &

����2�
, had an exponential distribution.  This leads to so called ‘record dynamics’ and, for 

some physical systems, is known to imply long range correlations (see e.g., Sibani and Dall, 

2003). The logic of Richardson et al (2010) is that if ����2�QB
 & ����2�
 has an exponential 

distribution then this is evidence of interactions (of some kind) between the ants in their 
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experiments.  We note that these workers are therefore reasoning by analogy, and are not 

deriving the dynamics of the ants from a concrete mathematical model of ant behaviour. 

By contrast, the results of the present paper are based on the detailed analysis of a specific 

mathematical model of ant behaviour. This model does not include any interactions between 

the ants and it predicts that the time intervals between ants leaving the nest without 

replacement, namely 2�QB & 2�,  are exponentially distributed. A non-trivial outcome of this 

model is that the mean time interval ,-2�QB & 2�. depends on the value of k (i.e., on the 

number of ants that have left the nest).  

 

Description of a log-Poisson process adopted by Richardson et al. 

The model of Richardson et al (2010) is based on the assumption that ����2�QB
 & ���2�
  has 

an exponential distribution, which is termed a log Poisson process. We shall derive some 

approximate properties of this process. 

To begin, we note that a log Poisson process can be expressed as 

                                                ����2�QB
 & ����2�
 � &P ���D�
               (23) 

where P is a constant (the expected value of ����2�QB
 & ����2�
), and the D� are, for different 

k, independent random variables which are uniformly distributed over [0,1].  We make the 

assumption that the distribution of �(w��2�
 changes slowly with k so that the parameter c in 

Eq. (23) is small: 

      P / '.                 (24) 

To fully define the log Poisson process, we need to specify the time of the initial event and 

we take 2k to have the value of unity, so all times are measured from time 1 (we cannot take 

it as zero due to the properties of logarithms). 

From Eq. (23) it follows that �(w��2B
 � &P ���Dk
 
 ����2<
 � &P����xB
 & P ���Dk
 and 

generally ����2�
 � &P h ���DC
y B
zjk , or equivalently 
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     2� � Dy B { Dy < { SDk {�              (25) 

Thus  

   12� | 2�QB & 2� � �Dy { & '
Dy B { Dy < { Dy < { SDk { 

          � �Dy { & '
2��                 (26) 

To obtain an indication of the content of this process, we make two approximations to Eq. 

(26):  (i) we approximate �Dy { & '
 by &P �(w�D�
 which applies for P / '; (ii) we replace 

2� by its expected value, ,-2�. � �' & P
 � K �E���P�
. Thus 

                                              12� K &P��} �(wD�.               (27) 

Lastly, we wish to infer the distribution of time intervals not after k events, but rather, after 

time t. It may be shown that for the log Poisson process, the mean number of events up to 

time t is �(w�	
 $P. Thus to convert Eq. (5) to the time domain we replace k by �(w�	
 $P and 

obtain  12�	
 K &P	 �(wD which means the time intervals, at time t, have an exponential 

distribution with mean ct: 

   

 ,-12�	
. K P	����������������~(A���(��������A@(���	�m��            (28) 

 

Equation (28) has been checked by simulations and works reasonably for P T ;�=. 

 

Equation (28) is to be contrasted with the prediction of the model of the present work, which 

is given in Eq. (21) of Appendix B, namely ,-12�	
. K �"#$���
. 

 

We can thus say that the log Poisson model adopted by Richardson et al (2010) and the non-

interaction model, used in the present work, both predict that mean time intervals increase 

with the time that has elapsed since the start of an experiment, but that the manner of increase 

is different.  
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Experimental evidence 

We have subjected data from our ‘without replacement’ experiments to statistical tests, to see 

if they can be described by a log Poisson process. We reject a log Poisson process for our 

data, based on two simple analyses. Firstly, the distribution of logged time intervals 

(����2�QB
 & ����2�
) differs significantly from an exponential distribution (Anderson Darling 

test, N = 495, p < 0.001). Secondly, and perhaps more strikingly, we plotted the cumulative 

number of events (ant departures) against time, and used a non-linear fitting procedure to 

determine the `best choice’ for the parameter c in the prediction of a log Poisson process, 

namely: ,-2�. � �' & P
 � K �E���P�
. Figure 10 illustrates how ants exit the nest in our 

`without replacement’ experiments, along with the ‘best fit’ from a log Poisson process. The 

significant absence of a good fit contrasts very strongly with Figure 5 in the main body of this 

paper, which plots data and a curve from our mathematical model. 

Figure 10 

We note that Richardson et al. (2010) pointed out that, under a log Poisson process, the 

survivorship function (calculated as 1 – cumulative distribution) of the logged time intervals 

and the cumulative number of exits should be linear in log scale. Thus they plotted those 

functions in their Figures 3 and 4 as evidence to support their model. While we conclude that, 

for our experiments, a log Poisson process is not a good description of the data (see above), 

we have plotted survivorship for our data (Figure 11a) in the same format as Figure 3 of 

Richardson et al (2010) (i.e., survivorship plotted as a function of ln(Tk+1/Tk)). We have also 

plotted the cumulative number against log time for our data (Figure 11b) in the same format 

of Figure 4 in  Richardson et al (2010). A visual inspection of these gives little reason to 

reject a log Poisson process, even though the analysis presented above does, indeed, clearly 
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reject this process. Our view is that adopting a log scale might not be the most appropriate 

way to plot the data, since it does tend to smooth differences. 

Figure 11 

Let us, finally, consider the most important evidence adduced by Richardson et al (2010) in 

favour of a log Poisson process. This is the test that the difference of the logarithm time 

intervals has an exponential distribution (the basic assumption underlying their analysis). In 

particular the result of the Anderson Darling test presented in Table S1 of their work. In their 

‘removal situation’ (equivalent to ‘without replacement’ in the present work), out of the total 

of 13 experiments, we observe that 5 (38%) show evidence to reject the log Poisson process 

at the 5% confidence level. In their non-removal situation, out of the 7 experiments, 3 (42%) 

show evidence to reject the log Poisson process. On the assumption that the experiments 

presented by Richardson et al. (2010) are independent on one another, it is possible to 

perform a small meta-analysis of their results. We used a weighted Z method (Whitlock, 

2005) to obtain an overall p value that is associated with the null hypothesis of Richardson et. 

al (2010) that the distribution of exit times is a log Poisson process. This overall p value takes 

into account the p values from each independent experiment. The Z values (back-calculated 

from the p values) were weighted by number of exits from the nest. We found that both in the 

removal situation of Richardson et al. (2010) and in their non-removal situation, there was 

significant evidence to reject the null hypothesis of a log Poisson process (in both cases, p < 

0.001). 

 

Overall, we conclude that in our experiments, there is very strong statistical evidence to reject 

a log Poisson process. Additionally, on the basis of a limited meta-analysis, we find some 

statistical evidence to reject the log Poisson process in the experiments of Richardson et al 

(2010). 
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Table and Figure Captions 

Table 1 Caption 

In Table 1, we test the exponential nature of the distribution of time-intervals between ants 

leaving their nesting area. In the top row, the exponential nature of the distribution, when 

replacement is allowed, is confirmed. The following rows show the distribution of time-

intervals when replacement is not allowed. First, the “raw” distribution of time-intervals is 

shown not to be exponentially distributed. Then using a different method (Broom et. al.,  

2007), we find evidence for the underlying exponential shape of the distribution, but with a 

parameter that slowly changes with time. Our model for this predicts a changing parameter, 

and furthermore, predicts the nature of the change. We transform the time-intervals, by 

rescaling them by their expected value, and the resulting distribution was predicted to be 

exponential with a parameter of unity. We tested this using a Kolmogorov-Smirnov test (final 

row). 

 

Figure 1 Caption 

Apparatus used to determine the rate that ants leave the nesting area. A). Ants were able to 

climb the wire bridge (thick line) in the direction of arrows. On encountering the fluon 

covered vertical far end of the bridge, ants fell to the ground and hence directly returned to 

the nesting area in which the nest (N) was situated. B) Ants walking along the bridge in the 

direction marked by the arrows fell into the trap (T) which had fluon coated walls; the ants 

were therefore unable to return to the nesting area during the period of the experiment. Rates 

of falling from the far end of the bridge were used as the proxy for ants leaving the nesting 

area in both experiments. 
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Figure 2 Caption 

A plot illustrating the cumulative number of ants (shown as a thick black line comprising 

individual data points) that have left the nesting area ‘with replacement’, as a function of 

time.  The thin straight line was derived from linear regression. In this particular experiment, 

on average, 0.12 ants were leaving/second. The rate of activity, as characterised by the rate of 

leaving, did not appreciably change with either the time that had elapsed since the start of the 

experiment or the number of ants that had left the nesting area. A visual estimate indicated 

that approximately 300 ants were in the nesting area. Thus some ants must have left the 

nesting area at least twice during the experiment. The inset is a ‘zoom’ of the first 80 seconds 

of the main figure, to show the actual discrete unit changes in number. The horizontal lines in 

the inset figure represent the time-intervals between adjacent ants leaving. .(Reviewer 1 

wants us to change the data points to open circles so we can distinguish the regression line 

more easily – same on Figure 5). 

 

 

Figure 3 Caption 

A plot, for a single experiment, which illustrates the distribution of time-intervals between 

consecutive ants leaving the nesting area, under the scenario “leaving with replacement”. 

This distribution is found not to be significantly different from an exponential distribution 

(solid curve), using an Anderson-Darling test (see Table 1). The graph is consistent with ants 

moving independently of each other and undergoing a stochastic process (a Poisson process) 

that is “memory-less” (Hogg an Tanis, 2006).  
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Figure 4 Caption 

A plot of the relationship, in a single experiment, between the time-intervals of consecutive 

ants leaving the nesting area and the time elapsed since the start of the experiment. The ants 

left with replacement.  The time-intervals appear to be drawn from the same distribution (i.e., 

a stationary distribution) for the full duration of the experiment. See Figure 8 for additional 

details. The horizontal line represents the mean time-interval derived from the exponential 

distribution of Figure 3, while the dashed line represents a linear regression of the time-

intervals against time. The linear regression confirms the absence of significant trend in the 

time-intervals over time. 

 

Figure 5 Caption 

A plot of the cumulative number of ants that fell as a function of time.  Ants fell into a new 

area and were not allowed to return to their nesting area, hence this is a “without 

replacement” experiment. Initially, there were an average of 0.21 ants leaving/second, but 

this rate of exploration decreased over the course of the experiment, as the number of ants 

within the nesting area decreased. The solid curve, derived from the mathematical model (see 

Eq. 6), represents the expected cumulative number of fallen ants. 

 

Figure 6 Caption 

Distribution of time-intervals between ants leaving ‘without replacement’. The solid curve is 

the best-fit exponential distribution (by fitting the distribution from the data). It is apparent 

that the data (histogram) deviates from the exponential distribution and an Anderson-Darling 

test (Table 1) confirms that this difference is statistically significant. 
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Figure 7 Caption 

A plot, in a single “without replacement” experiment, of the time-intervals of consecutive 

ants leaving as a function of the time elapsed since the start of the experiment. The time-

intervals clearly increase during the course of the experiment - as the number of ants 

remaining in the nesting area decreases. The values for the expected mean time-intervals 

(curved line) were derived from the mathematical model (see Eq. 8). 

 

Figure 8 Caption 

Distribution of time-intervals between ants leaving without replacement. Each time-interval 

has been scaled by its expected value (given by '$4�	
 of Eq. (8)). The model for this 

predicts that such scaled time-intervals are drawn from an exponential distribution with an 

expected value of the scaled time-interval of unity. The distribution of the scaled values is not 

statistically significantly different from an exponential distribution, as confirmed by a 

Kolmogorov-Smirnov test (Table 1). 

 

Figure 9 Caption 

Transformed time-intervals for the ant escape with replacement, U, and for no-replacement, 

V, are plotted against event number. If the predictions of the models were exact, U and V 

would be drawn from uniform distributions over the range 0 to 1. The distributions of U and 

V are found to not be significantly different from uniform distributions using a Kolmogorov-

Smirnov. 
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Figure 10 Caption 

Observed number of ants that leave their nest, as a function of time, and its expectation under 

a log Poisson process (solid curve). 

 

Figure 11 Caption 

(a) A plot of survivorship as a function of the difference of log times. (b) A plot of the 

cumulative number of ants that had left their nest against the logarithm of time. 
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Test Outcome AD-statistic

R
ep

la
ce

m
en

t

Exponential Accepted 1.02

Exponential Rejected 9.8

Underlying exponential shape Accepted -

Exponential, with shifting 
parameter according to Equation 8 Accepted -N

o 
re

pl
ac

em
en

t

Summary of statistical tests

5. Table1



nr Ne Exp. Dist.
run 2 0.08 ~500 P ~ 0.1 (AD ~ 1.0)

run 3 0.06 ~300 P ~ 0.08 (AD ~ 1.1)

run 4 0.19 ~100 P ~ 0.4 (AD ~ 0.5)

5. Table2



N r Exp. Dist.

run 2 529 (526-533) 6.8 (6.7-6.9) p <0.001 (AD~29.0)

run 3 527 (523-532) 3.9 (3.8-4.0) p <0.001 (AD~4.2)

run 4 214 (211-218) 5.2 (5.1-5.4) p <0.05 (AD~1.4)

5. Table3




