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Abstract 

 

 The effects of missense changes and small in-frame deletions and insertions on 

protein function are not easy to predict and the identification of such variants in 

individuals at risk of a genetic disease can complicate genetic counselling. One option is 

to perform functional tests to assess whether the variants affect protein function. We 

have used this strategy to characterise variants identified in the TSC1 and TSC2 genes in 

individuals with, or suspected of having, Tuberous Sclerosis Complex (TSC). Here we 

present an overview of our functional studies on 45 TSC1 and 107 TSC2 variants. 

Using a standardised protocol we classified 16 TSC1 variants and 70 TSC2 variants as 

pathogenic. In addition we identified 8 putative splice site mutations (5 TSC1 and 3 

TSC2). The remaining 24 TSC1 and 34 TSC2 variants were classified as probably 

neutral. 

 

Keywords: tuberous sclerosis complex, TSC1, TSC2, unclassified variants
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Introduction 

 

 Tuberous Sclerosis Complex (TSC) is an autosomal dominant disorder 

characterised by the development of hamartomas in a variety of organs and tissues, 

most notably the brain, skin and kidneys [Gomez et al., 1999]. Most individuals with 

TSC have epilepsy and many suffer from cognitive impairments and/or autism-

spectrum disorders. Mutations in either the TSC1 gene on chromosome 9q34  (OMIM 

#605284) [van Slegtenhorst et al., 1997], or the TSC2 gene on chromosome 16p13.3  

(OMIM #191092) [European Chromosome 16 Tuberous Sclerosis Consortium, 1993] 

cause TSC and comprehensive mutation screens in TSC patients have identified a wide 

variety of pathogenic mutations [Jones et al., 1999; Niida et al., 1999; Dabora et al., 

2001; Sancak et al., 2005; Au et al., 2007]. Most TSC1 and TSC2 mutations result in 

premature termination of the respective open-reading frame and complete inactivation 

of the mutated allele. However, approximately 25% of the mutations identified in the 

TSC2 gene and 1% of the mutations identified in TSC1, are non-terminating missense 

changes or small in-frame deletions or insertions [Sancak et al., 2005]. The 

consequences of such non-terminating changes are not easy to predict with certainty, 

making it difficult to distinguish disease-causing mutations from neutral (non-

pathogenic) variants. In a cohort of 490 putative TSC cases, we identified 29 variants 

(6% of the total) that could not be classified as either pathogenic or neutral from the 

available clinical and genetic data [Sancak et al., 2005]. In such cases, in vitro 

functional comparisons between the wild-type and variant proteins can help determine 

whether an unclassified variant (UV) is pathogenic or not [Nellist et al., 2008]. 

 The TSC1 and TSC2 gene products, TSC1 and TSC2, interact to form a protein 

complex that integrates multiple growth factor- and energy-dependent signals to help 

Deleted:  
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control cell growth [Inoki and Guan, 2009]. The N-terminal region of TSC2 is required 

for binding TSC1 [Li et al., 2004], while the TSC2 C-terminal region contains the 

active site of the complex, an "asparagine-thumb" GTPase activating protein (GAP) 

domain [Daumke et al., 2004]. The TSC1-TSC2 complex stimulates the GTPase 

activity of RHEB to promote the conversion of active, GTP-bound RHEB to inactive 

RHEB-GDP and thereby prevent the RHEB-GTP-dependent stimulation of the 

mammalian target of rapamycin (mTOR) complex 1 (TORC1) [Li et al., 2003]. In cells 

lacking either TSC1 or TSC2, the downstream targets of TORC1, including elongation 

factor 4E binding protein 1 (4E-BP1), p70 S6 kinase (S6K) and ribosomal protein S6, 

are constitutively phosphorylated [Zhang et al., 2003; Kwiatkowski et al., 2001].  

The effects of specific amino acid changes on TSC1-TSC2 complex formation, 

on the activation of RHEB GTPase activity by the complex, and on the phosphorylation 

status of 4E-BP1, S6K and S6, have been investigated [Nellist et al., 2001; Inoki et al. 

2002, Tee et al, 2002]. Previously, we used immunoblotting, double-label 

immunofluorescent microscopy, in-cell Western analysis and GAP assays to study the 

effects of 47 TSC2 missense and in-frame insertions/deletions and 26 TSC1 missense 

and in-frame insertions/deletions on TSC1-TSC2 activity [Nellist et al., 2005; Jansen et 

al., 2006, Jansen et al., 2008, Nellist et al., 2008, Nellist et al., 2009; Coevoets et al., 

2009; Mozaffari et al., 2009]. Pathogenic missense changes in the N-terminal region of 

TSC1 (amino acids 50 - 224) reduced TSC1 stability [Nellist et al., 2009; Mozaffari et 

al., 2009], while pathogenic TSC2 missense changes had distinct effects on the TSC1-

TSC2 complex, depending on the region of TSC2 that was affected. Some TSC2 amino 

acid substitutions prevented TSC1-TSC2 complex formation while others did not affect 

TSC1-TSC2 binding, but still inactivated the complex [Nellist et al., 2005]. Here we 

compare 73 previously tested variants to 79 new variants (19 TSC1 and 60 TSC2) using 
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a standardised protocol. To assess the effects of the variants on both the formation and 

activity of the TSC1-TSC2 complex we decided to use immunoblotting followed by 

infra-red scanner-based detection. In our experience, double-label microscopy and GAP 

assays were too labour-intensive and/or unreliable for routine use and, although the in-

cell Western was a simple and reliable assay [Coevoets et al., 2009], it required large 

amounts of (expensive) antibodies and did not provide information on the TSC1-TSC2 

interaction.  

 Our aim was to investigate the reliability of the assay, the degree of concordance 

between the in vitro results and computer-based predictive methods and, ultimately, to 

use the results of the functional assessment to determine whether variants identified in 

individuals with, or suspected of having, TSC were pathogenic. To assess the reliability 

of our functional studies we compared our results to the classifications of the variants 

listed in the TSC1 and TSC2 Leiden Open Variation Databases (LOVD) 

(http://www.lovd.nl/TSC1; http://www.lovd.nl/TSC2). Furthermore, we hoped to gain 

insight into the structural properties of TSC1 and TSC2 by comparing the properties of 

the different variants. 

  

 

Materials and Methods 

 TSC1 and TSC2 variants 

 The relative positions of the variants selected for functional assessment are 

shown in Figure 1. All variants are listed in Supporting Tables S1, S2 and S3. The 

variants were compared to wild-type TSC1 (Genbank AF013168.1; GI: 2331280) and 

TSC2 (Genbank X75621; GI:450351), as originally described [van Slegtenhorst et al., 

1997; European Chromosome 16 Tuberous Sclerosis Consortium, 1993] and it is 

Deleted: Previously untested variants 
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therefore important to note that the TSC2 wild-type lacks the amino acids encoded by 

the alternatively spliced exon 31. The amino acid numbering according to the TSC2 

LOVD (http://www.lovd.nl/TSC2), where this differs from the original numbering due 

to the inclusion of exon 31, is given in Supporting Table S3. 

 Nucleotide numbering reflects the cDNA numbering with +1 corresponding to 

the A of the ATG translation initiation codon in the reference sequence, according to 

journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. 

   

Constructs and antisera  

 Expression constructs encoding the TSC1 and TSC2 variants were derived from 

the wild-type expression constructs [Nellist et al., 2005] using the QuikChange site-

directed mutagenesis kit (Stratagene, La Jolla, U.S.A.). In each case the complete open 

reading frame of the mutated construct was verified by sequence analysis. DNA was 

prepared using the Plasmid Plus Midi Purification kit (Qiagen, Venlo, The 

Netherlands). In most cases, multiple clones were isolated, verified and used for the 

assays described below. Other constructs used in this study have been described 

previously [Nellist et al., 2005]. Antibodies were purchased from Cell Signaling 

Technology (Danvers, U.S.A.) (1A5, anti T389 phospho-S6K mouse monoclonal; 

9B11, anti-myc tag mouse monoclonal; anti-myc tag rabbit polyclonal), Li-Cor 

Biosciences (Lincoln, U.S.A.) (goat anti-rabbit 680 nm and goat anti-mouse 800 nm 

conjugates) or DAKO (Glostrup, Denmark) (cyanine (Cy2)-coupled secondary 

antibodies against mouse immunoglobulins), or have been described previously [van 

Slegtenhorst et al., 1998].  
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Transfection-based immunoblot assay for functional assessment of TSC1 and TSC2 

variants 

 TSC1 and TSC2 variants were assayed using essentially the same protocol. HEK 

293T cells were seeded into 24-well plates and grown overnight in Dulbecco's modified 

Eagle medium (DMEM) (Lonza, Verviers, Belgium) supplemented with 10% foetal 

bovine serum, 50 U/ml penicillin and 50 µg/ml streptomycin in a 10% carbon dioxide 

humidified incubator. Cells at 80 - 90% confluency were transfected with 0.2 µg TSC2 

expression construct, 0.4 µg TSC1 expression construct and 0.1 µg S6K expression 

construct using 2.1 µg polyethyleneimine (Polysciences Inc., Warrington, U.S.A.) in 

DMEM, as described previously [Coevoets et al., 2009]. For control transfections, 

pcDNA3 vector DNA was added to make a total of 0.7 µg DNA per transfection. Cells 

expressing the TSC2 variants were compared to cells expressing wild-type TSC1-TSC2, 

a known pathogenic variant (TSC2-R611Q [Nellist et al., 2005]), TSC1 and S6K only 

(no TSC2), and cells transfected with vector DNA only (control). Cells expressing the 

TSC1 variants were compared to wild-type TSC1-TSC2, a known pathogenic variant 

(TSC1-L117P [Nellist et al., 2009]), TSC2 and S6K only (no TSC1), TSC1 and S6K 

only (no TSC2) and cells transfected with vector DNA only (control).  

 After 4 hours the transfection mixtures were replaced with DMEM 

supplemented with 10% foetal bovine serum, 50 U/ml penicillin and 50 µg/ml 

streptomycin. Twenty-four hours after transfection the cells were transferred to ice, 

washed with phosphate-buffered saline (PBS) (4
o
C) and harvested in 75 µl lysis buffer 

(50 mM Tris-HCl pH 8.0, 150 mM NaCl, 50 mM NaF and 1% Triton X100, containing 

a protease inhibitor cocktail (Complete, Roche Molecular Biochemicals, Woerden, The 

Netherlands)). After centrifugation (10 000 g for 10 minutes at 4
o
C), the supernatant 

fractions were recovered, diluted in loading buffer and incubated at 96
o
C for 5 minutes 

Deleted: In each experiment up to 20 
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prior to electrophoresis on Criterion
TM

 4-12% SDS-PAGE gradient gels (Bio-Rad, 

Hercules, U.S.A.). Proteins were transferred to nitrocellulose membranes according to 

the manufacturer's recommendations. 

 Blots were blocked for 1 hour at room temperature with 5% low-fat milk 

powder (Campina Melkunie, Eindhoven, The Netherlands) in PBS and incubated 

overnight at  4
o
C with the following primary antibodies: 1/15 000 dilution of 1895 

(rabbit polyclonal against TSC2 [van Slegtenhorst et al., 1998]), 1/5 000 dilution of 

2197 (rabbit polyclonal against TSC1 [van Slegtenhorst et al., 1998]), 1/5 000 dilution 

of a rabbit polyclonal against the myc epitope tag and 1/2 000 dilution of 1A5 (mouse 

monoclonal against p70 S6 kinase (S6K) phosphorylated at amino acid T389). 

Antibodies were diluted in PBS containing 0.1 % Tween 20 (PBST) (Sigma-Aldrich 

Fine Chemicals, Poole, U.K). After washing 3 times for 5 minutes in PBST, the blots 

were incubated for 1 hour at room temperature in the dark in PBST containing 1/10 000 

dilutions of goat anti-rabbit 680 nm and goat anti-mouse 800 nm secondary antibodies. 

After washing 3 times for 5 minutes in PBST and once in PBS, the blots were scanned 

using the Odyssey
TM

 Infrared Imager (Li-Cor Biosciences) at default intensity, medium 

quality, 169 µm resolution with 0 mm focus offset. To estimate the expression levels of 

the different proteins and the ratio of T389-phosphorylated S6K to total S6K, in the 

presence of the different TSC1 and TSC2 variants, the scans were analysed using the 

Odyssey quantification software. The integrated intensities of the protein bands were 

determined using default settings with the 3 pixel width border mean average 

background correction method. To correct for the detection of endogenous proteins, we 

subtracted the signals detected in control cells (transfected with vector DNA only) from 

the corresponding TSC2, TSC1, S6K and T389-phosphorylated S6K signals for all 

variants. 
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Immunofluorescent detection of TSC1 variants 

 Immunofluorescent detection of TSC1 variants was performed as described 

previously [Mozaffari et al., 2009], using a Leica DM RXA microscope and Image Pro-

Plus version 6 image analysis software. 

 

Prediction analysis 

To investigate whether the TSC1 and TSC2 nucleotide changes might affect 

RNA splicing, 3 different splice-site prediction programs were used: 

www.cbs.dtu.dk/services/NetGene2, www.genet.sickkids.on.ca/~ali/ 

splicesitefinder.html, and www.fruitfly.org/seq_tools/splice.html.  

 To investigate whether the TSC1 and TSC2 amino acid substitutions were likely 

to affect TSC1-TSC2 structure and function, the Sorting Intolerant From Tolerant 

(SIFT) algorithm was used [Ng and Henikoff, 2006]. SIFT scores were calculated using 

multiple sequence alignments of TSC1 and TSC2 from 16 different species (human, 

chimpanzee, maccaca, cow, dog, horse, mouse, rat (TSC1 only), chicken, zebrafish 

(TSC2 only), pufferfish, honey bee (TSC1 only), fruitfly, mosquito, methylotrophic 

yeast (TSC2 only) and fission yeast).  

 

 

Results  

Immunoblot analysis 

 We compared 152 variants (45 TSC1 and 107 TSC2), including 79 previously 

untested variants (19 TSC1 and 60 TSC2). Each variant was tested in at least 4 

independent transfection experiments. In each experiment, the integrated intensities of 

Formatted: Font: Not Italic

Deleted: HEK 293T cells were seeded 
onto glass coverslips coated with poly-L-

lysine (Sigma-Aldrich) and transfected 

with expression constructs encoding the 

TSC1 variants. Twenty-four hours after 

transfection the cells were fixed, 
permeabilised and incubated with a 

mouse monoclonal antibody specific for 

the TSC1 C-terminal myc epitope tag, 
followed by a Cy2-coupled secondary 

antibody against mouse 

immunoglobulins, 

Deleted: . Cells were studied 

Page 11 of 64

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 

the bands on the immunoblot corresponding to TSC2, TSC1, total S6K and T389-

phosphorylated S6K were determined for each variant, relative to the integrated 

intensities of the bands for wild-type TSC1-TSC2. Examples of immunoblots of 13 

TSC1 variants and 15 TSC2 variants are shown in Supporting Figures S1 and S2 

respectively. The mean values for the TSC2, TSC1 and S6K signals and the mean 

T389/S6K ratios (see below) for all the variants tested are shown in Figures 2, 3 and 4. 

 First, to determine whether the transfection efficiencies for the different variant 

constructs were approximately equal, the total S6K signal for each variant was 

compared to the total S6K signal for wild-type TSC1-TSC2. As shown in Figures 2D, 

3D  and 4D, the S6K signals were relatively constant for all the variants and controls, 

indicating that the transfection efficiencies were comparable between the different 

variants. For most variants we tested multiple DNA preparations. We did not observe 

large differences between the replicate DNA preparations, indicating that the quality of 

the different transfected DNAs was uniform (Supporting Figure S3). Furthermore, 

altering the amount of DNA used for transfection resulted in relatively small changes in 

the signals detected on the blots, indicating that the assay was robust with respect to the 

amount of transfected DNA (Supporting Figure S4). 

 Next, the ratio of the T389-phosphorylated S6K signal to the total S6K signal 

was determined for each variant, relative to wild-type TSC1-TSC2. We referred to this 

as the T389/S6K ratio. The higher the T389/S6K ratio, the higher the estimated activity 

of TORC1, and therefore the lower the activity of the exogenously expressed TSC1 and 

TSC2. The mean T389/S6K ratios for the TSC1 and TSC2 variants are shown in 

Figures 2C, 3C and 4C. To determine whether the T389/S6K ratios for the variants were 

significantly increased relative to wild-type TSC1-TSC2, we performed Student's t-

tests. This was the primary criterium for deciding whether a variant was disease-
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causing. We classified the variants with a significantly higher T389/S6K ratio than 

wild-type TSC1-TSC2 as pathogenic (p value < 0.05). Sixteen TSC1 variants (36%; see 

Supporting Table S1) and 70 TSC2 variants (65%; see Supporting Tables S2 and S3) 

were classified as pathogenic. For variants where the T389/S6K ratio was not 

significantly higher than wild-type TSC1-TSC2 (p > 0.05), we compared the T389/S6K 

ratio to the pathogenic variant that was included in each transfection experiment (TSC2 

R611Q for TSC2 variants; TSC1 L117P for TSC1 variants). All the variants that did not 

have a significantly higher T389/S6K ratio than wild-type TSC1-TSC2, had a 

significantly lower T389/S6K ratio than the corresponding pathogenic variant, and were 

therefore considered to be active in our assay. We classified these variants as probably 

neutral. 

 In addition to the T389/S6K ratio, we compared the signals of the TSC1 and 

TSC2 variants to the corresponding signals for the wild-type proteins (Figures 2B, 3A 

and 4A). Variant signals significantly less than that of the wild-type indicated that the 

steady state expression of the variant was reduced, either because the variant mRNA 

was less stable or translated less efficiently than the wild-type mRNA, or that the 

variant protein was unstable. Therefore, although we could not distinguish between 

effects on mRNA or protein stability, we classified variants with a significantly reduced 

signal (p<0.05, paired t-test) as unstable (Supporting Tables S1, S2 and S3). We 

identified 16 unstable TSC1 variants and 38 unstable TSC2 variants. All of the unstable 

TSC1 variants had been classified as pathogenic, according to the comparisons between 

the variant and wild-type T389/S6K ratios. Furthermore, consistent with a previous 

study [Mozaffari et al., 2009], all the unstable TSC1 variants gave a diffuse cytoplasmic 

signal as detected by immunofluorescent microscopy, in contrast to wild-type TSC1 and 

the stable TSC1 variants that all gave a characteristic punctate localisation pattern (data 
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not shown). Of the unstable TSC2 variants, 35/38 had been defined as pathogenic 

according to the comparisons of the T389/S6K ratios. In the 3 remaining cases (TSC2 

R1159L, TSC2 R1159Q and TSC2 R1772C), the variant inhibited S6K T389-

phosphorylation as effectively as wild-type TSC2, despite being detected at lower levels 

(Figure 4A and C; see Discussion). 

 Finally, we compared the signals for wild-type TSC1 in the presence of the 

different TSC2 variants (Figures 3B and 4B), and the signals for wild-type TSC2 in the 

presence of the different TSC1 variants (Figure 2A). Coexpression of TSC2 stabilises 

TSC1 [Nellist et al., 1999]. Therefore we classified TSC2 variants that were associated 

with a significantly reduced TSC1 signal (p < 0.05, paired t-test) and TSC1 variants that 

were associated with a significantly reduced TSC2 signal (p < 0.05, paired t-test) as 

destabilising. Three TSC1 variants, L93R, N198F199delinsI and M224R, were 

associated with a significant reduction in the TSC2 signal (Figure 2A). In each case we 

had classified the variant as pathogenic due to a significantly increased T389/S6K ratio 

compared to wild-type TSC1 (Supporting Table S1). Thirty-eight TSC2 variants were 

associated with a significant reduction in the TSC1 signal (Figures 3B and 4B). We 

divided these variants into 2 groups. One group of 31 variants clustered within the N-

terminal half of TSC2 (amino acids 98 - 897), while a smaller group of 7 variants 

clustered close to the C-terminus (amino acids 1525 - 1773). In all 38 cases we had 

classified the variant as pathogenic due to a significantly increased T389/S6K ratio 

compared to wild-type TSC1-TSC2 (Supporting Tables S2 and S3). 

  

Prediction Analysis 

 We investigated the possibility that the nucleotide changes corresponding to 

variants that did not affect TSC1-TSC2 function in our assay, disrupted TSC1 or TSC2 

Deleted: 6

Deleted: 9

Deleted:  6

Deleted: 5

Deleted: 6

Deleted: 4

Deleted: 4

Deleted: 5

Deleted: 6

Page 14 of 64

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14 

splicing. We analysed the TSC1 and TSC2 nucleotide changes using 3 different splice-

site prediction programs and identified 8 variants (5 TSC1 and 3 TSC2) that were 

predicted to cause splicing abnormalities (Supporting Tables S1 and S2). In one case 

(TSC2 c.1235A>T), this was confirmed by functional assessment of the predicted TSC2 

splice variant, TSC2 412del8 (Figure 3, Supporting Figure S2 and Supporting Table S2; 

[Jansen et al., 2008]). 

 Next, we investigated whether the functional assessments of the TSC1 and 

TSC2 variants were in agreement with the Sorting Intolerant From Tolerant (SIFT) 

amino acid substitution prediction method [Ng and Henikoff, 2006]. The SIFT 

algorithm combines information from the chemical structure of the individual amino 

acids and the evolutionary conservation of a protein to predict whether specific 

substitutions can be tolerated by the protein. 

 SIFT analysis of TSC1 indicated that the N-terminal (amino acids 1 - 300) and 

C-terminal (amino acids 700 - 1164) regions were relatively intolerant to amino acid 

changes [Mozaffari et al., 2009]. All the TSC1 variants classified as pathogenic 

according to our functional assessment clustered within the substitution intolerant N-

terminal region (Supporting Table S1). SIFT predicted that 18/41 (44%) of the TSC1 

missense changes would not be tolerated. In 36 cases (88%), the SIFT prediction was 

consistent with the functional assessment. In 5 cases, R190C, R246K, R246T, H732Y 

and R1097H, SIFT predicted that the substitution would not be tolerated, while the 

functional assessment indicated that the amino acid changes were probably neutral. In 

the case of the R246K and R246T substitutions, splice site prediction analysis indicated 

that the corresponding nucleotide changes (c.737G>A and c.737G>C) were likely to 

cause splicing errors. Similarly, although the K121R, G305R and G305W substitutions 

were tolerated by the SIFT analysis and were probably neutral according to the 
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functional assessment, splice site analysis predicted that the corresponding nucleotide 

changes were splice site mutations. The TSC1 H732Y variant has been identified in 

individuals without TSC (http://www.lovd.nl/TSC1) and is unlikely to cause TSC, 

consistent with the results of our functional assessment (Figure 2, Supporting Figure S1 

and Supporting Table S1). However, this variant is associated with focal cortical 

dysplasia type II [Lugnier et al., 2009]. Therefore, the SIFT result may still be accurate, 

even though the H732Y substitution is not critical for TSC1 function in our assay. Due 

to reduced amino acid sequence conservation at the C-terminus of TSC1, the SIFT 

prediction for the TSC1 R1097H substitution was made with a low degree of 

confidence, and is therefore not reliable (data not shown).          

 SIFT analysis of TSC2 indicated that amino acids 1 - 900 and 1500 - 1807, 

corresponding to the TSC1-binding domain and the GAP domain respectively, were 

intolerant of amino acid substitutions (Supporting Figure S5). In total, the SIFT 

prediction and functional assessment were consistent for 77 TSC2 variants 

(80%)(Supporting Tables S2 and S3). SIFT tolerated 42/96 (44%) of the TSC2 amino 

acid substitutions subjected to functional testing. Fourteen (31%) of these tolerated 

changes were classified as pathogenic according to the functional assessment. In 

addition, splice site analysis predicted that the TSC2 c.1118A>C (p.Q373P) variant that 

was tolerated by SIFT and classified as neutral according to the functional assessment, 

was likely to be a splice site mutation. Of the 54 substitutions that were not tolerated by 

SIFT, 5 were classified as neutral according to the functional assessment. For 2 of these, 

TSC2 c.1235A>T (p.E412V) and TSC2 c.1255C>T (p.P419S), splice site analysis 

predicted that the nucleotide changes would affect splicing. 

 In summary, using a transfection-based immunoblot assay we classified 16/45 

TSC1 variants (36%) and 70/107 TSC2 variants (65%) as pathogenic; and 29/45 
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TSC1variants (64%) and 37/107 TSC2 variants (32%) as probably neutral. In 8 cases, 5 

TSC1 and 3 TSC2, the variant was neutral according to the functional assessment, but 

splice site analysis predicted that the corresponding nucleotide change was likely to be a 

pathogenic splice site mutation. Of the 79 previously untested variants, we classified 43 

(54%) as pathogenic, including 5/19 TSC1 (26%) and 38/60 TSC2 variants (63%). 

 

 

Discussion 

 Mutation analysis of individuals with, or suspected of having, a genetic disease 

facilitates the diagnosis, treatment and genetic counselling of those individuals and their 

families. However, in some cases it is not possible to determine from the genetic data 

whether an identified nucleotide change is disease-causing. Functional analysis of 

predicted protein variants provides an additional method for determining whether 

specific changes are pathogenic. 

 We have characterised the effects of 152 TSC1 and TSC2 amino acid 

substitutions and small in-frame insertions/deletions on the TSC1-TSC2 complex. 

Based on our functional assessment we classified 86 (56%) of the changes as 

pathogenic. In 8 (5%) cases where we did not detect an effect on protein function, the 

corresponding nucleotide change was predicted to cause splicing defects. In one case 

(TSC2 1235A>T), we confirmed that the splicing defect resulted in the production of an 

inactive TSC2 variant [Janssen et al., 2008]. In the remaining 7 cases, additional RNA 

studies are required to confirm the predicted effects on splicing.   

 We tested 45 TSC1 variants, of which 42 were amino acid substitutions and 3 

were in-frame insertion/deletion changes. In 4 cases we analysed multiple changes at 

the same codon. Sixteen variants were detected at significantly reduced levels compared 
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to wild-type TSC1. In each case, TORC1 activity, as estimated from the ratio of T389 

phosphorylated S6K to total S6K, was increased compared to the wild-type control and 

we classified these variants as pathogenic. Consistent with previous studies [Nellist et 

al., 2009, Mozaffari et al., 2009], all the variants that were detected at low levels by 

immunoblotting mapped to the TSC1 N-terminal region (amino acids 50 - 224) and had 

a distinct cytoplasmic localisation pattern compared to wild-type TSC1, confirming the 

importance of this region for TSC1 function, localisation and stability [Hoogeveen-

Westerveld et al., 2010]. 

 We tested 104 TSC2 variants, of which 95 were amino acid substitutions, 3 were 

small in-frame insertions (1 - 3 amino acids) and 6 were in-frame deletions (1 - 26 

amino acids). In 12 cases we analysed multiple changes at the same codon. Fifty-five 

changes affected the N-terminal half of the protein (amino acids 1 - 900), and 52 

affected the C-terminal region (amino acids 901 - 1784). Twenty (36%) of the changes 

in the N-terminal region were unstable, and 31 (56%) were associated with significantly 

reduced levels of TSC1, consistent with an important role for the TSC2 N-terminal 

region in binding and stabilising TSC1 [Li et al., 2004]. Eighteen (35%) of the changes 

in the C-terminal region were unstable and 7 (13%) were associated with significantly 

reduced levels of TSC1. The 7 C-terminal variants associated with reduced levels of 

TSC1 mapped between amino acids 1525 and 1729, suggesting that this region may 

also play a role in maintaining stable TSC1-TSC2 complexes. 

 For 3 TSC2 variants, R1159L, R1159Q and R1772C, the T389/S6K ratio was 

not significantly different from wild-type TSC1-TSC2, despite the fact that the TSC2 

signals for these variants were reduced compared to wild-type TSC2. In a previous 

study we concluded that the R1772C variant was unlikely to be pathogenic because an 

individual with this variant and TSC had another TSC2 mutation [Nellist et al., 2008]. 
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Furthermore, individuals with this variant and no signs of TSC have been identified 

(http://www.lovd.nl/TSC2). Therefore, we classified the TSC2 R1772C variant as 

probably neutral (Supporting Table S3). The R1159L and R1159Q variants were also 

classified as probably neutral because, despite the reduced signals, they were both able 

to inhibit S6K T389 phosphorylation as effectively as wild-type TSC1-TSC2. In the 

TSC2 LOVD, the R1159L variant is classified as unknown, while the R1159Q variant is 

classified as having no known pathogenicity because it was identified in a TSC patient 

with another mutation (http://www.lovd.nl/TSC2). Nevertheless, in vivo it is possible 

that the reduced stability of the R1159L, R1159Q and R1772C variants renders them 

less effective at inhibiting TORC1 activity. It would be useful to have additional assays 

to characterise these variants in more detail. 

 We compared our functional assessment with the predictions of the SIFT 

algorithm [Ng and Henikoff, 2006] and with the classifications listed in the TSC1 and 

TSC2 LOVD (http://www.lovd.nl/TSC1 and http://www.lovd.nl/TSC2) (Supporting 

Tables S1, S2 and S3). Overall, there was broad agreement (>80%) between the SIFT 

predictions and our functional assessments for both the TSC1 and TSC2 variants. 

Nevertheless, there were sufficient exceptions to indicate that the results of SIFT and 

similar prediction algorithms should be treated with caution. In general there was also 

good agreement between the LOVD classifications and our functional assessment. 

According to the LOVD classifications, 29 variants had no known pathogenicity or 

were probably not pathogenic. We classified 27 (93%) of these as probably neutral. 

There was strong disagreement for only one TSC1 variant (F216S) and one TSC2 

variant (F615S). The TSC1 F216S variant was classified as probably not pathogenic in 

the TSC1 LOVD because it was identified in a TSC patient and their apparently 

unaffected parent, but is a pathogenic change according to our functional assessment. 
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Clinical re-evaluation prompted by our findings, showed that the parent has signs of 

TSC, and therefore the TSC1 c.647T>C (p.F216S) variant co-segregates with disease in 

this family. The status of the variant in the TSC1 LOVD has now been updated to 

pathogenicity unknown, in line with current LOVD definitions. The TSC2 F615S 

substitution was classified as having no known pathogenicity in the TSC2 LOVD, but is 

a pathogenic change according to our functional assessment, consistent with our 

previous studies [Nellist et al., 2001; Nellist et al., 2005]. The TSC2 c.1844T>C 

(p.F615S) variant was identified in an individual with TSC and once in a control group 

of >100 apparently unaffected individuals [Gilbert et al., 1998]. However, as far as we 

are aware, the variant has not been detected in any other individuals. The status of this 

variant in the TSC2 LOVD has now been updated to pathogenicity unknown. 

 Forty-nine of the variants tested were classified as pathogenic or probably 

pathogenic in the TSC1 and TSC2 LOVD. Forty-one (84%) of these were pathogenic 

according to our functional assessment. In 5 cases where the functional assessment 

indicated that the TSC1 or TSC2 variant was probably a neutral change, splice site 

analysis indicated that the corresponding nucleotide change was likely to be a splice site 

mutation. Therefore there was strong disagreement between the functional assessment 

and the LOVD classification for only 3 TSC2 variants, K599M, R951S and L1773I. 

The TSC2 K599M substitution is classified as pathogenic in the TSC2 LOVD because it 

was reported to be a de novo change [Niida et al., 1999] that reduced the TSC2-

dependent inhibition of 4E-BP1 phosphorylation in vitro [Tee et al., 2002]. However, 

consistent with our previous studies [Nellist et al., 2001; Nellist et al., 2005], in our 

assay, the K599M substitution did not affect TSC1 or TSC2 stability and inhibited S6K 

T389 phosphorylation as effectively as wild-type TSC2. The status of this variant in the 

TSC2 LOVD has now been changed to pathogenicity unknown as it is not clear why 
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there is a discrepancy between the different reports. The TSC2 R951S substitution was 

classified as probably pathogenic in the TSC2 LOVD, but is probably neutral according 

to our functional assessment. No additional family data was available for this variant 

and therefore according to the current LOVD classification criteria, the variant should 

be classified as pathogenicity unknown. Codon 951 is encoded by the alternatively 

spliced exon 25 of the TSC2 gene [Xu et al., 1995]. Very few pathogenic changes have 

been identified in this exon (http://www.lovd.nl/TSC2), and complete removal of this 

exon did not affect TSC2 function in our assay (M. Wentink, M. Nellist, unpublished 

observations). Finally, the TSC2 L1773I variant was classified as probably pathogenic 

in the TSC2 LOVD, but is probably neutral according to our functional assessment. 

Although the TSC2 c.5386C>A (p.L1773I) is listed as a de novo change, there is no 

record that paternity testing was performed, and it is possible that the TSC2 c.5386C>A 

(p.L1773I) variant is a rare neutral variant.  

 Although in most cases it was clear whether a variant inhibited S6K T389 

phosphorylation or not, for a few variants we noticed that there was more inter-

experiment variation. Some variants appeared more effective at inhibiting S6K T389 

phosphorylation in one experiment compared to the next. An example of this variation 

is shown in Supporting Figure S6. Furthermore, in some cases, the signal of the variant 

itself, or its binding partner, was quite variable, even though the transfection efficiency, 

as assessed by the S6K signal, was constant. For example, the mean signals for TSC2 in 

the presence of the TSC1 I76N and L93R variants are approximately equal (Figure 2A; 

Supporting Table S1). However, because the TSC2 signal showed more inter-

experiment variation in the presence of the I76N variant, it was not significantly 

different from the wild-type signal, while the TSC2 signal in the presence of the L93R 

variant was significantly reduced compared to the wild-type. For this reason, it is 
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possible that our assay missed some variants that are slightly less active or stable than 

wild-type TSC1 or TSC2. Therefore, although we could clearly distinguish variants that 

were less active than wild-type TSC1 and TSC2, it was more difficult to be certain that 

variants that were indistinguishable from wild-type in our assay were neutral variants, 

and not pathogenic. Nevertheless, we classified 29 TSC1 and 37 TSC2 variants as 

probably neutral because they were able to inhibit S6K T389 phosphorylation as 

effectively as wild-type TSC1-TSC2 in our assay. In the majority of cases these variants 

are most likely to be rare, neutral variants that do not cause TSC. However, we could 

not exclude the possibility that some variants have sufficient activity in our over-

expression system to inhibit TORC1, while in vivo they may be inactive or unstable. 

Furthermore, we did not investigate any other TORC1-dependent or -independent 

effects of TSC1 or TSC2. Some variants might affect other TSC1-TSC2 functions than 

the TSC1-TSC2 interaction or TORC1 signalling to S6K. Additional analysis of the 

variants classified here as probably neutral is necessary to determine whether these 

variants affect other TSC1-TSC2 functions. 

 Despite these notes of caution, we conclude that our functional assessment has 

provided important insight into whether specific TSC1 and TSC2 variants are 

pathogenic. In summary, we classified 152 different TSC1 and TSC2 variants using a 

transfection-based immunoblot assay that distinguished pathogenic TSC1 and TSC2 

variants from probable neutral variants according to whether there was increased S6K-

T389 phosphorylation. Based on this functional assessment, 86 variants were classified 

as pathogenic and 67 as probably neutral, providing useful information for genetic 

counselling in the individuals carrying these variants.     
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Titles and legends to figures 

 

Figure 1: Overview of the TSC1 and TSC2 variants analysed as part of this study. 

Amino acid variants are numbered as originally described [van Slegtenhorst et al., 1997; 

European Chromosome 16 Tuberous Sclerosis Consortium, 1993] (Genbank 

AF013168.1; GI: 2331280 (TSC1) and X75621; GI:450351 (TSC2)) and according to 

the amino acid sequences encoded by the expression constructs used in this study. The 

initiation codon is codon 1.   

(A) TSC1 variants. The positions of the TSC1 variants analysed as part of this study are 

indicated relative to the coding exons (3 - 23) of the TSC1 gene. 

(B) Variants mapping to the N-terminal half of TSC2 (amino acids 1 - 900). The 

positions of the variants are indicated relative to exons 1 - 23 of the TSC2 gene. 

(C) Variants mapping to the C-terminal half of TSC2 (amino acids 901 - 1784). The 

positions of the variants are indicated relative to exons 23 - 41 of the TSC2 gene. The 

alternatively spliced exons 25 and 31 are shown in grey and the position of the GAP 

domain, corresponding to exon 37, is shown in black. The amino acids encoded by exon 

31 were not present in the TSC2 expression constructs used in this study. 

 

Figure 2: Functional assessment of the TSC1 variants. The signals for TSC2, TSC1, 

total S6K (S6K) and T389-phosphorylated S6K (T389) were determined per variant, 

relative to the wild-type control (TSC1) in at least 4 independent transfection 

experiments. The mean signals are shown for each variant. Error bars represent the 

standard error of the mean; variants that were significantly different from the wild-type 

control (TSC1) are indicated with an asterisk. The signals from cells expressing 

exogenous TSC2 and S6K only, and no exogenous TSC1, are also shown (TSC2). 

Deleted: ¶
Figure 2: Immunoblot analysis of TSC1 

variants. Cells were transfected with 

expression constructs encoding TSC2, 
S6K and wild-type TSC1 

(TSC1/TSC2/S6K), TSC2, S6K and the 

pathogenic L117P variant (L117P), 
TSC2, S6K and the TSC1 variants, TSC2 

and S6K only (TSC2/S6K), TSC1 and 

S6K only (TSC1/S6K) or with an empty 

vector (control) and analysed by 

immunoblotting. ¶

(A) Immunoblot showing signals for 

wild-type TSC2 (TSC2), wild-type TSC1 

and the TSC1 variants (TSC1), total S6K 

(S6K) and T389-phosphorylated S6K 

(T389).¶

(B) Quantification of the TSC2 signals 

shown in (A), relative to the wild-type 

control (TSC1/TSC2/S6K).¶

(C) Quantification of the TSC1 signals 

shown in (A), relative to the wild-type 
control (TSC1/TSC2/S6K).¶

(D) Quantification of the total S6K 

signals shown in (A), relative to the wild-
type control (TSC1/TSC2/S6K).¶

(E) Ratio of T389-phosphorylated S6K to 

total S6K in the presence of the TSC1 
variants. The ratio of the signal for T389 

phosphorylated S6K (T389) to the total 

S6K protein (S6K) was determined 
relative to the wild-type control 

(TSC1/TSC2/S6K; T389/S6K ratio = 1) 

for each variant shown in (A).¶

¶

Figure 3: Immunoblot analysis of TSC2 

variants. Cells were transfected with 

expression constructs encoding TSC1, 

S6K and wild-type TSC2 (TSC2), TSC1, 

S6K and the pathogenic R611Q variant 

(R611Q), TSC1, S6K and the TSC2 

variants, or with an empty vector 

(control), and analysed by 

immunoblotting. ¶

(A) Immunoblot showing signals for 

wild-type TSC2 and the TSC2 variants 

(TSC2), wild-type TSC1 (TSC1), total 

S6K (S6K) and T389-phosphorylated 

S6K (T389).¶

(B) Quantification of the TSC2 signals 

shown in (A), relative to the wild-type 

control (TSC2).¶

(C) Quantification of the TSC1 signals 

shown in (A), relative to the wild-type 

control (TSC2).¶

(D) Quantification of the total S6K 

signals shown in (A), relative to the wild-
type control (TSC2).¶

(E) Ratio of T389-phosphorylated S6K to 

total S6K in the presence of the TSC2 
variants. The ratio of the signal for T389 

phosphorylated S6K (T389) to the total 

S6K protein (S6K) was determined 
relative to the wild-type control (TSC2; 

T389/S6K ratio = 1) for each variant 

shown in (A).¶
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(A) Mean TSC2 signals in the presence of the TSC1 variants, relative to wild-type 

TSC1-TSC2 (TSC1; TSC2 signal = 1). 

(B) Mean signals for the TSC1 variants, relative to wild-type TSC1 (TSC1; TSC1 signal 

=1). 

(C) Mean T389/S6K ratios for the TSC1 variants, relative to wild-type TSC1-TSC2 

(TSC1; T389/S6K ratio = 1). 

(D) Mean total S6K signals in the presence of the TSC1 variants, relative to wild-type 

TSC1-TSC2 (TSC1; S6K signal = 1).   

 

Figure 3: Functional assessment of the TSC2 variants mapping to the N-terminal half 

of TSC2 (amino acids 1 - 900). The signals for TSC2, TSC1, total S6K (S6K) and 

T389-phosphorylated S6K (T389) were determined per variant, relative to the wild-type 

control (TSC2) in at least 4 independent transfection experiments. The mean signals are 

shown for each variant. Error bars represent the standard error of the mean; variants that 

were significantly different from the wild-type control (TSC2) are indicated with an 

asterisk. 

(A) Mean signals for the TSC2 variants, relative to wild-type TSC1-TSC2 (TSC2; 

TSC2 signal =1). 

(B) Mean TSC1 signals in the presence of the TSC2 variants, relative to wild-type 

TSC1-TSC2 (TSC2; TSC1 signal = 1). 

(C) Mean T389/S6K ratios for the TSC2 variants, relative to wild-type TSC1-TSC2 

(TSC2; T389/S6K ratio = 1). 

(D) Mean total S6K signals in the presence of the TSC2 variants, relative to wild-type 

TSC1-TSC2 (TSC2; S6K signal = 1). 
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Figure 4: Functional assessment of the TSC2 variants mapping to the C-terminal half of 

TSC2 (amino acids 901 - 1784). The signals for TSC2, TSC1, total S6K (S6K) and 

T389-phosphorylated S6K (T389) were determined per variant, relative to the wild-type 

control (TSC2) in at least 4 independent transfection experiments. The mean signals are 

shown for each variant. Error bars represent the standard error of the mean; variants that 

were significantly different from the wild-type control (TSC2) are indicated with an 

asterisk. 

(A) Mean signals for the TSC2 variants, relative to wild-type TSC2 (TSC2; TSC2 

signal =1). 

(B) Mean TSC1 signals in the presence of the TSC2 variants, relative to wild-type 

TSC1-TSC2 (TSC2; TSC1 signal = 1). 

(C) Mean T389/S6K ratios for the TSC2 variants, relative to wild-type TSC1-TSC2 

(TSC2; T389/S6K ratio = 1). 

(D) Mean total S6K signals in the presence of the TSC2 variants, relative to wild-type 

TSC1-TSC2 (TSC2; S6K signal = 1). 
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Supporting Figure S1:  

 

 

 

Immunoblot analysis of TSC1 variants. Cells were transfected with expression 

constructs encoding TSC2, S6K and wild-type TSC1 (TSC1/TSC2/S6K), TSC2, S6K 

and the pathogenic L117P variant (L117P), TSC2, S6K and the TSC1 variants, TSC2 

and S6K only (TSC2/S6K), TSC1 and S6K only (TSC1/S6K) or with an empty vector 

(control) and analysed by immunoblotting.  

(A) Immunoblot showing signals for wild-type TSC2 (TSC2), wild-type TSC1 and the 

TSC1 variants (TSC1), total S6K (S6K) and T389-phosphorylated S6K (T389). 
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(B) Quantification of the TSC2 signals shown in (A), relative to the wild-type control 

(TSC1/TSC2/S6K). 

(C) Quantification of the TSC1 signals shown in (A), relative to the wild-type control 

(TSC1/TSC2/S6K). 

(D) Quantification of the total S6K signals shown in (A), relative to the wild-type 

control (TSC1/TSC2/S6K). 

(E) Ratio of T389-phosphorylated S6K to total S6K in the presence of the TSC1 

variants. The ratio of the signal for T389 phosphorylated S6K (T389) to the total S6K 

protein (S6K) was determined relative to the wild-type control (TSC1/TSC2/S6K; 

T389/S6K ratio = 1) for each variant shown in (A). 
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Supporting Figure S2:  
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Immunoblot analysis of TSC2 variants. Cells were transfected with expression 

constructs encoding TSC1, S6K and wild-type TSC2 (TSC2), TSC1, S6K and the 

pathogenic R611Q variant (R611Q), TSC1, S6K and the TSC2 variants, or with an 

empty vector (control), and analysed by immunoblotting.  

(A) Immunoblot showing signals for wild-type TSC2 and the TSC2 variants (TSC2), 

wild-type TSC1 (TSC1), total S6K (S6K) and T389-phosphorylated S6K (T389). 

(B) Quantification of the TSC2 signals shown in (A), relative to the wild-type control 

(TSC2). 

(C) Quantification of the TSC1 signals shown in (A), relative to the wild-type control 

(TSC2). 

(D) Quantification of the total S6K signals shown in (A), relative to the wild-type 

control (TSC2). 

(E) Ratio of T389-phosphorylated S6K to total S6K in the presence of the TSC2 

variants. The ratio of the signal for T389 phosphorylated S6K (T389) to the total S6K 

protein (S6K) was determined relative to the wild-type control (TSC2; T389/S6K ratio 

= 1) for each variant shown in (A). 
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Supporting Figure S3: 

 

 

 

Immunoblot analysis of different DNA preparations of the TSC2 R1200W, A889V, 

V334G, V334A and R57H variants. Cells were transfected with expression constructs 

encoding TSC1, S6K and wild-type TSC2 (TSC2), TSC1, S6K and the pathogenic 

R611Q variant (R611Q), TSC1, S6K and the TSC2 variants, or with an empty vector 

(control), and analysed by immunoblotting. Three different preparations of the TSC2 

R1200W and A889V variant expression constructs and 2 different preparations of the 

V334G, V334A and R57H variant constructs were tested. 
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(A) Immunoblot showing signals for wild-type TSC2 and the TSC2 variants (TSC2), 

wild-type TSC1 (TSC1), total S6K (S6K) and T389-phosphorylated S6K (T389). 

(B) Quantification of the TSC2 signals shown in (A). Mean signals for the different 

variants are shown relative to the wild-type control (TSC2). Error bars indicate the 

standard error of the mean. 

(C) Quantification of the TSC1 signals shown in (A), relative to the wild-type control 

(TSC2). 

(D) Quantification of the total S6K signals shown in (A), relative to the wild-type 

control (TSC2). 

(E) Ratio of T389-phosphorylated S6K to total S6K in the presence of the TSC2 

variants. The ratio of the signal for T389 phosphorylated S6K (T389) to the total S6K 

protein (S6K) was determined relative to the wild-type control (TSC2; T389/S6K ratio 

= 1) for each variant shown in (A). 

 

Page 45 of 64

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 

Supporting Figure S4: 

 

 

 

Immunoblot analysis of wild-type TSC2 and the TSC2 R1200W and R611Q variants. 

Cells were transfected with expression constructs encoding TSC1 (0.4 µg), S6K (0.1 µg) 

and the indicated amounts of the TSC2 expression constructs, and analysed by 

immunoblotting. Control cells (control) were transfected with 0.7 µg  empty vector. The 

effects of the TSC2 R1200W and R611Q variants on S6K T389 phosphorylation are 

clearly distinguishable from wild-type TSC2 across the whole range of transfected 

TSC2 expression construct DNA (0.05 - 0.4 µg). 
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Supporting Figure S5: 

 

 

   
 

 

SIFT analysis of TSC2. The TSC2 amino acid sequence from the TSC2 LOVD was 

analysed using the SIFT algorithm. The number of tolerated and not tolerated 

substitutions was determined for each amino acid residue. In the figure each amino acid 

position is represented by a box. Solid green boxes represent positions that are 

completely tolerant (all substitutions possible, according to SIFT); open green boxes 

represent positions where 1 or 2 substitutions are not tolerated. Solid red boxes 

represent intolerant positions (no substitutions tolerated); open red boxes represent 

positions where 3 or fewer substitutions are tolerated. Empty boxes represent positions 

where between 3 and 17 substitutions are tolerated. 
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Supporting Figure S6:  

 

 

 

Immunoblot analysis of the TSC2 105insALL and V560M variants. Cells were 

transfected with expression constructs encoding TSC1, S6K and wild-type TSC2 

(TSC2) or the TSC2 105insALL, V560M or R611Q variants, and analysed by 

immunoblotting in 2 separate experiments, as shown in A and B. Note the apparent 

increase in the T389-phosphorylated S6K signal for the V560M variant in B compared 

to A. 
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Supporting Table S1: 

TSC1 variants. TSC1 nucleotide changes and exon numbers are given according to the 

TSC1 LOVD (http://www.lovd.nl/TSC1). Nucleotide numbering reflects the TSC1 

cDNA numbering (Genbank AF013168.1; GI: 2331280) with +1 corresponding to the A 

of the ATG translation initiation codon in the reference sequence, according to journal 

guidelines (www.hgvs.org/mutnomen). Amino acid changes are numbered accordingly; 

the initiation codon is codon 1. Nucleotide changes predicted to cause splicing defects 

are marked with an asterisk. 

 Amino acid substitutions predicted by SIFT to be tolerated (T) or not tolerated 

(NT) are indicated. Previously untested variants are indicated in bold. Links to the 

original references describing the different variants can be accessed via the TSC1 

LOVD. Variants not previously listed in the TSC1 LOVD are indicated as 'not listed'.  

   

  

Exon Variant SIFT 

prediction 

LOVD 

classification  

Functional 

assessment 

4 c.149T>C  

(p.L50P) 

NT unknown unstable, pathogenic 

4 c.153A>C  

(p.E51D) 

T probably no 

pathogenicity 

probably neutral 

4 c.182T>C  

(p.L61P) 

NT probably 

pathogenic 

unstable, pathogenic 

5 c.215T>C  

(p.L72P) 

NT probably 

pathogenic 

unstable, 

pathogenic 
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5 c.227T>A  

(p.I76N) 

NT unknown unstable, 

pathogenic 

5 c.245A>C 

(p.K82T) 

T unknown probably neutral 

5 c.250G>A  

(p.A84T) 

T probably no 

pathogenicity 

probably neutral 

5 c.278T>G  

(p.L93R) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

5 c.346T>G 

(p.L116V) 

T not listed probably neutral 

5 c.350T>C  

(p.L117P) 

NT probably 

pathogenic 

unstable, pathogenic 

5 c.362A>G* 

(p.K121R) 

T unknown probably neutral 

(predicted splice 

mutation) 

6 c.381_383delTGT* 

(p.128delV) 

- unknown unstable, pathogenic 

6 c.397G>T 

(p.V133F) 

NT unknown unstable, pathogenic 

7 c.539T>C  

(p.L180P) 

NT probably 

pathogenic 

unstable, pathogenic 

7 c.568C>T 

(p.R190C) 

NT no known 

pathogenicity 

probably neutral 

7 c.569G>C NT unknown unstable, pathogenic 
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(p.R190P) 

7 c.572T>A 

(p.L191H) 

NT probably 

pathogenic 

unstable, pathogenic 

7 c.572T>G 

(p.L191R) 

NT unknown unstable, 

pathogenic 

7 c.593_595delACT 

(p.N198F199delinsI) 

- probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

7 c.602_604delCCT 

(p.S201del) 

- unknown unstable, 

pathogenic 

7 c.647T>C 

(p.F216S) 

NT probably no 

pathogenicity; 

updated to 

unknown 

unstable, 

pathogenic 

8 c.671T>G  

(p.M224R) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

8 c.737G>A*  

(p.R246K) 

NT probably 

pathogenic 

probably neutral 

(predicted splice 

mutation) 

8 c.737G>C*  

(p.R246T) 

NT probably 

pathogenic 

probably neutral 

(predicted splice 

mutation) 

9 c.853T>G  

(p.F285V) 

T not listed probably neutral 
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9 c.913G>A*  

(p.G305R) 

T probably 

pathogenic 

probably neutral 

(predicted splice 

mutation) 

9 c.913G>T*  

p.G305W 

T probably 

pathogenic 

probably neutral 

(predicted splice 

mutation) 

10 c.1001C>T  

p.S334L 

T probably no 

pathogenicity 

probably neutral 

12 c.1250C>T  

(p.T417I) 

T no known 

pathogenicity 

probably neutral 

14 c.1433A>G* 

(p.E478G) 

T unknown probably neutral 

14 c.1433A>G* 

(p.E478GinsGN) 

- unknown probably neutral 

15 c.1460C>G  

(p.S487C) 

T not listed probably neutral 

15 c.1526G>A 

(p.R509Q) 

T probably no 

pathogenicity 

probably neutral 

15 c.1648C>G 

(p.Q550E) 

T unknown probably neutral 

15 c.1760A>G 

(p.K587R) 

T no known 

pathogenicity 

probably neutral 

15 c.1849C>G 

(p.H617D) 

T not listed probably neutral 

15 c.1974C>G T probably no probably neutral 
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(p.D658E) pathogenicity 

15 c.1976C>T 

(p.A659V) 

T probably no 

pathogenicity 

probably neutral 

17 c.2194C>T 

(p.H732Y) 

NT no known 

pathogenicity 

probably neutral 

19 c.2420T>C  

(p.I807T) 

T unknown probably neutral 

21 c.2653C>T 

(p.R885W) 

T unknown probably neutral 

21 c.2696C>G  

(p.T899S) 

T unknown probably neutral 

23 c.3103G>A 

(p.G1035S) 

T no known 

pathogenicity 

probably neutral 

23 c.3184C>T 

(p.R1062W) 

T unknown probably neutral 

23 c.3290G>A 

(p.R1097H) 

NT probably no 

pathogenicity 

probably neutral 
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Supporting Table S2: 

TSC2 variants (amino acids 1 - 900). TSC2 nucleotide changes and exon numbers are 

given according to the TSC2 LOVD (http://www.lovd.nl/TSC2). Nucleotide numbering 

reflects the TSC2 cDNA numbering (Genbank X75621; GI:450351) with +1 

corresponding to the A of the ATG translation initiation codon in the reference 

sequence, according to journal guidelines (www.hgvs.org/mutnomen). Amino acid 

changes were numbered accordingly; the initiation codon is codon 1. Nucleotide 

changes predicted to cause splicing defects are marked with an asterisk.  

 Amino acid substitutions predicted by SIFT to be tolerated (T) or not tolerated 

(NT) are indicated. Links to the original references describing the different variants can 

be accessed via the TSC2 LOVD. Variants not previously listed in the TSC2 LOVD are 

indicated as 'not listed'. Previously untested variants are indicated in bold. 

 

Exon Variant SIFT 

prediction  

LOVD 

classification 

Functional 

assessment 

2 c.170G>A 

(p.R57H) 

NT not listed unstable, 

pathogenic 

2 c.185G>A 

(p.G62E) 

T unknown probably neutral 

3 c.292C>T 

(p.R98W) 

NT unknown destabilising, 

pathogenic 

3 c.307_315dup 

(p.105insALL) 

- unknown destabilising, 

pathogenic 

4 c.395C>G 

(p.S132C) 

T probably no 

pathogenicity 

probably neutral 
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4 c.447C>G 

(p.F143L) 

T probably no 

pathogenicity 

probably neutral 

5 c.586G>A 

(p.A196T) 

T probably no 

pathogenicity 

probably neutral 

6 c.646G>A 

(p.E216K) 

T not listed probably neutral 

7 c.656T>C 

(p.L219P) 

NT not listed destabilising, 

pathogenic 

7 c.730T>C 

(p.C244R) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

8 c.782G>C 

(p.R261P) 

T probably 

pathogenic 

destabilising, 

pathogenic 

8 c.781C>T 

(p.R261W) 

NT probably no 

pathogenicity 

probably neutral 

8 c.825C>G 

(p.N275K) 

T not listed probably neutral 

8 c.824_826del 

(p.275delN) 

- unknown destabilising, 

pathogenic 

10 c.1001T>C 

(p.V334A) 

NT not listed unstable, 

destabilising, 

pathogenic 

10 c.1001T>G 

(p.V334G) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 
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10 c.1019T>C 

(p.L340P) 

NT not listed pathogenic 

10 c.1070C>T 

(p.A357V) 

T not listed probably neutral 

10 c.1100G>A 

(p.R367Q) 

T no known 

pathogenicity 

probably neutral 

10 c.1118A>C* 

(p.Q373P) 

T unknown probably neutral 

(predicted splice 

mutation) 

11 c.1235A>T* 

(p.E412V) 

NT unknown probably neutral 

(splice mutation) 

11 c.1235A>T* 

(p.412del8) 

- unknown unstable, 

destabilising, 

pathogenic 

11 c.1255C>T* 

(p.P419S) 

NT probably 

pathogenic 

probably neutral 

(predicted splice 

mutation) 

13 c.1366A>G 

(p.E456K) 

T not listed probably neutral 

13 c.1378G>A 

(p.A460T) 

T unknown probably neutral 

13 c.1385G>A 

(p.R462H) 

NT not listed unstable, 

destabilising, 

pathogenic 

13 c.1385_1386del NT not listed unstable, 
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insCT 

(p.R462P) 

destabilising, 

pathogenic 

13 c.1397T>C 

(p.L466P) 

T unknown unstable, 

destabilising, 

pathogenic 

14 c.1574A>G 

(p.N525S) 

T no known 

pathogenicity 

probably neutral 

15 c.1678G>A 

(p.V560M) 

T not listed pathogenic 

16 c.1736del78 

(p.580del26) 

- unknown unstable, 

destabilising, 

pathogenic 

16 c.1790insCAC 

(p.597insH) 

- unknown destabilising, 

pathogenic 

16 c.1792T>C 

(p.Y598H) 

T probably 

pathogenic 

destabilising, 

pathogenic 

16 c.1796A>T 

(p.K599M) 

T pathogenic; 

updated to 

unknown 

probably neutral 

16 c.1820C>A 

(p.A607E) 

T unknown unstable, 

destabilising, 

pathogenic 

16 c.1819G>T 

(p.A607S) 

T not listed probably neutral 

16 c.1819G>A T probably no probably neutral 
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(p.A607T) pathogenicity 

16 c.1826_1828du

p  

(p.609insS) 

- pathogenic destabilising, 

pathogenic 

16 c.1832G>A 

(p.R611Q) 

NT pathogenic unstable, 

destabilising, 

pathogenic 

16 c.1831C>T 

(p.R611W) 

NT pathogenic destabilising, 

pathogenic 

17 c.1841C>A* 

(p.A614D) 

T probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

17 c.1844T>C 

(p.F615S) 

T no known 

pathogenicity; 

updated to 

unknown 

destabilising, 

pathogenic 

17 c.1864C>T 

(p.R622W) 

NT unknown unstable, 

destabilising, 

pathogenic 

17 c.1882C>G* 

(p.R628G) 

T unknown pathogenic 

18 c.1973A>C 

(p.K658T) 

T not listed probably neutral 

18 c.1972_1974del 

(p.658delK) 

- no known 

pathogenicity 

probably neutral 
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18 c.2078T>C 

(p.L693P) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

18 c.2087G>A 

(p.C696Y) 

NT unknown unstable, 

destabilising, 

pathogenic 

20 c.2306T>A 

(p.V769E) 

T probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

21 c.2363T>G 

(p.M788R) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

21 c.2410T>C 

(p.C804R) 

NT probably 

pathogenic 

destabilising, 

pathogenic 

21 c.2458_2460del  

(p.820delI) 

- pathogenic unstable, 

destabilising, 

pathogenic 

21 c.2476C>A 

(p.L826M) 

NT no known 

pathogenicity 

probably neutral 

23 c.2666C>T 

(p.A889V) 

NT probably  

pathogenic  

unstable, 

destabilising, 

pathogenic 

23 c.2690T>C 

(p.F897S) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 
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Supporting Table S3: 

TSC2 variants (amino acids 900 - 1807). TSC2 nucleotide changes and exon numbers 

are given according to the TSC2 LOVD (http://www.lovd.nl/TSC2). Nucleotide 

numbering reflects the TSC2 cDNA numbering (Genbank X75621; GI:450351) with +1 

corresponding to the A of the ATG translation initiation codon in the reference 

sequence, according to journal guidelines (www.hgvs.org/mutnomen). Amino acid 

changes are numbered according to the sequence of the wild-type TSC2 expression 

construct used [European Chromosome 16 Tuberous Sclerosis Consortium, 1993] 

(Genbank X75621; GI:450351). Amino acid changes according to the TSC2 LOVD are 

also given, where this differs from the original sequence due to the inclusion of 23 

amino acids encoded by the alternatively spliced exon 31 (Genbank X75621.1; 

GI:4071057). Nucleotide changes predicted to cause splicing defects are marked with an 

asterisk. 

 Amino acid substitutions predicted by SIFT to be tolerated (T) or not tolerated 

(NT) are indicated. Previously untested variants are indicated in bold. Links to the 

original references describing the different variants can be accessed via the TSC2 

LOVD. Variants not previously listed in the TSC2 LOVD are indicated as 'not listed'. 

 

 

Exon Variant SIFT 

prediction  

LOVD 

classification 

Functional 

assessment 

23 c.2713C>G 

(p.R905G) 

NT probably 

pathogenic 

pathogenic 

23 c.2714G>A 

(p.R905Q) 

NT pathogenic pathogenic 

23 c.2713C>T NT pathogenic pathogenic 
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(p.R905W) 

24 c.2765T>G (p.L916R) NT probably 

pathogenic 

unstable, 

pathogenic 

25 c.2853A>T 

(p.R951S) 

T probably 

pathogenic; 

updated to 

unkown 

probably neutral 

25 c.2963G>C  

(p.R988P) 

T not listed probably neutral 

26 c.2978C>T 

(p.T993M) 

T probably no 

pathogenicity 

probably neutral 

26 c.3082G>A 

(p.D1028N) 

NT not listed unstable, 

pathogenic 

26 c.3095G>C  

(p.R1032P) 

NT probably 

pathogenic 

pathogenic 

26 c.3106T>C 

(p.S1036P) 

NT probably 

pathogenic 

pathogenic 

27 c.3182T>C  

(p.L1061P) 

NT not listed unstable, 

pathogenic 

27 c.3203C>A 

(p.T1068I) 

NT unknown pathogenic 

27 c.3224C>T 

(p.T1075I) 

NT unknown probably neutral 

28 c.3382C>T  

(p.R1122C) 

T not listed probably neutral 
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29 c.3476G>T 

(p.R1159L) 

T unknown unstable, 

probably neutral 

29 c.3476G>A 

(p.R1159Q) 

T no known 

pathogenicity 

unstable, 

probably neutral  

29 c.3475C>T 

(p.R1159W) 

T unknown probably neutral 

29 c.3596T>G 

(p.V1199G) 

T unknown unstable, 

pathogenic 

29 c.3598C>T 

(p.R1200W) 

NT pathogenic unstable, 

pathogenic 

29 c.3605C>A  

(p.P1202H) 

T not listed pathogenic 

30 c.3611G>A* 

(p.G1204E) 

NT probably 

pathogenic 

pathogenic 

32 c.3943C>G 

(p.P1315A/ 

P1292A) 

T unknown probably neutral 

33 c.4105C>T 

(p.R1369W/ 

R1346W) 

T probably no 

pathogenicity 

probably neutral 

33 c.4225C>T 

(p.R1409W/ 

R1386W) 

T no known 

pathogenicity 

probably neutral 

33 c.4298C>T 

(p.S1433L/ S1410L) 

T unknown probably neutral 
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33 c.4316G>A 

(p.G1439D/G1416D) 

T unknown probably neutral 

33 c.4490C>G 

(p.P1497R/P1474R) 

NT pathogenic pathogenic 

33 c.4489C>T  

(p.P1497S/P1474S) 

T not listed pathogenic 

33 c.4489C>A 

(p.P1497T/P1474T) 

NT probably 

pathogenic 

pathogenic 

34 c.4499T>G 

(p.V1500G/V1477G) 

T probably 

pathogenic 

pathogenic 

34 c.4525_4527del  

(p.1510delF/ 

1487delF) 

- no known 

pathogenicity 

probably neutral 

35 c.4601T>A 

p.L1534H/L1511H) 

NT probably 

pathogenic 

unstable, 

pathogenic 

35 c.4604A>C 

(p.D1535A/D1512A) 

NT unknown pathogenic 

35 c.4643T>C  

(p.L1548P/L1525P) 

NT unknown unstable, 

destabilising, 

pathogenic 

36 c.4700G>T 

(p.G1567V 

/G1544V) 

NT unknown destabilising, 

pathogenic 

36 c.4726_4783del 

(p.1575del19/ 

- unknown unstable, 

pathogenic 
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1552del19) 

36 c.4733T>C 

(p.L1578P/L1555P) 

NT probably 

pathogenic 

unstable, 

destabilising, 

pathogenic 

36 c.4735G>A 

(p.G1579S/G1556S) 

NT probably 

pathogenic 

pathogenic 

37 c.4918C>T 

(p.H1640Y/H1617Y) 

NT unknown pathogenic 

37 c.4925G>A 

(p.G1642D/G1619D) 

NT unknown pathogenic 

37 c.4927A>C 

(p.N1643H/N1620H) 

NT unknown pathogenic 

37 c.4928A>T 

(p.N1643I/N1620I) 

NT probably 

pathogenic 

pathogenic 

37 c.4929C>G 

(p.N1643K/N1620K) 

NT probably 

pathogenic 

unstable, 

pathogenic 

37 c.4928A>G  

(p.N1643S/N1620S) 

NT not listed pathogenic 

37 c.4937T>G 

(p.V1646G/V1623G) 

NT unknown unstable, 

destabilising, 

pathogenic 

38 c.5057A>C  

(p.Q1686P/Q1663P) 

T not listed unstable, 

destabilising, 

pathogenic 

39 c.5138G>A NT unknown unstable, 
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(p.R1713H/R1690H) destabilising, 

pathogenic 

40 c.5228G>A 

(p.R1743Q/R1720Q) 

NT pathogenic pathogenic 

40 c.5227C>T 

(p.R1743W/ 

R1720W) 

NT pathogenic pathogenic 

40 c.5238_5255del 

(p.1746del6/ 

1723del6) 

- pathogenic unstable, 

destabilising, 

pathogenic 

41 c.5383C>T 

(p.R1795C/R1772C) 

NT no known 

pathogenicity 

probably neutral 

41 c.5386C>A 

(p.L1796I/L1773I) 

T probably 

pathogenic; 

updated to 

unknown 

probably neutral 
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