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Abstract. The semantic Web service community develops efforts to bring 

semantics to Web service descriptions and allow automatic discovery and 

composition. However, there is no widespread adoption of such descriptions 

yet, because semantically defining Web services is highly complicated and 

costly. As a result, production Web services still rely on syntactic descriptions, 

key-word based discovery and predefined compositions. Hence, more advanced 

research on syntactic Web services is still ongoing. In this work we build 

syntactic composition Web services networks with three well known similarity 

metrics, namely Levenshtein, Jaro and Jaro-Winkler. We perform a 

comparative study on the metrics performance by studying the topological 

properties of networks built from a test collection of real-world descriptions. It 

appears Jaro-Winkler finds more appropriate similarities and can be used at 

higher thresholds. For lower thresholds, the Jaro metric would be preferable 

because it detect less irrelevant relationships. 

Keywords: Web services, Web services Composition, Interaction Networks, 

Similarity Metrics, Flexible Matching.  

1 Introduction 

Web Services (WS) are autonomous software components that can be published, 

discovered and invoked for remote use. For this purpose, their characteristics must be 

made publicly available under the form of WS descriptions. Such a description file is 

comparable to an interface defined in the context of object-oriented programming. It 

lists the operations implemented by the WS. Currently, production WS use syntactic 

descriptions expressed with the WS description language (WSDL) [1], which is a 

W3C (World Wide Web Consortium) specification. Such descriptions basically 

contain the names of the operations and their parameters names and data types. 

Additionally, some lower level information regarding the network access to the WS is 

present. WS were initially designed to interact with each other, in order to provide a 

composition of WS able to offer higher level functionalities. Current production 

discovery mechanisms support only keyword-based search in WS registries and no 

form of inference or approximate match can be performed. 

WS have rapidly emerged as important building blocks for business integration. 

With their explosive growth, the discovery and composition processes have become 

extremely important and challenging. Hence, advanced research comes from the 

semantic WS community, which develops a lot of efforts to bring semantics to WS 
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descriptions and to automate discovery and composition. Languages exist, such as 

OWL-S [2], to provide semantic unambiguous and computer-interpretable 

descriptions of WS. They rely on ontologies to support users and software agents to 

discover, invoke and compose WS with certain properties. However, there is no 

widespread adoption of such descriptions yet, because their definition is highly 

complicated and costly, for two major reasons. First, although some tools have been 

proposed for the annotation process, human intervention is still necessary. Second, the 

use of ontologies raises the problem of ontology mapping which although widely 

researched, is still not fully solved. To cope with this state of facts, research has also 

been pursued, in parallel, on syntactic WS discovery and composition.  

Works on syntactic discovery relies on comparing structured data such as 

parameters types and names, or analyzing unstructured textual comments. Hence, in 

[3], the authors provide a set of similarity assessment methods. WS Properties 

described in WSDL are divided into four categories: lexical, attribute, interface and 

QoS. Lexical similarity concerns textual properties such as the WS name or owner. 

Attribute similarity estimates the similarity of properties with more supporting 

domain knowledge, like for instance, the property indicating the type of media stream 

a broadcast WS provides. Interface similarity focuses on the WS operations input and 

output parameters, and evaluates the similarity of their names and data types. Qos 

similarity assesses the similarity of the WS quality performance. A more recent trend 

consists in taking advantage of the latent semantics. In this context, a method was 

proposed to retrieve relevant WS based on keyword-based syntactical analysis, with 

semantic concepts extracted from WSDL files [4]. In the first step, a set of WS is 

retrieved with a keyword search and a subset is isolated by analyzing the syntactical 

correlations between the query and the WS descriptions. The second step captures the 

semantic concepts hidden behind the words in a query and the advertisements in the 

WS, and compares them.  

Works on syntactic composition encompasses a body of research, including the use 

of networks to represent compositions within a set of WS. In [5], the input and output 

parameters names are compared to build the network. To that end, the authors use a 

strict matching (exact similarity), an approximate matching (cosine similarity) and a 

semantic matching (WordNet similarity). The goal is to study how approximate and 

semantic matching impact the network small-world and scale-free properties. In this 

work, we propose to use three well-known approximate string similarity metrics, as 

alternatives to build syntactic WS composition networks. Similarities between WS are 

computed on the parameters names. Given a set of WS descriptions, we build several 

networks for each metrics by making their threshold varying. Each network contains 

all the interactions between the WS that have been computed on the basis of the 

parameters similarities retrieved by the approximate matching. For each network we 

compute a set of topological properties. We then analyze their evolution for each 

metric, in function of the threshold value. This study enables us to assess which 

metric and which threshold are the most suitable.  

Our main contribution is to propose a flexible way to build WS composition 

networks based on approximate matching functions. This approach allows to link 

some semantically related WS that does not appear on WS composition networks 

based on strict equality of the parameters names. We provide a thorough study 

regarding the use of syntactic approximate similarity metrics on WS networks 



 

topology. The results of our experimentations allow determining the suitability of the 

metrics and the threshold range that maintains the false positive rate at an acceptable 

level.  

In section 2, we give some basic concepts regarding WS definition, description and 

composition. Interaction networks are introduced in section 3 along with the 

similarity metrics. Section 4 is dedicated to the network properties. In section 5 we 

present and discuss our experimental results. Finally, in section 6 we highlight the 

conclusions and limitations of, and explain how our work it can be extended.  

2 Web Services 

In this section we give a formal definition of WS, explain how it can be described 

syntactically, and define WS composition.  

A WS is a set of operations. An operation  represents a specific functionality, 

described independently from its implementation for interoperability purposes. It can 

be characterized by its input and output parameters, noted  and , respectively.  

corresponds to the information required to invoke operation , whereas is the 

information provided by this operation. At the WS level, the set of input and output 

parameters of a WS  are  and , respectively. Fig. 1 represents a 

WS labeled  with two operations numbered  and , and their sets of input and 

output parameters: , , , , , 

. 

 

 

Fig. 1. Schematic representation of a WS , with two operations  and  and six parameters , 

, , ,  and . 

WS are either syntactically or semantically described. In this work, we are only 

concerned by the syntactic description of WS, which relies on the WSDL language. A 

WS is described by defining messages and operations under the form of an XML 

document. A message encapsulates the data elements of an operation. Each message 

consists in a set of input or output parameters. Each parameter has a name and a data 

type. The type is generally defined using the XML schema definition language 

(XSD), which makes it independent from any implementation. 

WS composition addresses the situation when a request cannot be satisfied by any 

available single atomic WS. In this case, it might be possible to fulfill the request by 

combining some of the available WS, resulting in a so-called composite WS. Given a 

request  with input parameters , desired output parameters  and a set of available 

WS, one needs to find a WS  such that  and . Finding a WS  that 
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can fulfill  alone is referred to as WS discovery. When it is impossible for a single 

WS to fully satisfy , one needs to compose several WS , so that for all 

, is required at a particular stage in the composition and 

. This problem is referred to as WS composition. The composition thus 

produces a specification of how to link the available WS to realize the request.  

3 Interaction Networks 

An interaction network constitutes a convenient way to represent a set of interacting 

WS. It can be an object of study itself, and it can also be used to improve automated 

WS composition. In this section, we describe what these networks are and how they 

can be built.  

Generally speaking, we define an interaction network as a directed graph whose 

nodes correspond to interacting objects and links indicate the possibility for the 

source nodes to act on the target nodes. In our specific case, a node represents a WS, 

and a link is created from a node  towards a node  if and only if for each input 

parameter in , a similar output parameter exists in . In other words, the link exists 

if and only if WS  can provide all the information requested to apply WS . In Fig. 

2, the left side represents a set of WS with their input and output parameters, whereas 

the right side corresponds to the associated interaction network. Considering WS  

and WS , all the inputs of , , are included in the outputs of , 

, i.e. . Hence,  is able to provide all the information needed to 

interact with . Consequently, a link exists between  and  in the interaction 

network. On the contrary, neither  nor  ( , ), provide all 

the parameters required by  ( ), which is why there is no link pointing 

towards  in the interaction network. 

 

 

 

Fig. 2. Example of a WS interaction network. 

An interaction link between two WS therefore represents the possibility of 

composing them. Determining if two parameters are similar is a complex task which 

depends on how the notion of similarity is defined. This is implemented under the 

form of the matching function through the use of similarity metrics. 
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Parameters similarity is performed on parameter names. A matching function  

takes two parameter names  and , and determines their level of similarity. We use 

an approximate matching in which two names are considered similar if the value of 

the similarity function is above some threshold. The key characteristic of the syntactic 

matching techniques is they interpret the input in function of its sole structure. Indeed, 

string-based terminological techniques consider a term as a sequence of character. 

These techniques are typically based on the following intuition: the more similar the 

strings, the more likely they convey the same information.  

We selected three variants of the extensively used edit distance: Levenshtein, Jaro 

and Jaro-Winkler [6]. The edit distance is based on the number of insertions, 

deletions, and substitutions of characters required to transform one compared string 

into the other.  

The Levenshtein metric is the basic edit distance function, which assigns a unit 

cost to all edit operations. For example, the number of operations to transform both 

strings kitten and sitting into one another is : 1) kitten (substitution of k with s) 

sitten; 2) sitten (substitution of e with i) sittin; 3) sittin (insertion of g at the end) 

sitting. 

The Jaro metric takes into account typical spelling deviations between strings. 

Consider two strings and . A character  in is “in common” with  if the 

same character  appears in about the place in .  In equation 1,  is the number of 

matching characters and  is the number of transpositions. A transposition is the 

operation needed to permute two matching characters if they are not farther than the 

distance expressed by equation 2.  

 

 

(1) 

 
(2) 

The Jaro-Winkler metric, equation 3, is an extension of the Jaro metric. It uses a 

prefix scale  which gives more favorable ratings to strings that match from the 

beginning for some prefix length .  

 (3) 

The metrics score are normalized such that  equates to no similarity and  is an 

exact match. 

4 Network Properties 

The degree of a node is the number of links connected to this node. Considered at the 

level of the whole network, the degree is the basis of a number of measures. The 

minimum and maximum degrees are the smallest and largest degrees in the whole 

network, respectively. The average degree is the average of the degrees over all the 



nodes. The degree correlation reveals the way nodes are related to their neighbors 

according to their degree. It takes its value between  (perfectly disassortative) and 

 (perfectly assortative). In assortative networks, nodes tend to connect with nodes 

of similar degree. In disassortative networks, nodes with low degree are more likely 

connected with highly connected ones [7]. 

The density of a network is the ratio of the number of existing links to the number 

of possible links. It ranges from  (no link at all) to  (all possible links exist in the 

network, i.e. it is completely connected). Density describes the general level of 

connectedness in a network. A network is complete if all nodes are adjacent to each 

other. The more nodes are connected, the greater the density [8]. 

Shortest paths play an important role in the transport and communication within a 

network. Indeed, the geodesic provides an optimal path way for communication in a 

network. It is useful to represent all the shortest path lengths of a network as a matrix 

in which the entry is the length of the geodesic between two distinctive nodes. A 

measure of the typical separation between two nodes in the network is given by the 

average shortest path length, also known as average distance. It is defined as the 

average number of steps along the shortest paths for all possible pairs of nodes [7]. 

In many real-world networks it is found that if a node  is connected to a node , 

and  is itself connected to another node , then there is a high probability for  to be 

also connected to . This property is called transitivity (or clustering) and is formally 

defined as the triangle density of the network. A triangle is a structure of three 

completely connected nodes. The transitivity is the ratio of existing to possible 

triangles in the considered network [9]. Its value ranges from  (the network does not 

contain any triangle) to  (each link in the network is a part of a triangle). The higher 

the transitivity is, the more probable it is to observe a link between two nodes 

possessing a common neighbor.  

5 Experiments 

In those experiments, our goal is twofold. First we want to compare different metrics 

in order to assess how the links creation is affected by the similarity between the 

parameters in our interaction network. We would like to identify the best metric in 

terms of suitability regarding the data features. Second we want to isolate a threshold 

range within which the matching results are meaningful. By tracking the evolution of 

the network links, we will be able to categorize the metrics and to determine an 

acceptable threshold value. We use the previously mentioned complex network 

properties to monitor this evolution. We start this section by describing our method. 

We then give the results and their interpretation for each of the topological property 

mentioned in section 4.  

We analyzed the SAWSDL-TC1 collection of WS descriptions [10]. This test 

collection provides  semantic WS descriptions written in SAWSDL, and 

distributed over  thematic domains (education, medical care, food, travel, 

communication, economy and weapon). It originates in the OWLS-TC2.2 collection, 

which contains real-world WS descriptions retrieved from public IBM UDDI 

registries, and semi-automatically transformed from WSDL to OWL-S. This 

collection was subsequently re-sampled to increase its size, and converted to 
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SAWSDL. We conducted experiments on the interaction networks extracted from 

SAWSDL-TC1 using the WS network extractor WS-NEXT [11]. For each metric, the 

networks are built by varying the threshold from  to  with a  step.  

Fig. 3 shows the behavior of the average degree versus the threshold for each 

metric. First, we remark the behavior of the Jaro and the Jaro-Winkler curves are very 

similar. This is in accordance with the fact the Jaro-Winkler metric is a variation of 

the Jaro metric, as previously stated. Second, we observe the three curves have a 

sigmoid shape, i.e. they are divided in three areas: two plateaus separated by a slope. 

The first plateau corresponds to high average degrees and low threshold values. In 

this area the metrics find a lot of similarities, allowing many links to be drawn. Then, 

for small variations of the threshold, the average degree brutally decreases. The 

second plateau corresponds to average degrees comparable with values obtained for a 

threshold set at , and deserves a particular attention, because this threshold value 

causes links to appear only in case of exact match. We observe that each curve 

inflects at a different threshold value. The curves inflects at ,  and  for 

Levenshtein, Jaro and Jaro-Winkler, respectively. Those differences are related to the 

number of similarities found by the metrics. With a threshold of , they retrieve 

,  and  similarities respectively. 

 

 

 

Fig. 3. Average degree in function of the metric threshold. Comparative curves of the 

Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics. 

 

To highlight the difference between the curves, we look at their meaningful part, 

ranging from the inflexion point to the threshold value of . We calculated the 

percentage of average degrees in addition to the average degree obtained with a 

threshold of  for different threshold values. The results are gathered in Table 1. For a 

threshold of , the average degree is  and the percentage reference is of course . 

In the threshold area ranging from the inflexion point to , the average degree 

variation is always above , which seems excessive. Nevertheless, this point 

needs to be confirmed. Let us assume that above  of the minimum average 



degree, results may be not acceptable (  corresponding to an average degree of 

). From this postulate, the appropriate threshold is  for the Levenshtein metric, 

 for the Jaro metric. For the Jaro-Winkler metric, the percentage of  is 

reached at a threshold of , then it jumps to  at the threshold of . Therefore, 

we can assume that the threshold range that can be used is  for Levenshtein, 

 for Jaro and  for Jaro-Winkler. 

Table 1. Proportional variation in average degree between the networks obtained for some 

given thresholds and those resulting from the maximal threshold. For each metric, the smaller 

considered threshold corresponds to the inflexion point. 

Threshold         

Levenshtein         
Jaro - - -      
Jaro-Winkler - - - -     

 

To go deeper, one has to consider the qualitative aspects of the results. In other 

words, we would like to know if the additional links are appropriate i.e. if they 

correspond to parameters similarities having a semantic meaning. To that end, we 

analyzed the parameters similarities computed by each metric from the  threshold 

values and we estimated the false positives. As we can see in Table 2, the metrics can 

be ordered according to their score: Jaro returns the least false positives, Levenshtein 

stands between Jaro and Jaro-Winckler, which retrieves the most false positives. The 

score of Jaro-Winkler can be explained by analyzing the parameters names. This 

result is related to the fact this metric favors the existence of a common prefix 

between two strings. Indeed, in those data, a lot of parameters names belonging to the 

same domain start with the same beginning. The meaningful part of the parameter 

stands at the end. As an example, let us mention the two parameter names P r o v i d e  

M e d i c a l F l i g h t I n f o r m a t i o n _ D e s i r e d D e p a r t u r e A i r p o r t  and P r o v i d e  

M e d i c a l F l i g h t I n f o r m a t i o n _ D e s i r e d D e p a r t u r e D a t e T i m e . Those parameters 

were considered as similar although the end parts have not the same meaning. We 

find that Levenshtein and Jaro have a very similar behavior concerning the false 

positives. Indeed, the first false positives that appear are names differing by a very 

short but very meaningful sequence of characters. As an example, consider: 
P r o v i d e M e d i c a l T r a n s p o r t I n f o r m a t i o n _ D e s i r e d D e p a r t u r e D a t e T i m e and 

P r o v i d e N o n M e d i c a l T r a n s p o r t I n f o r m a t i o n _ D e s i r e d D e p a r t u r e D a t e T i m e . 

The string Non gives a completely different meaning to both parameters, which 

cannot be detected by the metrics. 

Table 2. Parameters similarities from the  threshold values.  similarities are retrieved 

at the  threshold. 

Metric  threshold 

value  

Number of retrieved 

similarities  

Number of 

false positives  

Percentage of 

false positives 

Levenshtein     
Jaro     
Jaro-Winkler     

 



 

To refine our conclusions on the best metric and the most appropriate threshold for 

each metric, we decided to identify the threshold values leading to false positives. 

With the Levenshtein, Jaro and Jaro-Winkler metric, we have no false positive at the 

thresholds of , , and , respectively. Compared to the  appropriate 

similarities retrieved with a threshold of , they find ,  and  more appropriate 

similarities, respectively. In Table 3, we gathered the additional similarities retrieved 

by each metric. At the considered thresholds, it appears that Levenshtein finds some 

similarities that neither Jaro nor Jaro-Winkler find. Jaro-Winkler retrieves all the 

similarities found by Jaro and some additional ones. We also analyzed the average 

degree value at those thresholds. The network extracted with Levensthein does not 

present an average degree different from the one observed at a threshold of . Jaro 

and Jaro-Winkler networks show an average degree which is  above the one 

obtained for a threshold of . Hence, if the criterion is to retrieve  of false 

positives, Jaro-Winkler is the most suitable metric. 

Table 3. Additional appropriate similarities for each metric at the threshold of  of false 

positives. 

Metric 

Threshold 

Similarities  

Levenshtein 

 

G e t P a t i e n t M e d i c a l R e c o r d s _ P a t i e n t H e a l t h I n s u r a n c e N u

m b e r  ~  

S e e P a t i e n t M e d i c a l R e c o r d s _ P a t i e n t H e a l t h I n s u r a n c e N u

m b e r  

_ G O V E R N M E N T - O R G A N I Z A T I O N  ~  

_ G O V E R N M E N T O R G A N I Z A T I O N  

_ G O V E R M E N T O R G A N I Z A T I O N  ~  _ G O V E R N M E N T O R G A N I Z A T I O N  

_ L I N G U I S T I C E X P R E S S I O N  ~  _ L I N G U I S T I C E X P R E S S I O N 1 

Jaro 

 

_ G O V E R N M E N T - O R G A N I Z A T I O N  ~  

_ G O V E R N M E N T O R G A N I Z A T I O N  

_ L I N G U I S T I C E X P R E S S I O N  ~ _ L I N G U I S T I C E X P R E S S I O N 1  

_ G E O G R A P H I C A L - R E G I O N  ~  _ G E O G R A P H I C A L - R E G I O N 1  

_ G E O G R A P H I C A L - R E G I O N  ~  _ G E O G R A P H I C A L - R E G I O N 2  

_ G E O P O L I T I C A L - E N T I T Y  ~  _ G E O P O L I T I C A L - E N T I T Y 1  

Jaro-Winkler 

 

_ G O V E R N M E N T - O R G A N I Z A T I O N  ~  

_ G O V E R N M E N T O R G A N I Z A T I O N  

_ G E O G R A P H I C A L - R E G I O N  ~  _ G E O G R A P H I C A L - R E G I O N 1  

_ G E O G R A P H I C A L - R E G I O N  ~  _ G E O G R A P H I C A L - R E G I O N 2  

_ G E O P O L I T I C A L - E N T I T Y  ~  _ G E O P O L I T I C A L - E N T I T Y 1  

_ L I N G U I S T I C E X P R E S S I O N  ~  _ L I N G U I S T I C E X P R E S S I O N 1  

_ S C I E N C E - F I C T I O N - N O V E L  ~  _ S C I E N C E F I C T I O N N O V E L  

_ G E O G R A P H I C A L - R E G I O N 1  ~  _ G E O G R A P H I C A L - R E G I O N 2  

_ T I M E - M E A S U R E  ~  _ T I M E M E A S U R E  

_ L O C A T I O N  ~  _ L O C A T I O N 1  

_ L O C A T I O N  ~  _ L O C A T I O N 2  

 

The variations observed for the density are very similar to those discussed for the 

average degree. At the threshold of , the density is rather high, with a value of .  

Nevertheless, we do not reach a complete network whose density is equal to . This is 

due to the interaction network definition, which implies that for a link to be drawn 

from a WS to another, all the required parameters must be provided. At the threshold 

of , the density drops to . At the inflexion points, the density for Levenshtein is 

, whereas it is  for both Jaro and Jaro-Winkler. The variations observed 



are of the same order of magnitude than those observed for the average degree. For 

the Levenshtein metric the variation is  while for both other metrics it reaches 

. Considering a density value  above the density at the threshold of , 

which is , this density is reached at the following thresholds:  for 

Levenshtein,  for Jaro and  for Jaro-Winkler. The corresponding percentages 

of false positives are ,  and . Those values are comparable to 

the ones obtained for the average degree. Considering the thresholds at which no false 

positive is retrieved ( ,  and ), the corresponding densities are the same 

that the density at the threshold of  for the three metrics. The density is a property 

which is less sensible to small variations of the number of similarities than the 

average degree. Hence, it does not allow concluding which metric is the best at those 

thresholds. 

 

 

Fig. 4. Maximum degree in function of the metric threshold. Comparative curves of the 

Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics. 

The maximum degree (cf. Fig. 4) globally follows the same trend than the average 

degree and the density. At the threshold of  and on the first plateau, the maximum 

degree is around . At the threshold of , it falls to . Hence, the maximum 

degree is roughly multiplied by . At the inflexion points, the maximum degree is 

,  and  for Levenshtein, Jaro and Jaro-Winkler respectively. The 

variations are all of the same order of magnitude and smaller than the variations of the 

average degree and the density. For Levenshtein, Jaro and Jaro-Winkler the variations 

values are ,  and  respectively. Considering the maximum degree 

 above , which is , this value is approached within the threshold ranges 

, ,  for Levenshtein, Jaro and Jaro-Winkler 

respectively. The corresponding maximum degrees are  for Levenshtein 

and  for both Jaro and Jaro-Winkler. The corresponding percentages of 



 

false positives are ,  and  . 

Results are very similar to those obtained for the average degree and the metrics can 

be ordered the same way. At the thresholds where no false positive is retrieved ( , 

 and ), the maximum degree is not different from the value obtained with a 

threshold of . This is due to the fact few new similarities are introduced in this case. 

Hence, no conclusion can be given on which one of the three metric is the best.   

As shown in Fig. 5, the curves of the minimum degree are also divided in three 

areas: one high plateau and one low plateau separated by a slope. A the threshold of  

, the minimum degree is . At the threshold of , the minimum degree is . This 

value corresponds to isolated nodes in the network. The inflexion points here appear 

latter: at  for Levenshtein and at  for both Jaro and Jaro-Winkler. The 

corresponding minimum degrees are  for Levenshtein and  for Jaro and Jaro-

Winkler. The thresholds at which the minimum degree starts to be different from  

are  for Levenshtein with a value of ,  for Jaro with a value of , and  

for Jaro-Winkler with a value of . The minimum degree is not very sensible to the 

variations of the number of similarities. Its value starts to increase at a threshold 

where an important number of false positive have been introduced. 

 

 

Fig. 5. Minimum degree in function of the metric threshold. Comparative curves of the 

Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics. 

The transitivity curves (Fig. 6) globally show the same evolution than the ones of 

the average degree, the maximum degree and the density. The transitivity at the 

threshold of  almost reaches the value of . Indeed, the many links allow the 

existence of numerous triangles. At the threshold of , the value falls to . At the 

inflexion points, the transitivity values for Levenshtein, Jaro and Jaro-Winkler are 

,  and  respectively. In comparison with the transitivity at a threshold 

level of , the variations are , , . They are rather high and of the 

same order than the ones observed for the average degree. Considering the transitivity 

value  above the one at a threshold of , which is , this value is reached at 

the threshold of  for Levenshtein,  for Jaro and  for Jaro-Winkler. Those 

thresholds are very close to the one for which there is no false positive. The 



corresponding percentages of false positives are ,  and . Hence, 

for those threshold values, we can rank Jaro and Jaro-Winkler at the same level, 

Levensthein being the least performing. Considering the thresholds at which no false 

positive is retrieved, ( ,  and ), the corresponding transitivity are the 

same than the transitivity at . For this reason and by the same way than for the 

density and the maximum degree, no conclusion can be given on the metrics. 

 

 

Fig. 6. Transitivity in function of the metric threshold. Comparative curves of the Levenshtein 

(green triangles), Jaro (red circles), and Jaro-Winkler (blue crosses) metrics. 

The degree correlation curves are represented in Fig. 7. We can see that the Jaro 

and the Jaro-Winkler curves are still similar. Nevertheless, the behavior of the three 

curves is different from what we have observed previously. The degree correlation 

variations are of lesser magnitude than the variations of the other metrics. For low 

thresholds, curves start by a stable area in which the degree correlation value is . 

This indicates that no correlation pattern emerges in this area. For high thresholds the 

curves decrease until they reach a constant value ( ). This negative value 

reveals a slight disassortative degree correlation pattern. Between those two extremes, 

the curves exhibit a maximum value that can be related to the variations of the 

minimum degree and to the maximum degree. Starting from a threshold value of  the 

degree correlation remains constant until a threshold value of ,  and  for 

Lenvenshtein, Jaro and Jaro-Winkler respectively. 



 

 

Fig. 7. Degree correlation in function of the metric threshold. Comparative curves of the 

Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics. 

Fig. 8 shows the variation of the average distance according to the threshold. The 

three curves follow the same trends and Jaro and Jaro-Winkler are still closely 

similar. Nevertheless, the curves behavior is different from what we observed for the 

other properties. For the three metrics, we observe that the average distance globally 

increases with the threshold until it reaches a maximum value and then start to 

decrease.  The maximum is reached at the thresholds of  for Levenshtein,  

Jaro and  Jaro-Winkler. The corresponding average distance values are , 

 and  respectively.  Globally the average distance increases with the 

threshold. For low threshold values the average distance is around  while for the 

threshold of , networks have an average distance of . Indeed, it makes sense to 

observe a greater average distance when the network contains less links. This means 

that almost all the nodes are neighbors of each other. This is in accordance with the 

results of the density which is not far from the value of  for small thresholds. We 

remark that the curves start to increase as soon as isolated nodes appear. Indeed, the 

average distance calculation is only performed on interconnected nodes. The 

thresholds associated to the maximal average distance correspond to the inflexion 

points in the maximum degree curves. The thresholds for which the average distance 

stays stable correspond to the thresholds in the maximum degree curves for which the 

final value of the maximum degree start to be reached. Hence from the observation of 

the average distance, we can refine the conclusions from the maximum degree curves 

by saying that the lower limit of acceptable thresholds is ,  and  for 

Levenshtein, Jaro and Jaro-Winkler respectively. 



 

Fig. 8. Average distance in function of the metric threshold. Comparative curves of the 

Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics. 

6 Conclusion 

In this work, we studied different metrics used to build WS composition networks. To 

that end we observed the evolution of some complex network topological properties. 

Our goal was to determine the most appropriate metric for such an application as well 

of the most appropriate threshold range to be associated to this metric. We used three 

well known metrics, namely Levenshtein, Jaro and Jaro-Winkler, especially designed 

to compute similarity relation between strings. The evolution of the networks from 

high to low thresholds reflects a growth of the interactions between WS, and hence, of 

potential compositions. New parameter similarities are revealed, and links are 

consequently added to the network, along with the threshold increase. If one is 

interested by a reasonable variation of the topological properties of the network as 

compared to a threshold value of , it seems that the Jaro metric is the most 

appropriate, as this metric introduces less false positives (inappropriate similarities) 

than the others. The threshold range that can be associated to each metric is globally 

,  and  for Levenshtein, Jaro and Jaro-Winkler, respectively. 

We also examined the behavior of the metrics when no false positive is introduced 

and new similarities are all semantically meaningful. In this case, Jaro-Winkler gives 

the best results. Naturally the threshold ranges are lower in this case, and the 

topological properties are very similar to the ones obtained with a threshold value of 

. 

Globally, the use of the metrics to build composition networks is not very 

satisfying. As the threshold decreases, the false positive rate becomes very quickly 

prohibitive. This leads us to turn to an alternative approach. It consists in exploiting 

the latent semantics in parameters name. To extend our work, we plan map the names 

to ontological concepts with the use of some knowledge bases, such as WordNet [12] 

or DBPedia [13]. Hence, we could provide a large panel on the studied network 

properties according to the way similarities are computed to build the networks.   
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