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Abstract. The number of publicly available Web services (WS) is continuously 

growing, and in parallel, we are witnessing a rapid development in semantic-

related web technologies. The intersection of the semantic web and WS allows 

the development of semantic WS. In this work, we adopt a complex network 

perspective to perform a comparative analysis of the syntactic and semantic 

approaches used to describe WS. From a collection of publicly available WS 

descriptions, we extract syntactic and semantic WS interaction networks. We 

take advantage of tools from the complex network field to analyze them and 

determine their properties. We show that WS interaction networks exhibit some 

of the typical characteristics observed in real-world networks, such as short 

average distance between nodes and community structure. By comparing 

syntactic and semantic networks through their properties, we show the 

introduction of semantics in WS descriptions should improve the composition 

process. 

Keywords: Web Services, Service Composition, Complex Networks, 

Interaction Networks, Semantic Web. 

1   Introduction 

A Web Service (WS) is an autonomous software component which can be published, 

discovered and invoked for remote use. For this purpose, its characteristics must be 

made publicly available, under the form of a so-called service description. This file 

comparable to interfaces defined in the context of object-oriented programming lists 

the operations implemented by the service. Currently, production WS use syntactic 

descriptions expressed with the WS description language (WSDL), which is a W3C 

(World Wide Web Consortium) recommendation. Such descriptions basically contain 

the names of the operations and their parameters names and data types, plus some 

lower level information regarding the network access to the service. WS were initially 

designed to interact with each other, in order to provide a composition of WS able to 

offer higher level functionalities [1]. Current production discovery mechanisms 

support only keyword-based search in WS registries and no form of inference nor 

flexible match can be performed [2]. More advanced research (non-production) 

approaches rely on comparing structured data such as parameters types and names, or 

analyzing unstructured textual comments [3-5]. This is generally not enough to 



distinguish WS in terms of functionality, and consequently makes it difficult, or even 

impossible, to use these methods to automate WS composition. Indeed, syntactically 

discovered WS must be manually validated to ensure they implement the desired 

behavior, leading to static, a priori compositions.  

To solve this limitation, the WS research community introduced semantics in WS 

descriptions, through the use of new semantic description languages. Different 

formats exist, among which we can distinguish purely semantic descriptions (OWL-S, 

a W3C recommendation), from annotated WSDL descriptions (WSDL-S and 

SAWSDL). Although those languages allow to associate ontological concepts with 

various elements of the description, the research community has been focusing only 

on the concepts qualifying the operations inputs and outputs. Retrieving semantic 

information is far more costly than collecting syntactic descriptions, even when 

considering only parameters. The latter can be performed quickly and completely 

automatically. The former is a long task, requiring human intervention to label each 

parameter with the proper concept. Annotation tools exist to help, but they are clearly 

not mature yet, and often defined for specific collections or languages [6, 7]. Maybe 

for these reasons, no semantic annotation language emerged as an industry standard. 

Although they appeared more than five years ago, all production WS still rely on 

WSDL. Even at a research level, very few publicly available significant collections of 

semantically annotated WS exist, making it very difficult to test new algorithms.  

This situation leads to one question: is describing WS semantically worth the cost? 

To our knowledge, no one did ever compare the information underlying syntactic and 

semantic WS descriptions. In this work, we try to tackle this problem from the service 

composition perspective, through the use of complex networks. We consider a set of 

WS as a broad interaction space, in which WS are related if they can be chained up in 

a composition process. We model this space by building so-called interaction 

networks, based on syntactic and semantic descriptions of a given WS collection. We 

assume that the information conveyed by the two different kinds of descriptions 

appears in the corresponding interaction networks. We then compare the syntactic and 

semantic descriptive approaches through the networks topological properties. Our 

main contributions are the formal definition of three types of semantic networks, an 

extended investigation of the WS networks topology and the comparison of syntactic 

and semantic networks. In section 2, we present complex networks and their main 

topological properties. Section 3 introduces interaction networks and explains how 

they can be extracted from WS descriptions. Section 4 is dedicated to the presentation 

and discussion of our experimental results, i.e. the obtained networks, their 

topological properties and how they compare. Finally, in section 5, we emphasize the 

original points of our work, discuss its limitations and their possible solutions. 

2   Complex Networks Properties 

Complex networks are a specific class of graphs, characterized by a huge number of 

nodes and non trivial topological properties. Used in many different fields to model 

real-world systems [8], they have been intensively studied both theoretically and 

practically [9]. Because of their complexity, specific tools are necessary to analyze 



and compare them. This is usually performed through the comparison of several well-

known properties, supposed to summarize the essential of the network structure. 

The distance between two nodes is defined as the number of links in the shortest 

directed path connecting them. At the level of the whole network, this allows to 

process the average distance and the diameter. The former corresponds to the mean 

distance over all pairs of nodes [9].  This notion is related to the small world property, 

observed when this distance is relatively small. The classic procedure to assess this 

property consists in comparing the average distance measured in some network of 

interest to the one estimated for an Erdős–Rényi (ER) network [10] containing the 

same numbers of nodes and links, since this random generative model is known to 

produce networks exhibiting the small world property [9]. In terms of dynamic 

processes, the existence of shortcuts between nodes can be interpreted as propagation 

efficiency [11]. Most real-world networks have the small world property. The 

diameter is the greatest distance over all pairs of nodes in the network.  

A network transitivity (also called clustering) corresponds to its density of 

triangles, where a triangle is a structure of three completely connected nodes. It is 

measured by a transitivity coefficient, which is the ratio of existing triangles to 

possible triangles in the considered network [11]. The higher this coefficient, the 

more probable it is to observe a link between two nodes which are both connected to a 

third one. A real-world network is supposed to have a higher transitivity than the 

corresponding ER network by an order of magnitude corresponding to their number 

of nodes, meaning their nodes tend to form densely connected groups. 

The degree of a node corresponds to the number of links attached to it. In a 

directed network, one can distinguish in and out degrees, i.e. the numbers of incoming 

and outgoing links, respectively. Nodes with a high in (resp. out) degree are called 

authorities (resp. hubs). The degree distribution of a network is particularly revealing 

of its structure. Most real-world networks have a power law degree distribution [9, 12, 

13], resulting in the so-called scale free property. In other words, real-world networks 

contain a very few nodes with extremely high degree, and a massive number of nodes 

with very small degree. 

A component is a maximal connected sub graph, i.e. a set of interconnected nodes, 

all disconnected from the rest of the network. The component distribution and, more 

specifically, the size of the largest component are important network properties. 

Indeed, depending on the context, the fact the network is split in several separated 

parts with various sizes can be a direct representation of the modeled system 

effectiveness at doing its job. For example, in a communication network like the 

Internet, the size of the largest component represents the largest fraction of the 

network within which communication is possible [9]. Most real-world networks have 

a so-called giant component, whose size is far greater than the other components.  

A community is defined as a subset of nodes densely interconnected relatively to 

the rest of the network. Unlike components, communities are not necessarily 

disconnected from each other (and generally, they are significantly connected). 

Specific community detection algorithms must be used to identify them, leading to a 

partition of the overall nodes set. Most of them are dedicated to undirected networks, 

and only a very few recent tools can use the information conveyed by directed links. 

We chose to use a well tested program, and therefore focused on undirected links. We 

selected the Walktrap algorithm which exhibits good performances according to 



recent benchmarks [14]. To assess the quality of a network partition, the standard 

measure is Newman’s modularity [15], whose value also depends on the considered 

network structure. Consequently, its theoretical maximal value of  (perfect 

community structure and partition) is rarely reached, and in practice values between 

 and  are considered high [16]. A value of  represents a random partition or the 

absence of community structure. Many real-world networks have a community 

structure [9].  

3   Interaction Networks 

Generally speaking, we define an interaction network as a directed graph whose nodes 

correspond to interacting objects and links indicate the possibility for the tail nodes to 

act on the head nodes. They can be considered as complex networks, and few authors 

used similar approaches to model collections of WS, using different granularity levels 

[17] and based on syntactic [17, 18] or on semantic [19-23] descriptions. In this work, 

we focused on networks of operations, because operations are the main point of 

interest when it comes to WS composition. We used both syntactic and semantic 

descriptions, since our goal is to compare the two types of WS descriptions. 

As stated before, a WS interface is defined under the form of a set of operations. 

An operation  represents a specific functionality, described independently from its 

implementation, for interoperability purposes. Besides its functionality, it is 

characterized by two sets of input and output parameters, noted  and , 

respectively. In a syntactic description, each parameter has a name and a type. This 

type is also defined independently from any implementation, again for interoperability 

reasons. Most of the time, the XML schema definition language (XSD) is used. In a 

semantic description, name and type are also generally specified, and an additional 

ontological concept is associated to the parameter, in order to give it a precise 

meaning. The most popular language used to describe these concepts is OWL, which 

also generally uses an XML representation. 

To represent a collection of WS description under the form of an interaction 

network of operations, we first define a node to represent each operation in the 

collection. Then, a link is drawn from an operation  towards another operation  iff 

for each input parameter in , a similar output parameter exists in . In other words, 

the link exists if and only if operation  can provide all the information requested to 

apply operation . In Fig. 1, the left side represents a set of considered operations 

(numbers) and their input and output parameters (letters), whereas the right side 

corresponds to the associated interaction network of operations. All the second 

operation inputs ( ) are included in the first operation outputs (

), i.e. , so a link exists between these operations in the interaction 

network. On the contrary, neither the first nor second ( ) operations provide 

all the parameters required by the third one ( ), which is why there is no 

link pointing towards the third operation in the interaction network. 

In the interaction network, a link between two operations therefore represents the 

possibility to compose them. Determining if two parameters are similar is a complex 

task which depends on the nature of the considered parameters (syntactic vs. semantic 



description) and on how the notion of similarity is defined. These factors are 

implemented under the form of a so-called matching function. 

 

Fig. 1. Example of interaction network extraction.  

A matching function  takes two parameters  and , and determines their level 

of similarity [24], generally under the form of a value in . It can be either 

symmetrical ( ) or asymmetrical, and its output can be either 

binary or real. When comparing two parameters, a real output allows representing 

various levels of similarity, which is a good thing because it conveys a more subtle 

information than a raw binary value. But it also results in a more complex processing 

during network generation, and possibly in a network containing weighted links. Yet, 

most of the standard tools we decided to use to compare networks are defined for 

unweighted networks only, so we selected only binary matching functions in order to 

avoid this situation. Because of the different nature of the concerned information, we 

used different matching functions to compare syntactically and semantically described 

parameters, resulting in syntactic and semantic interaction networks, respectively. For 

syntactic descriptions, we compare parameters names: two parameters are said to be 

similar if their names are the exact same strings. The semantic matching is performed 

using the ontological concept associated to the parameters. We selected the three 

operators classically used in previous WS-related works to compare ontological 

concepts [25]: exact (symmetrical), plug-in and subsume (both asymmetrical). The 

first corresponds to a perfect matching, i.e. both concepts belong to the same ontology 

and are exactly identical. The second means the concept associated to the first 

parameter is more specific than the other one; the third represents the fact the first 

concept is more general than the second one. Note more flexible matching functions 

can be defined, both for syntactic [26] and semantic [27-30] descriptions. Our main 

goal is to compare syntactic and semantic descriptions, not matching functions. We 

opted for standard and simple tools. In summary, we can extract four distinct 

networks: syntactic equal , and semantic exact , plug-in  and subsume 

. 
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4   Results and Discussion 

We extracted interaction networks from the SAWSDL-TC1 collection of WS 

descriptions [31, 32]. This test collection provides 894 semantic WS descriptions 

written in SAWSDL, and distributed over 7 thematic domains (education, medical 

care, food, travel, communication, economy and weapon). It originates in the OWLS-

TC2.2 collection, which contains real-world services descriptions retrieved from 

public IBM UDDI registries, and semi-automatically transformed from WSDL to 

OWL-S. This collection was subsequently resampled to increase its size, and 

converted to SAWSDL. An SAWSDL file describes a service both syntactically and 

semantically. This allowed us to extract our syntactic and semantic networks from the 

same collection, and to compare them consistently. Other publicly available 

collections exist, but they do not suit our needs for different reasons. The collection 

must be composed of a large number of real WS, described both syntactically and 

semantically. The ASSAM fulldataset and OPOSSum SWS-TC [33, 34] collections 

are only syntactic for the first and semantic for the second. The ICEBE05 test set (not 

available on line anymore) is a huge collection, but its descriptions have been 

artificially generated.  SWS-TC and Jena Geography Dataset collections from 

OPOSSum [34, 35] are too small to be studied through our complex networks 

approach. 

 

Fig. 2. Trimmed exact semantic network . The giant component is located on the right side. 

All the extracted networks contain many isolated nodes. They represent  of 

the total nodes in the syntactic network ( ), whereas this proportion is 

approximately  in the semantic networks ( ,  and ). All networks 

exhibit a giant component. In the syntactic network, , it contains  of the 

remaining nodes and  of the remaining links. The others  components are much 

smaller ranging from  to  nodes. The semantic network  is separated in  



distinct components, the giant one containing  of the nodes and  of the links 

in the trimmed network (see Fig. 2). The other semantic networks (  and ) 

present very similar proportions. The fact distinct components exist reflects the 

decomposition of the collection into several non-interacting groups of operations. The 

presence of a giant component is a good property, because it means the number of 

possible interactions is high, allowing a large proportion of operations to participate in 

a composition. In the rest of this section, we focus on the giant components 

properties, discarding isolated nodes and smaller components. As shown in Table 1, 

the number of nodes and links is globally higher in the syntactic network, , than in 

the semantic networks. This is mainly due to the fact some operation parameters have 

exactly the same name and are therefore considered as equal in terms of syntactic 

matching, whereas they do not have the same meaning. For instance, two parameters 

can be both named parameter and represent completely different data. In terms of 

interaction, this kind of false positive matching results in inappropriate compositions. 

Using semantic information is supposed to decrease this ambiguity and improve the 

composition process. 

Table 1.  Properties of the giant components.  

Property Syntactic  Semantic    

Nodes  395  341 369 329 

Links  3666  3426 2446 3864 

Average distance  2.19  1.87 1.32 1.39 

Diameter   8  4 3 3 

Transitivity  0.032  0.022 0.002 0.027 

Communities  16  12 7 4 

Modularity  0.52  0.50 0.13 0.07 

 

As shown in Table 1, both syntactic and semantic networks exhibit small average 

distances:  and , respectively. By comparison, this distance is 

approximately ranging from  to  in ER random networks of comparable size, which 

means the interaction networks possess the small-world property. In other words, 

many short cuts exist in the networks, indicating one can find compositions 

implementing a requested functionality using a relatively small number of operations. 

The component diameter is a good indicator of the largest possible composition, 

which leads here to surprisingly small values ( ) regarding the network size. This 

may be due to the fact the considered collection was initially designed to assess 

matchmaking functions, and not really composition processes. One may also observe 

the significant difference between syntactic ( ) and semantic networks ( ), which 

confirms our previous remark regarding how their connectivity differs. More than the 

syntactic/semantic opposition, this seem to be related to the matching function 

flexibility, since both average distance and diameter are smaller for plug-in ( ) and 

subsume ( ) than for exact network ( ). 

Unlike most real-world networks, the measured transitivity is relatively low for 

both syntactic and semantic networks. Indeed, as shown in Fig.2, operations are 

organized hierarchically, resulting in a network structure dominated by trees rather 

than triangles. This favors the apparition of hubs and authorities, the former 



corresponding to operations possibly usable by many other operations and the latter to 

operations possibly using many other operations. They play a central role in the 

composition process, and their failure can be critical. If some operation is a hub, its 

output is needed by many other operations. If it becomes unavailable, all these 

operations cannot be composed anymore, unless other operations providing them 

equivalent parameters exist. If some operation is an authority, it can be composed 

from many other operations, which makes it less sensitive to their failure.  

We fitted the networks degree distributions to the power law using the method 

proposed in [36]. We obtained almost zero p-values and therefore rejected this 

hypothesis, for all 4 networks. Even when analyzing these distributions empirically, it 

was difficult to interpret them, because no pattern seemed to emerge. We propose two 

explanations for this. First, power law fitting tests requires much data, and the size of 

the considered collection might be too small to allow a consistent analysis. Second, an 

important bias might have been introduced when the collection was resampled to 

increase its size, since this was certainly performed without any regard concerning the 

preservation of the degree distribution. However this is difficult to assess since we do 

not have access to this information, but only to the resulting collection. Of course, it is 

also possible our networks simply do not possess the scale free property. 

The Walktrap algorithm detected communities with a good modularity for equal 

and exact networks. This community structure seems to reflect the collection 

domains, i.e. there is a partial correspondence between the groups of operations 

retrieved from the network structure and those defined thematically. Indeed, it makes 

sense to observe denser relationships between operations belonging to the same 

application field, because it is likely they were designed to be complementary and 

interact with each other. The low modularity observed for plug-in and subsume 

networks ( , ) is certainly due to the looser matching function, leading to more 

links between operations from different domains. 

5   Conclusion 

In this paper, we compared the information conveyed by syntactic and semantic WS 

descriptions, through the use of complex networks. For this purpose, we extracted 4 

different interaction networks (1 syntactic and 3 semantic) from one collection of 

descriptions, using different matching functions. We processed, discussed and 

compared their topological properties. All four networks exhibit some properties 

observed in most real-world complex networks: small average distance, presence of a 

giant component and community structure. This globally reflects a large number of 

potential compositions. Some other properties expected from a real-world network are 

missing: transitivity is low and degrees are not power law distributed. We suppose 

this is due to the properties of the collection we analyzed, more precisely its 

hierarchical nature and the fact it was partially constituted by resampling. 

When comparing syntactic and semantic networks, we observed the syntactic giant 

component was slightly larger, which might be due to the presence of false positives, 

i.e. operations irrelevantly connected. Although semantic giant components contain 

less links, their interconnection structure is more efficient, leading to a smaller 



average distance between operations (in terms of composition) and a smaller diameter 

(maximal composition size). We can conclude the introduction of semantics in WS 

description allows a more accurate representation of their potential interactions, and 

should consequently result in a more efficient search for composition processes, at 

least for the considered collection. When comparing only the three semantic 

networks, a clear distinction appears between the loose matching functions and the 

exact one. They lead to networks with even smaller diameters and average distances, 

corresponding to a larger proportion of links between the domains, which in turns 

result in a weaker community structure. This highlights the importance of the selected 

matching function. 

The approach of representing a WS collection with an interaction network is 

generally used in the context of composition mining, i.e. to find the best composition 

relatively to some criteria of interest [17-23]. Oh studied some of their topological 

properties, but only for syntactic networks, and did not consider the directed nature of 

the interaction networks nor their communities [17], which are of utmost importance 

in the context of WS composition. Additionally, this is the first time, to our 

knowledge, an analysis is conducted on the topology of semantic networks, and 

consequently on the comparison with syntactic networks. 

We can see two main limitations to our study, which we hope to solve in the near 

future. First, the collection we used is based on a set of real-world WS descriptions, 

but half of them were generated through resampling, so it cannot be considered as 

perfectly realistic. As a matter of fact, no other publicly available collection provides 

both syntactic and semantic descriptions for the same services, which is an 

indispensable prerequisite to a consistent comparison. The only solution we can see is 

to constitute our own collection, by semantically annotating a set of real syntactic 

descriptions. Second, we used a selected set of matching functions to extract the 

interaction networks. Many other functions exist, in particular more flexible syntactic 

distances [37] can be used to perform less strict comparisons of the parameters names. 

For semantic matching, more subtle subsume- and plug-in-based functions can also be 

derived, for instance by considering the geodesic distance between two concepts 

located on the same branch of an ontology. This could have significant implications 

on the resulting network properties, since it is directly related to the amount of false 

positives (nodes irrelevantly connected) and false negatives (nodes irrelevantly 

disconnected). Besides these improvements on data and matching functions, we plan 

to extend our work in two ways. First, we want to analyze in greater details the partial 

overlapping observed between communities and domains. It may correspond to 

operations shared between domains, which could be of great interest for a provider as 

they may be highly demanded. A related point is to test whether properties observed 

for the whole network are also valid for domains or sets of domains. Second, to 

confirm the observations we made on the network of operations, it is possible to 

extract and study equivalent networks at two other granularity levels [38]. We already 

performed the analysis of dependency networks at the parameters level [39], and plan 

to focus on interaction networks of whole WS very soon. 
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