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Abstract. The number of publicly available Web services (WS) is 

continuously growing. To perform efficient WS discovery, it is desirable to 

organize the WS space. Works in this direction propose to group WS according 

to certain shared properties. Such groups commonly called communities are 

based either on similarity or on interaction between WS. In this paper we focus 

on the former, and propose a new network-based approach to extract 

communities from a WS collection. This process is three-stepped: first we 

define several similarity functions able to compare WS operations, second we 

use them to build so-called similarity networks, and third we identify 

communities under the form of specific structures in these networks.  We apply 

our method on a collection of real-world WS and comment the resulting 

communities. Finally, we additionally provide an analysis and an interpretation 

of our similarity networks with a complex networks perspective.   

 

Keywords: Web Services, Web services Similarity, Complex Networks, 

Semantic Web. 

1   Introduction 

A Web Service (WS) is an autonomous software component which can be 

published, discovered and invoked for remote use. When a provider creates a new 

WS, he describes it using a WS description language. A WS description file is 

comparable to an interface defined in the context of object-oriented programming: it 

lists the operations implemented by the WS. Currently, production WS use syntactic 

descriptions expressed with the WS description language (WSDL), which is a W3C 

(World Wide Web Consortium) recommendation. Such descriptions basically contain 

the names of the operations and their parameters names and data types, plus some 

lower level information regarding the network access to the WS.  

   To make a WS available to consumers, the provider records it in a registry by 

supplying the appropriate information, including the WS description. When a 

consumer wants to use a WS, it queries the registry to find one that matches his needs 

and obtain its access point. But finding the right WS is not an easy task. Indeed the 

number of available WS is continuously growing. Furthermore WS are volatile; they 

often operate in a highly dynamic environment as providers remove, modify, or 
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relocate them frequently. Hence, it may be of great help to organize the WS space in a 

meaningful manner, in order to facilitate WS discovery, composition and substitution. 

To that end, the WS classification process aims at grouping WS into categories 

usually called communities. Most works in WS classification have focused on two 

classification types: grouping WS according to their similarity (Medjahed & 

Bouguettya, 2005; Taher, Benslimane, Fauvet & Maamar, 2006; Benatallah, Dumas, 

Sheng & Ngu, 2002) or to their possible interaction (Dekar & Kheddouci, 2008; 

Sepehrifar, Zamanifar & Sepehrifar, 2009).  

   In this work we focus on the former, and propose a new, network-based approach 

to build communities. Our approach is three-stepped: first we use several similarity 

functions to compare every pair of operations in a given WS collection, second we 

build a so-called similarity network from these values, and third we extract 

communities from this network. In parallel, we perform a detailed analysis and 

interpretation of the similarity network topological properties.  

   The rest of the paper is organized as follows. In section 2, we review the existing 

approaches regarding WS communities definition. We also explain how these 

communities can be used practically. Indeed, although this point is out of the scope of 

this article, it should be noted the communities mined with our own method can be 

used for the same purposes. Section 3 provides key information about complex 

networks, their analysis and properties. In section 4, we introduce similarity networks 

and the method we use to build them. In section 5 we present and discuss our results, 

focusing on the comparison of the proposed similarity functions and on the similarity 

networks properties. Conclusions and perspectives are given in section 6. 

2   Related Works 

Existing works adopt either a top-down or a bottom-up approach to define 

communities. In the former, abstract communities are designed a priori, and WS are 

then defined in order to fit these categories. In the later, communities are mined from 

an existing WS collection. They also can be distinguished depending on the type of 

WS description they use (syntactic vs. semantic), and their definition of the concept of 

similarity. 

   The top-down approach used in (Medjahed & Bouguettya, 2005) consists in 

defining WS similarity relatively to their application domains. They introduced the 

concept of community ontology, which serves as a template for describing 

communities of WS operating in the same thematic area, independently from their 

functionalities. The authors use communities to tackle the problems of organizing, 

describing, and managing semantic WS. A community is view itself as a WS which is 

created, advertised, discovered, and invoked in the same way regular WS are.  

   Benatallah et al. define a community as a group of WS sharing a common 

functionality, although they can simultaneously have different non-functional 

properties, like different providers or QoS parameters (Benatallah, Dumas, Sheng & 

Ngu, 2002). A community is considered as a set of alternative WS represented by a 

set of generic operations. It is used in the context of discovery and composition. 

When some request targets a given functionality, the corresponding community is 



identified and the request is delegated to one of its members. The choice of the 

delegate is based on the parameters of the request, the characteristics of the members, 

the history of past executions and the status of ongoing executions. 

   Other authors use functionality-based similarity, but with a semantic web 

approach (Taher, Benslimane, Fauvet & Maamar, 2006). Each community is 

associated to a specific functionality, shared by all the WS it contains, and represented 

by an ontological concept. A community is then defined as a triple containing an 

abstract WS (community functionality described by some abstract operations), a set of 

concrete WS and a mapping module between the abstract operations and the concrete 

WS. A community is considered as a set of substitutable WS (relatively to the 

community functionality) and is advertised in a UDDI registry for discovery purpose.  

   Unlike the first three ones, this work and the following ones follow a bottom-up 

approach. Nayak et al. (Nayak & Lee, 2007) computed separately different 

similarities between WS on UDDI descriptions, WSDL terms and OWL-S terms 

using Jaccard coefficient. Similarities are then merged to obtain a so-called 

accumulative similarity. By proceeding likewise for all pairs in a WS collection, the 

authors build a similarity matrix, on which a clustering algorithm is applied to 

identify the communities.  

   Konduri et al  (Konduri & Chan, 2008) use the interface similarity assessment 

method (Wu & Wu, 2005) to compute semantic similarity on operations and 

parameters name. This method compares several types of WS properties (common 

properties, special properties, WS interface and QoS) to get an overall similarity 

measure used to fill a similarity matrix. Like in the previous approach, communities 

are then identified by clustering. Each community is represented by a set of 

characteristic operations designed to be used for WS discovery. 

   Instead of using the community notion, Kona et al. developed a theory of 

substituability (Kona, Bansal, Simon, A.Mallya, Gupta & Hite, 2006). A semantical 

WS can be a substitute to another if it requires as many or less inputs and if it 

produces as many or more outputs. This holds both in terms of number of parameters, 

and ontological level of the concepts associated to the parameters. The theory was 

designed to build tools for automatically discovering and composing WS.  

   Our approach is bottom-up and relies on syntactic WS descriptions, although it 

can be easily extended to semantic ones. The main differences are the use of four 

original distinct similarity functions, each one with its own interpretation, and the fact 

the communities are identified as specific structures in a complex network. Moreover, 

we focus on the operation level, by opposition to the WS level. In all four functions, 

the similarity is defined in terms of functionalities. 

3   Complex Network Properties 

Complex networks are a specific class of graphs, characterized by a huge number 

of nodes and non trivial topological properties. Used in many different fields to model 

real-world systems (Costa, Oliveira, Travieso, Rodrigues, Boas, Antiqueira, Viana & 

Rocha, 2008), they have been intensively studied both theoretically and practically 

(Newman, 2003). Because of their complexity, specific tools are necessary to analyze 
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and compare them. This is usually performed through the comparison of several well-

known properties, supposed to summarize the essential of the network structure. 

 

Components Organization  

A component is a maximal connected sub graph, i.e. a set of interconnected nodes, 

all disconnected from the rest of the network. The component distribution and, more 

specifically, the size of the largest component are important network properties. The 

fact the network is split in several separated parts with various sizes is directly related 

to the modeled system effectiveness at doing its job. In some cases, a so-called giant 

component, whose size is far greater than the other components, is required for the 

system to work efficiently. For example, in a communication network like the 

Internet, the size of the largest component represents the largest fraction of the 

network within which communication is possible (Newman, 2003). Most real-world 

networks have a giant component. However, in some other cases, separated small 

parts are preferable. For instance, when epidemiologists model disease propagation in 

a population, they look for scattered networks. 

 

Average Distance 

   The distance between two nodes is defined as the number of links in the shortest 

directed path connecting them. At the level of the whole network, this allows to 

process the average distance and the diameter. The former corresponds to the mean 

distance over all pairs of nodes (Newman, 2003).  This notion is related to the small 

world property, observed when this distance is relatively small. The classic procedure 

to assess this property consists in comparing the average distance measured in some 

network of interest to the one estimated for an Erdős–Rényi (ER) network (Erdos & 

Renyi, 1959) containing the same numbers of nodes and links, since this random 

generative model is known to produce networks exhibiting the small world property 

(Newman, 2003). In terms of dynamic processes, the existence of shortcuts between 

nodes can be interpreted as propagation efficiency (Watts & Strogatz, 1998). Most 

real-world networks have the small world property. 

 

Transitivity 

   Network transitivity (also called clustering) corresponds to the triangle density in 

the considered network, where a triangle is a structure of three completely connected 

nodes. It is measured by a transitivity coefficient, which is the ratio of existing to 

possible triangles in the network (Watts & Strogatz, 1998). The higher this 

coefficient, the more probable it is to observe a link between two nodes which are 

both connected to a third one. A real-world network is supposed to have a higher 

transitivity than the corresponding ER network by an order of magnitude 

corresponding to their number of nodes, meaning their nodes tend to form densely 

connected groups. 



4   Similarity Networks 

Networks constitute a convenient way to represent a collection of WS, allowing 

visualizing, analyzing and taking advantage of the relationships of similarity observed 

between them. Generally speaking, we define a similarity network as a graph whose 

nodes correspond to objects, and links indicate a certain similarity between the 

connected nodes. They can be considered as complex networks and some authors 

previously used this approach to model WS collections in other contexts than 

community identification (Liu, Liu & Chao, 2007; Oh, Lee & Kumara, 2008; 

Talantikite, Aissani & Boudjlida, 2009; Gekas & Fasli, 2008; Shiaa, Fladmark & 

Thiell, 2008; Kwon, Park, Lee & Lee, 2007; Hashemian & Mavaddat, 2005; Cherifi, 

Labatut & Santucci, 2010 -a; Cherifi, Labatut & Santucci, 2010 -b). 

   To build our similarity networks, we decided, as a first step, to focus on 

syntactically described operations. An operation is a part of a WS implementing a 

specific functionality. It is syntactically described by its name and its input and output 

parameters (names and data types). To represent a collection of WS descriptions 

under the form of a similarity network of operations, we first create a node to 

represent each operation in the collection. Then, a link is added between two nodes iff 

the corresponding operations present a certain similarity. In the resulting network, 

similar operations are connected and form graph components. We previously defined 

a community as a set of similar operations, so identifying them is straightforward 

here: each component simply corresponds to a community. Of course, the nature of 

the similarity relation is extremely important, and can be defined in various ways. In 

the following, we describe four similarity functions and explain how they can be 

interpreted and used. 

 

Similarity Functions 

In our case, a similarity function  takes two operations  and  and quantifies 

their similarity. It can be either symmetrical ( ) or asymmetrical, 

and it can output binary or real values. The four functions we defined to build our 

networks are based on previous works focusing on WS retrieval (Keller, Lara, 

Lausen, Polleres & Fensel, 2005; Küster & König-Ries, 2008). In these articles, the 

authors defined several matchmaking operators and used them to compare sets of 

ontological concepts. We selected four of these operators: match, partial match, 

excess match, relation match, and adapted them to our goal, which is the processing 

of a similarity value between two sets of parameters. We obtained four similarity 

functions we called Full Similarity, Partial Similarity, Excess Similarity and Relation 

Similarity; all of them with a binary output. These functions are defined in terms of 

set relations between the input and output parameter sets of the compared operations.  

   Let , and , be the sets of input and output parameters for operation , 

respectively. Suppose we want to compare  and . FullSim is a symmetrical 

function stating both operations are fully similar iff 1) they provide exactly the same 

outputs ( ) and 2) they need overlapping inputs ( ). PartialSim and 

ExcessSim are asymmetrical. With the former,  is partially similar to iff 1) some 

 outputs are missing in  ( ) and 2) they need overlapping inputs (

). With the latter,  is similar to  with excess iff 1)  provides all  
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outputs plus additional ones ( ) and 2)  needs only some of  inputs 

( ). The RelationSim function is symmetrical and states both operations have a 

relational similarity iff 1) they have exactly the same outputs ( ) and 2) they 

share no common input ( ). These definitions are summarized in Table 1. 

  To determine the relations between two sets of parameters, one needs to be able 

to compare the parameters themselves. For this purpose, we selected the basic 

matching operator already used in our previous work (Cherifi, Labatut & Santucci, 

2010 -a), consisting in comparing only the parameters names. Two parameters are 

said to be equal iff their names are the exact same strings. This is a very simple and 

rather naïve operator as it certainly leads to irrelevant matching and miss some 

relevant ones, from a semantic point of view. Nevertheless, for this first work, we 

chose to put our focus on building communities and studying their network properties, 

rather than trying more flexible matching operators.   

   To summarize this section: we defined four different similarity functions able to 

compare operations, all using the same simple matching operator to compare 

parameter names. Each function corresponding to a different definition of the concept 

of similarity, they will lead to different similarity networks when applied to a given 

WS collection.  

Table 1 Similarity Functions Definitions 

 

Similarity function Sets Relations Direction  

FullSim  symetrical 

PartialSim   assymetrical 

ExcessSim    assymetrical 

RelationSim  symetrical 

 

Interpretation 

We will now use an example to show how our similarity functions can be 

interpreted, and why they are relevant to compare operations. Consider the operations 

defined in Figure 1:  is called get_CITYNAMEbyZIP and returns the city name 

corresponding to the specified zip code;  is called 

get_CITYNAMEbyZIPGEOGRAPHICALREGION and returns the city name 

corresponding to the specified zip code and geographical region,  is called 

get_GEOGRAPHICALLOCATIONbyZIP and returns the city name, longitude, 

latitude and altitude of the location corresponding to the specified zip code,  is 

called get_WEATHERbyZIP and returns the weather report of the location 

corresponding to the specified zip code,  is called get_WEATHERbyCITYNAME 

and returns the weather report of a city whose name has been specified, and  is 

called get_WEATHERWEATHERREPORTSUBSCRbyCITYNAME and returns the 

weather report itself and a subscription form for a city whose name has been 

specified.  and  are fully similar, because they produce the same outputs and have 

common inputs.  is partially similar to , because it lacks some of  outputs and 

they have common inputs.  is similar to  with excess, because it produces all of 

 outputs and more, and they have common inputs. Finally,  and   are 



relationally similar, because their outputs are the same and they have no common 

input. 

   The meaning of these functions appears when one does not consider comparing 

two operations, but one operation and some given inputs and outputs. Suppose we 

have a user willing to provide his home town name and zip code in order to get a 

weather report. We could obviously look only for operations with both similar inputs 

and outputs, but this similarity function is most of the time too strict to produce 

relevant results, which is why we discarded it. It is the case here, since no operation 

corresponds exactly to the request. In this operation discovery context, the output the 

user desires is generally considered as the most important constraint (Keller, Lara, 

Lausen, Polleres & Fensel, 2005). FullSim can therefore be considered as the second 

best solution, since it includes all the desired outputs and a part of the available 

inputs. In our example, both  and  would be selected. 

   Still, it is possible to find no operation meeting these criteria, in which case the 

user might have to relax the constraints regarding his goal. In our example, suppose 

 and  are unavailable, and the user switches to ExcessSim. Operation  is then 

the only solution, and it returns an additional weather report subscription compared to 

the initial request. It is likely the user will not be interested in this result, since he is 

looking for a free service. But on the contrary, he might have been interested in other 

additional outputs such as a list of weather reports for the neighboring cities. The 

PartialSim function works likewise, except it returns operations providing only a part 

of the desired goals (instead of more than the desired goals for ExcessSim). 

   The RelationSim function corresponds to a further relaxation of the user’s 

constraints. Suppose the user is still looking for his weather report, but can only 

provide a zip code. If  is unavailable, then no operation can be found using FullSim, 

PartialSim or ExcessSim. On the contrary, RelationSim will return , which has the 

appropriate output but completely different input. Even if the operation cannot be 

invoked directly, further search might provide the needed parameters, for instance by 

mining a composition of operations. In our case the user could invoke  first and take 

advantage of its output (a city name) to invoke . 

   To conclude this section, we want to highlight the fact the proposed similarity 

functions were designed to be complementary, and not to be opposed. Each one 

corresponds to a specific use, directly related to the user goal. This is why, for 

completeness purpose, all four similarity networks will be build and analyzed in the 

next section. 

 

 
 

Figure 1 Similarity between WS operations 
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5   Results and Discussion 

We extracted similarity networks from the SAWSDL-TC1 collection of WS 

descriptions (Klusch & Kapahnke, 2008). This test collection provides 894 WS 

descriptions written in SAWSDL, and distributed over 7 thematic domains 

(education, medical care, food, travel, communication, economy and weapon). It 

originates in the OWLS-TC2.2 collection, which contains real-world WS descriptions 

retrieved from public IBM UDDI registries, and semi-automatically transformed from 

WSDL to OWL-S. This collection was subsequently resampled to increase its size, 

and converted to SAWSDL. From a SAWSDL file, we can extract the information 

needed to build our similarity networks. 

 

Network Structure and Components 

Each network contains 785 nodes, corresponding to the 785 operations of the 

collection. The first four rows in Table 2 summarize the major results we processed 

regarding the networks structure. Except for the first row, all the others properties are 

computed on the trimmed networks, i.e. without any isolated nodes. For all our 

networks, and unlike most real-world networks, no giant component is emerging, but 

numerous small ones, and isolated nodes. An example of this common structure is 

shown in Figure 2. This reflects the decomposition of the collection into a reasonable 

number of communities. This is a good thing, because having only isolated nodes or a 

giant component would lead to useless communities. Indeed, in the former case, each 

community would contain only one operation, and in the latter all operations would 

be considered as similar to the all others. Both cases would have been surprising 

considering we processed a real-world collection. 

   The number of isolated nodes globally decreases when going from FullSim to 

RelationSim, and at the same time, the numbers of links and components increase. 

Indeed, as constraints on outputs become less strict, more links are created leading to 

new components or increase of the existing ones. The numbers of operations, links 

and components are the highest in the RelationSim network. It means in this 

collection, a lot of operations produce identical outputs with completely different 

inputs. This contributes to increase the number of available and potentially usable 

operations in a discovery process.  

   Each component corresponds to a group of similar operations representing a 

community. For instance, in this PartialSim network component, operations 

get_DESTINATION_HOTEL, get_SPORTS_HOTEL, get_ACTIVITY_HOTEL 

are linked with get_HOTEL. Indeed get_HOTEL operations provides only the 

HOTEL output parameter while the three others provide the HOTEL output parameter 

and an additional specific one. A get_HOTEL operation can satisfy a 

destination/hotel request, an activity/hotel request or a sports/hotel request but not 

completely. In the RelationSim network, one component gathers operations that 

produce an output parameter named get_LUXURYHOTEL. It contains five 

operations. One of them has the parameter CITY as input, another one has the 

parameter GEOGRAPHICAL-REGION as input. 

   More than 90% of nodes and links are contained in the first , , ,  

communities in the FullSim, PartialSim, ExcessSim and RelationSim networks 



respectively. Table 3 shows range values for those principal communities. The most 

remarkable point is the links number of the largest RelationSim community. This 

corresponds to the PRICE output parameter which is common to several domains and 

sub-domains (food, car, book, device, economy). This number then falls to  for 

the RECOMMENDEDPRICE output parameter, and to  for the FUNDING output 

parameter, which are also shared by several domains.  

 

 
 

Figure 2 A PartialSim Component 

 

Table 2 Networks Properties 

 

Property FullSim PartialSim ExcessSim RelationSim 

Isolated nodes     

Nodes in trimmed   

network 
    

Components     

Links     

Average distance     

Transitivity     

 

Table 3 Networks Components Properties 

 

Property FullSim PartialSim ExcessSim RelationSim 

Nodes      

Links      

get_ACTIVITY_HOTEL 

COUNTRY 

CITY 

DESTINATION 

HOTEL 

get_SPORT_HOTEL 

COUNTRY 

CITY 

SPORT 

HOTEL 

RECORDED_VIDEO 

GEOPOLITICAL_ 

ENTITY 

ACTIVITY 

HOTEL 

get__HOTEL 

COUNTRY 

CITY 

HOTEL 

get _HOTEL 

TIME_MEASURE 

CITY 

GEOPOLITICAL_ 

ENTITY 

HOTEL 

get_DESTINATION_HOTEL 
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Average Distance and Transitivity 

   As shown in Table 2, all the similarity networks exhibit a small average distance. 

By comparison, this distance is approximately ranging from  to  in ER random 

networks of comparable sizes, which means the similarity networks possess the small-

world property. In other words, many shortcuts exist in the networks, indicating that 

several operations share the same input parameters for FullSim, PartialSim and 

ExcessSim. For the RelationSim case, this observation confirms the previous point 

according to which a lot of operations produce same parameters with completely 

different inputs. Nevertheless, the fact small components are numerous also has an 

impact on this result, since non-existing paths are not taken into account when 

processing the average distance. 

  For all the similarity networks, the measured transitivity is higher than for 

comparable ER networks (whose transitivity is less than ). It is not enough to 

conclude our networks have a high transitivity relatively to other real-world networks, 

though. However, given our networks do not have a giant component, this still means 

a significant number of triangles exist inside the communities. Consider for example 

the component containing the get_SKILLEDOCCUPATION operations in the 

FullSim network. The four operations have the SKILLEDOCCUPATION parameter as 

output. They are linked with four triangles because of their input parameters sets 

{CITY, COUNTRY}, {COUNTRY}, {COUNTRY, PUBLICCOMPANY} and 

{COUNTRY, COMPANY}.  

6   Conclusion 

In this paper, we proposed a new method for building WS communities, aiming at 

grouping WS operations which are similar in terms of functionalities. We designed 

four similarity functions, each one corresponding to a different definition of the 

concept of similarity. We described a method using a similarity function to build a 

similarity network of WS operations. In such a network, communities are 

topologically defined under the form of components, i.e. maximal connected 

subgraphs. As an example, we applied each function on a given real-world collection 

of WS to generate different similarity networks of operations. We shown our method 

allows identifying consistent communities of operations from these networks. We 

additionally discussed and compared the topological properties of the networks 

through the use of complex networks tools. All four networks exhibit a small average 

distance, which is a property observed in most real-world networks. At the opposite 

side, the transitivity property is small when compared to other real-world networks, 

but still high enough if we consider the networks do not exhibit any giant component. 

   The originality of our work lies in the similarity functions and in the similarity 

network-based method, which, to our knowledge, were never used in the context of 

WS communities building before. We additionally gave a analysis of the networks. 

We plan to extend it in two ways. First, the collection we used to build similarity 

networks is based on a set of real-world WS descriptions, but half of them were 

generated through resampling. Hence, it cannot be considered as perfectly realistic. 

We want to analyze similarity networks extract from a collection of real WS 



descriptions like the one found in (Hess, Johnston & Kushmerick, 2004) which 

contain  WSDL files. Second, it would be interesting to build networks based on 

semantic descriptions and compare their properties to those of the syntactic networks 

presented in this article. As semantics seems to improve WS discovery and 

composition, we can expect better results for semantic network-based communities.  
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