
HAL Id: hal-00620552
https://hal.science/hal-00620552

Submitted on 7 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological Properties of Web Services Similarity
Networks

Chantal Cherifi, Vincent Labatut, Jean-François Santucci

To cite this version:
Chantal Cherifi, Vincent Labatut, Jean-François Santucci. Topological Properties of Web Services
Similarity Networks. Sarrafzadeh, M., Petratos, P. Strategic Advantage of Computing Information
Systems in Enterprise Management, ATINER, pp.105-117, 2010. �hal-00620552�

https://hal.science/hal-00620552
https://hal.archives-ouvertes.fr

Topological Properties of Web Services Similarity

Networks

Chantal Cherifi1, Vincent Labatut2 and Jean-François Santucci1,

1 University of Corsica, UMR CNRS, SPE Laboratory, France

2 Galatasaray University, Computer Science Department, Ortaköy

Istanbul, Turkey

Abstract. The number of publicly available Web services (WS) is

continuously growing. To perform efficient WS discovery, it is desirable to

organize the WS space. Works in this direction propose to group WS according

to certain shared properties. Such groups commonly called communities are

based either on similarity or on interaction between WS. In this paper we focus

on the former, and propose a new network-based approach to extract

communities from a WS collection. This process is three-stepped: first we

define several similarity functions able to compare WS operations, second we

use them to build so-called similarity networks, and third we identify

communities under the form of specific structures in these networks. We apply

our method on a collection of real-world WS and comment the resulting

communities. Finally, we additionally provide an analysis and an interpretation

of our similarity networks with a complex networks perspective.

Keywords: Web Services, Web services Similarity, Complex Networks,

Semantic Web.

1 Introduction

A Web Service (WS) is an autonomous software component which can be

published, discovered and invoked for remote use. When a provider creates a new

WS, he describes it using a WS description language. A WS description file is

comparable to an interface defined in the context of object-oriented programming: it

lists the operations implemented by the WS. Currently, production WS use syntactic

descriptions expressed with the WS description language (WSDL), which is a W3C

(World Wide Web Consortium) recommendation. Such descriptions basically contain

the names of the operations and their parameters names and data types, plus some

lower level information regarding the network access to the WS.

 To make a WS available to consumers, the provider records it in a registry by

supplying the appropriate information, including the WS description. When a

consumer wants to use a WS, it queries the registry to find one that matches his needs

and obtain its access point. But finding the right WS is not an easy task. Indeed the

number of available WS is continuously growing. Furthermore WS are volatile; they

often operate in a highly dynamic environment as providers remove, modify, or

2

relocate them frequently. Hence, it may be of great help to organize the WS space in a

meaningful manner, in order to facilitate WS discovery, composition and substitution.

To that end, the WS classification process aims at grouping WS into categories

usually called communities. Most works in WS classification have focused on two

classification types: grouping WS according to their similarity (Medjahed &

Bouguettya, 2005; Taher, Benslimane, Fauvet & Maamar, 2006; Benatallah, Dumas,

Sheng & Ngu, 2002) or to their possible interaction (Dekar & Kheddouci, 2008;

Sepehrifar, Zamanifar & Sepehrifar, 2009).

 In this work we focus on the former, and propose a new, network-based approach

to build communities. Our approach is three-stepped: first we use several similarity

functions to compare every pair of operations in a given WS collection, second we

build a so-called similarity network from these values, and third we extract

communities from this network. In parallel, we perform a detailed analysis and

interpretation of the similarity network topological properties.

 The rest of the paper is organized as follows. In section 2, we review the existing

approaches regarding WS communities definition. We also explain how these

communities can be used practically. Indeed, although this point is out of the scope of

this article, it should be noted the communities mined with our own method can be

used for the same purposes. Section 3 provides key information about complex

networks, their analysis and properties. In section 4, we introduce similarity networks

and the method we use to build them. In section 5 we present and discuss our results,

focusing on the comparison of the proposed similarity functions and on the similarity

networks properties. Conclusions and perspectives are given in section 6.

2 Related Works

Existing works adopt either a top-down or a bottom-up approach to define

communities. In the former, abstract communities are designed a priori, and WS are

then defined in order to fit these categories. In the later, communities are mined from

an existing WS collection. They also can be distinguished depending on the type of

WS description they use (syntactic vs. semantic), and their definition of the concept of

similarity.

 The top-down approach used in (Medjahed & Bouguettya, 2005) consists in

defining WS similarity relatively to their application domains. They introduced the

concept of community ontology, which serves as a template for describing

communities of WS operating in the same thematic area, independently from their

functionalities. The authors use communities to tackle the problems of organizing,

describing, and managing semantic WS. A community is view itself as a WS which is

created, advertised, discovered, and invoked in the same way regular WS are.

 Benatallah et al. define a community as a group of WS sharing a common

functionality, although they can simultaneously have different non-functional

properties, like different providers or QoS parameters (Benatallah, Dumas, Sheng &

Ngu, 2002). A community is considered as a set of alternative WS represented by a

set of generic operations. It is used in the context of discovery and composition.

When some request targets a given functionality, the corresponding community is

identified and the request is delegated to one of its members. The choice of the

delegate is based on the parameters of the request, the characteristics of the members,

the history of past executions and the status of ongoing executions.

 Other authors use functionality-based similarity, but with a semantic web

approach (Taher, Benslimane, Fauvet & Maamar, 2006). Each community is

associated to a specific functionality, shared by all the WS it contains, and represented

by an ontological concept. A community is then defined as a triple containing an

abstract WS (community functionality described by some abstract operations), a set of

concrete WS and a mapping module between the abstract operations and the concrete

WS. A community is considered as a set of substitutable WS (relatively to the

community functionality) and is advertised in a UDDI registry for discovery purpose.

 Unlike the first three ones, this work and the following ones follow a bottom-up

approach. Nayak et al. (Nayak & Lee, 2007) computed separately different

similarities between WS on UDDI descriptions, WSDL terms and OWL-S terms

using Jaccard coefficient. Similarities are then merged to obtain a so-called

accumulative similarity. By proceeding likewise for all pairs in a WS collection, the

authors build a similarity matrix, on which a clustering algorithm is applied to

identify the communities.

 Konduri et al (Konduri & Chan, 2008) use the interface similarity assessment

method (Wu & Wu, 2005) to compute semantic similarity on operations and

parameters name. This method compares several types of WS properties (common

properties, special properties, WS interface and QoS) to get an overall similarity

measure used to fill a similarity matrix. Like in the previous approach, communities

are then identified by clustering. Each community is represented by a set of

characteristic operations designed to be used for WS discovery.

 Instead of using the community notion, Kona et al. developed a theory of

substituability (Kona, Bansal, Simon, A.Mallya, Gupta & Hite, 2006). A semantical

WS can be a substitute to another if it requires as many or less inputs and if it

produces as many or more outputs. This holds both in terms of number of parameters,

and ontological level of the concepts associated to the parameters. The theory was

designed to build tools for automatically discovering and composing WS.

 Our approach is bottom-up and relies on syntactic WS descriptions, although it

can be easily extended to semantic ones. The main differences are the use of four

original distinct similarity functions, each one with its own interpretation, and the fact

the communities are identified as specific structures in a complex network. Moreover,

we focus on the operation level, by opposition to the WS level. In all four functions,

the similarity is defined in terms of functionalities.

3 Complex Network Properties

Complex networks are a specific class of graphs, characterized by a huge number

of nodes and non trivial topological properties. Used in many different fields to model

real-world systems (Costa, Oliveira, Travieso, Rodrigues, Boas, Antiqueira, Viana &

Rocha, 2008), they have been intensively studied both theoretically and practically

(Newman, 2003). Because of their complexity, specific tools are necessary to analyze

4

and compare them. This is usually performed through the comparison of several well-

known properties, supposed to summarize the essential of the network structure.

Components Organization

A component is a maximal connected sub graph, i.e. a set of interconnected nodes,

all disconnected from the rest of the network. The component distribution and, more

specifically, the size of the largest component are important network properties. The

fact the network is split in several separated parts with various sizes is directly related

to the modeled system effectiveness at doing its job. In some cases, a so-called giant

component, whose size is far greater than the other components, is required for the

system to work efficiently. For example, in a communication network like the

Internet, the size of the largest component represents the largest fraction of the

network within which communication is possible (Newman, 2003). Most real-world

networks have a giant component. However, in some other cases, separated small

parts are preferable. For instance, when epidemiologists model disease propagation in

a population, they look for scattered networks.

Average Distance

 The distance between two nodes is defined as the number of links in the shortest

directed path connecting them. At the level of the whole network, this allows to

process the average distance and the diameter. The former corresponds to the mean

distance over all pairs of nodes (Newman, 2003). This notion is related to the small

world property, observed when this distance is relatively small. The classic procedure

to assess this property consists in comparing the average distance measured in some

network of interest to the one estimated for an Erdős–Rényi (ER) network (Erdos &

Renyi, 1959) containing the same numbers of nodes and links, since this random

generative model is known to produce networks exhibiting the small world property

(Newman, 2003). In terms of dynamic processes, the existence of shortcuts between

nodes can be interpreted as propagation efficiency (Watts & Strogatz, 1998). Most

real-world networks have the small world property.

Transitivity

 Network transitivity (also called clustering) corresponds to the triangle density in

the considered network, where a triangle is a structure of three completely connected

nodes. It is measured by a transitivity coefficient, which is the ratio of existing to

possible triangles in the network (Watts & Strogatz, 1998). The higher this

coefficient, the more probable it is to observe a link between two nodes which are

both connected to a third one. A real-world network is supposed to have a higher

transitivity than the corresponding ER network by an order of magnitude

corresponding to their number of nodes, meaning their nodes tend to form densely

connected groups.

4 Similarity Networks

Networks constitute a convenient way to represent a collection of WS, allowing

visualizing, analyzing and taking advantage of the relationships of similarity observed

between them. Generally speaking, we define a similarity network as a graph whose

nodes correspond to objects, and links indicate a certain similarity between the

connected nodes. They can be considered as complex networks and some authors

previously used this approach to model WS collections in other contexts than

community identification (Liu, Liu & Chao, 2007; Oh, Lee & Kumara, 2008;

Talantikite, Aissani & Boudjlida, 2009; Gekas & Fasli, 2008; Shiaa, Fladmark &

Thiell, 2008; Kwon, Park, Lee & Lee, 2007; Hashemian & Mavaddat, 2005; Cherifi,

Labatut & Santucci, 2010 -a; Cherifi, Labatut & Santucci, 2010 -b).

 To build our similarity networks, we decided, as a first step, to focus on

syntactically described operations. An operation is a part of a WS implementing a

specific functionality. It is syntactically described by its name and its input and output

parameters (names and data types). To represent a collection of WS descriptions

under the form of a similarity network of operations, we first create a node to

represent each operation in the collection. Then, a link is added between two nodes iff

the corresponding operations present a certain similarity. In the resulting network,

similar operations are connected and form graph components. We previously defined

a community as a set of similar operations, so identifying them is straightforward

here: each component simply corresponds to a community. Of course, the nature of

the similarity relation is extremely important, and can be defined in various ways. In

the following, we describe four similarity functions and explain how they can be

interpreted and used.

Similarity Functions

In our case, a similarity function takes two operations and and quantifies

their similarity. It can be either symmetrical () or asymmetrical,

and it can output binary or real values. The four functions we defined to build our

networks are based on previous works focusing on WS retrieval (Keller, Lara,

Lausen, Polleres & Fensel, 2005; Küster & König-Ries, 2008). In these articles, the

authors defined several matchmaking operators and used them to compare sets of

ontological concepts. We selected four of these operators: match, partial match,

excess match, relation match, and adapted them to our goal, which is the processing

of a similarity value between two sets of parameters. We obtained four similarity

functions we called Full Similarity, Partial Similarity, Excess Similarity and Relation

Similarity; all of them with a binary output. These functions are defined in terms of

set relations between the input and output parameter sets of the compared operations.

 Let , and , be the sets of input and output parameters for operation ,

respectively. Suppose we want to compare and . FullSim is a symmetrical

function stating both operations are fully similar iff 1) they provide exactly the same

outputs () and 2) they need overlapping inputs (). PartialSim and

ExcessSim are asymmetrical. With the former, is partially similar to iff 1) some

 outputs are missing in () and 2) they need overlapping inputs (

). With the latter, is similar to with excess iff 1) provides all

6

outputs plus additional ones () and 2) needs only some of inputs

(). The RelationSim function is symmetrical and states both operations have a

relational similarity iff 1) they have exactly the same outputs () and 2) they

share no common input (). These definitions are summarized in Table 1.

 To determine the relations between two sets of parameters, one needs to be able

to compare the parameters themselves. For this purpose, we selected the basic

matching operator already used in our previous work (Cherifi, Labatut & Santucci,

2010 -a), consisting in comparing only the parameters names. Two parameters are

said to be equal iff their names are the exact same strings. This is a very simple and

rather naïve operator as it certainly leads to irrelevant matching and miss some

relevant ones, from a semantic point of view. Nevertheless, for this first work, we

chose to put our focus on building communities and studying their network properties,

rather than trying more flexible matching operators.

 To summarize this section: we defined four different similarity functions able to

compare operations, all using the same simple matching operator to compare

parameter names. Each function corresponding to a different definition of the concept

of similarity, they will lead to different similarity networks when applied to a given

WS collection.

Table 1 Similarity Functions Definitions

Similarity function Sets Relations Direction

FullSim symetrical

PartialSim assymetrical

ExcessSim assymetrical

RelationSim symetrical

Interpretation

We will now use an example to show how our similarity functions can be

interpreted, and why they are relevant to compare operations. Consider the operations

defined in Figure 1: is called get_CITYNAMEbyZIP and returns the city name

corresponding to the specified zip code; is called

get_CITYNAMEbyZIPGEOGRAPHICALREGION and returns the city name

corresponding to the specified zip code and geographical region, is called

get_GEOGRAPHICALLOCATIONbyZIP and returns the city name, longitude,

latitude and altitude of the location corresponding to the specified zip code, is

called get_WEATHERbyZIP and returns the weather report of the location

corresponding to the specified zip code, is called get_WEATHERbyCITYNAME

and returns the weather report of a city whose name has been specified, and is

called get_WEATHERWEATHERREPORTSUBSCRbyCITYNAME and returns the

weather report itself and a subscription form for a city whose name has been

specified. and are fully similar, because they produce the same outputs and have

common inputs. is partially similar to , because it lacks some of outputs and

they have common inputs. is similar to with excess, because it produces all of

 outputs and more, and they have common inputs. Finally, and are

relationally similar, because their outputs are the same and they have no common

input.

 The meaning of these functions appears when one does not consider comparing

two operations, but one operation and some given inputs and outputs. Suppose we

have a user willing to provide his home town name and zip code in order to get a

weather report. We could obviously look only for operations with both similar inputs

and outputs, but this similarity function is most of the time too strict to produce

relevant results, which is why we discarded it. It is the case here, since no operation

corresponds exactly to the request. In this operation discovery context, the output the

user desires is generally considered as the most important constraint (Keller, Lara,

Lausen, Polleres & Fensel, 2005). FullSim can therefore be considered as the second

best solution, since it includes all the desired outputs and a part of the available

inputs. In our example, both and would be selected.

 Still, it is possible to find no operation meeting these criteria, in which case the

user might have to relax the constraints regarding his goal. In our example, suppose

 and are unavailable, and the user switches to ExcessSim. Operation is then

the only solution, and it returns an additional weather report subscription compared to

the initial request. It is likely the user will not be interested in this result, since he is

looking for a free service. But on the contrary, he might have been interested in other

additional outputs such as a list of weather reports for the neighboring cities. The

PartialSim function works likewise, except it returns operations providing only a part

of the desired goals (instead of more than the desired goals for ExcessSim).

 The RelationSim function corresponds to a further relaxation of the user’s

constraints. Suppose the user is still looking for his weather report, but can only

provide a zip code. If is unavailable, then no operation can be found using FullSim,

PartialSim or ExcessSim. On the contrary, RelationSim will return , which has the

appropriate output but completely different input. Even if the operation cannot be

invoked directly, further search might provide the needed parameters, for instance by

mining a composition of operations. In our case the user could invoke first and take

advantage of its output (a city name) to invoke .

 To conclude this section, we want to highlight the fact the proposed similarity

functions were designed to be complementary, and not to be opposed. Each one

corresponds to a specific use, directly related to the user goal. This is why, for

completeness purpose, all four similarity networks will be build and analyzed in the

next section.

Figure 1 Similarity between WS operations

RelationSi

m

FullS

im

ExcessSi

m

Partial

Sim

8

5 Results and Discussion

We extracted similarity networks from the SAWSDL-TC1 collection of WS

descriptions (Klusch & Kapahnke, 2008). This test collection provides 894 WS

descriptions written in SAWSDL, and distributed over 7 thematic domains

(education, medical care, food, travel, communication, economy and weapon). It

originates in the OWLS-TC2.2 collection, which contains real-world WS descriptions

retrieved from public IBM UDDI registries, and semi-automatically transformed from

WSDL to OWL-S. This collection was subsequently resampled to increase its size,

and converted to SAWSDL. From a SAWSDL file, we can extract the information

needed to build our similarity networks.

Network Structure and Components

Each network contains 785 nodes, corresponding to the 785 operations of the

collection. The first four rows in Table 2 summarize the major results we processed

regarding the networks structure. Except for the first row, all the others properties are

computed on the trimmed networks, i.e. without any isolated nodes. For all our

networks, and unlike most real-world networks, no giant component is emerging, but

numerous small ones, and isolated nodes. An example of this common structure is

shown in Figure 2. This reflects the decomposition of the collection into a reasonable

number of communities. This is a good thing, because having only isolated nodes or a

giant component would lead to useless communities. Indeed, in the former case, each

community would contain only one operation, and in the latter all operations would

be considered as similar to the all others. Both cases would have been surprising

considering we processed a real-world collection.

 The number of isolated nodes globally decreases when going from FullSim to

RelationSim, and at the same time, the numbers of links and components increase.

Indeed, as constraints on outputs become less strict, more links are created leading to

new components or increase of the existing ones. The numbers of operations, links

and components are the highest in the RelationSim network. It means in this

collection, a lot of operations produce identical outputs with completely different

inputs. This contributes to increase the number of available and potentially usable

operations in a discovery process.

 Each component corresponds to a group of similar operations representing a

community. For instance, in this PartialSim network component, operations

get_DESTINATION_HOTEL, get_SPORTS_HOTEL, get_ACTIVITY_HOTEL

are linked with get_HOTEL. Indeed get_HOTEL operations provides only the

HOTEL output parameter while the three others provide the HOTEL output parameter

and an additional specific one. A get_HOTEL operation can satisfy a

destination/hotel request, an activity/hotel request or a sports/hotel request but not

completely. In the RelationSim network, one component gathers operations that

produce an output parameter named get_LUXURYHOTEL. It contains five

operations. One of them has the parameter CITY as input, another one has the

parameter GEOGRAPHICAL-REGION as input.

 More than 90% of nodes and links are contained in the first , , ,

communities in the FullSim, PartialSim, ExcessSim and RelationSim networks

respectively. Table 3 shows range values for those principal communities. The most

remarkable point is the links number of the largest RelationSim community. This

corresponds to the PRICE output parameter which is common to several domains and

sub-domains (food, car, book, device, economy). This number then falls to for

the RECOMMENDEDPRICE output parameter, and to for the FUNDING output

parameter, which are also shared by several domains.

Figure 2 A PartialSim Component

Table 2 Networks Properties

Property FullSim PartialSim ExcessSim RelationSim

Isolated nodes

Nodes in trimmed

network

Components

Links

Average distance

Transitivity

Table 3 Networks Components Properties

Property FullSim PartialSim ExcessSim RelationSim

Nodes

Links

get_ACTIVITY_HOTEL

COUNTRY

CITY

DESTINATION

HOTEL

get_SPORT_HOTEL

COUNTRY

CITY

SPORT

HOTEL

RECORDED_VIDEO

GEOPOLITICAL_

ENTITY

ACTIVITY

HOTEL

get__HOTEL

COUNTRY

CITY

HOTEL

get _HOTEL

TIME_MEASURE

CITY

GEOPOLITICAL_

ENTITY

HOTEL

get_DESTINATION_HOTEL

10

Average Distance and Transitivity

 As shown in Table 2, all the similarity networks exhibit a small average distance.

By comparison, this distance is approximately ranging from to in ER random

networks of comparable sizes, which means the similarity networks possess the small-

world property. In other words, many shortcuts exist in the networks, indicating that

several operations share the same input parameters for FullSim, PartialSim and

ExcessSim. For the RelationSim case, this observation confirms the previous point

according to which a lot of operations produce same parameters with completely

different inputs. Nevertheless, the fact small components are numerous also has an

impact on this result, since non-existing paths are not taken into account when

processing the average distance.

 For all the similarity networks, the measured transitivity is higher than for

comparable ER networks (whose transitivity is less than). It is not enough to

conclude our networks have a high transitivity relatively to other real-world networks,

though. However, given our networks do not have a giant component, this still means

a significant number of triangles exist inside the communities. Consider for example

the component containing the get_SKILLEDOCCUPATION operations in the

FullSim network. The four operations have the SKILLEDOCCUPATION parameter as

output. They are linked with four triangles because of their input parameters sets

{CITY, COUNTRY}, {COUNTRY}, {COUNTRY, PUBLICCOMPANY} and

{COUNTRY, COMPANY}.

6 Conclusion

In this paper, we proposed a new method for building WS communities, aiming at

grouping WS operations which are similar in terms of functionalities. We designed

four similarity functions, each one corresponding to a different definition of the

concept of similarity. We described a method using a similarity function to build a

similarity network of WS operations. In such a network, communities are

topologically defined under the form of components, i.e. maximal connected

subgraphs. As an example, we applied each function on a given real-world collection

of WS to generate different similarity networks of operations. We shown our method

allows identifying consistent communities of operations from these networks. We

additionally discussed and compared the topological properties of the networks

through the use of complex networks tools. All four networks exhibit a small average

distance, which is a property observed in most real-world networks. At the opposite

side, the transitivity property is small when compared to other real-world networks,

but still high enough if we consider the networks do not exhibit any giant component.

 The originality of our work lies in the similarity functions and in the similarity

network-based method, which, to our knowledge, were never used in the context of

WS communities building before. We additionally gave a analysis of the networks.

We plan to extend it in two ways. First, the collection we used to build similarity

networks is based on a set of real-world WS descriptions, but half of them were

generated through resampling. Hence, it cannot be considered as perfectly realistic.

We want to analyze similarity networks extract from a collection of real WS

descriptions like the one found in (Hess, Johnston & Kushmerick, 2004) which

contain WSDL files. Second, it would be interesting to build networks based on

semantic descriptions and compare their properties to those of the syntactic networks

presented in this article. As semantics seems to improve WS discovery and

composition, we can expect better results for semantic network-based communities.

References

 Medjahed, B. & A. Bouguettya (2005). 'A dynamic Foundational Architecture for

Semantic Web Services'. Dirtributed and Parallel Databases: 17(2).

Taher, Y., D. Benslimane, M. Fauvet & Z. Maamar (2006). 'Towards an Approach

forWeb services Substitution.' IDEAS, Dehli, India.

Benatallah, B., M. Dumas, Q. Z. Sheng & A. H. H. Ngu (2002). 'Declarative

Composition and Peer-to-Peer Provisioning of Dynamic Web Services.' ICDE, 26

February - 1 March San Jose, CA.

Dekar, L. & H. Kheddouci (2008). 'A Graph b-Coloring Based Method for

Composition-Oriented Web Services Classification.' ISMIS.

Sepehrifar, M., K. Zamanifar & M. Sepehrifar (2009). 'An Algorithm To Select

The Optimal Composition Of The Services'. Journal of Theoretical and Applied

Information Technology Vol 8. No. 2.

Nayak, R. & B. Lee (2007). 'Web Service Discovery with additional Semantics and

Clustering.' ICWI, 2-5 Nov, Silicon Valley, USA.

Konduri, A. & C. Chan (2008). 'Clustering of Web Services Based on WordNet

Semantic Similarity'.

Wu, J. & Z. Wu (2005). 'Similarity-based Web service matchmaking.' ICSC,

Orlando, FL, USA.

Kona, S., A. Bansal, L. Simon, A.Mallya, G. Gupta & T. Hite (2006). 'USDL: A

Service-Semantics Description Language for Automatic Service Discovery and

Composition'.

Costa, L. d. F., O. N. Oliveira, G. Travieso, r. A. Rodrigues, P. R. V. Boas, L.

Antiqueira, M. P. Viana & L. E. C. d. Rocha (2008). 'Analyzing and Modeling Real-

World Phenomena with Complex Networks: A Survey of Applications'. arXiv

0711.3199.

Newman, M. E. J. (2003). 'The structure and function of complex networks'. SIAM

Review 45: 167-256.

Erdos, P. & A. Renyi (1959). 'On random graphs'. Publicationes Mathematicae 6:

290-297.

Watts, D. J. & S. H. Strogatz (1998). 'Collective dynamics of small-world

networks.' Nature 393: 440--442.

Liu, J., J. Liu & L. Chao (2007). 'Design and Implementation of an Extended

UDDI Registration Center for Web Service Graph.' ICWS July 9-13, Salt Lake City,

Utah, USA.

Oh, S.-C., D. Lee & S. R. T. Kumara (2008). 'Effective Web Services Composition

in Diverse and Large-Scale Services Networks'. IEEE Transactions on Services

Computing 1(1).

12

Talantikite, H. N., D. Aissani & N. Boudjlida (2009). 'Semantic annotations for

web services discovery and composition'. Comput. Stand. Interfaces 31(6): 1108-

1117.

Gekas, J. & M. Fasli (2008). 'Employing Graph Network Analysis for Web Service

Composition'.

Shiaa, M. M., J. O. Fladmark & B. Thiell (2008). 'An Incremental Graph-based

Approach to Automatic Service Composition.' ICSC.

Kwon, J., K. Park, D. Lee & S. Lee (2007). 'PSR : Pre-computing Solutions in

RDBMS for FastWeb Services Composition Search.' ICWS Salt Lake City, Utah,

USA.

Hashemian, S. V. & F. Mavaddat (2005). 'A Graph-Based Approach to Web

Services Composition ' Symposium on Applications and the Internet Trento, Italy.

Cherifi, C., V. Labatut & J. F. Santucci (2010 -a). 'Web Services Dependency

Networks Analysis.' ICNMI, April 28-30, Istanbul, Turkey.

Cherifi, C., V. Labatut & J. F. Santucci (2010 -b). 'Benefits of Semantics on Web

Service Composition from a Complex Network Perspective.' INDT 2010, July 7-9,

Prague, Czech Republic.

Keller, U., R. Lara, H. Lausen, A. Polleres & D. Fensel (2005). 'Automatic

Location of Web Services.' ESWC, Heraklion, Crete, Greece.

Küster, U. & B. König-Ries (2008). 'Evaluating Semantic Web Service

Matchmaking Effectiveness Based on Graded Relevance.' ISWC08-SMRR Karlsruhe,

Germany.

Klusch, M. & P. Kapahnke (2008). 'Semantic web service selection with

SAWSDL-MX.' ISWC, Karlsruhe Germany.

Hess, A., E. Johnston & N. Kushmerick (2004). 'ASSAM: A Tool for Semi-

Automatically Annotating Semantic Web Services.' ISWC 2004, Hiroshima, Japan.

