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Abstract: Along with a continuously growing number of publicly available Web services (WS), we are witnessing a 

rapid development in semantic-related web technologies, which lead to the apparition of semantically 

described WS. In this work, we perform a comparative analysis of the syntactic and semantic approaches 

used to describe WS, from a complex network perspective. First, we extract syntactic and semantic WS 

dependency networks from a collection of publicly available WS descriptions. Then, we take advantage of 

tools from the complex network field to analyze them and determine their topological properties. We show 

WS dependency networks exhibit some of the typical characteristics observed in real-world networks, such 

as small world and scale free properties, as well as community structure. By comparing syntactic and 

semantic networks through their topological properties, we show the introduction of semantics in WS 

description allows modeling more accurately the dependencies between parameters, which in turn could 

lead to improved composition mining methods. 

1 INTRODUCTION 

A Web Service (WS) is a self-describing, self-

contained, modular application accessible over the 

web. It can be published and discovered in a WS 

registry and invoked for remote use. Its interface is 

exposed throughout a so-called WS description, 

which lists the implemented operations. Currently, 

production WS use syntactic descriptions expressed 

with the most prevalent description language, 

WSDL, a W3C (World Wide Web Consortium) 

standard. Along with textual information and some 

low level access directives, descriptions basically 

contain the names of the operations and their 

parameters names and data types. WS were initially 

designed to interact with each other, in order to 

provide a composition of WS able to offer higher 

level functionalities (Benatallah et al., 2003). The 

keyword-based techniques used in current 

production discovery are not suitable as they often 

lead to false positives and false negatives (Pilioura et 

al., 2003). A false positive takes the form of an 

irrelevant service which includes the searched 

keywords in its description. On the contrary, 

different descriptions can contain syntactically 

different but semantically equivalent words, leading 

to false negatives. Furthermore, keyword-based 

techniques do not allow to perform any form of 

inference nor flexible match (Sycara et al., 2003). 

The key underlying problem is that keywords are a 

poor way to capture the semantics of a search or an 

advertisement. More advanced research (non-

production) approaches rely on comparing structured 

data such as parameters types and names, or 

analyzing unstructured textual comments (Stroulia et 

al., 2003; Wu et al., 2005; Ma et al., 2008). This is 

generally not enough to distinguish WS in terms of 

functionality, and consequently makes it difficult, or 

even impossible, to use these methods to automate 

WS composition. Indeed, syntactically discovered 

WS must be manually validated to ensure they 

implement the desired behavior, leading to static, a 

priori compositions.  
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To solve this limitation, a different mechanism is 

needed, one that entails retrieving WS on the basis 

of the functionalities they provide. The research 

community followed the current semantic Web trend 

by introducing semantics in WS descriptions, in 

order to enrich them. Several initiatives for new 

semantic description languages exist among which 

we can distinguish purely semantic descriptions with 

OWL-S (also a W3C standard), from annotated 

WSDL descriptions with WSDL-S and SAWSDL. 

Although those languages allow associating 

ontological concepts with various elements of the 

description, the research community has been 

focusing only on those qualifying the operations 

inputs and outputs. But retrieving semantic 

information is far more costly than collecting 

syntactic descriptions, even when considering only 

parameters. The latter can be performed quickly and 

completely automatically, whereas the former is a 

long task, requiring human intervention to label each 

parameter with the proper concept. Annotation tools 

exist to help, but they are clearly not mature yet, and 

often defined for specific collections or languages 

(Hess et al., 2004; Gomadam et al., 2005). Maybe 

for these reasons, no semantic annotation language 

emerged as an industry standard, although they 

appeared more than five years ago now: all 

production WS still rely on WSDL. Even at a 

research level, no publicly available significant 

collection of semantically annotated WS exists, 

making it very difficult to test new algorithms. 

This situation leads to one question: is describing 

WS semantically worth the cost? To our knowledge, 

no one did ever compare the information underlying 

syntactic and semantic WS descriptions. In this 

work, we try to tackle this problem from the 

perspective of parameters dependency, through the 

use of complex networks. We model parameters 

spaces by building so-called dependency networks, 

based on syntactic and semantic descriptions of a 

single WS collection. We make the assumption the 

information conveyed by the two different kinds of 

descriptions appears in the corresponding 

dependency networks. We then compare the 

syntactic and semantic descriptive approaches 

through the networks topological properties. Our 

main contributions are an extended investigation of 

the parameters networks topology and the 

comparison of syntactic and semantic networks. The 

rest of the paper is organized as follow. In section 2, 

we present complex networks and their main 

topological properties. Section 3 introduces 

dependency networks and explains how they can be 

extracted from WS descriptions. Section 4 is 

dedicated to the presentation and discussion of our 

experimental results, i.e. the extracted networks, 

their topological properties and how they compare. 

Finally, in section 5, we emphasize the original 

points of our work, discuss its limitations and their 

possible solutions, and explain how it can be carried 

on. 

2 COMPLEX NETWORKS 

Complex networks are a specific class of graphs, 

characterized by a huge number of nodes and non 

trivial topological properties. They are used in many 

different fields to model real-world systems (Costa 

et al., 2008), and have been intensively studied both 

theoretically and practically (Newman, 2003). 

Because of their complexity, specific tools are 

necessary to analyze and compare them. This is 

usually performed through the comparison of several 

well-known properties, supposed to summarize the 

essential of the network structure. 

2.1 Distance-Based Measures 

The distance between two nodes is defined as the 

number of links in the shortest directed path 

connecting them. At the level of the whole network, 

this allows to process the average distance and the 

diameter. The former corresponds to the mean 

distance over all pairs of nodes (Newman, 2003).  

This notion is related to the small-world property, 

observed when this distance is relatively small. The 

classic procedure to assess this property consists in 

comparing the average distance measured in some 

network of interest to the one estimated for an 

Erdős–Rényi (ER) network (Erdos et al., 1959) 

containing the same numbers of nodes and links, 

since this random generative model is known to 

produce networks exhibiting the small-world 

property (Newman, 2003). In terms of dynamic 

processes, the existence of shortcuts between nodes 

can be interpreted as propagation efficiency (Watts 

et al., 1998). Most real-world networks have the 

small-world property. The diameter is the greatest 

distance over all pairs of nodes in the network. In 

real-world networks, a small diameter is 

synonymous to rapid information propagation 

(Cherifi, 2005). 

2.2 Transitivity 

A network transitivity (also called clustering) 

corresponds to its density of triangles, where a 



 

triangle is a structure of three completely connected 

nodes. It is measured by a so-called transitivity 

coefficient, which is the ratio of existing triangles to 

possible triangles in the considered network (Watts 

and Strogatz, 1998). The higher this coefficient, the 

more probable it is to observe a link between two 

nodes which are both connected to a third one. A 

real-world network is supposed to have a higher 

transitivity than the corresponding ER network by an 

order of magnitude corresponding to their number of 

nodes, meaning their nodes tend to form densely 

connected groups. 

2.3 Degree-Based Measures 

The degree of a node corresponds to the number of 

links attached to it. In a directed network, one can 

distinguish in and out degrees, i.e. the numbers of 

incoming and outgoing links, respectively. Nodes 

with a high in (resp. out) degree are called 

authorities (resp. hubs). The most basic degree-

based measure is certainly the average degree over 

the whole network. When comparing networks 

containing the same number of nodes, it is related to 

their link density. The degree distribution of a 

network is particularly revealing of its structure. 

Most real-world networks have a power law degree 

distribution (Albert et al., 1999; Newman, 2003; 

Boccaletti et al., 2006), resulting in the so-called 

scale-free property. In other terms, real-world 

networks contain a very few nodes with extremely 

high degree, and a large number of nodes with very 

small degree.  

The degree correlation of a network constitutes 

another interesting property. The question is to know 

how a node degree is related to its neighbors’. Real 

networks usually show a significantly different from 

zero degree correlation. If it is positive, the network 

is said to have assortatively mixed degrees whereas 

if it is negative, it is disassortatively mixed 

(Newman, 2003). According to Newman, social 

networks tend to be assortatively mixed, while other 

kinds of networks are generally disassortatively 

mixed. 

2.4 Component Organization 

A component is a maximal connected sub-graph, i.e. 

a set of interconnected nodes, all disconnected from 

the rest of the network. The component distribution 

and, more specifically, the size of the largest 

component are important network properties. 

Indeed, depending on the applicative context, the 

fact the network is split in several separated parts 

with various sizes can be considered as an indirect 

representation of the modeled system effectiveness.  

For example, in a communication network like the 

Internet, the size of the largest component represents 

the largest fraction of the network within which 

communication is possible and hence it reflects the 

effectiveness of the network at doing its job  

(Newman, 2003). Most real-world networks have a 

so-called giant component, whose size is 

overwhelming greater than the other components.  

2.5 Community Structure 

A community is defined as a subset of nodes densely 

interconnected relatively to the rest of the network. 

Unlike components, communities are not necessarily 

disconnected from each other (and generally, they 

are significantly connected). Many real-world 

networks have a community structure (Newman, 

2003). Specific community detection algorithms 

must be used to identify them, leading to a partition 

of the overall nodes set. Almost all of them are 

dedicated to undirected networks, and only a very 

few recent ones can use the information conveyed 

by directed links. In this work, we chose to use a 

well tested program, and therefore focused on 

undirected links. We selected the Walktrap 

algorithm which exhibits good performances 

according to recent benchmarks (Orman et al., 

2009).  

To assess the quality of a network partition, the 

standard measure is Newman’s modularity 

(Newman et al., 2004), whose value also depends on 

the considered network structure. Consequently, its 

theoretical maximal value of  (perfect community 

structure and partition) is rarely reached, and in 

practice values between  and  are considered 

high (Newman, 2006). A value of  represents a 

random partition or the absence of community 

structure.  

3 DEPENDENCY NETWORKS 

3.1 Network Definition 

We define a dependency network as a directed graph 

whose nodes correspond to depending objects and 

links indicate the head nodes depends on the tail 

nodes. They can be considered as complex networks, 

and a few authors used similar approaches to model 

collections of WS based on syntactic (Kil et al., 

2006; Oh, 2006) or on semantic (Hashemian et al., 



 

2005) descriptions. In the resulting parameters 

networks, each node corresponds to a parameter, and 

the links between them represent operation-related 

dependences. In this work, our goal is to compare 

the two types of WS descriptions; hence we used 

both syntactic and semantic descriptions. 

As stated before, a WS interface is defined under 

the form of a set of operations. An operation  

represents a specific functionality, described 

independently from its implementation for 

interoperability purposes. Besides its functionality, it 

is characterized by two sets of input and output 

parameters, noted  and , respectively. In a 

syntactic description, each parameter has a name and 

a type. This type is also defined independently from 

any implementation, again for interoperability 

reasons. Most of the time, the XML schema 

definition language (XSD) is used. In a semantic 

description, name and type are also generally 

specified, and an additional ontological concept is 

associated to the parameter, in order to give it a 

precise meaning. The most popular language used to 

describe these concepts is OWL, the Web Ontology 

Language designed by the W3C Web Ontology 

Working Group. 

In the context of dependency networks, each 

operation  is formally defined as a triplet 

 (Hashemian and Mavaddat, 2005), 

where  denotes the set of dependencies defined by 

the operation. We consider each output parameter 

depends on each input parameter. The left side of 

Figure 1 represents three operations ,  and 

, with their respective inputs and outputs under 

the form of  parameters named with letters ranging 

from  to . As an example, consider operation : 

it is defined as  where: 

,  and  

 (i.e.  and  are both dependent on  

and ). When considering not only a single 

operation, but a whole collection, one can say a 

parameter  depends on another parameter  iff an 

operation  exists such as  and . 

Parameters dependency network capture this 

three-part information: their nodes represent the 

parameters (  and ) and their links stand for the 

dependencies ( ). To build such a network, we first 

create one node for each parameter present in the 

whole collection. Then, links are created by 

considering each operation separately: a link is 

added between each one of its input parameters and 

each one of its output parameters. The right side of 

Figure 1 represents the dependency network 

corresponding to the three operations described on 

the left side. For example, for each input parameter 

  belonging to , there exists a link directed 

to each one of its output parameters . In this 

network, the presence of a link from a node  

towards another node  indicates at least one 

operation uses the parameter corresponding to  as 

an input, and the parameter corresponding to  as 

an output. This can also be interpreted in terms of 

production: we say such a link means one or several 

operations allow producing  provided  is 

already available. 

 

Figure 1: Example of dependency network extraction. 

Connectivity in a dependency network is caused 

by the fact one parameter may be used by several 

operations, either as an input or an output. For 

example, parameters  appear more than 

once in the collection, either as inputs or outputs for 

several operations, but only one node stands for each 

of them in the resulting dependency network. The 

parameters described in the collection of WS 

descriptions (left side in Figure 1) are called 

parameter instances. Those represented by nodes in 

the dependency network (right side) are called 

parameter archetypes. One parameter archetype 

represents a group of parameter instances supposed 

to convey the same information. Consequently, 

deciding if two instances correspond to the same 

archetype is a central task in extracting a 

dependency network. This depends on the nature of 

the considered parameters (syntactic vs. semantic 

description) and on how the notion of similarity is 

defined. These factors are implemented under the 

form of a so-called matching function. 

3.2 Matching Function 

A matching function  takes two parameters  and 

, and determines their level of similarity (Shvaiko 

et al., 2005), generally under the form of a value in 

b 
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. This function can be either symmetrical 

 or asymmetrical, and its 

output can be either binary or real. When comparing 

two parameters, a real output allows representing 

various levels of similarity, which is a good thing 

because it conveys a more subtle information than a 

raw binary value. But it also results in a more 

complex processing during network generation. So 

we selected only binary matching functions in order 

to avoid this situation.   

Because of the different nature of the concerned 

information, we used different matching functions to 

compare syntactically and semantically described 

parameters, resulting in so-called syntactic and 

semantic dependency networks, respectively. For 

syntactic descriptions, we compare parameters 

names: two parameters are said to be similar if their 

names are the exact same strings. The semantic 

matching is performed against the concepts 

associated to the parameters. It is based on the 

classic exact operator used in previous WS-related 

works to compare ontological concepts (Paolucci et 

al., 2002). It considers two parameters to be identical 

iff their associated concepts match perfectly. Note 

both matching functions are symmetrical. Our goal 

is to compare syntactic and semantic descriptions, 

not matching functions, so we opted for standard and 

simple tools. In summary, we can extract two 

distinct networks: syntactic equal and semantic 

exact, noted  and , respectively. 

4 RESULTS AND DISCUSSION 

4.1 Data 

We extracted interaction networks from the 

SAWSDL-TC1 collection of WS descriptions 

(Klusch et al., 2008; "SAWSDL-TC", 2008). This 

test collection provides 894 semantic descriptions 

written in SAWSDL, and distributed over 7 thematic 

domains (education, medical care, food, travel, 

communication, economy and weapon). It originates 

in the OWLS-TC2.2 collection, which contains real-

world services descriptions retrieved from public 

IBM UDDI registries, and semi-automatically 

transformed from WSDL to OWL-S. This collection 

was subsequently resampled to increase its size, and 

converted to SAWSDL. An SAWSDL file describes 

a service both syntactically and semantically. This 

allowed us to extract our syntactic and semantic 

networks from the same collection, and to compare 

them consistently. 

 

Figure 2: Trimmed exact semantic network . The giant 

component is located in the middle. 

4.2 Networks Structure 

The whole SAWSDL-TC1 test collection contains 

 parameters instances, represented by  

nodes in  and  nodes in . The proportion 

of isolated nodes,  and  in  and  

respectively, is quite small in both networks, and 

even a little smaller in the semantic one. Both 

networks exhibit a giant component. In  it 

contains  of the remaining nodes and  of 

the remaining links. The others  components are 

much smaller ranging from  to  nodes.  is 

separated in  distinct components, the giant one 

containing  of the nodes and  of the links 

(see Figure 2).  

The fact that many parameters instances appear 

many times in the collection, like for example, 

_PRICE (  occurrences) or _AUTHOR (  

occurrences), is the reason why there is a significant 

difference between the number of instances and the 

number of parameter archetypes (i.e. nodes in the 

networks). Moreover, we used different matching 

functions to build the syntactic and semantic 

networks, so the resulting archetypes are different 

(i.e. they do not correspond to the same sets of 

instances), which explains the difference in the 

number of nodes between  and . The number 

of nodes is smaller for the later, which indicates 

semantic matching allows associating more 

instances.  

This highlights the presence of false negatives 

(FN) in the syntactic network. FN are instances 

associated to different archetypes in the dependency 

network, whereas they are actually conveying the 



 

same information, and should therefore be 

represented by the same archetype. These FN 

usually are syntactically different (different names) 

but are associated to the same ontological concept 

(same meaning). For example parameter instances 

_AUTHOR, _AUTHOR1 and _AUTHOR2 are represented 

by three distinct nodes in the syntactic network, 

whereas they are associated to a unique node in the 

semantic network, as they all are associated to the 

same #author concept. The semantic matching also 

allows eliminating some false positives (FP). FP 

correspond to instances represented by the same 

archetype whereas they do not represent the same 

information. For example, many instances are 

simply called PARAMETER but are associated to very 

different concepts. The syntactic matching will 

improperly associate them to a common archetype, 

whereas the semantic matching will not. 

Globally, the semantic matching results in less 

isolated nodes and small components, and a larger 

giant component, both in terms of nodes and links. 

The fact distinct components exist reflects the 

decomposition of the collection into several non-

interacting groups of parameters. The presence of 

the giant component is a good property. It means the 

number of dependencies in which several operations 

are implied is high, allowing a large proportion of 

parameters to interact. In the rest of this section, we 

focus on the giant components properties, discarding 

isolated nodes and smaller components. Table 1 lists 

which properties we discuss hereafter. For average 

distance and diameter, values are given for both 

directed and non-directed networks.  

4.3 Distance-Based Measures 

Both syntactic and semantic networks exhibit small 

average distances:  and , respectively. By 

comparison, this distance is approximately  in ER 

random networks of comparable size, which means 

the dependency networks possess the small world 

property. In other terms, many shortcuts exist in the 

networks, indicating one can find dependency paths 

using a relatively small number of parameters. This 

can be interpreted in terms of WS composition, 

meaning one can produce some parameters of 

interest using a relatively small number of 

operations.  According to the results, we can say 

semantic matching generates a more distinct small- 

world property.  

The component diameter is a good indicator of 

the largest dependency path, which is  for   and 

 for . Observing this significant difference 

between the syntactic and the semantic networks 

allows us to say producing parameters is more 

efficient in terms of number of required operations. 

The fewer operations there are, the shorter the 

production time and the smaller the chance to meet 

unavailable operations on the path. Another point is 

the directed nature of the network, which leads to 

sensibly different results: from  to  and from  to 

 for the respective average distances of  and 

, and from  to  and  to  for their respective 

diameters.  

Table 1: Properties of the giant components. 

Property   

Nodes   

Links   

Average distance 

(directed / undirected) 
 /   /  

Diameter 

(directed / undirected) 
 /   /  

Transitivity   

Degree correlation   

Average degree 

(in / out / all) 

 /  / 

 

 /  / 

 

p-value 

(in / out / all) 

 /  

/  

 /  

/  

Communities   

Modularity   

 

4.4 Transitivity 

Unlike most real-world networks, the measured 

transitivity is relatively low for both syntactic and 

semantic networks, with values around . By 

comparison, this transitivity coefficient is 

approximately  in both ER random networks of 

comparable size, known to have very low 

transitivity. As shown in Figure 2, parameters are 

organized very hierarchically, in the form of trees 

rather than triangles, which explains these low 

values. This structure favors the apparition of hubs 

and authorities, the former corresponding to 

parameters used as an input by many operations and 

the latter to parameters being outputs for many 

operations. They play a central role in the 

parameters production process, and their absence 

can be critical. If a parameter is a hub, the 

production of many others depends on its presence. 

If it becomes unavailable, all these parameters 

cannot be produced anymore. If a parameter is an 

authority, its production depends on many others; 

and there are many operations able to produce it. For 

example, _COUNTRY and _PRICE are such 



 

remarkable parameters used or produced by several 

operations.  

4.5 Degree-Based Measures 

An empirical analysis of the network shows few 

parameters have a huge number of links while the 

majority has only a few, which is characteristic of a 

power law degree distribution. To confirm this 

observation, we used the method proposed in 

(Clauset et al., 2009) to fit our data. We obtained 

high p-values for the global degree distribution (all) 

as showed in Table 1. Hence, the null hypothesis 

cannot be rejected, allowing us to suppose this 

distribution follows a power law (see Figure 1).  

The p-values are lower for the in and out degrees 

distributions. They still do not allow rejecting the 

power law distribution, except for the syntactic out 

degree if we take a threshold of . Indeed, one 

can observe the existence of few hubs and 

authorities.  

 

Figure 3: Degree distribution for , on a log-log scale. 

These results are in accordance with average 

degree and degree correlation values. In Table 1, 

negative values of degree correlation indices 

indicate that nodes are significantly disassortatively 

mixed. Strongly connected nodes, as hubs and 

authorities are preferentially linked with lightly 

connected ones. While the value for the maximum 

degree is  in both   and , the average 

degrees values are relatively low, due to the 

presence of a high number of poorly connected 

nodes. 

 

4.6 Community Structure 

The Walktrap algorithm detected communities with 

a good modularity ( ) for equal and exact 

networks (values greater than 0.3 are considered 

high (Newman, 2006). This community structure 

seems to reflect the collection domains, i.e. there is a 

partial correspondence between the groups of 

parameters retrieved from the network structure and 

those belonging thematically to specific domains. 

Indeed, it makes sense to observe denser 

relationships between parameters belonging to the 

same application field, because it is likely the related 

operations were designed to interact with each other. 

Parameters which are responsible to bridges between 

communities may be remarkable nodes such as hubs 

and authorities. For example _COUNTRY and _PRICE 

are transverse to the collection, i.e. they are 

produced or used by many operations across several 

domains. We did not notice any significant 

difference between the two considered networks 

while observing community structure.  

5 CONCLUSIONS 

In this paper, we compared the information 

conveyed by syntactic and semantic WS 

descriptions, through the use of complex networks. 

For this purpose, we extracted a syntactic and a 

semantic dependency networks from one collection 

of descriptions, using two different matching 

functions. We processed, discussed and compared 

their topological properties. Both networks exhibit 

some properties observed in most real-world 

complex networks: small average distance, power 

law degree distribution, presence of a giant 

component and community structure. However, 

unlike most real-world network, our dependency 

networks are not highly transitive.  

When comparing syntactic and semantic 

networks, we observed a greater proportion of nodes 

and links are included in the semantic giant 

component. Consequently, the number and the size 

of small components decrease as well as the number 

of isolated nodes. The semantic giant component 

interconnection structure leads to smaller average 

distance and diameter. This means one needs to 

chain fewer operations to produce a given 

parameter. We can conclude the introduction of 

semantics in WS description allows a more accurate 

representation of their dependency relations. 
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Dependency network-based representations of 

WS collections were used before in various contexts. 

(Hashemian and Mavaddat, 2005) used them for 

composition mining, i.e. finding the best 

composition relatively to some criteria of interest. 

Oh et al. elaborate a benchmark dedicated to WS 

discovery and composition (Oh et al., 2009) and 

developed a WS composition algorithm (Oh et al., 

2008).  The two latter works are based on a study of 

networks topological properties (Kil, Oh et al., 

2006). However, this study focused only on 

syntactic descriptions, and neither the directed 

nature of the links nor the community structure are 

considered, Yet, this is of great importance in the 

context of parameters production and operation 

composition. Additionally, this is the first time, to 

our knowledge, an analysis is conducted on the 

topology of semantic networks, and consequently on 

the comparison with syntactic networks.  

The study presented in this paper can be 

improved according to two directions. First, the 

collection we used is based on a set of real-world 

WS descriptions, but part of them was generated 

through resampling, so it cannot be considered as 

perfectly realistic. As a matter of fact, no other 

publicly available collection provides both syntactic 

and semantic descriptions for the same services 

(Cherifi, 2009), which is an indispensable 

prerequisite to a consistent comparison. The only 

solution we can see is to constitute our own 

collection, by semantically annotating a set of real 

syntactic descriptions. Second, we used a selected 

set of matching functions to extract the dependency 

networks. Many other functions exist, in particular 

more flexible syntactic distances (Cohen et al., 

2003) can be used to perform less strict comparisons 

of the parameters names. This could have significant 

implications on the resulting network properties, 

since it is directly related to the amount of false 

positives (nodes irrelevantly connected) and false 

negatives (nodes irrelevantly disconnected).  

Besides those improvements on data and 

matching functions, we plan to extend our work in 

two ways. First, we want to analyze in greater details 

the partial overlapping observed between 

communities and domains. A related point is to test 

whether properties observed for the whole network 

are also valid for domains or sets of domains. 

Second, to compare the observations we made in this 

work on the parameters networks and in a parallel 

work on operations networks (Cherifi et al., 2010), 

we will extract and study networks at the service 

granularity level. 
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