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Indroduction

The problem of finding the median of a set of m permutations of [n] under the Kendall-τ distance is best known in the literature as the Kemedy Score Problem. In this problem we have m voters that have to order n candidates from their best-liked candidate to their least-liked one. The problem then consist in finding a "Kemedy consensus", i.e, an order of the candidates that agree the most with the order of the m voters, i.e., that minimizes the sum of the disagreements. This problem has been proved to be NP-complete when m ≥ 4 [START_REF] Dwork | Rank Aggregation Methods for the Web[END_REF] (the complexity is unknown for m = 3 and polynomial-time solvable for m = 2) and some approximation algorithms have been derived. First, a randomized algorithm with approximation factor 11/7 [START_REF] Ailon | Aggregating inconsistent information: Ranking and clustering[END_REF] and then a deterministic one with approximation factor 8/5 [START_REF] Williamson | Deterministic algorithms for rank aggregation and other ranking and clustering problems[END_REF]. In 2007, a PTAS result has been obtained [START_REF] Kenyon-Mathieu | How to rank with few errors[END_REF] and a year later, some fixed-paramater algorithms have been described [START_REF] Betzler | Fixed-Parameter Algorithms for Kemeny Scores[END_REF]. Here, we focus on m = 3.

This article is organized as follow. In Section 2, we gives some basic definitions for the problem. In Section 3, we show how we can reduce the search space for the brute force algorithm by deriving some combinatorial properties of the median. Finally we present our heuristic and what still need to be done in section 4 and 5. This work is a work in progress. Since it is an extended abstract, all the proofs has been omitted but are available on request.

Definitions and Notations

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. The set of all permutations of [n] is denoted S n . As usual we denote a permutation π of [n] as ⋆ supported by NSERC through an Individual Discovery Grant π = π 1 π 2 . . . π n . The identity permutation correspond to the identity bijection of [n] and is denoted ı = 12 . . . n. A pair (π i , π j ) of elements of the permutation π is called an inversion if π i > π j and i < j. The number of inversion of a permutation π is denoted inv(π). 1The Kendall-τ distance, denoted d KT , counts the number of pairwise disagreements between two permutations and can be defined formally as follows: for permutations π and σ of [n], we have that

d KT (π, σ) = |(i, j) : i < j and [(π[i] < π[j] and σ[i] > σ[j]) or (π[i] > π[j] and σ[i] < σ[j])|,
where π[i] denote the position of integer i in permutation π. Note that we can easily computed inv(π) as inv(π) = d KT (π, ı). The problem consider in this article will be called median of three problem under the Kendall-τ distance and can be stated as follow:

Given π 1 , π 2 and π 3 , we want to find π * such that

d KT (π * , π 1 )+d KT (π * , π 2 )+d KT (π * , π 3 ) ≤ d KT (π, π 1 )+d KT (π, π 2 )+d KT (π, π 3 ), for all π ∈ S n ,
In order to represent the disagreements between pairs of element in the median with respect to π 1 , π 2 and π 3 , we introduce here the notion of disagreements graph.

Definition 1 We call the disagreements graph of the median π

* = π * 1 π * 2 . . . π * n with respect to π 1 = π 1 1 . . . π 1 n , π 2 = π 2 1 . . . π 2 n and π 3 = π 3 1 . . . π 3 n , denoted G(π *
), the graph obtained from π * by drawing weighted edges between each pairs (π * i , π * j ), with i < j. The weight of an edge (π * i , π * j ), denoted w(π * i , π * j ), represent the number of disagreements of this pair in π * with the same pair of elements in π 1 , π 2 and π 3 , i.e., the distance contribution of this pair in the total Kendall-τ distance.

Example 1 Given π 1 = 2134, π 2 = 4123 and π 3 = 4231 we can compute (since here n is small) the median π * by choosing, in all permutation of 4 elements, the one that minimize the Kendall-τ distance. Doing that, we know here that the median is π * = 4213. The disagreements graph for this π * is given Figure 1.

Reducing the search space

When dealing with permutations, searching the whole set of permutations quickly becomes impossible since there are n! permutations of [n]. To be able to compare our heuristic with the brute force algorithm for permutations of [n] where n > 12, we need to reduce the search space so that the computation will take place in a reasonable time. Here, given three permutation π 1 , π 2 and π 3 , we derived some combinatorial properties of their median π * which will considerably reduce the search space. 

Combinatorial properties of the median

Theorem 1 Let π * = π * 1 . . . π * n be the median of π 1 , π 2 and π 3 , three permutations of [n], with respect to the Kendall-τ distance. Then, for all pairs (i, j) such that i < j and

π k [i] < π k [j] for all 1 ≤ k ≤ 3, (respectively π k [i] > π k [j] for all 1 ≤ k ≤ 3), we have π * [i] < π * [j] (respectively π * [i] > π * [j]).
This first theorem states that all the pairs of elements that appears in the same order in π 1 , π 2 and π 3 should also appears in that order in the median π * . Note that this theorem has already been stated and proved in the area of applied finance and uses what they called an Extended Condorcet Criterion [START_REF] Truchon | An Extension of the Condorcet Criterion and Kemeny Orders, Internal Report[END_REF]. To the best of our knowledge, this is the first time that this result is proved in the context of permutations.

Theorem 2 Let π * = π * 1 . . . π * n be the median of π 1 , π 2 and π 3 , three permutations of [n], with respect to the Kendall-τ distance. Without loss of generality, suppose that π 1 is the permutation that is the closest of the two others, i.e,

d KT (π 1 , π 2 ) + d KT (π 1 , π 3 ) ≤ d KT (π 2 , π 1 )+d KT (π 2 , π 3 ) and d KT (π 1 , π 2 )+d KT (π 1 , π 3 ) ≤ d KT (π 3 , π 1 )+ d KT (π 3 , π 2 ). Then inv(π * ) ≤ inv(π 1 ) + inv(π 2 ) + inv(π 3 ) + d KT (π 1 , π 2 ) + d KT (π 1 , π 3 ) 3 and inv(π * ) ≥ inv(π 1 ) + inv(π 2 ) + inv(π 3 ) -d KT (π 1 , π 2 ) -d KT (π 1 , π 3 ) 3 .
Theorem 2 gives upper and lower bounds on the number of inversion in the median π * . This is really interesting since there exist a CAT-algorithm that computes all permutation of [n] having exactly k inversions [START_REF] Effler | A CAT algorithm for generating permutations with a fixed number of inversions[END_REF]. Table 1 compares the computation time needed to find the median of 3 permutations of [n], for 4 ≤ n ≤ 11, using 1) the brute force algorithm and 2) the brute force algorithm optimize by the results of Theorem 1 and 2.

Our heuristic

The idea of our algorithm is to apply a series of "good" cyclic movements on the starting permutations to make them closer to the median. Formally we have the following definitions and algorithm. Table 1. Running time, in seconds, of the brute force algorithm with and without the optimizations Definition 2 Given π = π 1 . . . π n , we call cyclic movement of a segment π[i..j] of π, denoted c[i, j](π), the cycling shifting of one position to the right (c r [i, j]) or to the left (c ℓ [i, j]) of the segment inside the permutation π:

c r [i, j](π) = π 1 . . . π i-1 π i+1 . . . π j π i π j+1 . . . π n , c ℓ [i, j](π) = π 1 . . . π i-1 π j π i . . . π j-1 π j+1 . . . π n
When j = i + 1, a cyclic movement correspond to a transposition.

Definition 3 Given three permutations π 1 ,π 2 and π 3 , we will say that a cyclic movement is a k-move if

3 m=1 d KT (c[i, j](π), π m ) = 3 m=1 d KT (π, π m ) + k. Definition 4 A good cyclic movement c[i, j] is a k-move, where k < 0.
This means that if we apply a good cyclic movement to π we obtain a permutation that is closer to the median than π, i.e., we have Theorem 3 Let π 1 ,π 2 and π 3 be three permutations. Let π be a starting permutation from which we want to derive π * , the median of π 1 ,π 2 and π 3 with respect to the Kendall-τ distance. We have that c r

[i, j](π) (resp. c ℓ [i, j](π)) is a k-move, k ∈ Z, iff j -i ≡ k mod 2 and j t=i+1 w G(π) (π i , π t ) resp. j-1 t=i w G(π) (π t , π j ) = 3(j -i) + k 2 .
Now, we present our heuristic whose pseudo-code is depicted in Figure 2. The idea is to begin our search for the median in any of the starting permutation π 1 , π 2 or π 3 and to apply good movements to this starting point till there is no more possible good movement. We apply three time our pseudo-code, with π = π m , 1 ≤ m ≤ 3 and our "median" is the best result we obtain from these three runs. We tested this heuristic on all possible triplets of premutations of [n] for 3 ≤ n ≤ 5, and on 2000 random triplets, for 6 ≤ n ≤ 12. Table 2 shows that the percentage of errors of our heuristic slowly increases from 0 to 1.6 %, as n increases from 3 to 12. Table 2 also shows that, in the case, when our heuristic does not find the real median π * , the difference between the Kendall-τ distance of our median and π * is always one.

Since this article is a work in progress, there is still a lot of question we need to answer. Stating only a few, we have the following ones: Starting in one permutation and applying any combinations of good and 0-moves, do we always end in the same permutation? Is our heuristic + 0-moves an exact algorithm and if so what is its complexity? Can we find combinatorial properties that will completely described the set of 0-moves that can make us move out of a local minimum?

Fig. 1 .

 1 Fig. 1. Disagreements graph of π * = 4213 with π 1 = 2134, π 2 = 4123 and π 3 = 4231.

3 m=1d

 3 KT (c[i, j](π), π m ) < 3 m=1 d KT (π, π m ). Theorem 3 gives us a way to easily find these good moves (in fact any k-move) on a starting permutation π by summing the weights of the edges, in the disagreements graph G(π) that are change by these moves.

Since the inversions are generators of Sn, we can view Sn with these generators as a Coxeter group. In this context, the number of inversions of a permutation π is called the length of π and is denoted by ℓ(π). See Chapter 5 of[START_REF] Humphreys | Reflection Groups and Coxeter Groups[END_REF] for more details.
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Algorithm FindMedian (π, [π 1 , π 2 , π 3 ]) n ← length(π) bool ← 0 (will be change to 1 if there is no more possible "good" movement) chang ← 0 (will tells us if some movements where made) Considering 0-moves When our heursitic does not find the median π * , it means that we are stuck in a local minimum and there is no more possible good move that we can make. We decide in this case to apply a fixed number of 0-moves in hope that these moves will help us go out of the local minimum. Given a permutation π, we can easily find these 0-moves with Theorem 3. Among these 0-moves, if at least one has the property described in Theorem 4 we are guaranteed to move out of the local minimum. So, the 0-moves with this properties will be call "good".

Theorem 4 Let π 1 ,π 2 and π 3 be three permutations. Let π be a starting permutation from which we want to derive π * , the median of π 1 ,π 2 and π 3 with respect to the Kendall-τ distance.

To try to see if we always find the median π * by applying alternatively our heuristic and 0-moves (good or random), we tested this idea, with a permitted number of 0moves of at most 2, on 400 random triplets of permutations of [n], 7 ≤ n ≤ 14. In all of those computed examples, we did found the median π * .