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The one-pot synthesis and use of monolithic biohybrid foams in

a continuous flow device reported in here presents the advantages of

covalent stabilization of the enzymes, together with a low steric

hindrance between proteins and substrates, optimized mass trans-

port due to the interconnected macroporous network and simplicity

with regard to the column in situ synthetic path. Those features,

when applied to transesterification (biodiesel production) via enzyme

catalysis, provide among the top enzymatic activities displayed by

biohybrid catalysts bearing unprecedented endurance of continuous

catalysis for a two month period.
Modern societies will be confronted in the near future with an

increasing requirement of fuels combined with a programmed dimi-

nution of easily extractable resources of fossil origin. In this context,
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biodiesels, which are fatty acid methyl or ethyl esters obtained by

transesterification of vegetable oils, have attracted considerable

attention during the last decade.1 Several processes for biodiesel fuel

production have been developed, among which transesterification

with alcohol using mineral acids,2 or base3 catalysts is the most

common. Alkali-catalyzed alcoholysis, which is about 4000 times

faster than its acid-catalyzed counterpart, is commonly used in

industrial processes.3 Despite the fact that this process is inexpensive

and highly efficient, it is not yet completely satisfactory. Particularly,

the presence of bothwater and free fatty acids in the reactionmedium

causes a partial saponification, leading to a loss of catalytic effi-

ciency.1 Recently, enzymatic transesterification using lipases (tri-

acylglycerol hydrolases), has become an interesting alternative for

biodiesel fuel production, since the problemsmentioned above can be

circumvented.4Themain hurdle to the industrialization of this system

is the cost of lipases, which is significantly higher than that of the

alkali. Consequently, it is necessary to develop processes insuring

a complete recyclability and stability of enzymatic catalysts over the

time, in order to reduce the impact of this cost increase down to

competitive levels. Immobilization or entrapment of biocatalysts,5

onto or within porous materials using either physical adsorption,6

covalent attachment,7 inclusion or encapsulation by a sol–gel route,8

represents an attractive and efficient approach to facilitate their use in

continuous devices, and to compete with cheaper processes.9–12

Therefore, the design of new functional porous materials to immo-

bilize active biomacromolecules still presents a challenge of both
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stabilised at around 0.06 mmol min�1 mg�1 for the first ten days, and 
decreased to 0.03 mmol min�1 mg�1 for the last five days of the 
continuous flow reaction (the column stoichiometry and enzymatic 
loading can be found within the ESI). Moreover, enzyme deactiva-tion 
through modification of its conformation by alcohol cannot be 
excluded. Nevertheless, after 50 days of continuous flow catalysis at 37 
�C, the enzymatic activity retains about 50% of its initial value. This 
result is, to the best of our knowledge, unprecedented for continuous 
flow enzymatic catalysis.11,22,23 At that stage, the low concentration of 
substrates in heptane solution used in this experi-ment remains an 
important drawback for future applications. Therefore, another 
continuous flow catalysis experiment has been performed using a more 
concentrated starting reagents solution (50 wt% in heptane). In this 
experiment, a crude vegetable oil, safflower oil from Carthamus 
tinctorius seed, has been chosen for trans-esterification with ethanol 
(Fig. 3). This oil is principally composed of two unsaturated 
triglycerides: trilinolein (around 70%) and triolein (around 10%), and 
completed with tripalmitin (8%).24 For this reac-tion we have 
previously demonstrated that the Candida rugosa lipase is not the 
candidate of choice, being less active than the Thermomyces
Lanuginosus lipase.16 Therefore, a new column has been synthesized 
using the same approach as previously and called Col[C-TL-lipase] 
@gGlymo-Si(HIPE) (see ESI for this column characterization details 
over the micro-meso and macroscopic length scales). The evolution of 
the conversion in butyl linoleate versus time is reported in Fig. 3. For a 
reagents solution flow rate of 0.05 mL min�1, the daily conversion 
level in butyl linoleate is initially close to 40%, and decreases slowly 
but regularly to reach finally about 15% after two months of 
continuous conversion. As pointed out for the esterification reaction, 
this behaviour can be attributed to both a consistent dehydration of 
the enzyme21 and a degradation of the enzyme conformation through 
the ethanol source. It is now possible to compare the performance of 
the Col[C-TL-lipase]@gGlymo-Si(HIPE) column with other sup-
ported-enzyme catalysis under continuous flux reported in the liter-
ature. Particularly, it is reported that the use of lipase Candida sp. 
confined within textile fibers is associated either with a 20% decrease of 
enzymatic activity within 21 days of catalysis under continuous flux25 

or with a 16% decrease within 4 days of continuous catalytic 
10 
economic and ecological interests. In this context, functional ordered

macro-mesoporous materials prepared according to the concept of

‘‘integrative chemistry’’,13 are of interest for multiple applications in

heterogeneous catalysis, separation techniques, purification of

wastewaters, sensors, optics etc.14Within this aim, our research group

has developed a way to obtain hybrid macrocellular silica-based

monoliths, labelled ‘‘Organo-Si(HIPE)’’ (‘‘HIPE’’ for High Internal

Phase Emulsion),15 exhibiting a hierarchically structured porosity.

Using the same strategy, combined with the concept of immobilized

biocatalysts, we have designed a new series of biohybrid foams

labelled Lipase@Organo-Si(HIPE), exhibiting high catalytic perfor-

mances.16 Herein, we present the synthesis and use of enzyme-based

macrocellular materials in continuous flow devices in order to opti-

mize reactant mass transport. Continuous flow monolithic micro-

reactors,17 offer the possibility to circumvent some drawbacks

associated with the use of batch reactors; such as limited productivity

(lowTON), complex control of heat transfer, highmaintenance costs,

security concerns, etc. In the present work, silica-based biohybrid

monolithic foams have been synthesized in situ in a PTFE-coated

stainless steel chromatography column by combining the sol–gel

process with the concentrated emulsion soft templating approach

(Fig. 1a). In order to covalently anchor the enzymes onto the inner

monolith walls, epoxy groups have been grafted using a continuous

flow impregnation with (3-glycidyloxypropyl)trimethoxysilane as

organosilane precursor. Then, commercial crude lipases have been

immobilized by continuous flow impregnation in distilled water (at

pH ¼ 6.5). Epoxy groups are very attractive candidates to generate

short and soft covalent spacer arms and to react with different

nucleophiles present on the surface of enzymemolecules, for instance

amino, thiol, or hydroxyl groups.18,19 This feature allows us to reach

a good compromise between stability of the grafting and mobility of

the protein, allowing, as observed in several cases, an increase of the

immobilized enzyme activity.20 Finally, after exhaustive continuous

flow washings, the column containing the monolith, called Col[C-

CR-lipase]@gGlymo-Si(HIPE), was placed in the oven, and con-

nected to a pump to be used in continuous flow catalysis (see ESI for

the column characterization details over the micro-meso and

macroscopic length scales). As can be seen in Fig. 1b–c, after 60 days

of catalytic use, the Col[C-CR-lipase]@gGlymo-Si(HIPE) monolith

presents a low shrinkage (around 8%) demonstrating the absence of

a significant preferential flow circulation between the inner surface of

the column and the outer surface of themonolith during use (Fig. 1d).

Moreover, considering the low flow rate used in this study (0.1 mL

min�1), together with the bottom-up flow direction restricting gravity

effects, and the relatively high viscosity of the moving fluid, creeping

motion (Stokes flow) can be considered. This situation, characteristic

of microfluidic systems, is favourable for a good contact between the

reagents onto the flow and the catalyst (the enzyme) situated near the

walls. The first reaction studied using this device was the esterification

of oleic acid by 1-butanol in a diluted heptane solution (Fig. 2). For

an initial reagents solution flow rate of 0.05 mL min�1, the daily

conversion level in butyl oleate is relatively stable around 50% during

twenty days (Fig. 2a).However, when increasing this flow rate level to

0.1 mL min�1, the daily conversion level regularly decreases during

the thirty following days down to about 15%. The conversion level

increased when returning to the initial flow rate. This behaviour can

be attributed to a consistent dehydration of the enzyme on the silica-

based support, water acting as a molecular lubricant.21 As a direct

consequence, the quite high initial enzymatic activity (Fig. 2b),
reaction. We also have to mention that a good enzymatic stability 
over 5 days (conversion of 80% under continuous flow) has been 
obtained for stabilized lipase Candida antarctica B(Novozyme 435), 
confined within macroporous acrylic resin in the transesterification of 
worn palm oil.26 Using the same enzyme, Royon et al. have reported a 
conversion of 95% during 21 days when considering the trans-
esterification of coconut oilseed with methanol.27 Under this study it



has been established that tert-butanol, bearing a weak polarity, favors 
dissolution of glycerol by-products. In that case, 1.7 mg of enzyme per 
gram of oil has been used, allowing a methyl linoleate production of 
0.17 mmol min�1 mg�1 (enzyme) during 21 days. In our case the methyl 
linoleate production starts at 0.16 mmol min�1 mg�1 (enzyme) with a 
small decrease to 0.13 mmol min�1 mg�1 (enzyme) after 21 days, 
production that is decreasing but still effective after two months of 
continuous flow catalysis at 0.06 mmol min�1 mg�1 (enzyme)(Fig. 3b).
Overall, the one-pot synthesis and use of monolithic biohybrid 

foams in a continuous flow device reported in this work presents the 
advantages of covalent stabilization of the enzymes, together with a 
low steric hindrance between proteins and substrates, an optimized 
mass transport due to the interconnected macroporous network and 
simplicity in regard of the column in situ synthetic path. Those 
features, applied to the enzyme-catalyzed transesterification reaction 
(biodiesel production), exhibit amongst the top enzymatic activity 
addressed with biohybrid catalysts displaying unprecedented endur-
ance of continuous catalysis for a two month period.

Experimental section
Materials

Tetraethylorthosilane (TEOS), tetradecyltrimethylammonium 
bromide (TTAB), (3-glycidyloxypropyl)trimethoxysilane and dodec-
ane were purchased from Fluka (St. Louis, MO). Lipase from 
Candida Rugosa (E.C.3.1.1.3, Type VII, 700 U mg�1), lipase from

Thermomyces Lanuginosus (solution, $100 000 U g�1), carthame oil

(purified safflower oil), oleic acid, glyceryl trilinoleate (98%), ethyl

linoleate ($99%), linoleic acid ($99%), n-heptane, ethanol and

1-butanol were purchased from Sigma Chemical (St. Louis, MO).

Other chemicals and solvents used in this study were of analytical

grade or HPLC grade.

Hybrid monolithic column synthesis

Typically, 5 g of TEOS was added to 16 g of a TTAB aqueous

solution at 35 wt% previously acidified (7 g of HCl), and hydrolysis

occurred until a monophasic hydrophilic medium was obtained. The

oily phase constituted 35 g of dodecane which was then emulsified

drop by drop into the hydrophilic continuous phase using a mortar.

The emulsion was then allowed to condense for 1 week at room

temperature in a PTFE pipe (L ¼ 251.0 mm; r¼ 9.65 mm) confined

in a stainless steel HPLC-type column lined with a PTFE tube (7 mm

ID diameter, 300 mm useful length). The as-synthesized monolith

was washed for four days in a tetrahydrofuran–acetone mixture (at

50 vol%) under continuous flow (0.1 mL min�1) to extract the

oily (dodecane) phase from the monolith. Then, epoxy groups

were grafted by a closed-loop continuous flow impregnation

(0.1 mL min�1) of a 0.05 M solution of (3-glycidyloxypropyl)trime-

thoxysilane (Glymo) in chloroform (200 mL) for three days. The

hybrid silica-based column was then successively washed with chlo-

roform, acetone and water (0.5 mL min�1).

Esterification catalysis reactions using Candida rugosa crude

lipase-based monolithic column

Crude lipase from Candida rugosa (500 mg; Sigma Chemical; E.

C.3.1.1.3, Type VII, 700 U mg�1) was dispersed into distilled water
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(200 mL). The mixture was first stirred for an hour at room

temperature and centrifuged for 5 min at 5000 rpm to eliminate the

insoluble compounds. Then, the hybrid column was impregnated by

this solution in a closed-loop continuous flow process (flow rate

0.1 mLmin�1) for five days at room temperature. The as-synthesized

biohybrid column is then left for one month at 4 �C in the static

enzymatic aqueous solution. After that, the columnwas continuously

washed with distilled water, until disappearance of absorbance

by Bradford measurement,28 and then with heptane (flow rate

0.1 mL min�1). The esterification catalysis was performed with an

oleic acid (23 mmol L�1) and 1-butanol (46 mmol L�1) heptane

solution under a 0.1 mL min�1 flow rate at 37 �C. Formation of the

ester was monitored using HPLC, to determine the conversion yield

Transesterification catalysis reactions using Thermomyces

lanuginosus crude lipase-based monolithic column

Crude lipase from Thermomyces lanuginosus (4 g; $100 000 U g�1

was dispersed into distilled water (200 mL). The mixture was firs

stirred for an hour at room temperature. The hybrid column wa

impregnated by this solution in a closed-loop continuous flowproces

(flow rate: 0.1 mL min�1) during five days at room temperature. The

as-synthesized biohybrid columnwas left for twoweeks at 4 �C in the

static enzymatic aqueous solution. After, the column was continu

ously washed with distilled water until disappearance of absorbance

by Bradford measurement.28 In a second step, the biohybrid column

was activated with a 5% w/v glutaraldehyde aqueous solution

(200 mL) 0in a closed-loop continuous flow process (flow rate



,

.

,
,
,
,
,
)
,

,
,
.
,

,

,

-

e

,

.

,

,

.

.

0.1 mLmin�1) during three days at room temperature. The activated

biohybrid column was then functionalized with a new enzymatic

aqueous solution (4 g TL crude lipase in 200 mL distilled water) by

continuous flow impregnation (flow rate: 0.1 mL min�1) during five

days at room temperature. The column was then continuously

washed with distilled water, until disappearance of absorbance by

Bradford measurement, and with heptane (flow rate: 0.1 mL min�1).

The transesterification of crude safflower oil from Carthamus tinc-

torius seed (38 wt%) by ethanol (12 wt%) was performed in heptane

(50 wt%; 40 �C) at a 0.1 mL min�1 flow rate. Conversion of glyceryl

trilinoleate was monitored using HPLC.

Characterizations

Scanning electron microscopy (SEM) observations were performed

with a Hitachi TM-1000 apparatus operating at 15 kV. The speci-

mens were sputtered with Au/Pd prior to examination.

HPLC analytical system

The analytical system consisted of a 600 solvent delivery system,

manual injector (Waters, Milford, MA, USA). The compounds were

separated on an Atlantis DC18 (4.6 mm � 150 mm, 5 mm) column

with an Atlantis DC18 guard column (Waters). The column was

operated at room temperature. Empower software (Waters) was used

for data acquisition and processing. Standards were dissolved in tert-

butyl methyl ether (MTBE). All solutions were filtered through

a 0.45 mm membrane and degassed before use. The flow-rate was

1mLmin�1 and 20 mL of samples were injected. For the esterification

catalyzed reactions a refractometer 410 (Waters,Milford,MA,USA)

was used for detection. The mobile phase was acetonitrile (grade

HPLC), isocratic elution. For the transesterification catalyzed reac-

tions the detector in use was an ultraviolet diode array 996 (Waters,

Milford, MA, USA). The maximum absorbance was at l¼ 204 nm.

A gradient elution was used. Solvent A: acetonitrile, solvent B: tert-

butyl methyl ether. A: 4 min 100 (v/v) isocratic, A-B: 2 min 70–30

(v/v) gradient, A-B: 10 min 70–30 (v/v), A: 0.5 min 100 (v/v) gradient.

Then, the column was equilibrated under conditions mentioned

above for 10 min.
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Fig. 2 Catalytic performances for esterification of oleic acid with 1-
butanol in heptane obtained using Col[C-CR-lipase]@gGlymo-Si(HIPE). 
Initial flow rate is 0.05 mL min�1. *The flow rate is increased to 0.1 mL 
min�1, **the flow rate positioned back to 0.05 mL min�1. (a) Butyl oleate 
conversion versus time; (b) enzymatic activity versus time. The enzymatic 
activity is expressed in mmol of butyl oleate consumed per minute and per 
milligram of lipase immobilized. Examples of HPLC chromatograms are 
shown within the ESI.
. 1 Pictures of: (a) the continuous flow set-up; (b, c) the as-synthe-sized 
umn after 60 days of continuous flow transesterification catalysis 
hin the stainless steel canister; (d) the biohybrid macrocellular column 
racted from its canister after 60 days of continuous flow esterification 
alysis. The two set of columns used in this study are labelled Col[C-
-lipase]@gGlymo-Si(HIPE) and Col[C-TL-lipase]@gGlymo-Si 

IPE).

Fig. 3 Catalytic performances for transesterification of safflower oil with 
ethanol in heptane obtained using Col[C-TL-lipase]@gGlymo-Si (HIPE) 
at 40 �C at a 0.1 mL min�1 flow rate. (a) Ethyl linoleate ester production 
versus time; (b) enzymatic activity versus time. The enzymatic activity is 
expressed in mmol of ethyl linoleate ester produced per minute and per 
milligram of lipase immobilized. Examples of HPLC chro-matograms are 
shown within the ESI.
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Supplemental 

Characterizations details. 

Scanning Electron Microscopy (SEM) observations were performed with a Hitachi TM-1000 

apparatus at 15 kV. The specimens were sputtered with Au/Pd prior to examination. Intrusion/

extrusion mercury measurements were performed using a Micromeritics Autopore IV 

apparatus in order to assess the scaffolds’ macrocellular cells characteristics. Small Angle X-

ray Scattering (SAXS) experiments were carried on a 18 kW rotating anode X-ray source 

(Rigaku-200) with use of Ge (111) crystal as monochromator. The scattered radiation was 

collected on a two dimensional detector (Imaging Plate system from Mar Research, Hamburg). 

The sample- detector distance was 500 mm. Surface areas and pore characteristics at the 

micro- and mesoscale were obtained through nitrogen adsorption-desorption experiments 

using a Micromeritics ASAP 2010. 
29

Si Nuclear Magnetic Resonance (NMR) spectra were 

recorded on a Bruker Avance III 300 spectrometer (7 T) operating at 59.6 MHz. Samples were 

spun at 5 kHz using 7 mm ZrO2 rotors. The 
29

Si MAS NMR spectra were performed with a 

90° pulse of 5 μs and a recycle delay of 150 s. The spectra were deconvoluted with the DMFIT 

program [1]. 

Supplementary results. 

Biohybrid monolithic columns have been thoroughly characterized after use in 

continuous flow catalysis. For doing so, silica-based foams has been washed with distilled 

water and freeze-dried 24 hours, in order to keep as much as possible the structure of the 

hybrid framework. These macroporous materials have been examined by Scanning Electron 

Microscopy (SEM, Figure S1). Micrographs clearly reveal for both monolithic columns, the 

typical interconnected macroporous network of Si(HIPE)s materials, constituted of an 

aggregated hollow spheres-like macrostructure (hollow spheres are usually named voids or 

cells) [2]. This feature is mainly due to a privileged mineralization at the oil/water interface of 
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the soft template concentrated emulsion. Moreover, a high interconnectivity between 

void spaces is highlighted by internal junctions (see green solid arrow on Figure S1b), 

connecting two directly adjacent cells, and external junctions (see red dotted arrow on 

Figure S1b), induced by statistical aggregation of oil droplets during emulsification process.  

Figure S1. Scanning electron micrographs (SEM) of the biohybrid macroporous columns after continuous flow 

catalysis, washing and freeze-drying. (a) Col[C-CR-lipase]@gGlymo-Si(HIPE) and (b) Col[C-TL-

lipase]@gGlymo-Si(HIPE). The green solid arrow indicates an internal cell junction, whereas the red dotted 

arrow corresponds to an external cell junction. 

High interconnectivity between voids is also emphasized by mercury intrusion 

porosimetry data (Figure S2). At this stage, it is necessary to remind that mercury porosimetry 

provides only informations about the junctions, also named windows, that connect adjacent 

void spaces, and not on the cellular void spaces themselves. Pores size distribution for both 

monolithic columns exhibit a main windows diameter centered on 10 µm, probably related to 

external junctions, together with a less-defined shoulder, between 100 nm and 2 µm, feature 

that can be associated with narrow internal junctions (see arrows on Figure S2).  
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Figure S2. Pore size distributions of the biohybrid macroporous columns after continuous flow catalysis, 

washing and freeze-drying, determined by mercury intrusion porosimetry. (a) Col[C-CR-lipase]@gGlymo-

Si(HIPE) and (b) Col[C-TL-lipase]@gGlymo-Si(HIPE). 

In conjunction with a high interconnectivity between void spaces, these biohybrid 

monolithic columns exhibit elevated macroporosities, close to 95 %, and intrusion volumes, 

up to 20.1 cm
-3

.g
-1

,
 
as revealed by mercury porosimetry data (Table S1). A higher skeletal

density can be noticed for the Col[C-TL-lipase]@gGlymo-Si(HIPE). This feature will be 

discussed later. 

Table S1. Mercury intrusion porosimetry data of the biohybrid macroporous columns after continuous flow 

catalysis, washing and freeze-drying. 

Biohybrid foams Porosity (%) 
Intrusion volume 

(cm
-3

.g
-1

)

Skeletal density 

(g.cm
-3

)

Col[C-CR-lipase] 

@gGlymo-Si(HIPE) 
95 20.0 1.0 

Col[C-TL-lipase] 

@gGlymo-Si(HIPE) 
94 13.0 1.2 

Beyond macroporosity, these foams exhibit some degree of mesoporosity, induced by 

supramolecular self-assembly of the cationic surfactants used to stabilize oil-water interfaces 

of the native concentrated emulsion. Indeed, small-angle X-ray scattering profiles (SAXS, 
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Figure S3) of these materials constantly depict a broad peak centered at a wave vector, q, of 

0.144 Å
-1

. This feature clearly discloses a vermicular mesostructure, associated with an unit 

cell parameter around 4.4 nm, in agreement with previous results obtained for Si(HIPE)s 

without thermal treatment [2].  
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Figure S3. Small-angle X-ray scattering profile of a biohybrid macroporous column after continuous flow 

catalysis, washing and freeze-drying. 

The presence of mesopores is also confirmed by nitrogen sorption experiments (Figure 

S4). Concerning the Col[C-CR-lipase]@gGlymo-Si(HIPE) sample, a mixed type II/ type IV 

isotherm can be noticed, exhibiting a hysteresis of the desorption curve compared with the 

adsorption one (Figure S4a). This hysteresis clearly highlights a capillary condensation 

phenomenon, induced by the presence of mesopores within the hybrid silica-based 

framework. Moreover, a fast rise of the nitrogen adsorption at the very low relative pressures 

(up to 0,04) involves a microporous component, while the progressive increase of the N2 

amount adsorbed above relative pressure of 0.2 and up to 1.0, strongly suggests a 

multimolecular adsorption, relative to macropores (Figure S4a). On the other hand, the 

nitrogen sorption curve noticed for the Col[C-TL-lipase]@gGlymo-Si(HIPE) sample depicts a 
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type II isotherm, strongly suggestive of an essentially macroporous material (Figure S4c). The 

lack of a fast N2 sorption rise at the very low relative pressures implies an absence or a minor 

accessibility of micropores. The pore size distributions, obtained by density functional theory 

for both hybrid foams (Figure S4b-d), show constantly a broad peak centered at 3-4 nm, in 

agreement with SAXS data (Figure S4). Nevertheless, a less marked hysteresis is discernible 

for the Col[C-TL-lipase]@gGlymo-Si(HIPE), suggesting a reduced accessibility to 

the mesoporous component.  
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Figure S4. Nitrogen sorption isotherms for (a) Col[C-CR-lipase]@gGlymo-Si(HIPE) and (c) Col[C-TL-

lipase]@gGlymo-Si(HIPE). Pore size distributions obtained by Density Functional Theory (DFT) for (b) Col[C-

CR-lipase]@gGlymo-Si(HIPE) and (d) Col[C-TL-lipase]@gGlymo-Si(HIPE). 
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Theses features can be explained by a larger amount of biomolecules within the 

Col[C-TL-lipase]@gGlymo-Si(HIPE) hybrid framework, inducing a partial obstruction 

of nitrogen molecules towards the smaller pores (typically, micro- and mesopores). 

This characteristic, confirmed by both Brunauer, Emmett, Teller (BET) and Barret, 

Joyner, Halenda (BJH) data (Table S2), will be discussed by comparing 

stoichiometries and enzymatic loadings of each column.  

Table S2. Nitrogen sorption data for the biohybrid macroporous columns after continuous flow catalysis, 

washing and freeze-drying. 

Biohybrid foams 
BET surface area 

(m
2
.g

-1
)

a
 

Mesoporous 

surface area 

(m
2
.g

-1
)

b

Total porous 

volume 

(cm
3
.g

-1
)

c

Mesoporous 

volume 

(cm
3
.g

-1
)

b

Col[C-CR-lipase] 

@gGlymo-Si(HIPE) 
962 541 0.86 0.61 

Col[C-TL-lipase] 

@gGlymo-Si(HIPE) 
210 143 0.24 0.21 

 a
 calculated using the BET model,  

b
 calculated using the BJH model,  

c
 calculated using  the single point model 

To quantify the degree of grafting and condensation of organosilane derivatives 

(epoxy groups) anchored within the silica-based frameworks, a study by 
29

Si nuclear magnetic

resonance (NMR) at the magic angle spinning (MAS), was conducted (Figure S5 and Table 

S3). 
29

Si sites are labeled with the conventional Tn and Qn notations. T refers to functional

(R)SiOn(OH)3-n units, induced by organosilane precursors grafting, and Q to SiOn(OH)4-n

units, associated with native silica-based scaffold (n being the number of bridging oxygen 

atoms, generated by the condensation process, surrounding the silicon). Chemical shifts were 

determined relative to TMS (tetramethylsilane). Due to the presence of both the Tn and Qn 

signals, the efficient grafting of the organosilane derivative is confirmed for both monolithic 

porous microreactors (Figure S5). 
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Figure S5. 
29

Si nuclear magnetic resonance spectra obtained at the magic angle spinning for (a) Col[C-CR-

lipase]@gGlymo-Si(HIPE) and (b) Col[C-TL-lipase]@gGlymo-Si(HIPE). NMR MAS experiments have been 

performed at the lower part (bottom), together with the upper part (top) of the Col[C-TL-lipase]@gGlymo-

Si(HIPE) column. 

After a Lorentzian/Gaussian deconvolution of the NMR spectra, atomic compositions 

in Tn and Qn species can be determined (Table S3). Thus, concerning both grafting (Tn / 

(Tn+Qn)) and condensation (T3 / T2) degrees, no difference can be noticed between the two 

hybrid columns, revealing a good reproducibility of the continuous flow functionalization 

process. Moreover, no grafting gradient can be observed between the lower and the upper 

parts of the as-synthesized biohybrid Col[C-TL-lipase]@gGlymo-Si(HIPE), suggesting an 

homogeneous functionalization within the porous scaffold. 
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Table S3. Molar percentages of Qn and Tn units and molar ratio T3 / T2 (condensation degree) calculated from 

the integration of NMR peaks after a Lorentzian/Gaussian deconvolution. NMR MAS experiments have been 

performed at the lower part (bottom), together with the upper part (up) of the Col[C-TL-lipase]@gGlymo-

Si(HIPE) column. 

Biohybrid foams 
RMN MAS 

29
Si 

% Qn % Tn T3 / T2 

Col[C-CR-lipase] 

@gGlymo-Si(HIPE) 
bottom 82.2 17.8 3.2 

Col[C-TL-lipase] 

@gGlymo-Si(HIPE) 

bottom 82.0 18.0 2.5 

up 80.5 19.5 3.2 

Beyond organosilane precursors grafting, the enzymatic loadings were determined by 

the Bradford [3] assay using bovine serum albumin as a standard, checking the protein content 

of both impregnation and washing solutions. At this stage, it can be noticed that a larger 

amount of lipases has been immobilized within the Col[C-TL-lipase]@gGlymo-Si(HIPE) 

foam. This feature is mainly explained by the two-step procedure, involving an intermediate 

activation of the biohybrid macroporous monolith with a 5% w./v. glutaraldehyde aqueous 

solution. Indeed, the formation of Cross-Linked Enzyme Aggregates (CLEAs) [4], covalently 

bonded via glutaraldehyde’s bridges, can be strongly suggested. The overall biohybrid column 

stoichiometries can be found within table S4. 

Table S4. Lipase loadings and stoichiometries of the biohybrid columns determined by both 
29

Si nuclear 

magnetic resonance and Bradford assay.  

Immobilized lipases 
Stœchiometries

c

Weight (mg)

Candida rugosa 9.4
a
 (57 %)

b Col[C-CR-lipase]
5.4.10-6@SiO1.82(C6O2H11)0.18

Thermomyces lanuginosus 158
a
 (81 %)

b Col[C-TL-lipase]
1.7.10-4@SiO1.82(C6O2H11)0.18

a
Amounts of enzymes immobilized determined by Bradford assay. 

b
Percentages of enzymes immobilized related 

to the initial lipase weight used in the solution of impregnation. 

We can notice that the enzyme loading is around one hundred times higher for the 

column Col[C-TL-lipase]@gGlymo-Si(HIPE) than the Col[C-CR-lipase]@gGlymo-Si(HIPE). 
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This feature hast two consequences. First the higher enzyme loading will avoid nitrogen 

access to the mesocopic void paces when performing N2 adsorption-desorption measurement. 

As a direct consequence, the specific surface area should be smaller for the Col[C-CR-

lipase]@gGlymo-Si(HIPE), as it is the case considering both figure S4 and table S2. 

Also, considering the high molecular weight of the protein in use, a loading higher with a 

factor 100 for the Col[C-TL-lipase]@gGlymo-Si(HIPE), will undoubtedly increase the 

foams skeletal density as it observed above considering table S1, where mercury 

porosimetry results are summarized. Considering these hybrid foams, the effects of the 

embedded [5] or grafted [6] organic content over the final mesoporosity and skeletal density 

are well known and reported. 

Examples of HPLC chromatograms. 

Figure S6. HPLC chromatograms a) after 6 days of esterification, b) after after 40 days of esterification. 
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Figure S7. HPLC chromatograms a) after 10 days of transesterification, b) after after 60 days of 

transesterification. 
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